huge_memory.c 74 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/sched.h>
  9. #include <linux/highmem.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/shrinker.h>
  15. #include <linux/mm_inline.h>
  16. #include <linux/kthread.h>
  17. #include <linux/khugepaged.h>
  18. #include <linux/freezer.h>
  19. #include <linux/mman.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/migrate.h>
  22. #include <linux/hashtable.h>
  23. #include <asm/tlb.h>
  24. #include <asm/pgalloc.h>
  25. #include "internal.h"
  26. /*
  27. * By default transparent hugepage support is enabled for all mappings
  28. * and khugepaged scans all mappings. Defrag is only invoked by
  29. * khugepaged hugepage allocations and by page faults inside
  30. * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  31. * allocations.
  32. */
  33. unsigned long transparent_hugepage_flags __read_mostly =
  34. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  35. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  36. #endif
  37. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  38. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  39. #endif
  40. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  41. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  42. (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  43. /* default scan 8*512 pte (or vmas) every 30 second */
  44. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  45. static unsigned int khugepaged_pages_collapsed;
  46. static unsigned int khugepaged_full_scans;
  47. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  48. /* during fragmentation poll the hugepage allocator once every minute */
  49. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  50. static struct task_struct *khugepaged_thread __read_mostly;
  51. static DEFINE_MUTEX(khugepaged_mutex);
  52. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  53. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  54. /*
  55. * default collapse hugepages if there is at least one pte mapped like
  56. * it would have happened if the vma was large enough during page
  57. * fault.
  58. */
  59. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  60. static int khugepaged(void *none);
  61. static int khugepaged_slab_init(void);
  62. #define MM_SLOTS_HASH_BITS 10
  63. static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
  64. static struct kmem_cache *mm_slot_cache __read_mostly;
  65. /**
  66. * struct mm_slot - hash lookup from mm to mm_slot
  67. * @hash: hash collision list
  68. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  69. * @mm: the mm that this information is valid for
  70. */
  71. struct mm_slot {
  72. struct hlist_node hash;
  73. struct list_head mm_node;
  74. struct mm_struct *mm;
  75. };
  76. /**
  77. * struct khugepaged_scan - cursor for scanning
  78. * @mm_head: the head of the mm list to scan
  79. * @mm_slot: the current mm_slot we are scanning
  80. * @address: the next address inside that to be scanned
  81. *
  82. * There is only the one khugepaged_scan instance of this cursor structure.
  83. */
  84. struct khugepaged_scan {
  85. struct list_head mm_head;
  86. struct mm_slot *mm_slot;
  87. unsigned long address;
  88. };
  89. static struct khugepaged_scan khugepaged_scan = {
  90. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  91. };
  92. static int set_recommended_min_free_kbytes(void)
  93. {
  94. struct zone *zone;
  95. int nr_zones = 0;
  96. unsigned long recommended_min;
  97. if (!khugepaged_enabled())
  98. return 0;
  99. for_each_populated_zone(zone)
  100. nr_zones++;
  101. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  102. recommended_min = pageblock_nr_pages * nr_zones * 2;
  103. /*
  104. * Make sure that on average at least two pageblocks are almost free
  105. * of another type, one for a migratetype to fall back to and a
  106. * second to avoid subsequent fallbacks of other types There are 3
  107. * MIGRATE_TYPES we care about.
  108. */
  109. recommended_min += pageblock_nr_pages * nr_zones *
  110. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  111. /* don't ever allow to reserve more than 5% of the lowmem */
  112. recommended_min = min(recommended_min,
  113. (unsigned long) nr_free_buffer_pages() / 20);
  114. recommended_min <<= (PAGE_SHIFT-10);
  115. if (recommended_min > min_free_kbytes)
  116. min_free_kbytes = recommended_min;
  117. setup_per_zone_wmarks();
  118. return 0;
  119. }
  120. late_initcall(set_recommended_min_free_kbytes);
  121. static int start_khugepaged(void)
  122. {
  123. int err = 0;
  124. if (khugepaged_enabled()) {
  125. if (!khugepaged_thread)
  126. khugepaged_thread = kthread_run(khugepaged, NULL,
  127. "khugepaged");
  128. if (unlikely(IS_ERR(khugepaged_thread))) {
  129. printk(KERN_ERR
  130. "khugepaged: kthread_run(khugepaged) failed\n");
  131. err = PTR_ERR(khugepaged_thread);
  132. khugepaged_thread = NULL;
  133. }
  134. if (!list_empty(&khugepaged_scan.mm_head))
  135. wake_up_interruptible(&khugepaged_wait);
  136. set_recommended_min_free_kbytes();
  137. } else if (khugepaged_thread) {
  138. kthread_stop(khugepaged_thread);
  139. khugepaged_thread = NULL;
  140. }
  141. return err;
  142. }
  143. static atomic_t huge_zero_refcount;
  144. static struct page *huge_zero_page __read_mostly;
  145. static inline bool is_huge_zero_page(struct page *page)
  146. {
  147. return ACCESS_ONCE(huge_zero_page) == page;
  148. }
  149. static inline bool is_huge_zero_pmd(pmd_t pmd)
  150. {
  151. return is_huge_zero_page(pmd_page(pmd));
  152. }
  153. static struct page *get_huge_zero_page(void)
  154. {
  155. struct page *zero_page;
  156. retry:
  157. if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  158. return ACCESS_ONCE(huge_zero_page);
  159. zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  160. HPAGE_PMD_ORDER);
  161. if (!zero_page) {
  162. count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  163. return NULL;
  164. }
  165. count_vm_event(THP_ZERO_PAGE_ALLOC);
  166. preempt_disable();
  167. if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  168. preempt_enable();
  169. __free_page(zero_page);
  170. goto retry;
  171. }
  172. /* We take additional reference here. It will be put back by shrinker */
  173. atomic_set(&huge_zero_refcount, 2);
  174. preempt_enable();
  175. return ACCESS_ONCE(huge_zero_page);
  176. }
  177. static void put_huge_zero_page(void)
  178. {
  179. /*
  180. * Counter should never go to zero here. Only shrinker can put
  181. * last reference.
  182. */
  183. BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  184. }
  185. static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
  186. struct shrink_control *sc)
  187. {
  188. /* we can free zero page only if last reference remains */
  189. return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
  190. }
  191. static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
  192. struct shrink_control *sc)
  193. {
  194. if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
  195. struct page *zero_page = xchg(&huge_zero_page, NULL);
  196. BUG_ON(zero_page == NULL);
  197. __free_page(zero_page);
  198. return HPAGE_PMD_NR;
  199. }
  200. return 0;
  201. }
  202. static struct shrinker huge_zero_page_shrinker = {
  203. .count_objects = shrink_huge_zero_page_count,
  204. .scan_objects = shrink_huge_zero_page_scan,
  205. .seeks = DEFAULT_SEEKS,
  206. };
  207. #ifdef CONFIG_SYSFS
  208. static ssize_t double_flag_show(struct kobject *kobj,
  209. struct kobj_attribute *attr, char *buf,
  210. enum transparent_hugepage_flag enabled,
  211. enum transparent_hugepage_flag req_madv)
  212. {
  213. if (test_bit(enabled, &transparent_hugepage_flags)) {
  214. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  215. return sprintf(buf, "[always] madvise never\n");
  216. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  217. return sprintf(buf, "always [madvise] never\n");
  218. else
  219. return sprintf(buf, "always madvise [never]\n");
  220. }
  221. static ssize_t double_flag_store(struct kobject *kobj,
  222. struct kobj_attribute *attr,
  223. const char *buf, size_t count,
  224. enum transparent_hugepage_flag enabled,
  225. enum transparent_hugepage_flag req_madv)
  226. {
  227. if (!memcmp("always", buf,
  228. min(sizeof("always")-1, count))) {
  229. set_bit(enabled, &transparent_hugepage_flags);
  230. clear_bit(req_madv, &transparent_hugepage_flags);
  231. } else if (!memcmp("madvise", buf,
  232. min(sizeof("madvise")-1, count))) {
  233. clear_bit(enabled, &transparent_hugepage_flags);
  234. set_bit(req_madv, &transparent_hugepage_flags);
  235. } else if (!memcmp("never", buf,
  236. min(sizeof("never")-1, count))) {
  237. clear_bit(enabled, &transparent_hugepage_flags);
  238. clear_bit(req_madv, &transparent_hugepage_flags);
  239. } else
  240. return -EINVAL;
  241. return count;
  242. }
  243. static ssize_t enabled_show(struct kobject *kobj,
  244. struct kobj_attribute *attr, char *buf)
  245. {
  246. return double_flag_show(kobj, attr, buf,
  247. TRANSPARENT_HUGEPAGE_FLAG,
  248. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  249. }
  250. static ssize_t enabled_store(struct kobject *kobj,
  251. struct kobj_attribute *attr,
  252. const char *buf, size_t count)
  253. {
  254. ssize_t ret;
  255. ret = double_flag_store(kobj, attr, buf, count,
  256. TRANSPARENT_HUGEPAGE_FLAG,
  257. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  258. if (ret > 0) {
  259. int err;
  260. mutex_lock(&khugepaged_mutex);
  261. err = start_khugepaged();
  262. mutex_unlock(&khugepaged_mutex);
  263. if (err)
  264. ret = err;
  265. }
  266. return ret;
  267. }
  268. static struct kobj_attribute enabled_attr =
  269. __ATTR(enabled, 0644, enabled_show, enabled_store);
  270. static ssize_t single_flag_show(struct kobject *kobj,
  271. struct kobj_attribute *attr, char *buf,
  272. enum transparent_hugepage_flag flag)
  273. {
  274. return sprintf(buf, "%d\n",
  275. !!test_bit(flag, &transparent_hugepage_flags));
  276. }
  277. static ssize_t single_flag_store(struct kobject *kobj,
  278. struct kobj_attribute *attr,
  279. const char *buf, size_t count,
  280. enum transparent_hugepage_flag flag)
  281. {
  282. unsigned long value;
  283. int ret;
  284. ret = kstrtoul(buf, 10, &value);
  285. if (ret < 0)
  286. return ret;
  287. if (value > 1)
  288. return -EINVAL;
  289. if (value)
  290. set_bit(flag, &transparent_hugepage_flags);
  291. else
  292. clear_bit(flag, &transparent_hugepage_flags);
  293. return count;
  294. }
  295. /*
  296. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  297. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  298. * memory just to allocate one more hugepage.
  299. */
  300. static ssize_t defrag_show(struct kobject *kobj,
  301. struct kobj_attribute *attr, char *buf)
  302. {
  303. return double_flag_show(kobj, attr, buf,
  304. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  305. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  306. }
  307. static ssize_t defrag_store(struct kobject *kobj,
  308. struct kobj_attribute *attr,
  309. const char *buf, size_t count)
  310. {
  311. return double_flag_store(kobj, attr, buf, count,
  312. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  313. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  314. }
  315. static struct kobj_attribute defrag_attr =
  316. __ATTR(defrag, 0644, defrag_show, defrag_store);
  317. static ssize_t use_zero_page_show(struct kobject *kobj,
  318. struct kobj_attribute *attr, char *buf)
  319. {
  320. return single_flag_show(kobj, attr, buf,
  321. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  322. }
  323. static ssize_t use_zero_page_store(struct kobject *kobj,
  324. struct kobj_attribute *attr, const char *buf, size_t count)
  325. {
  326. return single_flag_store(kobj, attr, buf, count,
  327. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  328. }
  329. static struct kobj_attribute use_zero_page_attr =
  330. __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
  331. #ifdef CONFIG_DEBUG_VM
  332. static ssize_t debug_cow_show(struct kobject *kobj,
  333. struct kobj_attribute *attr, char *buf)
  334. {
  335. return single_flag_show(kobj, attr, buf,
  336. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  337. }
  338. static ssize_t debug_cow_store(struct kobject *kobj,
  339. struct kobj_attribute *attr,
  340. const char *buf, size_t count)
  341. {
  342. return single_flag_store(kobj, attr, buf, count,
  343. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  344. }
  345. static struct kobj_attribute debug_cow_attr =
  346. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  347. #endif /* CONFIG_DEBUG_VM */
  348. static struct attribute *hugepage_attr[] = {
  349. &enabled_attr.attr,
  350. &defrag_attr.attr,
  351. &use_zero_page_attr.attr,
  352. #ifdef CONFIG_DEBUG_VM
  353. &debug_cow_attr.attr,
  354. #endif
  355. NULL,
  356. };
  357. static struct attribute_group hugepage_attr_group = {
  358. .attrs = hugepage_attr,
  359. };
  360. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  361. struct kobj_attribute *attr,
  362. char *buf)
  363. {
  364. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  365. }
  366. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  367. struct kobj_attribute *attr,
  368. const char *buf, size_t count)
  369. {
  370. unsigned long msecs;
  371. int err;
  372. err = strict_strtoul(buf, 10, &msecs);
  373. if (err || msecs > UINT_MAX)
  374. return -EINVAL;
  375. khugepaged_scan_sleep_millisecs = msecs;
  376. wake_up_interruptible(&khugepaged_wait);
  377. return count;
  378. }
  379. static struct kobj_attribute scan_sleep_millisecs_attr =
  380. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  381. scan_sleep_millisecs_store);
  382. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  383. struct kobj_attribute *attr,
  384. char *buf)
  385. {
  386. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  387. }
  388. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  389. struct kobj_attribute *attr,
  390. const char *buf, size_t count)
  391. {
  392. unsigned long msecs;
  393. int err;
  394. err = strict_strtoul(buf, 10, &msecs);
  395. if (err || msecs > UINT_MAX)
  396. return -EINVAL;
  397. khugepaged_alloc_sleep_millisecs = msecs;
  398. wake_up_interruptible(&khugepaged_wait);
  399. return count;
  400. }
  401. static struct kobj_attribute alloc_sleep_millisecs_attr =
  402. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  403. alloc_sleep_millisecs_store);
  404. static ssize_t pages_to_scan_show(struct kobject *kobj,
  405. struct kobj_attribute *attr,
  406. char *buf)
  407. {
  408. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  409. }
  410. static ssize_t pages_to_scan_store(struct kobject *kobj,
  411. struct kobj_attribute *attr,
  412. const char *buf, size_t count)
  413. {
  414. int err;
  415. unsigned long pages;
  416. err = strict_strtoul(buf, 10, &pages);
  417. if (err || !pages || pages > UINT_MAX)
  418. return -EINVAL;
  419. khugepaged_pages_to_scan = pages;
  420. return count;
  421. }
  422. static struct kobj_attribute pages_to_scan_attr =
  423. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  424. pages_to_scan_store);
  425. static ssize_t pages_collapsed_show(struct kobject *kobj,
  426. struct kobj_attribute *attr,
  427. char *buf)
  428. {
  429. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  430. }
  431. static struct kobj_attribute pages_collapsed_attr =
  432. __ATTR_RO(pages_collapsed);
  433. static ssize_t full_scans_show(struct kobject *kobj,
  434. struct kobj_attribute *attr,
  435. char *buf)
  436. {
  437. return sprintf(buf, "%u\n", khugepaged_full_scans);
  438. }
  439. static struct kobj_attribute full_scans_attr =
  440. __ATTR_RO(full_scans);
  441. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  442. struct kobj_attribute *attr, char *buf)
  443. {
  444. return single_flag_show(kobj, attr, buf,
  445. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  446. }
  447. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  448. struct kobj_attribute *attr,
  449. const char *buf, size_t count)
  450. {
  451. return single_flag_store(kobj, attr, buf, count,
  452. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  453. }
  454. static struct kobj_attribute khugepaged_defrag_attr =
  455. __ATTR(defrag, 0644, khugepaged_defrag_show,
  456. khugepaged_defrag_store);
  457. /*
  458. * max_ptes_none controls if khugepaged should collapse hugepages over
  459. * any unmapped ptes in turn potentially increasing the memory
  460. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  461. * reduce the available free memory in the system as it
  462. * runs. Increasing max_ptes_none will instead potentially reduce the
  463. * free memory in the system during the khugepaged scan.
  464. */
  465. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  466. struct kobj_attribute *attr,
  467. char *buf)
  468. {
  469. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  470. }
  471. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  472. struct kobj_attribute *attr,
  473. const char *buf, size_t count)
  474. {
  475. int err;
  476. unsigned long max_ptes_none;
  477. err = strict_strtoul(buf, 10, &max_ptes_none);
  478. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  479. return -EINVAL;
  480. khugepaged_max_ptes_none = max_ptes_none;
  481. return count;
  482. }
  483. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  484. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  485. khugepaged_max_ptes_none_store);
  486. static struct attribute *khugepaged_attr[] = {
  487. &khugepaged_defrag_attr.attr,
  488. &khugepaged_max_ptes_none_attr.attr,
  489. &pages_to_scan_attr.attr,
  490. &pages_collapsed_attr.attr,
  491. &full_scans_attr.attr,
  492. &scan_sleep_millisecs_attr.attr,
  493. &alloc_sleep_millisecs_attr.attr,
  494. NULL,
  495. };
  496. static struct attribute_group khugepaged_attr_group = {
  497. .attrs = khugepaged_attr,
  498. .name = "khugepaged",
  499. };
  500. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  501. {
  502. int err;
  503. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  504. if (unlikely(!*hugepage_kobj)) {
  505. printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
  506. return -ENOMEM;
  507. }
  508. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  509. if (err) {
  510. printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
  511. goto delete_obj;
  512. }
  513. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  514. if (err) {
  515. printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
  516. goto remove_hp_group;
  517. }
  518. return 0;
  519. remove_hp_group:
  520. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  521. delete_obj:
  522. kobject_put(*hugepage_kobj);
  523. return err;
  524. }
  525. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  526. {
  527. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  528. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  529. kobject_put(hugepage_kobj);
  530. }
  531. #else
  532. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  533. {
  534. return 0;
  535. }
  536. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  537. {
  538. }
  539. #endif /* CONFIG_SYSFS */
  540. static int __init hugepage_init(void)
  541. {
  542. int err;
  543. struct kobject *hugepage_kobj;
  544. if (!has_transparent_hugepage()) {
  545. transparent_hugepage_flags = 0;
  546. return -EINVAL;
  547. }
  548. err = hugepage_init_sysfs(&hugepage_kobj);
  549. if (err)
  550. return err;
  551. err = khugepaged_slab_init();
  552. if (err)
  553. goto out;
  554. register_shrinker(&huge_zero_page_shrinker);
  555. /*
  556. * By default disable transparent hugepages on smaller systems,
  557. * where the extra memory used could hurt more than TLB overhead
  558. * is likely to save. The admin can still enable it through /sys.
  559. */
  560. if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
  561. transparent_hugepage_flags = 0;
  562. start_khugepaged();
  563. return 0;
  564. out:
  565. hugepage_exit_sysfs(hugepage_kobj);
  566. return err;
  567. }
  568. module_init(hugepage_init)
  569. static int __init setup_transparent_hugepage(char *str)
  570. {
  571. int ret = 0;
  572. if (!str)
  573. goto out;
  574. if (!strcmp(str, "always")) {
  575. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  576. &transparent_hugepage_flags);
  577. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  578. &transparent_hugepage_flags);
  579. ret = 1;
  580. } else if (!strcmp(str, "madvise")) {
  581. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  582. &transparent_hugepage_flags);
  583. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  584. &transparent_hugepage_flags);
  585. ret = 1;
  586. } else if (!strcmp(str, "never")) {
  587. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  588. &transparent_hugepage_flags);
  589. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  590. &transparent_hugepage_flags);
  591. ret = 1;
  592. }
  593. out:
  594. if (!ret)
  595. printk(KERN_WARNING
  596. "transparent_hugepage= cannot parse, ignored\n");
  597. return ret;
  598. }
  599. __setup("transparent_hugepage=", setup_transparent_hugepage);
  600. pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  601. {
  602. if (likely(vma->vm_flags & VM_WRITE))
  603. pmd = pmd_mkwrite(pmd);
  604. return pmd;
  605. }
  606. static inline pmd_t mk_huge_pmd(struct page *page, struct vm_area_struct *vma)
  607. {
  608. pmd_t entry;
  609. entry = mk_pmd(page, vma->vm_page_prot);
  610. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  611. entry = pmd_mkhuge(entry);
  612. return entry;
  613. }
  614. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  615. struct vm_area_struct *vma,
  616. unsigned long haddr, pmd_t *pmd,
  617. struct page *page)
  618. {
  619. pgtable_t pgtable;
  620. VM_BUG_ON(!PageCompound(page));
  621. pgtable = pte_alloc_one(mm, haddr);
  622. if (unlikely(!pgtable))
  623. return VM_FAULT_OOM;
  624. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  625. /*
  626. * The memory barrier inside __SetPageUptodate makes sure that
  627. * clear_huge_page writes become visible before the set_pmd_at()
  628. * write.
  629. */
  630. __SetPageUptodate(page);
  631. spin_lock(&mm->page_table_lock);
  632. if (unlikely(!pmd_none(*pmd))) {
  633. spin_unlock(&mm->page_table_lock);
  634. mem_cgroup_uncharge_page(page);
  635. put_page(page);
  636. pte_free(mm, pgtable);
  637. } else {
  638. pmd_t entry;
  639. entry = mk_huge_pmd(page, vma);
  640. page_add_new_anon_rmap(page, vma, haddr);
  641. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  642. set_pmd_at(mm, haddr, pmd, entry);
  643. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  644. mm->nr_ptes++;
  645. spin_unlock(&mm->page_table_lock);
  646. }
  647. return 0;
  648. }
  649. static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
  650. {
  651. return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
  652. }
  653. static inline struct page *alloc_hugepage_vma(int defrag,
  654. struct vm_area_struct *vma,
  655. unsigned long haddr, int nd,
  656. gfp_t extra_gfp)
  657. {
  658. return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
  659. HPAGE_PMD_ORDER, vma, haddr, nd);
  660. }
  661. #ifndef CONFIG_NUMA
  662. static inline struct page *alloc_hugepage(int defrag)
  663. {
  664. return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
  665. HPAGE_PMD_ORDER);
  666. }
  667. #endif
  668. static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
  669. struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
  670. struct page *zero_page)
  671. {
  672. pmd_t entry;
  673. if (!pmd_none(*pmd))
  674. return false;
  675. entry = mk_pmd(zero_page, vma->vm_page_prot);
  676. entry = pmd_wrprotect(entry);
  677. entry = pmd_mkhuge(entry);
  678. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  679. set_pmd_at(mm, haddr, pmd, entry);
  680. mm->nr_ptes++;
  681. return true;
  682. }
  683. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  684. unsigned long address, pmd_t *pmd,
  685. unsigned int flags)
  686. {
  687. struct page *page;
  688. unsigned long haddr = address & HPAGE_PMD_MASK;
  689. pte_t *pte;
  690. if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
  691. if (unlikely(anon_vma_prepare(vma)))
  692. return VM_FAULT_OOM;
  693. if (unlikely(khugepaged_enter(vma)))
  694. return VM_FAULT_OOM;
  695. if (!(flags & FAULT_FLAG_WRITE) &&
  696. transparent_hugepage_use_zero_page()) {
  697. pgtable_t pgtable;
  698. struct page *zero_page;
  699. bool set;
  700. pgtable = pte_alloc_one(mm, haddr);
  701. if (unlikely(!pgtable))
  702. return VM_FAULT_OOM;
  703. zero_page = get_huge_zero_page();
  704. if (unlikely(!zero_page)) {
  705. pte_free(mm, pgtable);
  706. count_vm_event(THP_FAULT_FALLBACK);
  707. goto out;
  708. }
  709. spin_lock(&mm->page_table_lock);
  710. set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
  711. zero_page);
  712. spin_unlock(&mm->page_table_lock);
  713. if (!set) {
  714. pte_free(mm, pgtable);
  715. put_huge_zero_page();
  716. }
  717. return 0;
  718. }
  719. page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  720. vma, haddr, numa_node_id(), 0);
  721. if (unlikely(!page)) {
  722. count_vm_event(THP_FAULT_FALLBACK);
  723. goto out;
  724. }
  725. count_vm_event(THP_FAULT_ALLOC);
  726. if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
  727. put_page(page);
  728. goto out;
  729. }
  730. if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
  731. page))) {
  732. mem_cgroup_uncharge_page(page);
  733. put_page(page);
  734. goto out;
  735. }
  736. return 0;
  737. }
  738. out:
  739. /*
  740. * Use __pte_alloc instead of pte_alloc_map, because we can't
  741. * run pte_offset_map on the pmd, if an huge pmd could
  742. * materialize from under us from a different thread.
  743. */
  744. if (unlikely(pmd_none(*pmd)) &&
  745. unlikely(__pte_alloc(mm, vma, pmd, address)))
  746. return VM_FAULT_OOM;
  747. /* if an huge pmd materialized from under us just retry later */
  748. if (unlikely(pmd_trans_huge(*pmd)))
  749. return 0;
  750. /*
  751. * A regular pmd is established and it can't morph into a huge pmd
  752. * from under us anymore at this point because we hold the mmap_sem
  753. * read mode and khugepaged takes it in write mode. So now it's
  754. * safe to run pte_offset_map().
  755. */
  756. pte = pte_offset_map(pmd, address);
  757. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  758. }
  759. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  760. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  761. struct vm_area_struct *vma)
  762. {
  763. struct page *src_page;
  764. pmd_t pmd;
  765. pgtable_t pgtable;
  766. int ret;
  767. ret = -ENOMEM;
  768. pgtable = pte_alloc_one(dst_mm, addr);
  769. if (unlikely(!pgtable))
  770. goto out;
  771. spin_lock(&dst_mm->page_table_lock);
  772. spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
  773. ret = -EAGAIN;
  774. pmd = *src_pmd;
  775. if (unlikely(!pmd_trans_huge(pmd))) {
  776. pte_free(dst_mm, pgtable);
  777. goto out_unlock;
  778. }
  779. /*
  780. * mm->page_table_lock is enough to be sure that huge zero pmd is not
  781. * under splitting since we don't split the page itself, only pmd to
  782. * a page table.
  783. */
  784. if (is_huge_zero_pmd(pmd)) {
  785. struct page *zero_page;
  786. bool set;
  787. /*
  788. * get_huge_zero_page() will never allocate a new page here,
  789. * since we already have a zero page to copy. It just takes a
  790. * reference.
  791. */
  792. zero_page = get_huge_zero_page();
  793. set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
  794. zero_page);
  795. BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
  796. ret = 0;
  797. goto out_unlock;
  798. }
  799. if (unlikely(pmd_trans_splitting(pmd))) {
  800. /* split huge page running from under us */
  801. spin_unlock(&src_mm->page_table_lock);
  802. spin_unlock(&dst_mm->page_table_lock);
  803. pte_free(dst_mm, pgtable);
  804. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  805. goto out;
  806. }
  807. src_page = pmd_page(pmd);
  808. VM_BUG_ON(!PageHead(src_page));
  809. get_page(src_page);
  810. page_dup_rmap(src_page);
  811. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  812. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  813. pmd = pmd_mkold(pmd_wrprotect(pmd));
  814. pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
  815. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  816. dst_mm->nr_ptes++;
  817. ret = 0;
  818. out_unlock:
  819. spin_unlock(&src_mm->page_table_lock);
  820. spin_unlock(&dst_mm->page_table_lock);
  821. out:
  822. return ret;
  823. }
  824. void huge_pmd_set_accessed(struct mm_struct *mm,
  825. struct vm_area_struct *vma,
  826. unsigned long address,
  827. pmd_t *pmd, pmd_t orig_pmd,
  828. int dirty)
  829. {
  830. pmd_t entry;
  831. unsigned long haddr;
  832. spin_lock(&mm->page_table_lock);
  833. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  834. goto unlock;
  835. entry = pmd_mkyoung(orig_pmd);
  836. haddr = address & HPAGE_PMD_MASK;
  837. if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
  838. update_mmu_cache_pmd(vma, address, pmd);
  839. unlock:
  840. spin_unlock(&mm->page_table_lock);
  841. }
  842. static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
  843. struct vm_area_struct *vma, unsigned long address,
  844. pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
  845. {
  846. pgtable_t pgtable;
  847. pmd_t _pmd;
  848. struct page *page;
  849. int i, ret = 0;
  850. unsigned long mmun_start; /* For mmu_notifiers */
  851. unsigned long mmun_end; /* For mmu_notifiers */
  852. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  853. if (!page) {
  854. ret |= VM_FAULT_OOM;
  855. goto out;
  856. }
  857. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
  858. put_page(page);
  859. ret |= VM_FAULT_OOM;
  860. goto out;
  861. }
  862. clear_user_highpage(page, address);
  863. __SetPageUptodate(page);
  864. mmun_start = haddr;
  865. mmun_end = haddr + HPAGE_PMD_SIZE;
  866. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  867. spin_lock(&mm->page_table_lock);
  868. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  869. goto out_free_page;
  870. pmdp_clear_flush(vma, haddr, pmd);
  871. /* leave pmd empty until pte is filled */
  872. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  873. pmd_populate(mm, &_pmd, pgtable);
  874. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  875. pte_t *pte, entry;
  876. if (haddr == (address & PAGE_MASK)) {
  877. entry = mk_pte(page, vma->vm_page_prot);
  878. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  879. page_add_new_anon_rmap(page, vma, haddr);
  880. } else {
  881. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  882. entry = pte_mkspecial(entry);
  883. }
  884. pte = pte_offset_map(&_pmd, haddr);
  885. VM_BUG_ON(!pte_none(*pte));
  886. set_pte_at(mm, haddr, pte, entry);
  887. pte_unmap(pte);
  888. }
  889. smp_wmb(); /* make pte visible before pmd */
  890. pmd_populate(mm, pmd, pgtable);
  891. spin_unlock(&mm->page_table_lock);
  892. put_huge_zero_page();
  893. inc_mm_counter(mm, MM_ANONPAGES);
  894. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  895. ret |= VM_FAULT_WRITE;
  896. out:
  897. return ret;
  898. out_free_page:
  899. spin_unlock(&mm->page_table_lock);
  900. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  901. mem_cgroup_uncharge_page(page);
  902. put_page(page);
  903. goto out;
  904. }
  905. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  906. struct vm_area_struct *vma,
  907. unsigned long address,
  908. pmd_t *pmd, pmd_t orig_pmd,
  909. struct page *page,
  910. unsigned long haddr)
  911. {
  912. pgtable_t pgtable;
  913. pmd_t _pmd;
  914. int ret = 0, i;
  915. struct page **pages;
  916. unsigned long mmun_start; /* For mmu_notifiers */
  917. unsigned long mmun_end; /* For mmu_notifiers */
  918. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  919. GFP_KERNEL);
  920. if (unlikely(!pages)) {
  921. ret |= VM_FAULT_OOM;
  922. goto out;
  923. }
  924. for (i = 0; i < HPAGE_PMD_NR; i++) {
  925. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  926. __GFP_OTHER_NODE,
  927. vma, address, page_to_nid(page));
  928. if (unlikely(!pages[i] ||
  929. mem_cgroup_newpage_charge(pages[i], mm,
  930. GFP_KERNEL))) {
  931. if (pages[i])
  932. put_page(pages[i]);
  933. mem_cgroup_uncharge_start();
  934. while (--i >= 0) {
  935. mem_cgroup_uncharge_page(pages[i]);
  936. put_page(pages[i]);
  937. }
  938. mem_cgroup_uncharge_end();
  939. kfree(pages);
  940. ret |= VM_FAULT_OOM;
  941. goto out;
  942. }
  943. }
  944. for (i = 0; i < HPAGE_PMD_NR; i++) {
  945. copy_user_highpage(pages[i], page + i,
  946. haddr + PAGE_SIZE * i, vma);
  947. __SetPageUptodate(pages[i]);
  948. cond_resched();
  949. }
  950. mmun_start = haddr;
  951. mmun_end = haddr + HPAGE_PMD_SIZE;
  952. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  953. spin_lock(&mm->page_table_lock);
  954. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  955. goto out_free_pages;
  956. VM_BUG_ON(!PageHead(page));
  957. pmdp_clear_flush(vma, haddr, pmd);
  958. /* leave pmd empty until pte is filled */
  959. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  960. pmd_populate(mm, &_pmd, pgtable);
  961. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  962. pte_t *pte, entry;
  963. entry = mk_pte(pages[i], vma->vm_page_prot);
  964. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  965. page_add_new_anon_rmap(pages[i], vma, haddr);
  966. pte = pte_offset_map(&_pmd, haddr);
  967. VM_BUG_ON(!pte_none(*pte));
  968. set_pte_at(mm, haddr, pte, entry);
  969. pte_unmap(pte);
  970. }
  971. kfree(pages);
  972. smp_wmb(); /* make pte visible before pmd */
  973. pmd_populate(mm, pmd, pgtable);
  974. page_remove_rmap(page);
  975. spin_unlock(&mm->page_table_lock);
  976. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  977. ret |= VM_FAULT_WRITE;
  978. put_page(page);
  979. out:
  980. return ret;
  981. out_free_pages:
  982. spin_unlock(&mm->page_table_lock);
  983. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  984. mem_cgroup_uncharge_start();
  985. for (i = 0; i < HPAGE_PMD_NR; i++) {
  986. mem_cgroup_uncharge_page(pages[i]);
  987. put_page(pages[i]);
  988. }
  989. mem_cgroup_uncharge_end();
  990. kfree(pages);
  991. goto out;
  992. }
  993. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  994. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  995. {
  996. int ret = 0;
  997. struct page *page = NULL, *new_page;
  998. unsigned long haddr;
  999. unsigned long mmun_start; /* For mmu_notifiers */
  1000. unsigned long mmun_end; /* For mmu_notifiers */
  1001. VM_BUG_ON(!vma->anon_vma);
  1002. haddr = address & HPAGE_PMD_MASK;
  1003. if (is_huge_zero_pmd(orig_pmd))
  1004. goto alloc;
  1005. spin_lock(&mm->page_table_lock);
  1006. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  1007. goto out_unlock;
  1008. page = pmd_page(orig_pmd);
  1009. VM_BUG_ON(!PageCompound(page) || !PageHead(page));
  1010. if (page_mapcount(page) == 1) {
  1011. pmd_t entry;
  1012. entry = pmd_mkyoung(orig_pmd);
  1013. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1014. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  1015. update_mmu_cache_pmd(vma, address, pmd);
  1016. ret |= VM_FAULT_WRITE;
  1017. goto out_unlock;
  1018. }
  1019. get_page(page);
  1020. spin_unlock(&mm->page_table_lock);
  1021. alloc:
  1022. if (transparent_hugepage_enabled(vma) &&
  1023. !transparent_hugepage_debug_cow())
  1024. new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  1025. vma, haddr, numa_node_id(), 0);
  1026. else
  1027. new_page = NULL;
  1028. if (unlikely(!new_page)) {
  1029. count_vm_event(THP_FAULT_FALLBACK);
  1030. if (is_huge_zero_pmd(orig_pmd)) {
  1031. ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
  1032. address, pmd, orig_pmd, haddr);
  1033. } else {
  1034. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  1035. pmd, orig_pmd, page, haddr);
  1036. if (ret & VM_FAULT_OOM)
  1037. split_huge_page(page);
  1038. put_page(page);
  1039. }
  1040. goto out;
  1041. }
  1042. count_vm_event(THP_FAULT_ALLOC);
  1043. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  1044. put_page(new_page);
  1045. if (page) {
  1046. split_huge_page(page);
  1047. put_page(page);
  1048. }
  1049. ret |= VM_FAULT_OOM;
  1050. goto out;
  1051. }
  1052. if (is_huge_zero_pmd(orig_pmd))
  1053. clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
  1054. else
  1055. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  1056. __SetPageUptodate(new_page);
  1057. mmun_start = haddr;
  1058. mmun_end = haddr + HPAGE_PMD_SIZE;
  1059. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1060. spin_lock(&mm->page_table_lock);
  1061. if (page)
  1062. put_page(page);
  1063. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  1064. spin_unlock(&mm->page_table_lock);
  1065. mem_cgroup_uncharge_page(new_page);
  1066. put_page(new_page);
  1067. goto out_mn;
  1068. } else {
  1069. pmd_t entry;
  1070. entry = mk_huge_pmd(new_page, vma);
  1071. pmdp_clear_flush(vma, haddr, pmd);
  1072. page_add_new_anon_rmap(new_page, vma, haddr);
  1073. set_pmd_at(mm, haddr, pmd, entry);
  1074. update_mmu_cache_pmd(vma, address, pmd);
  1075. if (is_huge_zero_pmd(orig_pmd)) {
  1076. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  1077. put_huge_zero_page();
  1078. } else {
  1079. VM_BUG_ON(!PageHead(page));
  1080. page_remove_rmap(page);
  1081. put_page(page);
  1082. }
  1083. ret |= VM_FAULT_WRITE;
  1084. }
  1085. spin_unlock(&mm->page_table_lock);
  1086. out_mn:
  1087. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1088. out:
  1089. return ret;
  1090. out_unlock:
  1091. spin_unlock(&mm->page_table_lock);
  1092. return ret;
  1093. }
  1094. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  1095. unsigned long addr,
  1096. pmd_t *pmd,
  1097. unsigned int flags)
  1098. {
  1099. struct mm_struct *mm = vma->vm_mm;
  1100. struct page *page = NULL;
  1101. assert_spin_locked(&mm->page_table_lock);
  1102. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  1103. goto out;
  1104. /* Avoid dumping huge zero page */
  1105. if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
  1106. return ERR_PTR(-EFAULT);
  1107. page = pmd_page(*pmd);
  1108. VM_BUG_ON(!PageHead(page));
  1109. if (flags & FOLL_TOUCH) {
  1110. pmd_t _pmd;
  1111. /*
  1112. * We should set the dirty bit only for FOLL_WRITE but
  1113. * for now the dirty bit in the pmd is meaningless.
  1114. * And if the dirty bit will become meaningful and
  1115. * we'll only set it with FOLL_WRITE, an atomic
  1116. * set_bit will be required on the pmd to set the
  1117. * young bit, instead of the current set_pmd_at.
  1118. */
  1119. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  1120. if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
  1121. pmd, _pmd, 1))
  1122. update_mmu_cache_pmd(vma, addr, pmd);
  1123. }
  1124. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1125. if (page->mapping && trylock_page(page)) {
  1126. lru_add_drain();
  1127. if (page->mapping)
  1128. mlock_vma_page(page);
  1129. unlock_page(page);
  1130. }
  1131. }
  1132. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  1133. VM_BUG_ON(!PageCompound(page));
  1134. if (flags & FOLL_GET)
  1135. get_page_foll(page);
  1136. out:
  1137. return page;
  1138. }
  1139. /* NUMA hinting page fault entry point for trans huge pmds */
  1140. int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1141. unsigned long addr, pmd_t pmd, pmd_t *pmdp)
  1142. {
  1143. struct page *page;
  1144. unsigned long haddr = addr & HPAGE_PMD_MASK;
  1145. int target_nid;
  1146. int current_nid = -1;
  1147. bool migrated;
  1148. spin_lock(&mm->page_table_lock);
  1149. if (unlikely(!pmd_same(pmd, *pmdp)))
  1150. goto out_unlock;
  1151. page = pmd_page(pmd);
  1152. get_page(page);
  1153. current_nid = page_to_nid(page);
  1154. count_vm_numa_event(NUMA_HINT_FAULTS);
  1155. if (current_nid == numa_node_id())
  1156. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  1157. target_nid = mpol_misplaced(page, vma, haddr);
  1158. if (target_nid == -1) {
  1159. put_page(page);
  1160. goto clear_pmdnuma;
  1161. }
  1162. /* Acquire the page lock to serialise THP migrations */
  1163. spin_unlock(&mm->page_table_lock);
  1164. lock_page(page);
  1165. /* Confirm the PTE did not while locked */
  1166. spin_lock(&mm->page_table_lock);
  1167. if (unlikely(!pmd_same(pmd, *pmdp))) {
  1168. unlock_page(page);
  1169. put_page(page);
  1170. goto out_unlock;
  1171. }
  1172. spin_unlock(&mm->page_table_lock);
  1173. /* Migrate the THP to the requested node */
  1174. migrated = migrate_misplaced_transhuge_page(mm, vma,
  1175. pmdp, pmd, addr, page, target_nid);
  1176. if (!migrated)
  1177. goto check_same;
  1178. task_numa_fault(target_nid, HPAGE_PMD_NR, true);
  1179. return 0;
  1180. check_same:
  1181. spin_lock(&mm->page_table_lock);
  1182. if (unlikely(!pmd_same(pmd, *pmdp)))
  1183. goto out_unlock;
  1184. clear_pmdnuma:
  1185. pmd = pmd_mknonnuma(pmd);
  1186. set_pmd_at(mm, haddr, pmdp, pmd);
  1187. VM_BUG_ON(pmd_numa(*pmdp));
  1188. update_mmu_cache_pmd(vma, addr, pmdp);
  1189. out_unlock:
  1190. spin_unlock(&mm->page_table_lock);
  1191. if (current_nid != -1)
  1192. task_numa_fault(current_nid, HPAGE_PMD_NR, false);
  1193. return 0;
  1194. }
  1195. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1196. pmd_t *pmd, unsigned long addr)
  1197. {
  1198. int ret = 0;
  1199. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1200. struct page *page;
  1201. pgtable_t pgtable;
  1202. pmd_t orig_pmd;
  1203. /*
  1204. * For architectures like ppc64 we look at deposited pgtable
  1205. * when calling pmdp_get_and_clear. So do the
  1206. * pgtable_trans_huge_withdraw after finishing pmdp related
  1207. * operations.
  1208. */
  1209. orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
  1210. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1211. pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
  1212. if (is_huge_zero_pmd(orig_pmd)) {
  1213. tlb->mm->nr_ptes--;
  1214. spin_unlock(&tlb->mm->page_table_lock);
  1215. put_huge_zero_page();
  1216. } else {
  1217. page = pmd_page(orig_pmd);
  1218. page_remove_rmap(page);
  1219. VM_BUG_ON(page_mapcount(page) < 0);
  1220. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  1221. VM_BUG_ON(!PageHead(page));
  1222. tlb->mm->nr_ptes--;
  1223. spin_unlock(&tlb->mm->page_table_lock);
  1224. tlb_remove_page(tlb, page);
  1225. }
  1226. pte_free(tlb->mm, pgtable);
  1227. ret = 1;
  1228. }
  1229. return ret;
  1230. }
  1231. int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1232. unsigned long addr, unsigned long end,
  1233. unsigned char *vec)
  1234. {
  1235. int ret = 0;
  1236. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1237. /*
  1238. * All logical pages in the range are present
  1239. * if backed by a huge page.
  1240. */
  1241. spin_unlock(&vma->vm_mm->page_table_lock);
  1242. memset(vec, 1, (end - addr) >> PAGE_SHIFT);
  1243. ret = 1;
  1244. }
  1245. return ret;
  1246. }
  1247. int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
  1248. unsigned long old_addr,
  1249. unsigned long new_addr, unsigned long old_end,
  1250. pmd_t *old_pmd, pmd_t *new_pmd)
  1251. {
  1252. int ret = 0;
  1253. pmd_t pmd;
  1254. struct mm_struct *mm = vma->vm_mm;
  1255. if ((old_addr & ~HPAGE_PMD_MASK) ||
  1256. (new_addr & ~HPAGE_PMD_MASK) ||
  1257. old_end - old_addr < HPAGE_PMD_SIZE ||
  1258. (new_vma->vm_flags & VM_NOHUGEPAGE))
  1259. goto out;
  1260. /*
  1261. * The destination pmd shouldn't be established, free_pgtables()
  1262. * should have release it.
  1263. */
  1264. if (WARN_ON(!pmd_none(*new_pmd))) {
  1265. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  1266. goto out;
  1267. }
  1268. ret = __pmd_trans_huge_lock(old_pmd, vma);
  1269. if (ret == 1) {
  1270. pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
  1271. VM_BUG_ON(!pmd_none(*new_pmd));
  1272. set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
  1273. spin_unlock(&mm->page_table_lock);
  1274. }
  1275. out:
  1276. return ret;
  1277. }
  1278. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1279. unsigned long addr, pgprot_t newprot, int prot_numa)
  1280. {
  1281. struct mm_struct *mm = vma->vm_mm;
  1282. int ret = 0;
  1283. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1284. pmd_t entry;
  1285. entry = pmdp_get_and_clear(mm, addr, pmd);
  1286. if (!prot_numa) {
  1287. entry = pmd_modify(entry, newprot);
  1288. BUG_ON(pmd_write(entry));
  1289. } else {
  1290. struct page *page = pmd_page(*pmd);
  1291. /* only check non-shared pages */
  1292. if (page_mapcount(page) == 1 &&
  1293. !pmd_numa(*pmd)) {
  1294. entry = pmd_mknuma(entry);
  1295. }
  1296. }
  1297. set_pmd_at(mm, addr, pmd, entry);
  1298. spin_unlock(&vma->vm_mm->page_table_lock);
  1299. ret = 1;
  1300. }
  1301. return ret;
  1302. }
  1303. /*
  1304. * Returns 1 if a given pmd maps a stable (not under splitting) thp.
  1305. * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
  1306. *
  1307. * Note that if it returns 1, this routine returns without unlocking page
  1308. * table locks. So callers must unlock them.
  1309. */
  1310. int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  1311. {
  1312. spin_lock(&vma->vm_mm->page_table_lock);
  1313. if (likely(pmd_trans_huge(*pmd))) {
  1314. if (unlikely(pmd_trans_splitting(*pmd))) {
  1315. spin_unlock(&vma->vm_mm->page_table_lock);
  1316. wait_split_huge_page(vma->anon_vma, pmd);
  1317. return -1;
  1318. } else {
  1319. /* Thp mapped by 'pmd' is stable, so we can
  1320. * handle it as it is. */
  1321. return 1;
  1322. }
  1323. }
  1324. spin_unlock(&vma->vm_mm->page_table_lock);
  1325. return 0;
  1326. }
  1327. pmd_t *page_check_address_pmd(struct page *page,
  1328. struct mm_struct *mm,
  1329. unsigned long address,
  1330. enum page_check_address_pmd_flag flag)
  1331. {
  1332. pmd_t *pmd, *ret = NULL;
  1333. if (address & ~HPAGE_PMD_MASK)
  1334. goto out;
  1335. pmd = mm_find_pmd(mm, address);
  1336. if (!pmd)
  1337. goto out;
  1338. if (pmd_none(*pmd))
  1339. goto out;
  1340. if (pmd_page(*pmd) != page)
  1341. goto out;
  1342. /*
  1343. * split_vma() may create temporary aliased mappings. There is
  1344. * no risk as long as all huge pmd are found and have their
  1345. * splitting bit set before __split_huge_page_refcount
  1346. * runs. Finding the same huge pmd more than once during the
  1347. * same rmap walk is not a problem.
  1348. */
  1349. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  1350. pmd_trans_splitting(*pmd))
  1351. goto out;
  1352. if (pmd_trans_huge(*pmd)) {
  1353. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  1354. !pmd_trans_splitting(*pmd));
  1355. ret = pmd;
  1356. }
  1357. out:
  1358. return ret;
  1359. }
  1360. static int __split_huge_page_splitting(struct page *page,
  1361. struct vm_area_struct *vma,
  1362. unsigned long address)
  1363. {
  1364. struct mm_struct *mm = vma->vm_mm;
  1365. pmd_t *pmd;
  1366. int ret = 0;
  1367. /* For mmu_notifiers */
  1368. const unsigned long mmun_start = address;
  1369. const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
  1370. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1371. spin_lock(&mm->page_table_lock);
  1372. pmd = page_check_address_pmd(page, mm, address,
  1373. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
  1374. if (pmd) {
  1375. /*
  1376. * We can't temporarily set the pmd to null in order
  1377. * to split it, the pmd must remain marked huge at all
  1378. * times or the VM won't take the pmd_trans_huge paths
  1379. * and it won't wait on the anon_vma->root->rwsem to
  1380. * serialize against split_huge_page*.
  1381. */
  1382. pmdp_splitting_flush(vma, address, pmd);
  1383. ret = 1;
  1384. }
  1385. spin_unlock(&mm->page_table_lock);
  1386. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1387. return ret;
  1388. }
  1389. static void __split_huge_page_refcount(struct page *page,
  1390. struct list_head *list)
  1391. {
  1392. int i;
  1393. struct zone *zone = page_zone(page);
  1394. struct lruvec *lruvec;
  1395. int tail_count = 0;
  1396. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1397. spin_lock_irq(&zone->lru_lock);
  1398. lruvec = mem_cgroup_page_lruvec(page, zone);
  1399. compound_lock(page);
  1400. /* complete memcg works before add pages to LRU */
  1401. mem_cgroup_split_huge_fixup(page);
  1402. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  1403. struct page *page_tail = page + i;
  1404. /* tail_page->_mapcount cannot change */
  1405. BUG_ON(page_mapcount(page_tail) < 0);
  1406. tail_count += page_mapcount(page_tail);
  1407. /* check for overflow */
  1408. BUG_ON(tail_count < 0);
  1409. BUG_ON(atomic_read(&page_tail->_count) != 0);
  1410. /*
  1411. * tail_page->_count is zero and not changing from
  1412. * under us. But get_page_unless_zero() may be running
  1413. * from under us on the tail_page. If we used
  1414. * atomic_set() below instead of atomic_add(), we
  1415. * would then run atomic_set() concurrently with
  1416. * get_page_unless_zero(), and atomic_set() is
  1417. * implemented in C not using locked ops. spin_unlock
  1418. * on x86 sometime uses locked ops because of PPro
  1419. * errata 66, 92, so unless somebody can guarantee
  1420. * atomic_set() here would be safe on all archs (and
  1421. * not only on x86), it's safer to use atomic_add().
  1422. */
  1423. atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
  1424. &page_tail->_count);
  1425. /* after clearing PageTail the gup refcount can be released */
  1426. smp_mb();
  1427. /*
  1428. * retain hwpoison flag of the poisoned tail page:
  1429. * fix for the unsuitable process killed on Guest Machine(KVM)
  1430. * by the memory-failure.
  1431. */
  1432. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
  1433. page_tail->flags |= (page->flags &
  1434. ((1L << PG_referenced) |
  1435. (1L << PG_swapbacked) |
  1436. (1L << PG_mlocked) |
  1437. (1L << PG_uptodate) |
  1438. (1L << PG_active) |
  1439. (1L << PG_unevictable)));
  1440. page_tail->flags |= (1L << PG_dirty);
  1441. /* clear PageTail before overwriting first_page */
  1442. smp_wmb();
  1443. /*
  1444. * __split_huge_page_splitting() already set the
  1445. * splitting bit in all pmd that could map this
  1446. * hugepage, that will ensure no CPU can alter the
  1447. * mapcount on the head page. The mapcount is only
  1448. * accounted in the head page and it has to be
  1449. * transferred to all tail pages in the below code. So
  1450. * for this code to be safe, the split the mapcount
  1451. * can't change. But that doesn't mean userland can't
  1452. * keep changing and reading the page contents while
  1453. * we transfer the mapcount, so the pmd splitting
  1454. * status is achieved setting a reserved bit in the
  1455. * pmd, not by clearing the present bit.
  1456. */
  1457. page_tail->_mapcount = page->_mapcount;
  1458. BUG_ON(page_tail->mapping);
  1459. page_tail->mapping = page->mapping;
  1460. page_tail->index = page->index + i;
  1461. page_nid_xchg_last(page_tail, page_nid_last(page));
  1462. BUG_ON(!PageAnon(page_tail));
  1463. BUG_ON(!PageUptodate(page_tail));
  1464. BUG_ON(!PageDirty(page_tail));
  1465. BUG_ON(!PageSwapBacked(page_tail));
  1466. lru_add_page_tail(page, page_tail, lruvec, list);
  1467. }
  1468. atomic_sub(tail_count, &page->_count);
  1469. BUG_ON(atomic_read(&page->_count) <= 0);
  1470. __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
  1471. __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
  1472. ClearPageCompound(page);
  1473. compound_unlock(page);
  1474. spin_unlock_irq(&zone->lru_lock);
  1475. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1476. struct page *page_tail = page + i;
  1477. BUG_ON(page_count(page_tail) <= 0);
  1478. /*
  1479. * Tail pages may be freed if there wasn't any mapping
  1480. * like if add_to_swap() is running on a lru page that
  1481. * had its mapping zapped. And freeing these pages
  1482. * requires taking the lru_lock so we do the put_page
  1483. * of the tail pages after the split is complete.
  1484. */
  1485. put_page(page_tail);
  1486. }
  1487. /*
  1488. * Only the head page (now become a regular page) is required
  1489. * to be pinned by the caller.
  1490. */
  1491. BUG_ON(page_count(page) <= 0);
  1492. }
  1493. static int __split_huge_page_map(struct page *page,
  1494. struct vm_area_struct *vma,
  1495. unsigned long address)
  1496. {
  1497. struct mm_struct *mm = vma->vm_mm;
  1498. pmd_t *pmd, _pmd;
  1499. int ret = 0, i;
  1500. pgtable_t pgtable;
  1501. unsigned long haddr;
  1502. spin_lock(&mm->page_table_lock);
  1503. pmd = page_check_address_pmd(page, mm, address,
  1504. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
  1505. if (pmd) {
  1506. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1507. pmd_populate(mm, &_pmd, pgtable);
  1508. haddr = address;
  1509. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1510. pte_t *pte, entry;
  1511. BUG_ON(PageCompound(page+i));
  1512. entry = mk_pte(page + i, vma->vm_page_prot);
  1513. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1514. if (!pmd_write(*pmd))
  1515. entry = pte_wrprotect(entry);
  1516. else
  1517. BUG_ON(page_mapcount(page) != 1);
  1518. if (!pmd_young(*pmd))
  1519. entry = pte_mkold(entry);
  1520. if (pmd_numa(*pmd))
  1521. entry = pte_mknuma(entry);
  1522. pte = pte_offset_map(&_pmd, haddr);
  1523. BUG_ON(!pte_none(*pte));
  1524. set_pte_at(mm, haddr, pte, entry);
  1525. pte_unmap(pte);
  1526. }
  1527. smp_wmb(); /* make pte visible before pmd */
  1528. /*
  1529. * Up to this point the pmd is present and huge and
  1530. * userland has the whole access to the hugepage
  1531. * during the split (which happens in place). If we
  1532. * overwrite the pmd with the not-huge version
  1533. * pointing to the pte here (which of course we could
  1534. * if all CPUs were bug free), userland could trigger
  1535. * a small page size TLB miss on the small sized TLB
  1536. * while the hugepage TLB entry is still established
  1537. * in the huge TLB. Some CPU doesn't like that. See
  1538. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1539. * Erratum 383 on page 93. Intel should be safe but is
  1540. * also warns that it's only safe if the permission
  1541. * and cache attributes of the two entries loaded in
  1542. * the two TLB is identical (which should be the case
  1543. * here). But it is generally safer to never allow
  1544. * small and huge TLB entries for the same virtual
  1545. * address to be loaded simultaneously. So instead of
  1546. * doing "pmd_populate(); flush_tlb_range();" we first
  1547. * mark the current pmd notpresent (atomically because
  1548. * here the pmd_trans_huge and pmd_trans_splitting
  1549. * must remain set at all times on the pmd until the
  1550. * split is complete for this pmd), then we flush the
  1551. * SMP TLB and finally we write the non-huge version
  1552. * of the pmd entry with pmd_populate.
  1553. */
  1554. pmdp_invalidate(vma, address, pmd);
  1555. pmd_populate(mm, pmd, pgtable);
  1556. ret = 1;
  1557. }
  1558. spin_unlock(&mm->page_table_lock);
  1559. return ret;
  1560. }
  1561. /* must be called with anon_vma->root->rwsem held */
  1562. static void __split_huge_page(struct page *page,
  1563. struct anon_vma *anon_vma,
  1564. struct list_head *list)
  1565. {
  1566. int mapcount, mapcount2;
  1567. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1568. struct anon_vma_chain *avc;
  1569. BUG_ON(!PageHead(page));
  1570. BUG_ON(PageTail(page));
  1571. mapcount = 0;
  1572. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1573. struct vm_area_struct *vma = avc->vma;
  1574. unsigned long addr = vma_address(page, vma);
  1575. BUG_ON(is_vma_temporary_stack(vma));
  1576. mapcount += __split_huge_page_splitting(page, vma, addr);
  1577. }
  1578. /*
  1579. * It is critical that new vmas are added to the tail of the
  1580. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1581. * and establishes a child pmd before
  1582. * __split_huge_page_splitting() freezes the parent pmd (so if
  1583. * we fail to prevent copy_huge_pmd() from running until the
  1584. * whole __split_huge_page() is complete), we will still see
  1585. * the newly established pmd of the child later during the
  1586. * walk, to be able to set it as pmd_trans_splitting too.
  1587. */
  1588. if (mapcount != page_mapcount(page))
  1589. printk(KERN_ERR "mapcount %d page_mapcount %d\n",
  1590. mapcount, page_mapcount(page));
  1591. BUG_ON(mapcount != page_mapcount(page));
  1592. __split_huge_page_refcount(page, list);
  1593. mapcount2 = 0;
  1594. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1595. struct vm_area_struct *vma = avc->vma;
  1596. unsigned long addr = vma_address(page, vma);
  1597. BUG_ON(is_vma_temporary_stack(vma));
  1598. mapcount2 += __split_huge_page_map(page, vma, addr);
  1599. }
  1600. if (mapcount != mapcount2)
  1601. printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
  1602. mapcount, mapcount2, page_mapcount(page));
  1603. BUG_ON(mapcount != mapcount2);
  1604. }
  1605. /*
  1606. * Split a hugepage into normal pages. This doesn't change the position of head
  1607. * page. If @list is null, tail pages will be added to LRU list, otherwise, to
  1608. * @list. Both head page and tail pages will inherit mapping, flags, and so on
  1609. * from the hugepage.
  1610. * Return 0 if the hugepage is split successfully otherwise return 1.
  1611. */
  1612. int split_huge_page_to_list(struct page *page, struct list_head *list)
  1613. {
  1614. struct anon_vma *anon_vma;
  1615. int ret = 1;
  1616. BUG_ON(is_huge_zero_page(page));
  1617. BUG_ON(!PageAnon(page));
  1618. /*
  1619. * The caller does not necessarily hold an mmap_sem that would prevent
  1620. * the anon_vma disappearing so we first we take a reference to it
  1621. * and then lock the anon_vma for write. This is similar to
  1622. * page_lock_anon_vma_read except the write lock is taken to serialise
  1623. * against parallel split or collapse operations.
  1624. */
  1625. anon_vma = page_get_anon_vma(page);
  1626. if (!anon_vma)
  1627. goto out;
  1628. anon_vma_lock_write(anon_vma);
  1629. ret = 0;
  1630. if (!PageCompound(page))
  1631. goto out_unlock;
  1632. BUG_ON(!PageSwapBacked(page));
  1633. __split_huge_page(page, anon_vma, list);
  1634. count_vm_event(THP_SPLIT);
  1635. BUG_ON(PageCompound(page));
  1636. out_unlock:
  1637. anon_vma_unlock_write(anon_vma);
  1638. put_anon_vma(anon_vma);
  1639. out:
  1640. return ret;
  1641. }
  1642. #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
  1643. int hugepage_madvise(struct vm_area_struct *vma,
  1644. unsigned long *vm_flags, int advice)
  1645. {
  1646. struct mm_struct *mm = vma->vm_mm;
  1647. switch (advice) {
  1648. case MADV_HUGEPAGE:
  1649. /*
  1650. * Be somewhat over-protective like KSM for now!
  1651. */
  1652. if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
  1653. return -EINVAL;
  1654. if (mm->def_flags & VM_NOHUGEPAGE)
  1655. return -EINVAL;
  1656. *vm_flags &= ~VM_NOHUGEPAGE;
  1657. *vm_flags |= VM_HUGEPAGE;
  1658. /*
  1659. * If the vma become good for khugepaged to scan,
  1660. * register it here without waiting a page fault that
  1661. * may not happen any time soon.
  1662. */
  1663. if (unlikely(khugepaged_enter_vma_merge(vma)))
  1664. return -ENOMEM;
  1665. break;
  1666. case MADV_NOHUGEPAGE:
  1667. /*
  1668. * Be somewhat over-protective like KSM for now!
  1669. */
  1670. if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
  1671. return -EINVAL;
  1672. *vm_flags &= ~VM_HUGEPAGE;
  1673. *vm_flags |= VM_NOHUGEPAGE;
  1674. /*
  1675. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1676. * this vma even if we leave the mm registered in khugepaged if
  1677. * it got registered before VM_NOHUGEPAGE was set.
  1678. */
  1679. break;
  1680. }
  1681. return 0;
  1682. }
  1683. static int __init khugepaged_slab_init(void)
  1684. {
  1685. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1686. sizeof(struct mm_slot),
  1687. __alignof__(struct mm_slot), 0, NULL);
  1688. if (!mm_slot_cache)
  1689. return -ENOMEM;
  1690. return 0;
  1691. }
  1692. static inline struct mm_slot *alloc_mm_slot(void)
  1693. {
  1694. if (!mm_slot_cache) /* initialization failed */
  1695. return NULL;
  1696. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1697. }
  1698. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1699. {
  1700. kmem_cache_free(mm_slot_cache, mm_slot);
  1701. }
  1702. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1703. {
  1704. struct mm_slot *mm_slot;
  1705. hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
  1706. if (mm == mm_slot->mm)
  1707. return mm_slot;
  1708. return NULL;
  1709. }
  1710. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1711. struct mm_slot *mm_slot)
  1712. {
  1713. mm_slot->mm = mm;
  1714. hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
  1715. }
  1716. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1717. {
  1718. return atomic_read(&mm->mm_users) == 0;
  1719. }
  1720. int __khugepaged_enter(struct mm_struct *mm)
  1721. {
  1722. struct mm_slot *mm_slot;
  1723. int wakeup;
  1724. mm_slot = alloc_mm_slot();
  1725. if (!mm_slot)
  1726. return -ENOMEM;
  1727. /* __khugepaged_exit() must not run from under us */
  1728. VM_BUG_ON(khugepaged_test_exit(mm));
  1729. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1730. free_mm_slot(mm_slot);
  1731. return 0;
  1732. }
  1733. spin_lock(&khugepaged_mm_lock);
  1734. insert_to_mm_slots_hash(mm, mm_slot);
  1735. /*
  1736. * Insert just behind the scanning cursor, to let the area settle
  1737. * down a little.
  1738. */
  1739. wakeup = list_empty(&khugepaged_scan.mm_head);
  1740. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1741. spin_unlock(&khugepaged_mm_lock);
  1742. atomic_inc(&mm->mm_count);
  1743. if (wakeup)
  1744. wake_up_interruptible(&khugepaged_wait);
  1745. return 0;
  1746. }
  1747. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1748. {
  1749. unsigned long hstart, hend;
  1750. if (!vma->anon_vma)
  1751. /*
  1752. * Not yet faulted in so we will register later in the
  1753. * page fault if needed.
  1754. */
  1755. return 0;
  1756. if (vma->vm_ops)
  1757. /* khugepaged not yet working on file or special mappings */
  1758. return 0;
  1759. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1760. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1761. hend = vma->vm_end & HPAGE_PMD_MASK;
  1762. if (hstart < hend)
  1763. return khugepaged_enter(vma);
  1764. return 0;
  1765. }
  1766. void __khugepaged_exit(struct mm_struct *mm)
  1767. {
  1768. struct mm_slot *mm_slot;
  1769. int free = 0;
  1770. spin_lock(&khugepaged_mm_lock);
  1771. mm_slot = get_mm_slot(mm);
  1772. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1773. hash_del(&mm_slot->hash);
  1774. list_del(&mm_slot->mm_node);
  1775. free = 1;
  1776. }
  1777. spin_unlock(&khugepaged_mm_lock);
  1778. if (free) {
  1779. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1780. free_mm_slot(mm_slot);
  1781. mmdrop(mm);
  1782. } else if (mm_slot) {
  1783. /*
  1784. * This is required to serialize against
  1785. * khugepaged_test_exit() (which is guaranteed to run
  1786. * under mmap sem read mode). Stop here (after we
  1787. * return all pagetables will be destroyed) until
  1788. * khugepaged has finished working on the pagetables
  1789. * under the mmap_sem.
  1790. */
  1791. down_write(&mm->mmap_sem);
  1792. up_write(&mm->mmap_sem);
  1793. }
  1794. }
  1795. static void release_pte_page(struct page *page)
  1796. {
  1797. /* 0 stands for page_is_file_cache(page) == false */
  1798. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1799. unlock_page(page);
  1800. putback_lru_page(page);
  1801. }
  1802. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1803. {
  1804. while (--_pte >= pte) {
  1805. pte_t pteval = *_pte;
  1806. if (!pte_none(pteval))
  1807. release_pte_page(pte_page(pteval));
  1808. }
  1809. }
  1810. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1811. unsigned long address,
  1812. pte_t *pte)
  1813. {
  1814. struct page *page;
  1815. pte_t *_pte;
  1816. int referenced = 0, none = 0;
  1817. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1818. _pte++, address += PAGE_SIZE) {
  1819. pte_t pteval = *_pte;
  1820. if (pte_none(pteval)) {
  1821. if (++none <= khugepaged_max_ptes_none)
  1822. continue;
  1823. else
  1824. goto out;
  1825. }
  1826. if (!pte_present(pteval) || !pte_write(pteval))
  1827. goto out;
  1828. page = vm_normal_page(vma, address, pteval);
  1829. if (unlikely(!page))
  1830. goto out;
  1831. VM_BUG_ON(PageCompound(page));
  1832. BUG_ON(!PageAnon(page));
  1833. VM_BUG_ON(!PageSwapBacked(page));
  1834. /* cannot use mapcount: can't collapse if there's a gup pin */
  1835. if (page_count(page) != 1)
  1836. goto out;
  1837. /*
  1838. * We can do it before isolate_lru_page because the
  1839. * page can't be freed from under us. NOTE: PG_lock
  1840. * is needed to serialize against split_huge_page
  1841. * when invoked from the VM.
  1842. */
  1843. if (!trylock_page(page))
  1844. goto out;
  1845. /*
  1846. * Isolate the page to avoid collapsing an hugepage
  1847. * currently in use by the VM.
  1848. */
  1849. if (isolate_lru_page(page)) {
  1850. unlock_page(page);
  1851. goto out;
  1852. }
  1853. /* 0 stands for page_is_file_cache(page) == false */
  1854. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1855. VM_BUG_ON(!PageLocked(page));
  1856. VM_BUG_ON(PageLRU(page));
  1857. /* If there is no mapped pte young don't collapse the page */
  1858. if (pte_young(pteval) || PageReferenced(page) ||
  1859. mmu_notifier_test_young(vma->vm_mm, address))
  1860. referenced = 1;
  1861. }
  1862. if (likely(referenced))
  1863. return 1;
  1864. out:
  1865. release_pte_pages(pte, _pte);
  1866. return 0;
  1867. }
  1868. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1869. struct vm_area_struct *vma,
  1870. unsigned long address,
  1871. spinlock_t *ptl)
  1872. {
  1873. pte_t *_pte;
  1874. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1875. pte_t pteval = *_pte;
  1876. struct page *src_page;
  1877. if (pte_none(pteval)) {
  1878. clear_user_highpage(page, address);
  1879. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1880. } else {
  1881. src_page = pte_page(pteval);
  1882. copy_user_highpage(page, src_page, address, vma);
  1883. VM_BUG_ON(page_mapcount(src_page) != 1);
  1884. release_pte_page(src_page);
  1885. /*
  1886. * ptl mostly unnecessary, but preempt has to
  1887. * be disabled to update the per-cpu stats
  1888. * inside page_remove_rmap().
  1889. */
  1890. spin_lock(ptl);
  1891. /*
  1892. * paravirt calls inside pte_clear here are
  1893. * superfluous.
  1894. */
  1895. pte_clear(vma->vm_mm, address, _pte);
  1896. page_remove_rmap(src_page);
  1897. spin_unlock(ptl);
  1898. free_page_and_swap_cache(src_page);
  1899. }
  1900. address += PAGE_SIZE;
  1901. page++;
  1902. }
  1903. }
  1904. static void khugepaged_alloc_sleep(void)
  1905. {
  1906. wait_event_freezable_timeout(khugepaged_wait, false,
  1907. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  1908. }
  1909. #ifdef CONFIG_NUMA
  1910. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1911. {
  1912. if (IS_ERR(*hpage)) {
  1913. if (!*wait)
  1914. return false;
  1915. *wait = false;
  1916. *hpage = NULL;
  1917. khugepaged_alloc_sleep();
  1918. } else if (*hpage) {
  1919. put_page(*hpage);
  1920. *hpage = NULL;
  1921. }
  1922. return true;
  1923. }
  1924. static struct page
  1925. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1926. struct vm_area_struct *vma, unsigned long address,
  1927. int node)
  1928. {
  1929. VM_BUG_ON(*hpage);
  1930. /*
  1931. * Allocate the page while the vma is still valid and under
  1932. * the mmap_sem read mode so there is no memory allocation
  1933. * later when we take the mmap_sem in write mode. This is more
  1934. * friendly behavior (OTOH it may actually hide bugs) to
  1935. * filesystems in userland with daemons allocating memory in
  1936. * the userland I/O paths. Allocating memory with the
  1937. * mmap_sem in read mode is good idea also to allow greater
  1938. * scalability.
  1939. */
  1940. *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
  1941. node, __GFP_OTHER_NODE);
  1942. /*
  1943. * After allocating the hugepage, release the mmap_sem read lock in
  1944. * preparation for taking it in write mode.
  1945. */
  1946. up_read(&mm->mmap_sem);
  1947. if (unlikely(!*hpage)) {
  1948. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1949. *hpage = ERR_PTR(-ENOMEM);
  1950. return NULL;
  1951. }
  1952. count_vm_event(THP_COLLAPSE_ALLOC);
  1953. return *hpage;
  1954. }
  1955. #else
  1956. static struct page *khugepaged_alloc_hugepage(bool *wait)
  1957. {
  1958. struct page *hpage;
  1959. do {
  1960. hpage = alloc_hugepage(khugepaged_defrag());
  1961. if (!hpage) {
  1962. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1963. if (!*wait)
  1964. return NULL;
  1965. *wait = false;
  1966. khugepaged_alloc_sleep();
  1967. } else
  1968. count_vm_event(THP_COLLAPSE_ALLOC);
  1969. } while (unlikely(!hpage) && likely(khugepaged_enabled()));
  1970. return hpage;
  1971. }
  1972. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1973. {
  1974. if (!*hpage)
  1975. *hpage = khugepaged_alloc_hugepage(wait);
  1976. if (unlikely(!*hpage))
  1977. return false;
  1978. return true;
  1979. }
  1980. static struct page
  1981. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1982. struct vm_area_struct *vma, unsigned long address,
  1983. int node)
  1984. {
  1985. up_read(&mm->mmap_sem);
  1986. VM_BUG_ON(!*hpage);
  1987. return *hpage;
  1988. }
  1989. #endif
  1990. static bool hugepage_vma_check(struct vm_area_struct *vma)
  1991. {
  1992. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  1993. (vma->vm_flags & VM_NOHUGEPAGE))
  1994. return false;
  1995. if (!vma->anon_vma || vma->vm_ops)
  1996. return false;
  1997. if (is_vma_temporary_stack(vma))
  1998. return false;
  1999. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  2000. return true;
  2001. }
  2002. static void collapse_huge_page(struct mm_struct *mm,
  2003. unsigned long address,
  2004. struct page **hpage,
  2005. struct vm_area_struct *vma,
  2006. int node)
  2007. {
  2008. pmd_t *pmd, _pmd;
  2009. pte_t *pte;
  2010. pgtable_t pgtable;
  2011. struct page *new_page;
  2012. spinlock_t *ptl;
  2013. int isolated;
  2014. unsigned long hstart, hend;
  2015. unsigned long mmun_start; /* For mmu_notifiers */
  2016. unsigned long mmun_end; /* For mmu_notifiers */
  2017. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2018. /* release the mmap_sem read lock. */
  2019. new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
  2020. if (!new_page)
  2021. return;
  2022. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
  2023. return;
  2024. /*
  2025. * Prevent all access to pagetables with the exception of
  2026. * gup_fast later hanlded by the ptep_clear_flush and the VM
  2027. * handled by the anon_vma lock + PG_lock.
  2028. */
  2029. down_write(&mm->mmap_sem);
  2030. if (unlikely(khugepaged_test_exit(mm)))
  2031. goto out;
  2032. vma = find_vma(mm, address);
  2033. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2034. hend = vma->vm_end & HPAGE_PMD_MASK;
  2035. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  2036. goto out;
  2037. if (!hugepage_vma_check(vma))
  2038. goto out;
  2039. pmd = mm_find_pmd(mm, address);
  2040. if (!pmd)
  2041. goto out;
  2042. if (pmd_trans_huge(*pmd))
  2043. goto out;
  2044. anon_vma_lock_write(vma->anon_vma);
  2045. pte = pte_offset_map(pmd, address);
  2046. ptl = pte_lockptr(mm, pmd);
  2047. mmun_start = address;
  2048. mmun_end = address + HPAGE_PMD_SIZE;
  2049. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2050. spin_lock(&mm->page_table_lock); /* probably unnecessary */
  2051. /*
  2052. * After this gup_fast can't run anymore. This also removes
  2053. * any huge TLB entry from the CPU so we won't allow
  2054. * huge and small TLB entries for the same virtual address
  2055. * to avoid the risk of CPU bugs in that area.
  2056. */
  2057. _pmd = pmdp_clear_flush(vma, address, pmd);
  2058. spin_unlock(&mm->page_table_lock);
  2059. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2060. spin_lock(ptl);
  2061. isolated = __collapse_huge_page_isolate(vma, address, pte);
  2062. spin_unlock(ptl);
  2063. if (unlikely(!isolated)) {
  2064. pte_unmap(pte);
  2065. spin_lock(&mm->page_table_lock);
  2066. BUG_ON(!pmd_none(*pmd));
  2067. /*
  2068. * We can only use set_pmd_at when establishing
  2069. * hugepmds and never for establishing regular pmds that
  2070. * points to regular pagetables. Use pmd_populate for that
  2071. */
  2072. pmd_populate(mm, pmd, pmd_pgtable(_pmd));
  2073. spin_unlock(&mm->page_table_lock);
  2074. anon_vma_unlock_write(vma->anon_vma);
  2075. goto out;
  2076. }
  2077. /*
  2078. * All pages are isolated and locked so anon_vma rmap
  2079. * can't run anymore.
  2080. */
  2081. anon_vma_unlock_write(vma->anon_vma);
  2082. __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
  2083. pte_unmap(pte);
  2084. __SetPageUptodate(new_page);
  2085. pgtable = pmd_pgtable(_pmd);
  2086. _pmd = mk_huge_pmd(new_page, vma);
  2087. /*
  2088. * spin_lock() below is not the equivalent of smp_wmb(), so
  2089. * this is needed to avoid the copy_huge_page writes to become
  2090. * visible after the set_pmd_at() write.
  2091. */
  2092. smp_wmb();
  2093. spin_lock(&mm->page_table_lock);
  2094. BUG_ON(!pmd_none(*pmd));
  2095. page_add_new_anon_rmap(new_page, vma, address);
  2096. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  2097. set_pmd_at(mm, address, pmd, _pmd);
  2098. update_mmu_cache_pmd(vma, address, pmd);
  2099. spin_unlock(&mm->page_table_lock);
  2100. *hpage = NULL;
  2101. khugepaged_pages_collapsed++;
  2102. out_up_write:
  2103. up_write(&mm->mmap_sem);
  2104. return;
  2105. out:
  2106. mem_cgroup_uncharge_page(new_page);
  2107. goto out_up_write;
  2108. }
  2109. static int khugepaged_scan_pmd(struct mm_struct *mm,
  2110. struct vm_area_struct *vma,
  2111. unsigned long address,
  2112. struct page **hpage)
  2113. {
  2114. pmd_t *pmd;
  2115. pte_t *pte, *_pte;
  2116. int ret = 0, referenced = 0, none = 0;
  2117. struct page *page;
  2118. unsigned long _address;
  2119. spinlock_t *ptl;
  2120. int node = NUMA_NO_NODE;
  2121. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2122. pmd = mm_find_pmd(mm, address);
  2123. if (!pmd)
  2124. goto out;
  2125. if (pmd_trans_huge(*pmd))
  2126. goto out;
  2127. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2128. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  2129. _pte++, _address += PAGE_SIZE) {
  2130. pte_t pteval = *_pte;
  2131. if (pte_none(pteval)) {
  2132. if (++none <= khugepaged_max_ptes_none)
  2133. continue;
  2134. else
  2135. goto out_unmap;
  2136. }
  2137. if (!pte_present(pteval) || !pte_write(pteval))
  2138. goto out_unmap;
  2139. page = vm_normal_page(vma, _address, pteval);
  2140. if (unlikely(!page))
  2141. goto out_unmap;
  2142. /*
  2143. * Chose the node of the first page. This could
  2144. * be more sophisticated and look at more pages,
  2145. * but isn't for now.
  2146. */
  2147. if (node == NUMA_NO_NODE)
  2148. node = page_to_nid(page);
  2149. VM_BUG_ON(PageCompound(page));
  2150. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  2151. goto out_unmap;
  2152. /* cannot use mapcount: can't collapse if there's a gup pin */
  2153. if (page_count(page) != 1)
  2154. goto out_unmap;
  2155. if (pte_young(pteval) || PageReferenced(page) ||
  2156. mmu_notifier_test_young(vma->vm_mm, address))
  2157. referenced = 1;
  2158. }
  2159. if (referenced)
  2160. ret = 1;
  2161. out_unmap:
  2162. pte_unmap_unlock(pte, ptl);
  2163. if (ret)
  2164. /* collapse_huge_page will return with the mmap_sem released */
  2165. collapse_huge_page(mm, address, hpage, vma, node);
  2166. out:
  2167. return ret;
  2168. }
  2169. static void collect_mm_slot(struct mm_slot *mm_slot)
  2170. {
  2171. struct mm_struct *mm = mm_slot->mm;
  2172. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2173. if (khugepaged_test_exit(mm)) {
  2174. /* free mm_slot */
  2175. hash_del(&mm_slot->hash);
  2176. list_del(&mm_slot->mm_node);
  2177. /*
  2178. * Not strictly needed because the mm exited already.
  2179. *
  2180. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  2181. */
  2182. /* khugepaged_mm_lock actually not necessary for the below */
  2183. free_mm_slot(mm_slot);
  2184. mmdrop(mm);
  2185. }
  2186. }
  2187. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  2188. struct page **hpage)
  2189. __releases(&khugepaged_mm_lock)
  2190. __acquires(&khugepaged_mm_lock)
  2191. {
  2192. struct mm_slot *mm_slot;
  2193. struct mm_struct *mm;
  2194. struct vm_area_struct *vma;
  2195. int progress = 0;
  2196. VM_BUG_ON(!pages);
  2197. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2198. if (khugepaged_scan.mm_slot)
  2199. mm_slot = khugepaged_scan.mm_slot;
  2200. else {
  2201. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  2202. struct mm_slot, mm_node);
  2203. khugepaged_scan.address = 0;
  2204. khugepaged_scan.mm_slot = mm_slot;
  2205. }
  2206. spin_unlock(&khugepaged_mm_lock);
  2207. mm = mm_slot->mm;
  2208. down_read(&mm->mmap_sem);
  2209. if (unlikely(khugepaged_test_exit(mm)))
  2210. vma = NULL;
  2211. else
  2212. vma = find_vma(mm, khugepaged_scan.address);
  2213. progress++;
  2214. for (; vma; vma = vma->vm_next) {
  2215. unsigned long hstart, hend;
  2216. cond_resched();
  2217. if (unlikely(khugepaged_test_exit(mm))) {
  2218. progress++;
  2219. break;
  2220. }
  2221. if (!hugepage_vma_check(vma)) {
  2222. skip:
  2223. progress++;
  2224. continue;
  2225. }
  2226. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2227. hend = vma->vm_end & HPAGE_PMD_MASK;
  2228. if (hstart >= hend)
  2229. goto skip;
  2230. if (khugepaged_scan.address > hend)
  2231. goto skip;
  2232. if (khugepaged_scan.address < hstart)
  2233. khugepaged_scan.address = hstart;
  2234. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  2235. while (khugepaged_scan.address < hend) {
  2236. int ret;
  2237. cond_resched();
  2238. if (unlikely(khugepaged_test_exit(mm)))
  2239. goto breakouterloop;
  2240. VM_BUG_ON(khugepaged_scan.address < hstart ||
  2241. khugepaged_scan.address + HPAGE_PMD_SIZE >
  2242. hend);
  2243. ret = khugepaged_scan_pmd(mm, vma,
  2244. khugepaged_scan.address,
  2245. hpage);
  2246. /* move to next address */
  2247. khugepaged_scan.address += HPAGE_PMD_SIZE;
  2248. progress += HPAGE_PMD_NR;
  2249. if (ret)
  2250. /* we released mmap_sem so break loop */
  2251. goto breakouterloop_mmap_sem;
  2252. if (progress >= pages)
  2253. goto breakouterloop;
  2254. }
  2255. }
  2256. breakouterloop:
  2257. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  2258. breakouterloop_mmap_sem:
  2259. spin_lock(&khugepaged_mm_lock);
  2260. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  2261. /*
  2262. * Release the current mm_slot if this mm is about to die, or
  2263. * if we scanned all vmas of this mm.
  2264. */
  2265. if (khugepaged_test_exit(mm) || !vma) {
  2266. /*
  2267. * Make sure that if mm_users is reaching zero while
  2268. * khugepaged runs here, khugepaged_exit will find
  2269. * mm_slot not pointing to the exiting mm.
  2270. */
  2271. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  2272. khugepaged_scan.mm_slot = list_entry(
  2273. mm_slot->mm_node.next,
  2274. struct mm_slot, mm_node);
  2275. khugepaged_scan.address = 0;
  2276. } else {
  2277. khugepaged_scan.mm_slot = NULL;
  2278. khugepaged_full_scans++;
  2279. }
  2280. collect_mm_slot(mm_slot);
  2281. }
  2282. return progress;
  2283. }
  2284. static int khugepaged_has_work(void)
  2285. {
  2286. return !list_empty(&khugepaged_scan.mm_head) &&
  2287. khugepaged_enabled();
  2288. }
  2289. static int khugepaged_wait_event(void)
  2290. {
  2291. return !list_empty(&khugepaged_scan.mm_head) ||
  2292. kthread_should_stop();
  2293. }
  2294. static void khugepaged_do_scan(void)
  2295. {
  2296. struct page *hpage = NULL;
  2297. unsigned int progress = 0, pass_through_head = 0;
  2298. unsigned int pages = khugepaged_pages_to_scan;
  2299. bool wait = true;
  2300. barrier(); /* write khugepaged_pages_to_scan to local stack */
  2301. while (progress < pages) {
  2302. if (!khugepaged_prealloc_page(&hpage, &wait))
  2303. break;
  2304. cond_resched();
  2305. if (unlikely(kthread_should_stop() || freezing(current)))
  2306. break;
  2307. spin_lock(&khugepaged_mm_lock);
  2308. if (!khugepaged_scan.mm_slot)
  2309. pass_through_head++;
  2310. if (khugepaged_has_work() &&
  2311. pass_through_head < 2)
  2312. progress += khugepaged_scan_mm_slot(pages - progress,
  2313. &hpage);
  2314. else
  2315. progress = pages;
  2316. spin_unlock(&khugepaged_mm_lock);
  2317. }
  2318. if (!IS_ERR_OR_NULL(hpage))
  2319. put_page(hpage);
  2320. }
  2321. static void khugepaged_wait_work(void)
  2322. {
  2323. try_to_freeze();
  2324. if (khugepaged_has_work()) {
  2325. if (!khugepaged_scan_sleep_millisecs)
  2326. return;
  2327. wait_event_freezable_timeout(khugepaged_wait,
  2328. kthread_should_stop(),
  2329. msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
  2330. return;
  2331. }
  2332. if (khugepaged_enabled())
  2333. wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
  2334. }
  2335. static int khugepaged(void *none)
  2336. {
  2337. struct mm_slot *mm_slot;
  2338. set_freezable();
  2339. set_user_nice(current, 19);
  2340. while (!kthread_should_stop()) {
  2341. khugepaged_do_scan();
  2342. khugepaged_wait_work();
  2343. }
  2344. spin_lock(&khugepaged_mm_lock);
  2345. mm_slot = khugepaged_scan.mm_slot;
  2346. khugepaged_scan.mm_slot = NULL;
  2347. if (mm_slot)
  2348. collect_mm_slot(mm_slot);
  2349. spin_unlock(&khugepaged_mm_lock);
  2350. return 0;
  2351. }
  2352. static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
  2353. unsigned long haddr, pmd_t *pmd)
  2354. {
  2355. struct mm_struct *mm = vma->vm_mm;
  2356. pgtable_t pgtable;
  2357. pmd_t _pmd;
  2358. int i;
  2359. pmdp_clear_flush(vma, haddr, pmd);
  2360. /* leave pmd empty until pte is filled */
  2361. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  2362. pmd_populate(mm, &_pmd, pgtable);
  2363. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  2364. pte_t *pte, entry;
  2365. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  2366. entry = pte_mkspecial(entry);
  2367. pte = pte_offset_map(&_pmd, haddr);
  2368. VM_BUG_ON(!pte_none(*pte));
  2369. set_pte_at(mm, haddr, pte, entry);
  2370. pte_unmap(pte);
  2371. }
  2372. smp_wmb(); /* make pte visible before pmd */
  2373. pmd_populate(mm, pmd, pgtable);
  2374. put_huge_zero_page();
  2375. }
  2376. void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
  2377. pmd_t *pmd)
  2378. {
  2379. struct page *page;
  2380. struct mm_struct *mm = vma->vm_mm;
  2381. unsigned long haddr = address & HPAGE_PMD_MASK;
  2382. unsigned long mmun_start; /* For mmu_notifiers */
  2383. unsigned long mmun_end; /* For mmu_notifiers */
  2384. BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
  2385. mmun_start = haddr;
  2386. mmun_end = haddr + HPAGE_PMD_SIZE;
  2387. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2388. spin_lock(&mm->page_table_lock);
  2389. if (unlikely(!pmd_trans_huge(*pmd))) {
  2390. spin_unlock(&mm->page_table_lock);
  2391. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2392. return;
  2393. }
  2394. if (is_huge_zero_pmd(*pmd)) {
  2395. __split_huge_zero_page_pmd(vma, haddr, pmd);
  2396. spin_unlock(&mm->page_table_lock);
  2397. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2398. return;
  2399. }
  2400. page = pmd_page(*pmd);
  2401. VM_BUG_ON(!page_count(page));
  2402. get_page(page);
  2403. spin_unlock(&mm->page_table_lock);
  2404. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2405. split_huge_page(page);
  2406. put_page(page);
  2407. BUG_ON(pmd_trans_huge(*pmd));
  2408. }
  2409. void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
  2410. pmd_t *pmd)
  2411. {
  2412. struct vm_area_struct *vma;
  2413. vma = find_vma(mm, address);
  2414. BUG_ON(vma == NULL);
  2415. split_huge_page_pmd(vma, address, pmd);
  2416. }
  2417. static void split_huge_page_address(struct mm_struct *mm,
  2418. unsigned long address)
  2419. {
  2420. pmd_t *pmd;
  2421. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2422. pmd = mm_find_pmd(mm, address);
  2423. if (!pmd)
  2424. return;
  2425. /*
  2426. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2427. * materialize from under us.
  2428. */
  2429. split_huge_page_pmd_mm(mm, address, pmd);
  2430. }
  2431. void __vma_adjust_trans_huge(struct vm_area_struct *vma,
  2432. unsigned long start,
  2433. unsigned long end,
  2434. long adjust_next)
  2435. {
  2436. /*
  2437. * If the new start address isn't hpage aligned and it could
  2438. * previously contain an hugepage: check if we need to split
  2439. * an huge pmd.
  2440. */
  2441. if (start & ~HPAGE_PMD_MASK &&
  2442. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2443. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2444. split_huge_page_address(vma->vm_mm, start);
  2445. /*
  2446. * If the new end address isn't hpage aligned and it could
  2447. * previously contain an hugepage: check if we need to split
  2448. * an huge pmd.
  2449. */
  2450. if (end & ~HPAGE_PMD_MASK &&
  2451. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2452. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2453. split_huge_page_address(vma->vm_mm, end);
  2454. /*
  2455. * If we're also updating the vma->vm_next->vm_start, if the new
  2456. * vm_next->vm_start isn't page aligned and it could previously
  2457. * contain an hugepage: check if we need to split an huge pmd.
  2458. */
  2459. if (adjust_next > 0) {
  2460. struct vm_area_struct *next = vma->vm_next;
  2461. unsigned long nstart = next->vm_start;
  2462. nstart += adjust_next << PAGE_SHIFT;
  2463. if (nstart & ~HPAGE_PMD_MASK &&
  2464. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2465. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2466. split_huge_page_address(next->vm_mm, nstart);
  2467. }
  2468. }