qla3xxx.c 108 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188
  1. /*
  2. * QLogic QLA3xxx NIC HBA Driver
  3. * Copyright (c) 2003-2006 QLogic Corporation
  4. *
  5. * See LICENSE.qla3xxx for copyright and licensing details.
  6. */
  7. #include <linux/kernel.h>
  8. #include <linux/init.h>
  9. #include <linux/types.h>
  10. #include <linux/module.h>
  11. #include <linux/list.h>
  12. #include <linux/pci.h>
  13. #include <linux/dma-mapping.h>
  14. #include <linux/sched.h>
  15. #include <linux/slab.h>
  16. #include <linux/dmapool.h>
  17. #include <linux/mempool.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/kthread.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/errno.h>
  22. #include <linux/ioport.h>
  23. #include <linux/ip.h>
  24. #include <linux/in.h>
  25. #include <linux/if_arp.h>
  26. #include <linux/if_ether.h>
  27. #include <linux/netdevice.h>
  28. #include <linux/etherdevice.h>
  29. #include <linux/ethtool.h>
  30. #include <linux/skbuff.h>
  31. #include <linux/rtnetlink.h>
  32. #include <linux/if_vlan.h>
  33. #include <linux/delay.h>
  34. #include <linux/mm.h>
  35. #include "qla3xxx.h"
  36. #define DRV_NAME "qla3xxx"
  37. #define DRV_STRING "QLogic ISP3XXX Network Driver"
  38. #define DRV_VERSION "v2.03.00-k4"
  39. #define PFX DRV_NAME " "
  40. static const char ql3xxx_driver_name[] = DRV_NAME;
  41. static const char ql3xxx_driver_version[] = DRV_VERSION;
  42. MODULE_AUTHOR("QLogic Corporation");
  43. MODULE_DESCRIPTION("QLogic ISP3XXX Network Driver " DRV_VERSION " ");
  44. MODULE_LICENSE("GPL");
  45. MODULE_VERSION(DRV_VERSION);
  46. static const u32 default_msg
  47. = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
  48. | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
  49. static int debug = -1; /* defaults above */
  50. module_param(debug, int, 0);
  51. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  52. static int msi;
  53. module_param(msi, int, 0);
  54. MODULE_PARM_DESC(msi, "Turn on Message Signaled Interrupts.");
  55. static struct pci_device_id ql3xxx_pci_tbl[] __devinitdata = {
  56. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3022_DEVICE_ID)},
  57. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3032_DEVICE_ID)},
  58. /* required last entry */
  59. {0,}
  60. };
  61. MODULE_DEVICE_TABLE(pci, ql3xxx_pci_tbl);
  62. /*
  63. * These are the known PHY's which are used
  64. */
  65. typedef enum {
  66. PHY_TYPE_UNKNOWN = 0,
  67. PHY_VITESSE_VSC8211,
  68. PHY_AGERE_ET1011C,
  69. MAX_PHY_DEV_TYPES
  70. } PHY_DEVICE_et;
  71. typedef struct {
  72. PHY_DEVICE_et phyDevice;
  73. u32 phyIdOUI;
  74. u16 phyIdModel;
  75. char *name;
  76. } PHY_DEVICE_INFO_t;
  77. static const PHY_DEVICE_INFO_t PHY_DEVICES[] =
  78. {{PHY_TYPE_UNKNOWN, 0x000000, 0x0, "PHY_TYPE_UNKNOWN"},
  79. {PHY_VITESSE_VSC8211, 0x0003f1, 0xb, "PHY_VITESSE_VSC8211"},
  80. {PHY_AGERE_ET1011C, 0x00a0bc, 0x1, "PHY_AGERE_ET1011C"},
  81. };
  82. /*
  83. * Caller must take hw_lock.
  84. */
  85. static int ql_sem_spinlock(struct ql3_adapter *qdev,
  86. u32 sem_mask, u32 sem_bits)
  87. {
  88. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  89. u32 value;
  90. unsigned int seconds = 3;
  91. do {
  92. writel((sem_mask | sem_bits),
  93. &port_regs->CommonRegs.semaphoreReg);
  94. value = readl(&port_regs->CommonRegs.semaphoreReg);
  95. if ((value & (sem_mask >> 16)) == sem_bits)
  96. return 0;
  97. ssleep(1);
  98. } while(--seconds);
  99. return -1;
  100. }
  101. static void ql_sem_unlock(struct ql3_adapter *qdev, u32 sem_mask)
  102. {
  103. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  104. writel(sem_mask, &port_regs->CommonRegs.semaphoreReg);
  105. readl(&port_regs->CommonRegs.semaphoreReg);
  106. }
  107. static int ql_sem_lock(struct ql3_adapter *qdev, u32 sem_mask, u32 sem_bits)
  108. {
  109. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  110. u32 value;
  111. writel((sem_mask | sem_bits), &port_regs->CommonRegs.semaphoreReg);
  112. value = readl(&port_regs->CommonRegs.semaphoreReg);
  113. return ((value & (sem_mask >> 16)) == sem_bits);
  114. }
  115. /*
  116. * Caller holds hw_lock.
  117. */
  118. static int ql_wait_for_drvr_lock(struct ql3_adapter *qdev)
  119. {
  120. int i = 0;
  121. while (1) {
  122. if (!ql_sem_lock(qdev,
  123. QL_DRVR_SEM_MASK,
  124. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
  125. * 2) << 1)) {
  126. if (i < 10) {
  127. ssleep(1);
  128. i++;
  129. } else {
  130. printk(KERN_ERR PFX "%s: Timed out waiting for "
  131. "driver lock...\n",
  132. qdev->ndev->name);
  133. return 0;
  134. }
  135. } else {
  136. printk(KERN_DEBUG PFX
  137. "%s: driver lock acquired.\n",
  138. qdev->ndev->name);
  139. return 1;
  140. }
  141. }
  142. }
  143. static void ql_set_register_page(struct ql3_adapter *qdev, u32 page)
  144. {
  145. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  146. writel(((ISP_CONTROL_NP_MASK << 16) | page),
  147. &port_regs->CommonRegs.ispControlStatus);
  148. readl(&port_regs->CommonRegs.ispControlStatus);
  149. qdev->current_page = page;
  150. }
  151. static u32 ql_read_common_reg_l(struct ql3_adapter *qdev,
  152. u32 __iomem * reg)
  153. {
  154. u32 value;
  155. unsigned long hw_flags;
  156. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  157. value = readl(reg);
  158. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  159. return value;
  160. }
  161. static u32 ql_read_common_reg(struct ql3_adapter *qdev,
  162. u32 __iomem * reg)
  163. {
  164. return readl(reg);
  165. }
  166. static u32 ql_read_page0_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
  167. {
  168. u32 value;
  169. unsigned long hw_flags;
  170. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  171. if (qdev->current_page != 0)
  172. ql_set_register_page(qdev,0);
  173. value = readl(reg);
  174. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  175. return value;
  176. }
  177. static u32 ql_read_page0_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
  178. {
  179. if (qdev->current_page != 0)
  180. ql_set_register_page(qdev,0);
  181. return readl(reg);
  182. }
  183. static void ql_write_common_reg_l(struct ql3_adapter *qdev,
  184. u32 __iomem *reg, u32 value)
  185. {
  186. unsigned long hw_flags;
  187. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  188. writel(value, reg);
  189. readl(reg);
  190. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  191. return;
  192. }
  193. static void ql_write_common_reg(struct ql3_adapter *qdev,
  194. u32 __iomem *reg, u32 value)
  195. {
  196. writel(value, reg);
  197. readl(reg);
  198. return;
  199. }
  200. static void ql_write_nvram_reg(struct ql3_adapter *qdev,
  201. u32 __iomem *reg, u32 value)
  202. {
  203. writel(value, reg);
  204. readl(reg);
  205. udelay(1);
  206. return;
  207. }
  208. static void ql_write_page0_reg(struct ql3_adapter *qdev,
  209. u32 __iomem *reg, u32 value)
  210. {
  211. if (qdev->current_page != 0)
  212. ql_set_register_page(qdev,0);
  213. writel(value, reg);
  214. readl(reg);
  215. return;
  216. }
  217. /*
  218. * Caller holds hw_lock. Only called during init.
  219. */
  220. static void ql_write_page1_reg(struct ql3_adapter *qdev,
  221. u32 __iomem *reg, u32 value)
  222. {
  223. if (qdev->current_page != 1)
  224. ql_set_register_page(qdev,1);
  225. writel(value, reg);
  226. readl(reg);
  227. return;
  228. }
  229. /*
  230. * Caller holds hw_lock. Only called during init.
  231. */
  232. static void ql_write_page2_reg(struct ql3_adapter *qdev,
  233. u32 __iomem *reg, u32 value)
  234. {
  235. if (qdev->current_page != 2)
  236. ql_set_register_page(qdev,2);
  237. writel(value, reg);
  238. readl(reg);
  239. return;
  240. }
  241. static void ql_disable_interrupts(struct ql3_adapter *qdev)
  242. {
  243. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  244. ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
  245. (ISP_IMR_ENABLE_INT << 16));
  246. }
  247. static void ql_enable_interrupts(struct ql3_adapter *qdev)
  248. {
  249. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  250. ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
  251. ((0xff << 16) | ISP_IMR_ENABLE_INT));
  252. }
  253. static void ql_release_to_lrg_buf_free_list(struct ql3_adapter *qdev,
  254. struct ql_rcv_buf_cb *lrg_buf_cb)
  255. {
  256. dma_addr_t map;
  257. int err;
  258. lrg_buf_cb->next = NULL;
  259. if (qdev->lrg_buf_free_tail == NULL) { /* The list is empty */
  260. qdev->lrg_buf_free_head = qdev->lrg_buf_free_tail = lrg_buf_cb;
  261. } else {
  262. qdev->lrg_buf_free_tail->next = lrg_buf_cb;
  263. qdev->lrg_buf_free_tail = lrg_buf_cb;
  264. }
  265. if (!lrg_buf_cb->skb) {
  266. lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
  267. qdev->lrg_buffer_len);
  268. if (unlikely(!lrg_buf_cb->skb)) {
  269. printk(KERN_ERR PFX "%s: failed netdev_alloc_skb().\n",
  270. qdev->ndev->name);
  271. qdev->lrg_buf_skb_check++;
  272. } else {
  273. /*
  274. * We save some space to copy the ethhdr from first
  275. * buffer
  276. */
  277. skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
  278. map = pci_map_single(qdev->pdev,
  279. lrg_buf_cb->skb->data,
  280. qdev->lrg_buffer_len -
  281. QL_HEADER_SPACE,
  282. PCI_DMA_FROMDEVICE);
  283. err = pci_dma_mapping_error(map);
  284. if(err) {
  285. printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
  286. qdev->ndev->name, err);
  287. dev_kfree_skb(lrg_buf_cb->skb);
  288. lrg_buf_cb->skb = NULL;
  289. qdev->lrg_buf_skb_check++;
  290. return;
  291. }
  292. lrg_buf_cb->buf_phy_addr_low =
  293. cpu_to_le32(LS_64BITS(map));
  294. lrg_buf_cb->buf_phy_addr_high =
  295. cpu_to_le32(MS_64BITS(map));
  296. pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  297. pci_unmap_len_set(lrg_buf_cb, maplen,
  298. qdev->lrg_buffer_len -
  299. QL_HEADER_SPACE);
  300. }
  301. }
  302. qdev->lrg_buf_free_count++;
  303. }
  304. static struct ql_rcv_buf_cb *ql_get_from_lrg_buf_free_list(struct ql3_adapter
  305. *qdev)
  306. {
  307. struct ql_rcv_buf_cb *lrg_buf_cb;
  308. if ((lrg_buf_cb = qdev->lrg_buf_free_head) != NULL) {
  309. if ((qdev->lrg_buf_free_head = lrg_buf_cb->next) == NULL)
  310. qdev->lrg_buf_free_tail = NULL;
  311. qdev->lrg_buf_free_count--;
  312. }
  313. return lrg_buf_cb;
  314. }
  315. static u32 addrBits = EEPROM_NO_ADDR_BITS;
  316. static u32 dataBits = EEPROM_NO_DATA_BITS;
  317. static void fm93c56a_deselect(struct ql3_adapter *qdev);
  318. static void eeprom_readword(struct ql3_adapter *qdev, u32 eepromAddr,
  319. unsigned short *value);
  320. /*
  321. * Caller holds hw_lock.
  322. */
  323. static void fm93c56a_select(struct ql3_adapter *qdev)
  324. {
  325. struct ql3xxx_port_registers __iomem *port_regs =
  326. qdev->mem_map_registers;
  327. qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_1;
  328. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  329. ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
  330. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  331. ((ISP_NVRAM_MASK << 16) | qdev->eeprom_cmd_data));
  332. }
  333. /*
  334. * Caller holds hw_lock.
  335. */
  336. static void fm93c56a_cmd(struct ql3_adapter *qdev, u32 cmd, u32 eepromAddr)
  337. {
  338. int i;
  339. u32 mask;
  340. u32 dataBit;
  341. u32 previousBit;
  342. struct ql3xxx_port_registers __iomem *port_regs =
  343. qdev->mem_map_registers;
  344. /* Clock in a zero, then do the start bit */
  345. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  346. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  347. AUBURN_EEPROM_DO_1);
  348. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  349. ISP_NVRAM_MASK | qdev->
  350. eeprom_cmd_data | AUBURN_EEPROM_DO_1 |
  351. AUBURN_EEPROM_CLK_RISE);
  352. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  353. ISP_NVRAM_MASK | qdev->
  354. eeprom_cmd_data | AUBURN_EEPROM_DO_1 |
  355. AUBURN_EEPROM_CLK_FALL);
  356. mask = 1 << (FM93C56A_CMD_BITS - 1);
  357. /* Force the previous data bit to be different */
  358. previousBit = 0xffff;
  359. for (i = 0; i < FM93C56A_CMD_BITS; i++) {
  360. dataBit =
  361. (cmd & mask) ? AUBURN_EEPROM_DO_1 : AUBURN_EEPROM_DO_0;
  362. if (previousBit != dataBit) {
  363. /*
  364. * If the bit changed, then change the DO state to
  365. * match
  366. */
  367. ql_write_nvram_reg(qdev,
  368. &port_regs->CommonRegs.
  369. serialPortInterfaceReg,
  370. ISP_NVRAM_MASK | qdev->
  371. eeprom_cmd_data | dataBit);
  372. previousBit = dataBit;
  373. }
  374. ql_write_nvram_reg(qdev,
  375. &port_regs->CommonRegs.
  376. serialPortInterfaceReg,
  377. ISP_NVRAM_MASK | qdev->
  378. eeprom_cmd_data | dataBit |
  379. AUBURN_EEPROM_CLK_RISE);
  380. ql_write_nvram_reg(qdev,
  381. &port_regs->CommonRegs.
  382. serialPortInterfaceReg,
  383. ISP_NVRAM_MASK | qdev->
  384. eeprom_cmd_data | dataBit |
  385. AUBURN_EEPROM_CLK_FALL);
  386. cmd = cmd << 1;
  387. }
  388. mask = 1 << (addrBits - 1);
  389. /* Force the previous data bit to be different */
  390. previousBit = 0xffff;
  391. for (i = 0; i < addrBits; i++) {
  392. dataBit =
  393. (eepromAddr & mask) ? AUBURN_EEPROM_DO_1 :
  394. AUBURN_EEPROM_DO_0;
  395. if (previousBit != dataBit) {
  396. /*
  397. * If the bit changed, then change the DO state to
  398. * match
  399. */
  400. ql_write_nvram_reg(qdev,
  401. &port_regs->CommonRegs.
  402. serialPortInterfaceReg,
  403. ISP_NVRAM_MASK | qdev->
  404. eeprom_cmd_data | dataBit);
  405. previousBit = dataBit;
  406. }
  407. ql_write_nvram_reg(qdev,
  408. &port_regs->CommonRegs.
  409. serialPortInterfaceReg,
  410. ISP_NVRAM_MASK | qdev->
  411. eeprom_cmd_data | dataBit |
  412. AUBURN_EEPROM_CLK_RISE);
  413. ql_write_nvram_reg(qdev,
  414. &port_regs->CommonRegs.
  415. serialPortInterfaceReg,
  416. ISP_NVRAM_MASK | qdev->
  417. eeprom_cmd_data | dataBit |
  418. AUBURN_EEPROM_CLK_FALL);
  419. eepromAddr = eepromAddr << 1;
  420. }
  421. }
  422. /*
  423. * Caller holds hw_lock.
  424. */
  425. static void fm93c56a_deselect(struct ql3_adapter *qdev)
  426. {
  427. struct ql3xxx_port_registers __iomem *port_regs =
  428. qdev->mem_map_registers;
  429. qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_0;
  430. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  431. ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
  432. }
  433. /*
  434. * Caller holds hw_lock.
  435. */
  436. static void fm93c56a_datain(struct ql3_adapter *qdev, unsigned short *value)
  437. {
  438. int i;
  439. u32 data = 0;
  440. u32 dataBit;
  441. struct ql3xxx_port_registers __iomem *port_regs =
  442. qdev->mem_map_registers;
  443. /* Read the data bits */
  444. /* The first bit is a dummy. Clock right over it. */
  445. for (i = 0; i < dataBits; i++) {
  446. ql_write_nvram_reg(qdev,
  447. &port_regs->CommonRegs.
  448. serialPortInterfaceReg,
  449. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  450. AUBURN_EEPROM_CLK_RISE);
  451. ql_write_nvram_reg(qdev,
  452. &port_regs->CommonRegs.
  453. serialPortInterfaceReg,
  454. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  455. AUBURN_EEPROM_CLK_FALL);
  456. dataBit =
  457. (ql_read_common_reg
  458. (qdev,
  459. &port_regs->CommonRegs.
  460. serialPortInterfaceReg) & AUBURN_EEPROM_DI_1) ? 1 : 0;
  461. data = (data << 1) | dataBit;
  462. }
  463. *value = (u16) data;
  464. }
  465. /*
  466. * Caller holds hw_lock.
  467. */
  468. static void eeprom_readword(struct ql3_adapter *qdev,
  469. u32 eepromAddr, unsigned short *value)
  470. {
  471. fm93c56a_select(qdev);
  472. fm93c56a_cmd(qdev, (int)FM93C56A_READ, eepromAddr);
  473. fm93c56a_datain(qdev, value);
  474. fm93c56a_deselect(qdev);
  475. }
  476. static void ql_swap_mac_addr(u8 * macAddress)
  477. {
  478. #ifdef __BIG_ENDIAN
  479. u8 temp;
  480. temp = macAddress[0];
  481. macAddress[0] = macAddress[1];
  482. macAddress[1] = temp;
  483. temp = macAddress[2];
  484. macAddress[2] = macAddress[3];
  485. macAddress[3] = temp;
  486. temp = macAddress[4];
  487. macAddress[4] = macAddress[5];
  488. macAddress[5] = temp;
  489. #endif
  490. }
  491. static int ql_get_nvram_params(struct ql3_adapter *qdev)
  492. {
  493. u16 *pEEPROMData;
  494. u16 checksum = 0;
  495. u32 index;
  496. unsigned long hw_flags;
  497. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  498. pEEPROMData = (u16 *) & qdev->nvram_data;
  499. qdev->eeprom_cmd_data = 0;
  500. if(ql_sem_spinlock(qdev, QL_NVRAM_SEM_MASK,
  501. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  502. 2) << 10)) {
  503. printk(KERN_ERR PFX"%s: Failed ql_sem_spinlock().\n",
  504. __func__);
  505. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  506. return -1;
  507. }
  508. for (index = 0; index < EEPROM_SIZE; index++) {
  509. eeprom_readword(qdev, index, pEEPROMData);
  510. checksum += *pEEPROMData;
  511. pEEPROMData++;
  512. }
  513. ql_sem_unlock(qdev, QL_NVRAM_SEM_MASK);
  514. if (checksum != 0) {
  515. printk(KERN_ERR PFX "%s: checksum should be zero, is %x!!\n",
  516. qdev->ndev->name, checksum);
  517. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  518. return -1;
  519. }
  520. /*
  521. * We have a problem with endianness for the MAC addresses
  522. * and the two 8-bit values version, and numPorts. We
  523. * have to swap them on big endian systems.
  524. */
  525. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn0.macAddress);
  526. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn1.macAddress);
  527. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn2.macAddress);
  528. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn3.macAddress);
  529. pEEPROMData = (u16 *) & qdev->nvram_data.version;
  530. *pEEPROMData = le16_to_cpu(*pEEPROMData);
  531. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  532. return checksum;
  533. }
  534. static const u32 PHYAddr[2] = {
  535. PORT0_PHY_ADDRESS, PORT1_PHY_ADDRESS
  536. };
  537. static int ql_wait_for_mii_ready(struct ql3_adapter *qdev)
  538. {
  539. struct ql3xxx_port_registers __iomem *port_regs =
  540. qdev->mem_map_registers;
  541. u32 temp;
  542. int count = 1000;
  543. while (count) {
  544. temp = ql_read_page0_reg(qdev, &port_regs->macMIIStatusReg);
  545. if (!(temp & MAC_MII_STATUS_BSY))
  546. return 0;
  547. udelay(10);
  548. count--;
  549. }
  550. return -1;
  551. }
  552. static void ql_mii_enable_scan_mode(struct ql3_adapter *qdev)
  553. {
  554. struct ql3xxx_port_registers __iomem *port_regs =
  555. qdev->mem_map_registers;
  556. u32 scanControl;
  557. if (qdev->numPorts > 1) {
  558. /* Auto scan will cycle through multiple ports */
  559. scanControl = MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC;
  560. } else {
  561. scanControl = MAC_MII_CONTROL_SC;
  562. }
  563. /*
  564. * Scan register 1 of PHY/PETBI,
  565. * Set up to scan both devices
  566. * The autoscan starts from the first register, completes
  567. * the last one before rolling over to the first
  568. */
  569. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  570. PHYAddr[0] | MII_SCAN_REGISTER);
  571. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  572. (scanControl) |
  573. ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS) << 16));
  574. }
  575. static u8 ql_mii_disable_scan_mode(struct ql3_adapter *qdev)
  576. {
  577. u8 ret;
  578. struct ql3xxx_port_registers __iomem *port_regs =
  579. qdev->mem_map_registers;
  580. /* See if scan mode is enabled before we turn it off */
  581. if (ql_read_page0_reg(qdev, &port_regs->macMIIMgmtControlReg) &
  582. (MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC)) {
  583. /* Scan is enabled */
  584. ret = 1;
  585. } else {
  586. /* Scan is disabled */
  587. ret = 0;
  588. }
  589. /*
  590. * When disabling scan mode you must first change the MII register
  591. * address
  592. */
  593. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  594. PHYAddr[0] | MII_SCAN_REGISTER);
  595. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  596. ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS |
  597. MAC_MII_CONTROL_RC) << 16));
  598. return ret;
  599. }
  600. static int ql_mii_write_reg_ex(struct ql3_adapter *qdev,
  601. u16 regAddr, u16 value, u32 phyAddr)
  602. {
  603. struct ql3xxx_port_registers __iomem *port_regs =
  604. qdev->mem_map_registers;
  605. u8 scanWasEnabled;
  606. scanWasEnabled = ql_mii_disable_scan_mode(qdev);
  607. if (ql_wait_for_mii_ready(qdev)) {
  608. if (netif_msg_link(qdev))
  609. printk(KERN_WARNING PFX
  610. "%s Timed out waiting for management port to "
  611. "get free before issuing command.\n",
  612. qdev->ndev->name);
  613. return -1;
  614. }
  615. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  616. phyAddr | regAddr);
  617. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
  618. /* Wait for write to complete 9/10/04 SJP */
  619. if (ql_wait_for_mii_ready(qdev)) {
  620. if (netif_msg_link(qdev))
  621. printk(KERN_WARNING PFX
  622. "%s: Timed out waiting for management port to"
  623. "get free before issuing command.\n",
  624. qdev->ndev->name);
  625. return -1;
  626. }
  627. if (scanWasEnabled)
  628. ql_mii_enable_scan_mode(qdev);
  629. return 0;
  630. }
  631. static int ql_mii_read_reg_ex(struct ql3_adapter *qdev, u16 regAddr,
  632. u16 * value, u32 phyAddr)
  633. {
  634. struct ql3xxx_port_registers __iomem *port_regs =
  635. qdev->mem_map_registers;
  636. u8 scanWasEnabled;
  637. u32 temp;
  638. scanWasEnabled = ql_mii_disable_scan_mode(qdev);
  639. if (ql_wait_for_mii_ready(qdev)) {
  640. if (netif_msg_link(qdev))
  641. printk(KERN_WARNING PFX
  642. "%s: Timed out waiting for management port to "
  643. "get free before issuing command.\n",
  644. qdev->ndev->name);
  645. return -1;
  646. }
  647. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  648. phyAddr | regAddr);
  649. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  650. (MAC_MII_CONTROL_RC << 16));
  651. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  652. (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
  653. /* Wait for the read to complete */
  654. if (ql_wait_for_mii_ready(qdev)) {
  655. if (netif_msg_link(qdev))
  656. printk(KERN_WARNING PFX
  657. "%s: Timed out waiting for management port to "
  658. "get free after issuing command.\n",
  659. qdev->ndev->name);
  660. return -1;
  661. }
  662. temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
  663. *value = (u16) temp;
  664. if (scanWasEnabled)
  665. ql_mii_enable_scan_mode(qdev);
  666. return 0;
  667. }
  668. static int ql_mii_write_reg(struct ql3_adapter *qdev, u16 regAddr, u16 value)
  669. {
  670. struct ql3xxx_port_registers __iomem *port_regs =
  671. qdev->mem_map_registers;
  672. ql_mii_disable_scan_mode(qdev);
  673. if (ql_wait_for_mii_ready(qdev)) {
  674. if (netif_msg_link(qdev))
  675. printk(KERN_WARNING PFX
  676. "%s: Timed out waiting for management port to "
  677. "get free before issuing command.\n",
  678. qdev->ndev->name);
  679. return -1;
  680. }
  681. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  682. qdev->PHYAddr | regAddr);
  683. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
  684. /* Wait for write to complete. */
  685. if (ql_wait_for_mii_ready(qdev)) {
  686. if (netif_msg_link(qdev))
  687. printk(KERN_WARNING PFX
  688. "%s: Timed out waiting for management port to "
  689. "get free before issuing command.\n",
  690. qdev->ndev->name);
  691. return -1;
  692. }
  693. ql_mii_enable_scan_mode(qdev);
  694. return 0;
  695. }
  696. static int ql_mii_read_reg(struct ql3_adapter *qdev, u16 regAddr, u16 *value)
  697. {
  698. u32 temp;
  699. struct ql3xxx_port_registers __iomem *port_regs =
  700. qdev->mem_map_registers;
  701. ql_mii_disable_scan_mode(qdev);
  702. if (ql_wait_for_mii_ready(qdev)) {
  703. if (netif_msg_link(qdev))
  704. printk(KERN_WARNING PFX
  705. "%s: Timed out waiting for management port to "
  706. "get free before issuing command.\n",
  707. qdev->ndev->name);
  708. return -1;
  709. }
  710. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  711. qdev->PHYAddr | regAddr);
  712. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  713. (MAC_MII_CONTROL_RC << 16));
  714. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  715. (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
  716. /* Wait for the read to complete */
  717. if (ql_wait_for_mii_ready(qdev)) {
  718. if (netif_msg_link(qdev))
  719. printk(KERN_WARNING PFX
  720. "%s: Timed out waiting for management port to "
  721. "get free before issuing command.\n",
  722. qdev->ndev->name);
  723. return -1;
  724. }
  725. temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
  726. *value = (u16) temp;
  727. ql_mii_enable_scan_mode(qdev);
  728. return 0;
  729. }
  730. static void ql_petbi_reset(struct ql3_adapter *qdev)
  731. {
  732. ql_mii_write_reg(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET);
  733. }
  734. static void ql_petbi_start_neg(struct ql3_adapter *qdev)
  735. {
  736. u16 reg;
  737. /* Enable Auto-negotiation sense */
  738. ql_mii_read_reg(qdev, PETBI_TBI_CTRL, &reg);
  739. reg |= PETBI_TBI_AUTO_SENSE;
  740. ql_mii_write_reg(qdev, PETBI_TBI_CTRL, reg);
  741. ql_mii_write_reg(qdev, PETBI_NEG_ADVER,
  742. PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX);
  743. ql_mii_write_reg(qdev, PETBI_CONTROL_REG,
  744. PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
  745. PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000);
  746. }
  747. static void ql_petbi_reset_ex(struct ql3_adapter *qdev)
  748. {
  749. ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET,
  750. PHYAddr[qdev->mac_index]);
  751. }
  752. static void ql_petbi_start_neg_ex(struct ql3_adapter *qdev)
  753. {
  754. u16 reg;
  755. /* Enable Auto-negotiation sense */
  756. ql_mii_read_reg_ex(qdev, PETBI_TBI_CTRL, &reg,
  757. PHYAddr[qdev->mac_index]);
  758. reg |= PETBI_TBI_AUTO_SENSE;
  759. ql_mii_write_reg_ex(qdev, PETBI_TBI_CTRL, reg,
  760. PHYAddr[qdev->mac_index]);
  761. ql_mii_write_reg_ex(qdev, PETBI_NEG_ADVER,
  762. PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX,
  763. PHYAddr[qdev->mac_index]);
  764. ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG,
  765. PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
  766. PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000,
  767. PHYAddr[qdev->mac_index]);
  768. }
  769. static void ql_petbi_init(struct ql3_adapter *qdev)
  770. {
  771. ql_petbi_reset(qdev);
  772. ql_petbi_start_neg(qdev);
  773. }
  774. static void ql_petbi_init_ex(struct ql3_adapter *qdev)
  775. {
  776. ql_petbi_reset_ex(qdev);
  777. ql_petbi_start_neg_ex(qdev);
  778. }
  779. static int ql_is_petbi_neg_pause(struct ql3_adapter *qdev)
  780. {
  781. u16 reg;
  782. if (ql_mii_read_reg(qdev, PETBI_NEG_PARTNER, &reg) < 0)
  783. return 0;
  784. return (reg & PETBI_NEG_PAUSE_MASK) == PETBI_NEG_PAUSE;
  785. }
  786. static void phyAgereSpecificInit(struct ql3_adapter *qdev, u32 miiAddr)
  787. {
  788. printk(KERN_INFO "%s: enabling Agere specific PHY\n", qdev->ndev->name);
  789. /* power down device bit 11 = 1 */
  790. ql_mii_write_reg_ex(qdev, 0x00, 0x1940, miiAddr);
  791. /* enable diagnostic mode bit 2 = 1 */
  792. ql_mii_write_reg_ex(qdev, 0x12, 0x840e, miiAddr);
  793. /* 1000MB amplitude adjust (see Agere errata) */
  794. ql_mii_write_reg_ex(qdev, 0x10, 0x8805, miiAddr);
  795. /* 1000MB amplitude adjust (see Agere errata) */
  796. ql_mii_write_reg_ex(qdev, 0x11, 0xf03e, miiAddr);
  797. /* 100MB amplitude adjust (see Agere errata) */
  798. ql_mii_write_reg_ex(qdev, 0x10, 0x8806, miiAddr);
  799. /* 100MB amplitude adjust (see Agere errata) */
  800. ql_mii_write_reg_ex(qdev, 0x11, 0x003e, miiAddr);
  801. /* 10MB amplitude adjust (see Agere errata) */
  802. ql_mii_write_reg_ex(qdev, 0x10, 0x8807, miiAddr);
  803. /* 10MB amplitude adjust (see Agere errata) */
  804. ql_mii_write_reg_ex(qdev, 0x11, 0x1f00, miiAddr);
  805. /* point to hidden reg 0x2806 */
  806. ql_mii_write_reg_ex(qdev, 0x10, 0x2806, miiAddr);
  807. /* Write new PHYAD w/bit 5 set */
  808. ql_mii_write_reg_ex(qdev, 0x11, 0x0020 | (PHYAddr[qdev->mac_index] >> 8), miiAddr);
  809. /*
  810. * Disable diagnostic mode bit 2 = 0
  811. * Power up device bit 11 = 0
  812. * Link up (on) and activity (blink)
  813. */
  814. ql_mii_write_reg(qdev, 0x12, 0x840a);
  815. ql_mii_write_reg(qdev, 0x00, 0x1140);
  816. ql_mii_write_reg(qdev, 0x1c, 0xfaf0);
  817. }
  818. static PHY_DEVICE_et getPhyType (struct ql3_adapter *qdev,
  819. u16 phyIdReg0, u16 phyIdReg1)
  820. {
  821. PHY_DEVICE_et result = PHY_TYPE_UNKNOWN;
  822. u32 oui;
  823. u16 model;
  824. int i;
  825. if (phyIdReg0 == 0xffff) {
  826. return result;
  827. }
  828. if (phyIdReg1 == 0xffff) {
  829. return result;
  830. }
  831. /* oui is split between two registers */
  832. oui = (phyIdReg0 << 6) | ((phyIdReg1 & PHY_OUI_1_MASK) >> 10);
  833. model = (phyIdReg1 & PHY_MODEL_MASK) >> 4;
  834. /* Scan table for this PHY */
  835. for(i = 0; i < MAX_PHY_DEV_TYPES; i++) {
  836. if ((oui == PHY_DEVICES[i].phyIdOUI) && (model == PHY_DEVICES[i].phyIdModel))
  837. {
  838. result = PHY_DEVICES[i].phyDevice;
  839. printk(KERN_INFO "%s: Phy: %s\n",
  840. qdev->ndev->name, PHY_DEVICES[i].name);
  841. break;
  842. }
  843. }
  844. return result;
  845. }
  846. static int ql_phy_get_speed(struct ql3_adapter *qdev)
  847. {
  848. u16 reg;
  849. switch(qdev->phyType) {
  850. case PHY_AGERE_ET1011C:
  851. {
  852. if (ql_mii_read_reg(qdev, 0x1A, &reg) < 0)
  853. return 0;
  854. reg = (reg >> 8) & 3;
  855. break;
  856. }
  857. default:
  858. if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
  859. return 0;
  860. reg = (((reg & 0x18) >> 3) & 3);
  861. }
  862. switch(reg) {
  863. case 2:
  864. return SPEED_1000;
  865. case 1:
  866. return SPEED_100;
  867. case 0:
  868. return SPEED_10;
  869. default:
  870. return -1;
  871. }
  872. }
  873. static int ql_is_full_dup(struct ql3_adapter *qdev)
  874. {
  875. u16 reg;
  876. switch(qdev->phyType) {
  877. case PHY_AGERE_ET1011C:
  878. {
  879. if (ql_mii_read_reg(qdev, 0x1A, &reg))
  880. return 0;
  881. return ((reg & 0x0080) && (reg & 0x1000)) != 0;
  882. }
  883. case PHY_VITESSE_VSC8211:
  884. default:
  885. {
  886. if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
  887. return 0;
  888. return (reg & PHY_AUX_DUPLEX_STAT) != 0;
  889. }
  890. }
  891. }
  892. static int ql_is_phy_neg_pause(struct ql3_adapter *qdev)
  893. {
  894. u16 reg;
  895. if (ql_mii_read_reg(qdev, PHY_NEG_PARTNER, &reg) < 0)
  896. return 0;
  897. return (reg & PHY_NEG_PAUSE) != 0;
  898. }
  899. static int PHY_Setup(struct ql3_adapter *qdev)
  900. {
  901. u16 reg1;
  902. u16 reg2;
  903. bool agereAddrChangeNeeded = false;
  904. u32 miiAddr = 0;
  905. int err;
  906. /* Determine the PHY we are using by reading the ID's */
  907. err = ql_mii_read_reg(qdev, PHY_ID_0_REG, &reg1);
  908. if(err != 0) {
  909. printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG\n",
  910. qdev->ndev->name);
  911. return err;
  912. }
  913. err = ql_mii_read_reg(qdev, PHY_ID_1_REG, &reg2);
  914. if(err != 0) {
  915. printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG\n",
  916. qdev->ndev->name);
  917. return err;
  918. }
  919. /* Check if we have a Agere PHY */
  920. if ((reg1 == 0xffff) || (reg2 == 0xffff)) {
  921. /* Determine which MII address we should be using
  922. determined by the index of the card */
  923. if (qdev->mac_index == 0) {
  924. miiAddr = MII_AGERE_ADDR_1;
  925. } else {
  926. miiAddr = MII_AGERE_ADDR_2;
  927. }
  928. err =ql_mii_read_reg_ex(qdev, PHY_ID_0_REG, &reg1, miiAddr);
  929. if(err != 0) {
  930. printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG after Agere detected\n",
  931. qdev->ndev->name);
  932. return err;
  933. }
  934. err = ql_mii_read_reg_ex(qdev, PHY_ID_1_REG, &reg2, miiAddr);
  935. if(err != 0) {
  936. printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG after Agere detected\n",
  937. qdev->ndev->name);
  938. return err;
  939. }
  940. /* We need to remember to initialize the Agere PHY */
  941. agereAddrChangeNeeded = true;
  942. }
  943. /* Determine the particular PHY we have on board to apply
  944. PHY specific initializations */
  945. qdev->phyType = getPhyType(qdev, reg1, reg2);
  946. if ((qdev->phyType == PHY_AGERE_ET1011C) && agereAddrChangeNeeded) {
  947. /* need this here so address gets changed */
  948. phyAgereSpecificInit(qdev, miiAddr);
  949. } else if (qdev->phyType == PHY_TYPE_UNKNOWN) {
  950. printk(KERN_ERR "%s: PHY is unknown\n", qdev->ndev->name);
  951. return -EIO;
  952. }
  953. return 0;
  954. }
  955. /*
  956. * Caller holds hw_lock.
  957. */
  958. static void ql_mac_enable(struct ql3_adapter *qdev, u32 enable)
  959. {
  960. struct ql3xxx_port_registers __iomem *port_regs =
  961. qdev->mem_map_registers;
  962. u32 value;
  963. if (enable)
  964. value = (MAC_CONFIG_REG_PE | (MAC_CONFIG_REG_PE << 16));
  965. else
  966. value = (MAC_CONFIG_REG_PE << 16);
  967. if (qdev->mac_index)
  968. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  969. else
  970. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  971. }
  972. /*
  973. * Caller holds hw_lock.
  974. */
  975. static void ql_mac_cfg_soft_reset(struct ql3_adapter *qdev, u32 enable)
  976. {
  977. struct ql3xxx_port_registers __iomem *port_regs =
  978. qdev->mem_map_registers;
  979. u32 value;
  980. if (enable)
  981. value = (MAC_CONFIG_REG_SR | (MAC_CONFIG_REG_SR << 16));
  982. else
  983. value = (MAC_CONFIG_REG_SR << 16);
  984. if (qdev->mac_index)
  985. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  986. else
  987. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  988. }
  989. /*
  990. * Caller holds hw_lock.
  991. */
  992. static void ql_mac_cfg_gig(struct ql3_adapter *qdev, u32 enable)
  993. {
  994. struct ql3xxx_port_registers __iomem *port_regs =
  995. qdev->mem_map_registers;
  996. u32 value;
  997. if (enable)
  998. value = (MAC_CONFIG_REG_GM | (MAC_CONFIG_REG_GM << 16));
  999. else
  1000. value = (MAC_CONFIG_REG_GM << 16);
  1001. if (qdev->mac_index)
  1002. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  1003. else
  1004. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  1005. }
  1006. /*
  1007. * Caller holds hw_lock.
  1008. */
  1009. static void ql_mac_cfg_full_dup(struct ql3_adapter *qdev, u32 enable)
  1010. {
  1011. struct ql3xxx_port_registers __iomem *port_regs =
  1012. qdev->mem_map_registers;
  1013. u32 value;
  1014. if (enable)
  1015. value = (MAC_CONFIG_REG_FD | (MAC_CONFIG_REG_FD << 16));
  1016. else
  1017. value = (MAC_CONFIG_REG_FD << 16);
  1018. if (qdev->mac_index)
  1019. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  1020. else
  1021. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  1022. }
  1023. /*
  1024. * Caller holds hw_lock.
  1025. */
  1026. static void ql_mac_cfg_pause(struct ql3_adapter *qdev, u32 enable)
  1027. {
  1028. struct ql3xxx_port_registers __iomem *port_regs =
  1029. qdev->mem_map_registers;
  1030. u32 value;
  1031. if (enable)
  1032. value =
  1033. ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) |
  1034. ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16));
  1035. else
  1036. value = ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16);
  1037. if (qdev->mac_index)
  1038. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  1039. else
  1040. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  1041. }
  1042. /*
  1043. * Caller holds hw_lock.
  1044. */
  1045. static int ql_is_fiber(struct ql3_adapter *qdev)
  1046. {
  1047. struct ql3xxx_port_registers __iomem *port_regs =
  1048. qdev->mem_map_registers;
  1049. u32 bitToCheck = 0;
  1050. u32 temp;
  1051. switch (qdev->mac_index) {
  1052. case 0:
  1053. bitToCheck = PORT_STATUS_SM0;
  1054. break;
  1055. case 1:
  1056. bitToCheck = PORT_STATUS_SM1;
  1057. break;
  1058. }
  1059. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1060. return (temp & bitToCheck) != 0;
  1061. }
  1062. static int ql_is_auto_cfg(struct ql3_adapter *qdev)
  1063. {
  1064. u16 reg;
  1065. ql_mii_read_reg(qdev, 0x00, &reg);
  1066. return (reg & 0x1000) != 0;
  1067. }
  1068. /*
  1069. * Caller holds hw_lock.
  1070. */
  1071. static int ql_is_auto_neg_complete(struct ql3_adapter *qdev)
  1072. {
  1073. struct ql3xxx_port_registers __iomem *port_regs =
  1074. qdev->mem_map_registers;
  1075. u32 bitToCheck = 0;
  1076. u32 temp;
  1077. switch (qdev->mac_index) {
  1078. case 0:
  1079. bitToCheck = PORT_STATUS_AC0;
  1080. break;
  1081. case 1:
  1082. bitToCheck = PORT_STATUS_AC1;
  1083. break;
  1084. }
  1085. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1086. if (temp & bitToCheck) {
  1087. if (netif_msg_link(qdev))
  1088. printk(KERN_INFO PFX
  1089. "%s: Auto-Negotiate complete.\n",
  1090. qdev->ndev->name);
  1091. return 1;
  1092. } else {
  1093. if (netif_msg_link(qdev))
  1094. printk(KERN_WARNING PFX
  1095. "%s: Auto-Negotiate incomplete.\n",
  1096. qdev->ndev->name);
  1097. return 0;
  1098. }
  1099. }
  1100. /*
  1101. * ql_is_neg_pause() returns 1 if pause was negotiated to be on
  1102. */
  1103. static int ql_is_neg_pause(struct ql3_adapter *qdev)
  1104. {
  1105. if (ql_is_fiber(qdev))
  1106. return ql_is_petbi_neg_pause(qdev);
  1107. else
  1108. return ql_is_phy_neg_pause(qdev);
  1109. }
  1110. static int ql_auto_neg_error(struct ql3_adapter *qdev)
  1111. {
  1112. struct ql3xxx_port_registers __iomem *port_regs =
  1113. qdev->mem_map_registers;
  1114. u32 bitToCheck = 0;
  1115. u32 temp;
  1116. switch (qdev->mac_index) {
  1117. case 0:
  1118. bitToCheck = PORT_STATUS_AE0;
  1119. break;
  1120. case 1:
  1121. bitToCheck = PORT_STATUS_AE1;
  1122. break;
  1123. }
  1124. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1125. return (temp & bitToCheck) != 0;
  1126. }
  1127. static u32 ql_get_link_speed(struct ql3_adapter *qdev)
  1128. {
  1129. if (ql_is_fiber(qdev))
  1130. return SPEED_1000;
  1131. else
  1132. return ql_phy_get_speed(qdev);
  1133. }
  1134. static int ql_is_link_full_dup(struct ql3_adapter *qdev)
  1135. {
  1136. if (ql_is_fiber(qdev))
  1137. return 1;
  1138. else
  1139. return ql_is_full_dup(qdev);
  1140. }
  1141. /*
  1142. * Caller holds hw_lock.
  1143. */
  1144. static int ql_link_down_detect(struct ql3_adapter *qdev)
  1145. {
  1146. struct ql3xxx_port_registers __iomem *port_regs =
  1147. qdev->mem_map_registers;
  1148. u32 bitToCheck = 0;
  1149. u32 temp;
  1150. switch (qdev->mac_index) {
  1151. case 0:
  1152. bitToCheck = ISP_CONTROL_LINK_DN_0;
  1153. break;
  1154. case 1:
  1155. bitToCheck = ISP_CONTROL_LINK_DN_1;
  1156. break;
  1157. }
  1158. temp =
  1159. ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
  1160. return (temp & bitToCheck) != 0;
  1161. }
  1162. /*
  1163. * Caller holds hw_lock.
  1164. */
  1165. static int ql_link_down_detect_clear(struct ql3_adapter *qdev)
  1166. {
  1167. struct ql3xxx_port_registers __iomem *port_regs =
  1168. qdev->mem_map_registers;
  1169. switch (qdev->mac_index) {
  1170. case 0:
  1171. ql_write_common_reg(qdev,
  1172. &port_regs->CommonRegs.ispControlStatus,
  1173. (ISP_CONTROL_LINK_DN_0) |
  1174. (ISP_CONTROL_LINK_DN_0 << 16));
  1175. break;
  1176. case 1:
  1177. ql_write_common_reg(qdev,
  1178. &port_regs->CommonRegs.ispControlStatus,
  1179. (ISP_CONTROL_LINK_DN_1) |
  1180. (ISP_CONTROL_LINK_DN_1 << 16));
  1181. break;
  1182. default:
  1183. return 1;
  1184. }
  1185. return 0;
  1186. }
  1187. /*
  1188. * Caller holds hw_lock.
  1189. */
  1190. static int ql_this_adapter_controls_port(struct ql3_adapter *qdev)
  1191. {
  1192. struct ql3xxx_port_registers __iomem *port_regs =
  1193. qdev->mem_map_registers;
  1194. u32 bitToCheck = 0;
  1195. u32 temp;
  1196. switch (qdev->mac_index) {
  1197. case 0:
  1198. bitToCheck = PORT_STATUS_F1_ENABLED;
  1199. break;
  1200. case 1:
  1201. bitToCheck = PORT_STATUS_F3_ENABLED;
  1202. break;
  1203. default:
  1204. break;
  1205. }
  1206. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1207. if (temp & bitToCheck) {
  1208. if (netif_msg_link(qdev))
  1209. printk(KERN_DEBUG PFX
  1210. "%s: is not link master.\n", qdev->ndev->name);
  1211. return 0;
  1212. } else {
  1213. if (netif_msg_link(qdev))
  1214. printk(KERN_DEBUG PFX
  1215. "%s: is link master.\n", qdev->ndev->name);
  1216. return 1;
  1217. }
  1218. }
  1219. static void ql_phy_reset_ex(struct ql3_adapter *qdev)
  1220. {
  1221. ql_mii_write_reg_ex(qdev, CONTROL_REG, PHY_CTRL_SOFT_RESET,
  1222. PHYAddr[qdev->mac_index]);
  1223. }
  1224. static void ql_phy_start_neg_ex(struct ql3_adapter *qdev)
  1225. {
  1226. u16 reg;
  1227. u16 portConfiguration;
  1228. if(qdev->phyType == PHY_AGERE_ET1011C) {
  1229. /* turn off external loopback */
  1230. ql_mii_write_reg(qdev, 0x13, 0x0000);
  1231. }
  1232. if(qdev->mac_index == 0)
  1233. portConfiguration = qdev->nvram_data.macCfg_port0.portConfiguration;
  1234. else
  1235. portConfiguration = qdev->nvram_data.macCfg_port1.portConfiguration;
  1236. /* Some HBA's in the field are set to 0 and they need to
  1237. be reinterpreted with a default value */
  1238. if(portConfiguration == 0)
  1239. portConfiguration = PORT_CONFIG_DEFAULT;
  1240. /* Set the 1000 advertisements */
  1241. ql_mii_read_reg_ex(qdev, PHY_GIG_CONTROL, &reg,
  1242. PHYAddr[qdev->mac_index]);
  1243. reg &= ~PHY_GIG_ALL_PARAMS;
  1244. if(portConfiguration &
  1245. PORT_CONFIG_FULL_DUPLEX_ENABLED &
  1246. PORT_CONFIG_1000MB_SPEED) {
  1247. reg |= PHY_GIG_ADV_1000F;
  1248. }
  1249. if(portConfiguration &
  1250. PORT_CONFIG_HALF_DUPLEX_ENABLED &
  1251. PORT_CONFIG_1000MB_SPEED) {
  1252. reg |= PHY_GIG_ADV_1000H;
  1253. }
  1254. ql_mii_write_reg_ex(qdev, PHY_GIG_CONTROL, reg,
  1255. PHYAddr[qdev->mac_index]);
  1256. /* Set the 10/100 & pause negotiation advertisements */
  1257. ql_mii_read_reg_ex(qdev, PHY_NEG_ADVER, &reg,
  1258. PHYAddr[qdev->mac_index]);
  1259. reg &= ~PHY_NEG_ALL_PARAMS;
  1260. if(portConfiguration & PORT_CONFIG_SYM_PAUSE_ENABLED)
  1261. reg |= PHY_NEG_ASY_PAUSE | PHY_NEG_SYM_PAUSE;
  1262. if(portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED) {
  1263. if(portConfiguration & PORT_CONFIG_100MB_SPEED)
  1264. reg |= PHY_NEG_ADV_100F;
  1265. if(portConfiguration & PORT_CONFIG_10MB_SPEED)
  1266. reg |= PHY_NEG_ADV_10F;
  1267. }
  1268. if(portConfiguration & PORT_CONFIG_HALF_DUPLEX_ENABLED) {
  1269. if(portConfiguration & PORT_CONFIG_100MB_SPEED)
  1270. reg |= PHY_NEG_ADV_100H;
  1271. if(portConfiguration & PORT_CONFIG_10MB_SPEED)
  1272. reg |= PHY_NEG_ADV_10H;
  1273. }
  1274. if(portConfiguration &
  1275. PORT_CONFIG_1000MB_SPEED) {
  1276. reg |= 1;
  1277. }
  1278. ql_mii_write_reg_ex(qdev, PHY_NEG_ADVER, reg,
  1279. PHYAddr[qdev->mac_index]);
  1280. ql_mii_read_reg_ex(qdev, CONTROL_REG, &reg, PHYAddr[qdev->mac_index]);
  1281. ql_mii_write_reg_ex(qdev, CONTROL_REG,
  1282. reg | PHY_CTRL_RESTART_NEG | PHY_CTRL_AUTO_NEG,
  1283. PHYAddr[qdev->mac_index]);
  1284. }
  1285. static void ql_phy_init_ex(struct ql3_adapter *qdev)
  1286. {
  1287. ql_phy_reset_ex(qdev);
  1288. PHY_Setup(qdev);
  1289. ql_phy_start_neg_ex(qdev);
  1290. }
  1291. /*
  1292. * Caller holds hw_lock.
  1293. */
  1294. static u32 ql_get_link_state(struct ql3_adapter *qdev)
  1295. {
  1296. struct ql3xxx_port_registers __iomem *port_regs =
  1297. qdev->mem_map_registers;
  1298. u32 bitToCheck = 0;
  1299. u32 temp, linkState;
  1300. switch (qdev->mac_index) {
  1301. case 0:
  1302. bitToCheck = PORT_STATUS_UP0;
  1303. break;
  1304. case 1:
  1305. bitToCheck = PORT_STATUS_UP1;
  1306. break;
  1307. }
  1308. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1309. if (temp & bitToCheck) {
  1310. linkState = LS_UP;
  1311. } else {
  1312. linkState = LS_DOWN;
  1313. if (netif_msg_link(qdev))
  1314. printk(KERN_WARNING PFX
  1315. "%s: Link is down.\n", qdev->ndev->name);
  1316. }
  1317. return linkState;
  1318. }
  1319. static int ql_port_start(struct ql3_adapter *qdev)
  1320. {
  1321. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1322. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1323. 2) << 7)) {
  1324. printk(KERN_ERR "%s: Could not get hw lock for GIO\n",
  1325. qdev->ndev->name);
  1326. return -1;
  1327. }
  1328. if (ql_is_fiber(qdev)) {
  1329. ql_petbi_init(qdev);
  1330. } else {
  1331. /* Copper port */
  1332. ql_phy_init_ex(qdev);
  1333. }
  1334. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1335. return 0;
  1336. }
  1337. static int ql_finish_auto_neg(struct ql3_adapter *qdev)
  1338. {
  1339. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1340. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1341. 2) << 7))
  1342. return -1;
  1343. if (!ql_auto_neg_error(qdev)) {
  1344. if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
  1345. /* configure the MAC */
  1346. if (netif_msg_link(qdev))
  1347. printk(KERN_DEBUG PFX
  1348. "%s: Configuring link.\n",
  1349. qdev->ndev->
  1350. name);
  1351. ql_mac_cfg_soft_reset(qdev, 1);
  1352. ql_mac_cfg_gig(qdev,
  1353. (ql_get_link_speed
  1354. (qdev) ==
  1355. SPEED_1000));
  1356. ql_mac_cfg_full_dup(qdev,
  1357. ql_is_link_full_dup
  1358. (qdev));
  1359. ql_mac_cfg_pause(qdev,
  1360. ql_is_neg_pause
  1361. (qdev));
  1362. ql_mac_cfg_soft_reset(qdev, 0);
  1363. /* enable the MAC */
  1364. if (netif_msg_link(qdev))
  1365. printk(KERN_DEBUG PFX
  1366. "%s: Enabling mac.\n",
  1367. qdev->ndev->
  1368. name);
  1369. ql_mac_enable(qdev, 1);
  1370. }
  1371. if (netif_msg_link(qdev))
  1372. printk(KERN_DEBUG PFX
  1373. "%s: Change port_link_state LS_DOWN to LS_UP.\n",
  1374. qdev->ndev->name);
  1375. qdev->port_link_state = LS_UP;
  1376. netif_start_queue(qdev->ndev);
  1377. netif_carrier_on(qdev->ndev);
  1378. if (netif_msg_link(qdev))
  1379. printk(KERN_INFO PFX
  1380. "%s: Link is up at %d Mbps, %s duplex.\n",
  1381. qdev->ndev->name,
  1382. ql_get_link_speed(qdev),
  1383. ql_is_link_full_dup(qdev)
  1384. ? "full" : "half");
  1385. } else { /* Remote error detected */
  1386. if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
  1387. if (netif_msg_link(qdev))
  1388. printk(KERN_DEBUG PFX
  1389. "%s: Remote error detected. "
  1390. "Calling ql_port_start().\n",
  1391. qdev->ndev->
  1392. name);
  1393. /*
  1394. * ql_port_start() is shared code and needs
  1395. * to lock the PHY on it's own.
  1396. */
  1397. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1398. if(ql_port_start(qdev)) {/* Restart port */
  1399. return -1;
  1400. } else
  1401. return 0;
  1402. }
  1403. }
  1404. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1405. return 0;
  1406. }
  1407. static void ql_link_state_machine(struct ql3_adapter *qdev)
  1408. {
  1409. u32 curr_link_state;
  1410. unsigned long hw_flags;
  1411. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1412. curr_link_state = ql_get_link_state(qdev);
  1413. if (test_bit(QL_RESET_ACTIVE,&qdev->flags)) {
  1414. if (netif_msg_link(qdev))
  1415. printk(KERN_INFO PFX
  1416. "%s: Reset in progress, skip processing link "
  1417. "state.\n", qdev->ndev->name);
  1418. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1419. return;
  1420. }
  1421. switch (qdev->port_link_state) {
  1422. default:
  1423. if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
  1424. ql_port_start(qdev);
  1425. }
  1426. qdev->port_link_state = LS_DOWN;
  1427. /* Fall Through */
  1428. case LS_DOWN:
  1429. if (netif_msg_link(qdev))
  1430. printk(KERN_DEBUG PFX
  1431. "%s: port_link_state = LS_DOWN.\n",
  1432. qdev->ndev->name);
  1433. if (curr_link_state == LS_UP) {
  1434. if (netif_msg_link(qdev))
  1435. printk(KERN_DEBUG PFX
  1436. "%s: curr_link_state = LS_UP.\n",
  1437. qdev->ndev->name);
  1438. if (ql_is_auto_neg_complete(qdev))
  1439. ql_finish_auto_neg(qdev);
  1440. if (qdev->port_link_state == LS_UP)
  1441. ql_link_down_detect_clear(qdev);
  1442. }
  1443. break;
  1444. case LS_UP:
  1445. /*
  1446. * See if the link is currently down or went down and came
  1447. * back up
  1448. */
  1449. if ((curr_link_state == LS_DOWN) || ql_link_down_detect(qdev)) {
  1450. if (netif_msg_link(qdev))
  1451. printk(KERN_INFO PFX "%s: Link is down.\n",
  1452. qdev->ndev->name);
  1453. qdev->port_link_state = LS_DOWN;
  1454. }
  1455. break;
  1456. }
  1457. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1458. }
  1459. /*
  1460. * Caller must take hw_lock and QL_PHY_GIO_SEM.
  1461. */
  1462. static void ql_get_phy_owner(struct ql3_adapter *qdev)
  1463. {
  1464. if (ql_this_adapter_controls_port(qdev))
  1465. set_bit(QL_LINK_MASTER,&qdev->flags);
  1466. else
  1467. clear_bit(QL_LINK_MASTER,&qdev->flags);
  1468. }
  1469. /*
  1470. * Caller must take hw_lock and QL_PHY_GIO_SEM.
  1471. */
  1472. static void ql_init_scan_mode(struct ql3_adapter *qdev)
  1473. {
  1474. ql_mii_enable_scan_mode(qdev);
  1475. if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
  1476. if (ql_this_adapter_controls_port(qdev))
  1477. ql_petbi_init_ex(qdev);
  1478. } else {
  1479. if (ql_this_adapter_controls_port(qdev))
  1480. ql_phy_init_ex(qdev);
  1481. }
  1482. }
  1483. /*
  1484. * MII_Setup needs to be called before taking the PHY out of reset so that the
  1485. * management interface clock speed can be set properly. It would be better if
  1486. * we had a way to disable MDC until after the PHY is out of reset, but we
  1487. * don't have that capability.
  1488. */
  1489. static int ql_mii_setup(struct ql3_adapter *qdev)
  1490. {
  1491. u32 reg;
  1492. struct ql3xxx_port_registers __iomem *port_regs =
  1493. qdev->mem_map_registers;
  1494. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1495. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1496. 2) << 7))
  1497. return -1;
  1498. if (qdev->device_id == QL3032_DEVICE_ID)
  1499. ql_write_page0_reg(qdev,
  1500. &port_regs->macMIIMgmtControlReg, 0x0f00000);
  1501. /* Divide 125MHz clock by 28 to meet PHY timing requirements */
  1502. reg = MAC_MII_CONTROL_CLK_SEL_DIV28;
  1503. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  1504. reg | ((MAC_MII_CONTROL_CLK_SEL_MASK) << 16));
  1505. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1506. return 0;
  1507. }
  1508. static u32 ql_supported_modes(struct ql3_adapter *qdev)
  1509. {
  1510. u32 supported;
  1511. if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
  1512. supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
  1513. | SUPPORTED_Autoneg;
  1514. } else {
  1515. supported = SUPPORTED_10baseT_Half
  1516. | SUPPORTED_10baseT_Full
  1517. | SUPPORTED_100baseT_Half
  1518. | SUPPORTED_100baseT_Full
  1519. | SUPPORTED_1000baseT_Half
  1520. | SUPPORTED_1000baseT_Full
  1521. | SUPPORTED_Autoneg | SUPPORTED_TP;
  1522. }
  1523. return supported;
  1524. }
  1525. static int ql_get_auto_cfg_status(struct ql3_adapter *qdev)
  1526. {
  1527. int status;
  1528. unsigned long hw_flags;
  1529. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1530. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1531. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1532. 2) << 7)) {
  1533. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1534. return 0;
  1535. }
  1536. status = ql_is_auto_cfg(qdev);
  1537. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1538. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1539. return status;
  1540. }
  1541. static u32 ql_get_speed(struct ql3_adapter *qdev)
  1542. {
  1543. u32 status;
  1544. unsigned long hw_flags;
  1545. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1546. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1547. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1548. 2) << 7)) {
  1549. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1550. return 0;
  1551. }
  1552. status = ql_get_link_speed(qdev);
  1553. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1554. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1555. return status;
  1556. }
  1557. static int ql_get_full_dup(struct ql3_adapter *qdev)
  1558. {
  1559. int status;
  1560. unsigned long hw_flags;
  1561. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1562. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1563. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1564. 2) << 7)) {
  1565. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1566. return 0;
  1567. }
  1568. status = ql_is_link_full_dup(qdev);
  1569. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1570. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1571. return status;
  1572. }
  1573. static int ql_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
  1574. {
  1575. struct ql3_adapter *qdev = netdev_priv(ndev);
  1576. ecmd->transceiver = XCVR_INTERNAL;
  1577. ecmd->supported = ql_supported_modes(qdev);
  1578. if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
  1579. ecmd->port = PORT_FIBRE;
  1580. } else {
  1581. ecmd->port = PORT_TP;
  1582. ecmd->phy_address = qdev->PHYAddr;
  1583. }
  1584. ecmd->advertising = ql_supported_modes(qdev);
  1585. ecmd->autoneg = ql_get_auto_cfg_status(qdev);
  1586. ecmd->speed = ql_get_speed(qdev);
  1587. ecmd->duplex = ql_get_full_dup(qdev);
  1588. return 0;
  1589. }
  1590. static void ql_get_drvinfo(struct net_device *ndev,
  1591. struct ethtool_drvinfo *drvinfo)
  1592. {
  1593. struct ql3_adapter *qdev = netdev_priv(ndev);
  1594. strncpy(drvinfo->driver, ql3xxx_driver_name, 32);
  1595. strncpy(drvinfo->version, ql3xxx_driver_version, 32);
  1596. strncpy(drvinfo->fw_version, "N/A", 32);
  1597. strncpy(drvinfo->bus_info, pci_name(qdev->pdev), 32);
  1598. drvinfo->n_stats = 0;
  1599. drvinfo->testinfo_len = 0;
  1600. drvinfo->regdump_len = 0;
  1601. drvinfo->eedump_len = 0;
  1602. }
  1603. static u32 ql_get_msglevel(struct net_device *ndev)
  1604. {
  1605. struct ql3_adapter *qdev = netdev_priv(ndev);
  1606. return qdev->msg_enable;
  1607. }
  1608. static void ql_set_msglevel(struct net_device *ndev, u32 value)
  1609. {
  1610. struct ql3_adapter *qdev = netdev_priv(ndev);
  1611. qdev->msg_enable = value;
  1612. }
  1613. static void ql_get_pauseparam(struct net_device *ndev,
  1614. struct ethtool_pauseparam *pause)
  1615. {
  1616. struct ql3_adapter *qdev = netdev_priv(ndev);
  1617. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1618. u32 reg;
  1619. if(qdev->mac_index == 0)
  1620. reg = ql_read_page0_reg(qdev, &port_regs->mac0ConfigReg);
  1621. else
  1622. reg = ql_read_page0_reg(qdev, &port_regs->mac1ConfigReg);
  1623. pause->autoneg = ql_get_auto_cfg_status(qdev);
  1624. pause->rx_pause = (reg & MAC_CONFIG_REG_RF) >> 2;
  1625. pause->tx_pause = (reg & MAC_CONFIG_REG_TF) >> 1;
  1626. }
  1627. static const struct ethtool_ops ql3xxx_ethtool_ops = {
  1628. .get_settings = ql_get_settings,
  1629. .get_drvinfo = ql_get_drvinfo,
  1630. .get_link = ethtool_op_get_link,
  1631. .get_msglevel = ql_get_msglevel,
  1632. .set_msglevel = ql_set_msglevel,
  1633. .get_pauseparam = ql_get_pauseparam,
  1634. };
  1635. static int ql_populate_free_queue(struct ql3_adapter *qdev)
  1636. {
  1637. struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
  1638. dma_addr_t map;
  1639. int err;
  1640. while (lrg_buf_cb) {
  1641. if (!lrg_buf_cb->skb) {
  1642. lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
  1643. qdev->lrg_buffer_len);
  1644. if (unlikely(!lrg_buf_cb->skb)) {
  1645. printk(KERN_DEBUG PFX
  1646. "%s: Failed netdev_alloc_skb().\n",
  1647. qdev->ndev->name);
  1648. break;
  1649. } else {
  1650. /*
  1651. * We save some space to copy the ethhdr from
  1652. * first buffer
  1653. */
  1654. skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
  1655. map = pci_map_single(qdev->pdev,
  1656. lrg_buf_cb->skb->data,
  1657. qdev->lrg_buffer_len -
  1658. QL_HEADER_SPACE,
  1659. PCI_DMA_FROMDEVICE);
  1660. err = pci_dma_mapping_error(map);
  1661. if(err) {
  1662. printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
  1663. qdev->ndev->name, err);
  1664. dev_kfree_skb(lrg_buf_cb->skb);
  1665. lrg_buf_cb->skb = NULL;
  1666. break;
  1667. }
  1668. lrg_buf_cb->buf_phy_addr_low =
  1669. cpu_to_le32(LS_64BITS(map));
  1670. lrg_buf_cb->buf_phy_addr_high =
  1671. cpu_to_le32(MS_64BITS(map));
  1672. pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  1673. pci_unmap_len_set(lrg_buf_cb, maplen,
  1674. qdev->lrg_buffer_len -
  1675. QL_HEADER_SPACE);
  1676. --qdev->lrg_buf_skb_check;
  1677. if (!qdev->lrg_buf_skb_check)
  1678. return 1;
  1679. }
  1680. }
  1681. lrg_buf_cb = lrg_buf_cb->next;
  1682. }
  1683. return 0;
  1684. }
  1685. /*
  1686. * Caller holds hw_lock.
  1687. */
  1688. static void ql_update_small_bufq_prod_index(struct ql3_adapter *qdev)
  1689. {
  1690. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1691. if (qdev->small_buf_release_cnt >= 16) {
  1692. while (qdev->small_buf_release_cnt >= 16) {
  1693. qdev->small_buf_q_producer_index++;
  1694. if (qdev->small_buf_q_producer_index ==
  1695. NUM_SBUFQ_ENTRIES)
  1696. qdev->small_buf_q_producer_index = 0;
  1697. qdev->small_buf_release_cnt -= 8;
  1698. }
  1699. wmb();
  1700. writel(qdev->small_buf_q_producer_index,
  1701. &port_regs->CommonRegs.rxSmallQProducerIndex);
  1702. }
  1703. }
  1704. /*
  1705. * Caller holds hw_lock.
  1706. */
  1707. static void ql_update_lrg_bufq_prod_index(struct ql3_adapter *qdev)
  1708. {
  1709. struct bufq_addr_element *lrg_buf_q_ele;
  1710. int i;
  1711. struct ql_rcv_buf_cb *lrg_buf_cb;
  1712. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1713. if ((qdev->lrg_buf_free_count >= 8)
  1714. && (qdev->lrg_buf_release_cnt >= 16)) {
  1715. if (qdev->lrg_buf_skb_check)
  1716. if (!ql_populate_free_queue(qdev))
  1717. return;
  1718. lrg_buf_q_ele = qdev->lrg_buf_next_free;
  1719. while ((qdev->lrg_buf_release_cnt >= 16)
  1720. && (qdev->lrg_buf_free_count >= 8)) {
  1721. for (i = 0; i < 8; i++) {
  1722. lrg_buf_cb =
  1723. ql_get_from_lrg_buf_free_list(qdev);
  1724. lrg_buf_q_ele->addr_high =
  1725. lrg_buf_cb->buf_phy_addr_high;
  1726. lrg_buf_q_ele->addr_low =
  1727. lrg_buf_cb->buf_phy_addr_low;
  1728. lrg_buf_q_ele++;
  1729. qdev->lrg_buf_release_cnt--;
  1730. }
  1731. qdev->lrg_buf_q_producer_index++;
  1732. if (qdev->lrg_buf_q_producer_index == qdev->num_lbufq_entries)
  1733. qdev->lrg_buf_q_producer_index = 0;
  1734. if (qdev->lrg_buf_q_producer_index ==
  1735. (qdev->num_lbufq_entries - 1)) {
  1736. lrg_buf_q_ele = qdev->lrg_buf_q_virt_addr;
  1737. }
  1738. }
  1739. wmb();
  1740. qdev->lrg_buf_next_free = lrg_buf_q_ele;
  1741. writel(qdev->lrg_buf_q_producer_index,
  1742. &port_regs->CommonRegs.rxLargeQProducerIndex);
  1743. }
  1744. }
  1745. static void ql_process_mac_tx_intr(struct ql3_adapter *qdev,
  1746. struct ob_mac_iocb_rsp *mac_rsp)
  1747. {
  1748. struct ql_tx_buf_cb *tx_cb;
  1749. int i;
  1750. int retval = 0;
  1751. if(mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
  1752. printk(KERN_WARNING "Frame short but, frame was padded and sent.\n");
  1753. }
  1754. tx_cb = &qdev->tx_buf[mac_rsp->transaction_id];
  1755. /* Check the transmit response flags for any errors */
  1756. if(mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
  1757. printk(KERN_ERR "Frame too short to be legal, frame not sent.\n");
  1758. qdev->stats.tx_errors++;
  1759. retval = -EIO;
  1760. goto frame_not_sent;
  1761. }
  1762. if(tx_cb->seg_count == 0) {
  1763. printk(KERN_ERR "tx_cb->seg_count == 0: %d\n", mac_rsp->transaction_id);
  1764. qdev->stats.tx_errors++;
  1765. retval = -EIO;
  1766. goto invalid_seg_count;
  1767. }
  1768. pci_unmap_single(qdev->pdev,
  1769. pci_unmap_addr(&tx_cb->map[0], mapaddr),
  1770. pci_unmap_len(&tx_cb->map[0], maplen),
  1771. PCI_DMA_TODEVICE);
  1772. tx_cb->seg_count--;
  1773. if (tx_cb->seg_count) {
  1774. for (i = 1; i < tx_cb->seg_count; i++) {
  1775. pci_unmap_page(qdev->pdev,
  1776. pci_unmap_addr(&tx_cb->map[i],
  1777. mapaddr),
  1778. pci_unmap_len(&tx_cb->map[i], maplen),
  1779. PCI_DMA_TODEVICE);
  1780. }
  1781. }
  1782. qdev->stats.tx_packets++;
  1783. qdev->stats.tx_bytes += tx_cb->skb->len;
  1784. frame_not_sent:
  1785. dev_kfree_skb_irq(tx_cb->skb);
  1786. tx_cb->skb = NULL;
  1787. invalid_seg_count:
  1788. atomic_inc(&qdev->tx_count);
  1789. }
  1790. static void ql_get_sbuf(struct ql3_adapter *qdev)
  1791. {
  1792. if (++qdev->small_buf_index == NUM_SMALL_BUFFERS)
  1793. qdev->small_buf_index = 0;
  1794. qdev->small_buf_release_cnt++;
  1795. }
  1796. static struct ql_rcv_buf_cb *ql_get_lbuf(struct ql3_adapter *qdev)
  1797. {
  1798. struct ql_rcv_buf_cb *lrg_buf_cb = NULL;
  1799. lrg_buf_cb = &qdev->lrg_buf[qdev->lrg_buf_index];
  1800. qdev->lrg_buf_release_cnt++;
  1801. if (++qdev->lrg_buf_index == qdev->num_large_buffers)
  1802. qdev->lrg_buf_index = 0;
  1803. return(lrg_buf_cb);
  1804. }
  1805. /*
  1806. * The difference between 3022 and 3032 for inbound completions:
  1807. * 3022 uses two buffers per completion. The first buffer contains
  1808. * (some) header info, the second the remainder of the headers plus
  1809. * the data. For this chip we reserve some space at the top of the
  1810. * receive buffer so that the header info in buffer one can be
  1811. * prepended to the buffer two. Buffer two is the sent up while
  1812. * buffer one is returned to the hardware to be reused.
  1813. * 3032 receives all of it's data and headers in one buffer for a
  1814. * simpler process. 3032 also supports checksum verification as
  1815. * can be seen in ql_process_macip_rx_intr().
  1816. */
  1817. static void ql_process_mac_rx_intr(struct ql3_adapter *qdev,
  1818. struct ib_mac_iocb_rsp *ib_mac_rsp_ptr)
  1819. {
  1820. struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
  1821. struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
  1822. struct sk_buff *skb;
  1823. u16 length = le16_to_cpu(ib_mac_rsp_ptr->length);
  1824. /*
  1825. * Get the inbound address list (small buffer).
  1826. */
  1827. ql_get_sbuf(qdev);
  1828. if (qdev->device_id == QL3022_DEVICE_ID)
  1829. lrg_buf_cb1 = ql_get_lbuf(qdev);
  1830. /* start of second buffer */
  1831. lrg_buf_cb2 = ql_get_lbuf(qdev);
  1832. skb = lrg_buf_cb2->skb;
  1833. qdev->stats.rx_packets++;
  1834. qdev->stats.rx_bytes += length;
  1835. skb_put(skb, length);
  1836. pci_unmap_single(qdev->pdev,
  1837. pci_unmap_addr(lrg_buf_cb2, mapaddr),
  1838. pci_unmap_len(lrg_buf_cb2, maplen),
  1839. PCI_DMA_FROMDEVICE);
  1840. prefetch(skb->data);
  1841. skb->ip_summed = CHECKSUM_NONE;
  1842. skb->protocol = eth_type_trans(skb, qdev->ndev);
  1843. netif_receive_skb(skb);
  1844. qdev->ndev->last_rx = jiffies;
  1845. lrg_buf_cb2->skb = NULL;
  1846. if (qdev->device_id == QL3022_DEVICE_ID)
  1847. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
  1848. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
  1849. }
  1850. static void ql_process_macip_rx_intr(struct ql3_adapter *qdev,
  1851. struct ib_ip_iocb_rsp *ib_ip_rsp_ptr)
  1852. {
  1853. struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
  1854. struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
  1855. struct sk_buff *skb1 = NULL, *skb2;
  1856. struct net_device *ndev = qdev->ndev;
  1857. u16 length = le16_to_cpu(ib_ip_rsp_ptr->length);
  1858. u16 size = 0;
  1859. /*
  1860. * Get the inbound address list (small buffer).
  1861. */
  1862. ql_get_sbuf(qdev);
  1863. if (qdev->device_id == QL3022_DEVICE_ID) {
  1864. /* start of first buffer on 3022 */
  1865. lrg_buf_cb1 = ql_get_lbuf(qdev);
  1866. skb1 = lrg_buf_cb1->skb;
  1867. size = ETH_HLEN;
  1868. if (*((u16 *) skb1->data) != 0xFFFF)
  1869. size += VLAN_ETH_HLEN - ETH_HLEN;
  1870. }
  1871. /* start of second buffer */
  1872. lrg_buf_cb2 = ql_get_lbuf(qdev);
  1873. skb2 = lrg_buf_cb2->skb;
  1874. skb_put(skb2, length); /* Just the second buffer length here. */
  1875. pci_unmap_single(qdev->pdev,
  1876. pci_unmap_addr(lrg_buf_cb2, mapaddr),
  1877. pci_unmap_len(lrg_buf_cb2, maplen),
  1878. PCI_DMA_FROMDEVICE);
  1879. prefetch(skb2->data);
  1880. skb2->ip_summed = CHECKSUM_NONE;
  1881. if (qdev->device_id == QL3022_DEVICE_ID) {
  1882. /*
  1883. * Copy the ethhdr from first buffer to second. This
  1884. * is necessary for 3022 IP completions.
  1885. */
  1886. skb_copy_from_linear_data_offset(skb1, VLAN_ID_LEN,
  1887. skb_push(skb2, size), size);
  1888. } else {
  1889. u16 checksum = le16_to_cpu(ib_ip_rsp_ptr->checksum);
  1890. if (checksum &
  1891. (IB_IP_IOCB_RSP_3032_ICE |
  1892. IB_IP_IOCB_RSP_3032_CE)) {
  1893. printk(KERN_ERR
  1894. "%s: Bad checksum for this %s packet, checksum = %x.\n",
  1895. __func__,
  1896. ((checksum &
  1897. IB_IP_IOCB_RSP_3032_TCP) ? "TCP" :
  1898. "UDP"),checksum);
  1899. } else if ((checksum & IB_IP_IOCB_RSP_3032_TCP) ||
  1900. (checksum & IB_IP_IOCB_RSP_3032_UDP &&
  1901. !(checksum & IB_IP_IOCB_RSP_3032_NUC))) {
  1902. skb2->ip_summed = CHECKSUM_UNNECESSARY;
  1903. }
  1904. }
  1905. skb2->protocol = eth_type_trans(skb2, qdev->ndev);
  1906. netif_receive_skb(skb2);
  1907. qdev->stats.rx_packets++;
  1908. qdev->stats.rx_bytes += length;
  1909. ndev->last_rx = jiffies;
  1910. lrg_buf_cb2->skb = NULL;
  1911. if (qdev->device_id == QL3022_DEVICE_ID)
  1912. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
  1913. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
  1914. }
  1915. static int ql_tx_rx_clean(struct ql3_adapter *qdev,
  1916. int *tx_cleaned, int *rx_cleaned, int work_to_do)
  1917. {
  1918. struct net_rsp_iocb *net_rsp;
  1919. struct net_device *ndev = qdev->ndev;
  1920. int work_done = 0;
  1921. /* While there are entries in the completion queue. */
  1922. while ((le32_to_cpu(*(qdev->prsp_producer_index)) !=
  1923. qdev->rsp_consumer_index) && (work_done < work_to_do)) {
  1924. net_rsp = qdev->rsp_current;
  1925. rmb();
  1926. /*
  1927. * Fix 4032 chipe undocumented "feature" where bit-8 is set if the
  1928. * inbound completion is for a VLAN.
  1929. */
  1930. if (qdev->device_id == QL3032_DEVICE_ID)
  1931. net_rsp->opcode &= 0x7f;
  1932. switch (net_rsp->opcode) {
  1933. case OPCODE_OB_MAC_IOCB_FN0:
  1934. case OPCODE_OB_MAC_IOCB_FN2:
  1935. ql_process_mac_tx_intr(qdev, (struct ob_mac_iocb_rsp *)
  1936. net_rsp);
  1937. (*tx_cleaned)++;
  1938. break;
  1939. case OPCODE_IB_MAC_IOCB:
  1940. case OPCODE_IB_3032_MAC_IOCB:
  1941. ql_process_mac_rx_intr(qdev, (struct ib_mac_iocb_rsp *)
  1942. net_rsp);
  1943. (*rx_cleaned)++;
  1944. break;
  1945. case OPCODE_IB_IP_IOCB:
  1946. case OPCODE_IB_3032_IP_IOCB:
  1947. ql_process_macip_rx_intr(qdev, (struct ib_ip_iocb_rsp *)
  1948. net_rsp);
  1949. (*rx_cleaned)++;
  1950. break;
  1951. default:
  1952. {
  1953. u32 *tmp = (u32 *) net_rsp;
  1954. printk(KERN_ERR PFX
  1955. "%s: Hit default case, not "
  1956. "handled!\n"
  1957. " dropping the packet, opcode = "
  1958. "%x.\n",
  1959. ndev->name, net_rsp->opcode);
  1960. printk(KERN_ERR PFX
  1961. "0x%08lx 0x%08lx 0x%08lx 0x%08lx \n",
  1962. (unsigned long int)tmp[0],
  1963. (unsigned long int)tmp[1],
  1964. (unsigned long int)tmp[2],
  1965. (unsigned long int)tmp[3]);
  1966. }
  1967. }
  1968. qdev->rsp_consumer_index++;
  1969. if (qdev->rsp_consumer_index == NUM_RSP_Q_ENTRIES) {
  1970. qdev->rsp_consumer_index = 0;
  1971. qdev->rsp_current = qdev->rsp_q_virt_addr;
  1972. } else {
  1973. qdev->rsp_current++;
  1974. }
  1975. work_done = *tx_cleaned + *rx_cleaned;
  1976. }
  1977. return work_done;
  1978. }
  1979. static int ql_poll(struct napi_struct *napi, int budget)
  1980. {
  1981. struct ql3_adapter *qdev = container_of(napi, struct ql3_adapter, napi);
  1982. struct net_device *ndev = qdev->ndev;
  1983. int rx_cleaned = 0, tx_cleaned = 0;
  1984. unsigned long hw_flags;
  1985. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1986. if (!netif_carrier_ok(ndev))
  1987. goto quit_polling;
  1988. ql_tx_rx_clean(qdev, &tx_cleaned, &rx_cleaned, budget);
  1989. if (tx_cleaned + rx_cleaned != budget ||
  1990. !netif_running(ndev)) {
  1991. quit_polling:
  1992. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1993. __netif_rx_complete(ndev, napi);
  1994. ql_update_small_bufq_prod_index(qdev);
  1995. ql_update_lrg_bufq_prod_index(qdev);
  1996. writel(qdev->rsp_consumer_index,
  1997. &port_regs->CommonRegs.rspQConsumerIndex);
  1998. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1999. ql_enable_interrupts(qdev);
  2000. }
  2001. return tx_cleaned + rx_cleaned;
  2002. }
  2003. static irqreturn_t ql3xxx_isr(int irq, void *dev_id)
  2004. {
  2005. struct net_device *ndev = dev_id;
  2006. struct ql3_adapter *qdev = netdev_priv(ndev);
  2007. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2008. u32 value;
  2009. int handled = 1;
  2010. u32 var;
  2011. port_regs = qdev->mem_map_registers;
  2012. value =
  2013. ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
  2014. if (value & (ISP_CONTROL_FE | ISP_CONTROL_RI)) {
  2015. spin_lock(&qdev->adapter_lock);
  2016. netif_stop_queue(qdev->ndev);
  2017. netif_carrier_off(qdev->ndev);
  2018. ql_disable_interrupts(qdev);
  2019. qdev->port_link_state = LS_DOWN;
  2020. set_bit(QL_RESET_ACTIVE,&qdev->flags) ;
  2021. if (value & ISP_CONTROL_FE) {
  2022. /*
  2023. * Chip Fatal Error.
  2024. */
  2025. var =
  2026. ql_read_page0_reg_l(qdev,
  2027. &port_regs->PortFatalErrStatus);
  2028. printk(KERN_WARNING PFX
  2029. "%s: Resetting chip. PortFatalErrStatus "
  2030. "register = 0x%x\n", ndev->name, var);
  2031. set_bit(QL_RESET_START,&qdev->flags) ;
  2032. } else {
  2033. /*
  2034. * Soft Reset Requested.
  2035. */
  2036. set_bit(QL_RESET_PER_SCSI,&qdev->flags) ;
  2037. printk(KERN_ERR PFX
  2038. "%s: Another function issued a reset to the "
  2039. "chip. ISR value = %x.\n", ndev->name, value);
  2040. }
  2041. queue_delayed_work(qdev->workqueue, &qdev->reset_work, 0);
  2042. spin_unlock(&qdev->adapter_lock);
  2043. } else if (value & ISP_IMR_DISABLE_CMPL_INT) {
  2044. ql_disable_interrupts(qdev);
  2045. if (likely(netif_rx_schedule_prep(ndev, &qdev->napi))) {
  2046. __netif_rx_schedule(ndev, &qdev->napi);
  2047. }
  2048. } else {
  2049. return IRQ_NONE;
  2050. }
  2051. return IRQ_RETVAL(handled);
  2052. }
  2053. /*
  2054. * Get the total number of segments needed for the
  2055. * given number of fragments. This is necessary because
  2056. * outbound address lists (OAL) will be used when more than
  2057. * two frags are given. Each address list has 5 addr/len
  2058. * pairs. The 5th pair in each AOL is used to point to
  2059. * the next AOL if more frags are coming.
  2060. * That is why the frags:segment count ratio is not linear.
  2061. */
  2062. static int ql_get_seg_count(struct ql3_adapter *qdev,
  2063. unsigned short frags)
  2064. {
  2065. if (qdev->device_id == QL3022_DEVICE_ID)
  2066. return 1;
  2067. switch(frags) {
  2068. case 0: return 1; /* just the skb->data seg */
  2069. case 1: return 2; /* skb->data + 1 frag */
  2070. case 2: return 3; /* skb->data + 2 frags */
  2071. case 3: return 5; /* skb->data + 1 frag + 1 AOL containting 2 frags */
  2072. case 4: return 6;
  2073. case 5: return 7;
  2074. case 6: return 8;
  2075. case 7: return 10;
  2076. case 8: return 11;
  2077. case 9: return 12;
  2078. case 10: return 13;
  2079. case 11: return 15;
  2080. case 12: return 16;
  2081. case 13: return 17;
  2082. case 14: return 18;
  2083. case 15: return 20;
  2084. case 16: return 21;
  2085. case 17: return 22;
  2086. case 18: return 23;
  2087. }
  2088. return -1;
  2089. }
  2090. static void ql_hw_csum_setup(const struct sk_buff *skb,
  2091. struct ob_mac_iocb_req *mac_iocb_ptr)
  2092. {
  2093. const struct iphdr *ip = ip_hdr(skb);
  2094. mac_iocb_ptr->ip_hdr_off = skb_network_offset(skb);
  2095. mac_iocb_ptr->ip_hdr_len = ip->ihl;
  2096. if (ip->protocol == IPPROTO_TCP) {
  2097. mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_TC |
  2098. OB_3032MAC_IOCB_REQ_IC;
  2099. } else {
  2100. mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_UC |
  2101. OB_3032MAC_IOCB_REQ_IC;
  2102. }
  2103. }
  2104. /*
  2105. * Map the buffers for this transmit. This will return
  2106. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  2107. */
  2108. static int ql_send_map(struct ql3_adapter *qdev,
  2109. struct ob_mac_iocb_req *mac_iocb_ptr,
  2110. struct ql_tx_buf_cb *tx_cb,
  2111. struct sk_buff *skb)
  2112. {
  2113. struct oal *oal;
  2114. struct oal_entry *oal_entry;
  2115. int len = skb_headlen(skb);
  2116. dma_addr_t map;
  2117. int err;
  2118. int completed_segs, i;
  2119. int seg_cnt, seg = 0;
  2120. int frag_cnt = (int)skb_shinfo(skb)->nr_frags;
  2121. seg_cnt = tx_cb->seg_count;
  2122. /*
  2123. * Map the skb buffer first.
  2124. */
  2125. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  2126. err = pci_dma_mapping_error(map);
  2127. if(err) {
  2128. printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
  2129. qdev->ndev->name, err);
  2130. return NETDEV_TX_BUSY;
  2131. }
  2132. oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
  2133. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  2134. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  2135. oal_entry->len = cpu_to_le32(len);
  2136. pci_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
  2137. pci_unmap_len_set(&tx_cb->map[seg], maplen, len);
  2138. seg++;
  2139. if (seg_cnt == 1) {
  2140. /* Terminate the last segment. */
  2141. oal_entry->len =
  2142. cpu_to_le32(le32_to_cpu(oal_entry->len) | OAL_LAST_ENTRY);
  2143. } else {
  2144. oal = tx_cb->oal;
  2145. for (completed_segs=0; completed_segs<frag_cnt; completed_segs++,seg++) {
  2146. skb_frag_t *frag = &skb_shinfo(skb)->frags[completed_segs];
  2147. oal_entry++;
  2148. if ((seg == 2 && seg_cnt > 3) || /* Check for continuation */
  2149. (seg == 7 && seg_cnt > 8) || /* requirements. It's strange */
  2150. (seg == 12 && seg_cnt > 13) || /* but necessary. */
  2151. (seg == 17 && seg_cnt > 18)) {
  2152. /* Continuation entry points to outbound address list. */
  2153. map = pci_map_single(qdev->pdev, oal,
  2154. sizeof(struct oal),
  2155. PCI_DMA_TODEVICE);
  2156. err = pci_dma_mapping_error(map);
  2157. if(err) {
  2158. printk(KERN_ERR "%s: PCI mapping outbound address list with error: %d\n",
  2159. qdev->ndev->name, err);
  2160. goto map_error;
  2161. }
  2162. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  2163. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  2164. oal_entry->len =
  2165. cpu_to_le32(sizeof(struct oal) |
  2166. OAL_CONT_ENTRY);
  2167. pci_unmap_addr_set(&tx_cb->map[seg], mapaddr,
  2168. map);
  2169. pci_unmap_len_set(&tx_cb->map[seg], maplen,
  2170. sizeof(struct oal));
  2171. oal_entry = (struct oal_entry *)oal;
  2172. oal++;
  2173. seg++;
  2174. }
  2175. map =
  2176. pci_map_page(qdev->pdev, frag->page,
  2177. frag->page_offset, frag->size,
  2178. PCI_DMA_TODEVICE);
  2179. err = pci_dma_mapping_error(map);
  2180. if(err) {
  2181. printk(KERN_ERR "%s: PCI mapping frags failed with error: %d\n",
  2182. qdev->ndev->name, err);
  2183. goto map_error;
  2184. }
  2185. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  2186. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  2187. oal_entry->len = cpu_to_le32(frag->size);
  2188. pci_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
  2189. pci_unmap_len_set(&tx_cb->map[seg], maplen,
  2190. frag->size);
  2191. }
  2192. /* Terminate the last segment. */
  2193. oal_entry->len =
  2194. cpu_to_le32(le32_to_cpu(oal_entry->len) | OAL_LAST_ENTRY);
  2195. }
  2196. return NETDEV_TX_OK;
  2197. map_error:
  2198. /* A PCI mapping failed and now we will need to back out
  2199. * We need to traverse through the oal's and associated pages which
  2200. * have been mapped and now we must unmap them to clean up properly
  2201. */
  2202. seg = 1;
  2203. oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
  2204. oal = tx_cb->oal;
  2205. for (i=0; i<completed_segs; i++,seg++) {
  2206. oal_entry++;
  2207. if((seg == 2 && seg_cnt > 3) || /* Check for continuation */
  2208. (seg == 7 && seg_cnt > 8) || /* requirements. It's strange */
  2209. (seg == 12 && seg_cnt > 13) || /* but necessary. */
  2210. (seg == 17 && seg_cnt > 18)) {
  2211. pci_unmap_single(qdev->pdev,
  2212. pci_unmap_addr(&tx_cb->map[seg], mapaddr),
  2213. pci_unmap_len(&tx_cb->map[seg], maplen),
  2214. PCI_DMA_TODEVICE);
  2215. oal++;
  2216. seg++;
  2217. }
  2218. pci_unmap_page(qdev->pdev,
  2219. pci_unmap_addr(&tx_cb->map[seg], mapaddr),
  2220. pci_unmap_len(&tx_cb->map[seg], maplen),
  2221. PCI_DMA_TODEVICE);
  2222. }
  2223. pci_unmap_single(qdev->pdev,
  2224. pci_unmap_addr(&tx_cb->map[0], mapaddr),
  2225. pci_unmap_addr(&tx_cb->map[0], maplen),
  2226. PCI_DMA_TODEVICE);
  2227. return NETDEV_TX_BUSY;
  2228. }
  2229. /*
  2230. * The difference between 3022 and 3032 sends:
  2231. * 3022 only supports a simple single segment transmission.
  2232. * 3032 supports checksumming and scatter/gather lists (fragments).
  2233. * The 3032 supports sglists by using the 3 addr/len pairs (ALP)
  2234. * in the IOCB plus a chain of outbound address lists (OAL) that
  2235. * each contain 5 ALPs. The last ALP of the IOCB (3rd) or OAL (5th)
  2236. * will used to point to an OAL when more ALP entries are required.
  2237. * The IOCB is always the top of the chain followed by one or more
  2238. * OALs (when necessary).
  2239. */
  2240. static int ql3xxx_send(struct sk_buff *skb, struct net_device *ndev)
  2241. {
  2242. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  2243. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2244. struct ql_tx_buf_cb *tx_cb;
  2245. u32 tot_len = skb->len;
  2246. struct ob_mac_iocb_req *mac_iocb_ptr;
  2247. if (unlikely(atomic_read(&qdev->tx_count) < 2)) {
  2248. return NETDEV_TX_BUSY;
  2249. }
  2250. tx_cb = &qdev->tx_buf[qdev->req_producer_index] ;
  2251. if((tx_cb->seg_count = ql_get_seg_count(qdev,
  2252. (skb_shinfo(skb)->nr_frags))) == -1) {
  2253. printk(KERN_ERR PFX"%s: invalid segment count!\n",__func__);
  2254. return NETDEV_TX_OK;
  2255. }
  2256. mac_iocb_ptr = tx_cb->queue_entry;
  2257. memset((void *)mac_iocb_ptr, 0, sizeof(struct ob_mac_iocb_req));
  2258. mac_iocb_ptr->opcode = qdev->mac_ob_opcode;
  2259. mac_iocb_ptr->flags = OB_MAC_IOCB_REQ_X;
  2260. mac_iocb_ptr->flags |= qdev->mb_bit_mask;
  2261. mac_iocb_ptr->transaction_id = qdev->req_producer_index;
  2262. mac_iocb_ptr->data_len = cpu_to_le16((u16) tot_len);
  2263. tx_cb->skb = skb;
  2264. if (qdev->device_id == QL3032_DEVICE_ID &&
  2265. skb->ip_summed == CHECKSUM_PARTIAL)
  2266. ql_hw_csum_setup(skb, mac_iocb_ptr);
  2267. if(ql_send_map(qdev,mac_iocb_ptr,tx_cb,skb) != NETDEV_TX_OK) {
  2268. printk(KERN_ERR PFX"%s: Could not map the segments!\n",__func__);
  2269. return NETDEV_TX_BUSY;
  2270. }
  2271. wmb();
  2272. qdev->req_producer_index++;
  2273. if (qdev->req_producer_index == NUM_REQ_Q_ENTRIES)
  2274. qdev->req_producer_index = 0;
  2275. wmb();
  2276. ql_write_common_reg_l(qdev,
  2277. &port_regs->CommonRegs.reqQProducerIndex,
  2278. qdev->req_producer_index);
  2279. ndev->trans_start = jiffies;
  2280. if (netif_msg_tx_queued(qdev))
  2281. printk(KERN_DEBUG PFX "%s: tx queued, slot %d, len %d\n",
  2282. ndev->name, qdev->req_producer_index, skb->len);
  2283. atomic_dec(&qdev->tx_count);
  2284. return NETDEV_TX_OK;
  2285. }
  2286. static int ql_alloc_net_req_rsp_queues(struct ql3_adapter *qdev)
  2287. {
  2288. qdev->req_q_size =
  2289. (u32) (NUM_REQ_Q_ENTRIES * sizeof(struct ob_mac_iocb_req));
  2290. qdev->req_q_virt_addr =
  2291. pci_alloc_consistent(qdev->pdev,
  2292. (size_t) qdev->req_q_size,
  2293. &qdev->req_q_phy_addr);
  2294. if ((qdev->req_q_virt_addr == NULL) ||
  2295. LS_64BITS(qdev->req_q_phy_addr) & (qdev->req_q_size - 1)) {
  2296. printk(KERN_ERR PFX "%s: reqQ failed.\n",
  2297. qdev->ndev->name);
  2298. return -ENOMEM;
  2299. }
  2300. qdev->rsp_q_size = NUM_RSP_Q_ENTRIES * sizeof(struct net_rsp_iocb);
  2301. qdev->rsp_q_virt_addr =
  2302. pci_alloc_consistent(qdev->pdev,
  2303. (size_t) qdev->rsp_q_size,
  2304. &qdev->rsp_q_phy_addr);
  2305. if ((qdev->rsp_q_virt_addr == NULL) ||
  2306. LS_64BITS(qdev->rsp_q_phy_addr) & (qdev->rsp_q_size - 1)) {
  2307. printk(KERN_ERR PFX
  2308. "%s: rspQ allocation failed\n",
  2309. qdev->ndev->name);
  2310. pci_free_consistent(qdev->pdev, (size_t) qdev->req_q_size,
  2311. qdev->req_q_virt_addr,
  2312. qdev->req_q_phy_addr);
  2313. return -ENOMEM;
  2314. }
  2315. set_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags);
  2316. return 0;
  2317. }
  2318. static void ql_free_net_req_rsp_queues(struct ql3_adapter *qdev)
  2319. {
  2320. if (!test_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags)) {
  2321. printk(KERN_INFO PFX
  2322. "%s: Already done.\n", qdev->ndev->name);
  2323. return;
  2324. }
  2325. pci_free_consistent(qdev->pdev,
  2326. qdev->req_q_size,
  2327. qdev->req_q_virt_addr, qdev->req_q_phy_addr);
  2328. qdev->req_q_virt_addr = NULL;
  2329. pci_free_consistent(qdev->pdev,
  2330. qdev->rsp_q_size,
  2331. qdev->rsp_q_virt_addr, qdev->rsp_q_phy_addr);
  2332. qdev->rsp_q_virt_addr = NULL;
  2333. clear_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags);
  2334. }
  2335. static int ql_alloc_buffer_queues(struct ql3_adapter *qdev)
  2336. {
  2337. /* Create Large Buffer Queue */
  2338. qdev->lrg_buf_q_size =
  2339. qdev->num_lbufq_entries * sizeof(struct lrg_buf_q_entry);
  2340. if (qdev->lrg_buf_q_size < PAGE_SIZE)
  2341. qdev->lrg_buf_q_alloc_size = PAGE_SIZE;
  2342. else
  2343. qdev->lrg_buf_q_alloc_size = qdev->lrg_buf_q_size * 2;
  2344. qdev->lrg_buf = kmalloc(qdev->num_large_buffers * sizeof(struct ql_rcv_buf_cb),GFP_KERNEL);
  2345. if (qdev->lrg_buf == NULL) {
  2346. printk(KERN_ERR PFX
  2347. "%s: qdev->lrg_buf alloc failed.\n", qdev->ndev->name);
  2348. return -ENOMEM;
  2349. }
  2350. qdev->lrg_buf_q_alloc_virt_addr =
  2351. pci_alloc_consistent(qdev->pdev,
  2352. qdev->lrg_buf_q_alloc_size,
  2353. &qdev->lrg_buf_q_alloc_phy_addr);
  2354. if (qdev->lrg_buf_q_alloc_virt_addr == NULL) {
  2355. printk(KERN_ERR PFX
  2356. "%s: lBufQ failed\n", qdev->ndev->name);
  2357. return -ENOMEM;
  2358. }
  2359. qdev->lrg_buf_q_virt_addr = qdev->lrg_buf_q_alloc_virt_addr;
  2360. qdev->lrg_buf_q_phy_addr = qdev->lrg_buf_q_alloc_phy_addr;
  2361. /* Create Small Buffer Queue */
  2362. qdev->small_buf_q_size =
  2363. NUM_SBUFQ_ENTRIES * sizeof(struct lrg_buf_q_entry);
  2364. if (qdev->small_buf_q_size < PAGE_SIZE)
  2365. qdev->small_buf_q_alloc_size = PAGE_SIZE;
  2366. else
  2367. qdev->small_buf_q_alloc_size = qdev->small_buf_q_size * 2;
  2368. qdev->small_buf_q_alloc_virt_addr =
  2369. pci_alloc_consistent(qdev->pdev,
  2370. qdev->small_buf_q_alloc_size,
  2371. &qdev->small_buf_q_alloc_phy_addr);
  2372. if (qdev->small_buf_q_alloc_virt_addr == NULL) {
  2373. printk(KERN_ERR PFX
  2374. "%s: Small Buffer Queue allocation failed.\n",
  2375. qdev->ndev->name);
  2376. pci_free_consistent(qdev->pdev, qdev->lrg_buf_q_alloc_size,
  2377. qdev->lrg_buf_q_alloc_virt_addr,
  2378. qdev->lrg_buf_q_alloc_phy_addr);
  2379. return -ENOMEM;
  2380. }
  2381. qdev->small_buf_q_virt_addr = qdev->small_buf_q_alloc_virt_addr;
  2382. qdev->small_buf_q_phy_addr = qdev->small_buf_q_alloc_phy_addr;
  2383. set_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags);
  2384. return 0;
  2385. }
  2386. static void ql_free_buffer_queues(struct ql3_adapter *qdev)
  2387. {
  2388. if (!test_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags)) {
  2389. printk(KERN_INFO PFX
  2390. "%s: Already done.\n", qdev->ndev->name);
  2391. return;
  2392. }
  2393. if(qdev->lrg_buf) kfree(qdev->lrg_buf);
  2394. pci_free_consistent(qdev->pdev,
  2395. qdev->lrg_buf_q_alloc_size,
  2396. qdev->lrg_buf_q_alloc_virt_addr,
  2397. qdev->lrg_buf_q_alloc_phy_addr);
  2398. qdev->lrg_buf_q_virt_addr = NULL;
  2399. pci_free_consistent(qdev->pdev,
  2400. qdev->small_buf_q_alloc_size,
  2401. qdev->small_buf_q_alloc_virt_addr,
  2402. qdev->small_buf_q_alloc_phy_addr);
  2403. qdev->small_buf_q_virt_addr = NULL;
  2404. clear_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags);
  2405. }
  2406. static int ql_alloc_small_buffers(struct ql3_adapter *qdev)
  2407. {
  2408. int i;
  2409. struct bufq_addr_element *small_buf_q_entry;
  2410. /* Currently we allocate on one of memory and use it for smallbuffers */
  2411. qdev->small_buf_total_size =
  2412. (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES *
  2413. QL_SMALL_BUFFER_SIZE);
  2414. qdev->small_buf_virt_addr =
  2415. pci_alloc_consistent(qdev->pdev,
  2416. qdev->small_buf_total_size,
  2417. &qdev->small_buf_phy_addr);
  2418. if (qdev->small_buf_virt_addr == NULL) {
  2419. printk(KERN_ERR PFX
  2420. "%s: Failed to get small buffer memory.\n",
  2421. qdev->ndev->name);
  2422. return -ENOMEM;
  2423. }
  2424. qdev->small_buf_phy_addr_low = LS_64BITS(qdev->small_buf_phy_addr);
  2425. qdev->small_buf_phy_addr_high = MS_64BITS(qdev->small_buf_phy_addr);
  2426. small_buf_q_entry = qdev->small_buf_q_virt_addr;
  2427. /* Initialize the small buffer queue. */
  2428. for (i = 0; i < (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES); i++) {
  2429. small_buf_q_entry->addr_high =
  2430. cpu_to_le32(qdev->small_buf_phy_addr_high);
  2431. small_buf_q_entry->addr_low =
  2432. cpu_to_le32(qdev->small_buf_phy_addr_low +
  2433. (i * QL_SMALL_BUFFER_SIZE));
  2434. small_buf_q_entry++;
  2435. }
  2436. qdev->small_buf_index = 0;
  2437. set_bit(QL_ALLOC_SMALL_BUF_DONE,&qdev->flags);
  2438. return 0;
  2439. }
  2440. static void ql_free_small_buffers(struct ql3_adapter *qdev)
  2441. {
  2442. if (!test_bit(QL_ALLOC_SMALL_BUF_DONE,&qdev->flags)) {
  2443. printk(KERN_INFO PFX
  2444. "%s: Already done.\n", qdev->ndev->name);
  2445. return;
  2446. }
  2447. if (qdev->small_buf_virt_addr != NULL) {
  2448. pci_free_consistent(qdev->pdev,
  2449. qdev->small_buf_total_size,
  2450. qdev->small_buf_virt_addr,
  2451. qdev->small_buf_phy_addr);
  2452. qdev->small_buf_virt_addr = NULL;
  2453. }
  2454. }
  2455. static void ql_free_large_buffers(struct ql3_adapter *qdev)
  2456. {
  2457. int i = 0;
  2458. struct ql_rcv_buf_cb *lrg_buf_cb;
  2459. for (i = 0; i < qdev->num_large_buffers; i++) {
  2460. lrg_buf_cb = &qdev->lrg_buf[i];
  2461. if (lrg_buf_cb->skb) {
  2462. dev_kfree_skb(lrg_buf_cb->skb);
  2463. pci_unmap_single(qdev->pdev,
  2464. pci_unmap_addr(lrg_buf_cb, mapaddr),
  2465. pci_unmap_len(lrg_buf_cb, maplen),
  2466. PCI_DMA_FROMDEVICE);
  2467. memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
  2468. } else {
  2469. break;
  2470. }
  2471. }
  2472. }
  2473. static void ql_init_large_buffers(struct ql3_adapter *qdev)
  2474. {
  2475. int i;
  2476. struct ql_rcv_buf_cb *lrg_buf_cb;
  2477. struct bufq_addr_element *buf_addr_ele = qdev->lrg_buf_q_virt_addr;
  2478. for (i = 0; i < qdev->num_large_buffers; i++) {
  2479. lrg_buf_cb = &qdev->lrg_buf[i];
  2480. buf_addr_ele->addr_high = lrg_buf_cb->buf_phy_addr_high;
  2481. buf_addr_ele->addr_low = lrg_buf_cb->buf_phy_addr_low;
  2482. buf_addr_ele++;
  2483. }
  2484. qdev->lrg_buf_index = 0;
  2485. qdev->lrg_buf_skb_check = 0;
  2486. }
  2487. static int ql_alloc_large_buffers(struct ql3_adapter *qdev)
  2488. {
  2489. int i;
  2490. struct ql_rcv_buf_cb *lrg_buf_cb;
  2491. struct sk_buff *skb;
  2492. dma_addr_t map;
  2493. int err;
  2494. for (i = 0; i < qdev->num_large_buffers; i++) {
  2495. skb = netdev_alloc_skb(qdev->ndev,
  2496. qdev->lrg_buffer_len);
  2497. if (unlikely(!skb)) {
  2498. /* Better luck next round */
  2499. printk(KERN_ERR PFX
  2500. "%s: large buff alloc failed, "
  2501. "for %d bytes at index %d.\n",
  2502. qdev->ndev->name,
  2503. qdev->lrg_buffer_len * 2, i);
  2504. ql_free_large_buffers(qdev);
  2505. return -ENOMEM;
  2506. } else {
  2507. lrg_buf_cb = &qdev->lrg_buf[i];
  2508. memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
  2509. lrg_buf_cb->index = i;
  2510. lrg_buf_cb->skb = skb;
  2511. /*
  2512. * We save some space to copy the ethhdr from first
  2513. * buffer
  2514. */
  2515. skb_reserve(skb, QL_HEADER_SPACE);
  2516. map = pci_map_single(qdev->pdev,
  2517. skb->data,
  2518. qdev->lrg_buffer_len -
  2519. QL_HEADER_SPACE,
  2520. PCI_DMA_FROMDEVICE);
  2521. err = pci_dma_mapping_error(map);
  2522. if(err) {
  2523. printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
  2524. qdev->ndev->name, err);
  2525. ql_free_large_buffers(qdev);
  2526. return -ENOMEM;
  2527. }
  2528. pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  2529. pci_unmap_len_set(lrg_buf_cb, maplen,
  2530. qdev->lrg_buffer_len -
  2531. QL_HEADER_SPACE);
  2532. lrg_buf_cb->buf_phy_addr_low =
  2533. cpu_to_le32(LS_64BITS(map));
  2534. lrg_buf_cb->buf_phy_addr_high =
  2535. cpu_to_le32(MS_64BITS(map));
  2536. }
  2537. }
  2538. return 0;
  2539. }
  2540. static void ql_free_send_free_list(struct ql3_adapter *qdev)
  2541. {
  2542. struct ql_tx_buf_cb *tx_cb;
  2543. int i;
  2544. tx_cb = &qdev->tx_buf[0];
  2545. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  2546. if (tx_cb->oal) {
  2547. kfree(tx_cb->oal);
  2548. tx_cb->oal = NULL;
  2549. }
  2550. tx_cb++;
  2551. }
  2552. }
  2553. static int ql_create_send_free_list(struct ql3_adapter *qdev)
  2554. {
  2555. struct ql_tx_buf_cb *tx_cb;
  2556. int i;
  2557. struct ob_mac_iocb_req *req_q_curr =
  2558. qdev->req_q_virt_addr;
  2559. /* Create free list of transmit buffers */
  2560. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  2561. tx_cb = &qdev->tx_buf[i];
  2562. tx_cb->skb = NULL;
  2563. tx_cb->queue_entry = req_q_curr;
  2564. req_q_curr++;
  2565. tx_cb->oal = kmalloc(512, GFP_KERNEL);
  2566. if (tx_cb->oal == NULL)
  2567. return -1;
  2568. }
  2569. return 0;
  2570. }
  2571. static int ql_alloc_mem_resources(struct ql3_adapter *qdev)
  2572. {
  2573. if (qdev->ndev->mtu == NORMAL_MTU_SIZE) {
  2574. qdev->num_lbufq_entries = NUM_LBUFQ_ENTRIES;
  2575. qdev->lrg_buffer_len = NORMAL_MTU_SIZE;
  2576. }
  2577. else if (qdev->ndev->mtu == JUMBO_MTU_SIZE) {
  2578. /*
  2579. * Bigger buffers, so less of them.
  2580. */
  2581. qdev->num_lbufq_entries = JUMBO_NUM_LBUFQ_ENTRIES;
  2582. qdev->lrg_buffer_len = JUMBO_MTU_SIZE;
  2583. } else {
  2584. printk(KERN_ERR PFX
  2585. "%s: Invalid mtu size. Only 1500 and 9000 are accepted.\n",
  2586. qdev->ndev->name);
  2587. return -ENOMEM;
  2588. }
  2589. qdev->num_large_buffers = qdev->num_lbufq_entries * QL_ADDR_ELE_PER_BUFQ_ENTRY;
  2590. qdev->lrg_buffer_len += VLAN_ETH_HLEN + VLAN_ID_LEN + QL_HEADER_SPACE;
  2591. qdev->max_frame_size =
  2592. (qdev->lrg_buffer_len - QL_HEADER_SPACE) + ETHERNET_CRC_SIZE;
  2593. /*
  2594. * First allocate a page of shared memory and use it for shadow
  2595. * locations of Network Request Queue Consumer Address Register and
  2596. * Network Completion Queue Producer Index Register
  2597. */
  2598. qdev->shadow_reg_virt_addr =
  2599. pci_alloc_consistent(qdev->pdev,
  2600. PAGE_SIZE, &qdev->shadow_reg_phy_addr);
  2601. if (qdev->shadow_reg_virt_addr != NULL) {
  2602. qdev->preq_consumer_index = (u16 *) qdev->shadow_reg_virt_addr;
  2603. qdev->req_consumer_index_phy_addr_high =
  2604. MS_64BITS(qdev->shadow_reg_phy_addr);
  2605. qdev->req_consumer_index_phy_addr_low =
  2606. LS_64BITS(qdev->shadow_reg_phy_addr);
  2607. qdev->prsp_producer_index =
  2608. (u32 *) (((u8 *) qdev->preq_consumer_index) + 8);
  2609. qdev->rsp_producer_index_phy_addr_high =
  2610. qdev->req_consumer_index_phy_addr_high;
  2611. qdev->rsp_producer_index_phy_addr_low =
  2612. qdev->req_consumer_index_phy_addr_low + 8;
  2613. } else {
  2614. printk(KERN_ERR PFX
  2615. "%s: shadowReg Alloc failed.\n", qdev->ndev->name);
  2616. return -ENOMEM;
  2617. }
  2618. if (ql_alloc_net_req_rsp_queues(qdev) != 0) {
  2619. printk(KERN_ERR PFX
  2620. "%s: ql_alloc_net_req_rsp_queues failed.\n",
  2621. qdev->ndev->name);
  2622. goto err_req_rsp;
  2623. }
  2624. if (ql_alloc_buffer_queues(qdev) != 0) {
  2625. printk(KERN_ERR PFX
  2626. "%s: ql_alloc_buffer_queues failed.\n",
  2627. qdev->ndev->name);
  2628. goto err_buffer_queues;
  2629. }
  2630. if (ql_alloc_small_buffers(qdev) != 0) {
  2631. printk(KERN_ERR PFX
  2632. "%s: ql_alloc_small_buffers failed\n", qdev->ndev->name);
  2633. goto err_small_buffers;
  2634. }
  2635. if (ql_alloc_large_buffers(qdev) != 0) {
  2636. printk(KERN_ERR PFX
  2637. "%s: ql_alloc_large_buffers failed\n", qdev->ndev->name);
  2638. goto err_small_buffers;
  2639. }
  2640. /* Initialize the large buffer queue. */
  2641. ql_init_large_buffers(qdev);
  2642. if (ql_create_send_free_list(qdev))
  2643. goto err_free_list;
  2644. qdev->rsp_current = qdev->rsp_q_virt_addr;
  2645. return 0;
  2646. err_free_list:
  2647. ql_free_send_free_list(qdev);
  2648. err_small_buffers:
  2649. ql_free_buffer_queues(qdev);
  2650. err_buffer_queues:
  2651. ql_free_net_req_rsp_queues(qdev);
  2652. err_req_rsp:
  2653. pci_free_consistent(qdev->pdev,
  2654. PAGE_SIZE,
  2655. qdev->shadow_reg_virt_addr,
  2656. qdev->shadow_reg_phy_addr);
  2657. return -ENOMEM;
  2658. }
  2659. static void ql_free_mem_resources(struct ql3_adapter *qdev)
  2660. {
  2661. ql_free_send_free_list(qdev);
  2662. ql_free_large_buffers(qdev);
  2663. ql_free_small_buffers(qdev);
  2664. ql_free_buffer_queues(qdev);
  2665. ql_free_net_req_rsp_queues(qdev);
  2666. if (qdev->shadow_reg_virt_addr != NULL) {
  2667. pci_free_consistent(qdev->pdev,
  2668. PAGE_SIZE,
  2669. qdev->shadow_reg_virt_addr,
  2670. qdev->shadow_reg_phy_addr);
  2671. qdev->shadow_reg_virt_addr = NULL;
  2672. }
  2673. }
  2674. static int ql_init_misc_registers(struct ql3_adapter *qdev)
  2675. {
  2676. struct ql3xxx_local_ram_registers __iomem *local_ram =
  2677. (void __iomem *)qdev->mem_map_registers;
  2678. if(ql_sem_spinlock(qdev, QL_DDR_RAM_SEM_MASK,
  2679. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  2680. 2) << 4))
  2681. return -1;
  2682. ql_write_page2_reg(qdev,
  2683. &local_ram->bufletSize, qdev->nvram_data.bufletSize);
  2684. ql_write_page2_reg(qdev,
  2685. &local_ram->maxBufletCount,
  2686. qdev->nvram_data.bufletCount);
  2687. ql_write_page2_reg(qdev,
  2688. &local_ram->freeBufletThresholdLow,
  2689. (qdev->nvram_data.tcpWindowThreshold25 << 16) |
  2690. (qdev->nvram_data.tcpWindowThreshold0));
  2691. ql_write_page2_reg(qdev,
  2692. &local_ram->freeBufletThresholdHigh,
  2693. qdev->nvram_data.tcpWindowThreshold50);
  2694. ql_write_page2_reg(qdev,
  2695. &local_ram->ipHashTableBase,
  2696. (qdev->nvram_data.ipHashTableBaseHi << 16) |
  2697. qdev->nvram_data.ipHashTableBaseLo);
  2698. ql_write_page2_reg(qdev,
  2699. &local_ram->ipHashTableCount,
  2700. qdev->nvram_data.ipHashTableSize);
  2701. ql_write_page2_reg(qdev,
  2702. &local_ram->tcpHashTableBase,
  2703. (qdev->nvram_data.tcpHashTableBaseHi << 16) |
  2704. qdev->nvram_data.tcpHashTableBaseLo);
  2705. ql_write_page2_reg(qdev,
  2706. &local_ram->tcpHashTableCount,
  2707. qdev->nvram_data.tcpHashTableSize);
  2708. ql_write_page2_reg(qdev,
  2709. &local_ram->ncbBase,
  2710. (qdev->nvram_data.ncbTableBaseHi << 16) |
  2711. qdev->nvram_data.ncbTableBaseLo);
  2712. ql_write_page2_reg(qdev,
  2713. &local_ram->maxNcbCount,
  2714. qdev->nvram_data.ncbTableSize);
  2715. ql_write_page2_reg(qdev,
  2716. &local_ram->drbBase,
  2717. (qdev->nvram_data.drbTableBaseHi << 16) |
  2718. qdev->nvram_data.drbTableBaseLo);
  2719. ql_write_page2_reg(qdev,
  2720. &local_ram->maxDrbCount,
  2721. qdev->nvram_data.drbTableSize);
  2722. ql_sem_unlock(qdev, QL_DDR_RAM_SEM_MASK);
  2723. return 0;
  2724. }
  2725. static int ql_adapter_initialize(struct ql3_adapter *qdev)
  2726. {
  2727. u32 value;
  2728. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2729. struct ql3xxx_host_memory_registers __iomem *hmem_regs =
  2730. (void __iomem *)port_regs;
  2731. u32 delay = 10;
  2732. int status = 0;
  2733. if(ql_mii_setup(qdev))
  2734. return -1;
  2735. /* Bring out PHY out of reset */
  2736. ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  2737. (ISP_SERIAL_PORT_IF_WE |
  2738. (ISP_SERIAL_PORT_IF_WE << 16)));
  2739. qdev->port_link_state = LS_DOWN;
  2740. netif_carrier_off(qdev->ndev);
  2741. /* V2 chip fix for ARS-39168. */
  2742. ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  2743. (ISP_SERIAL_PORT_IF_SDE |
  2744. (ISP_SERIAL_PORT_IF_SDE << 16)));
  2745. /* Request Queue Registers */
  2746. *((u32 *) (qdev->preq_consumer_index)) = 0;
  2747. atomic_set(&qdev->tx_count,NUM_REQ_Q_ENTRIES);
  2748. qdev->req_producer_index = 0;
  2749. ql_write_page1_reg(qdev,
  2750. &hmem_regs->reqConsumerIndexAddrHigh,
  2751. qdev->req_consumer_index_phy_addr_high);
  2752. ql_write_page1_reg(qdev,
  2753. &hmem_regs->reqConsumerIndexAddrLow,
  2754. qdev->req_consumer_index_phy_addr_low);
  2755. ql_write_page1_reg(qdev,
  2756. &hmem_regs->reqBaseAddrHigh,
  2757. MS_64BITS(qdev->req_q_phy_addr));
  2758. ql_write_page1_reg(qdev,
  2759. &hmem_regs->reqBaseAddrLow,
  2760. LS_64BITS(qdev->req_q_phy_addr));
  2761. ql_write_page1_reg(qdev, &hmem_regs->reqLength, NUM_REQ_Q_ENTRIES);
  2762. /* Response Queue Registers */
  2763. *((u16 *) (qdev->prsp_producer_index)) = 0;
  2764. qdev->rsp_consumer_index = 0;
  2765. qdev->rsp_current = qdev->rsp_q_virt_addr;
  2766. ql_write_page1_reg(qdev,
  2767. &hmem_regs->rspProducerIndexAddrHigh,
  2768. qdev->rsp_producer_index_phy_addr_high);
  2769. ql_write_page1_reg(qdev,
  2770. &hmem_regs->rspProducerIndexAddrLow,
  2771. qdev->rsp_producer_index_phy_addr_low);
  2772. ql_write_page1_reg(qdev,
  2773. &hmem_regs->rspBaseAddrHigh,
  2774. MS_64BITS(qdev->rsp_q_phy_addr));
  2775. ql_write_page1_reg(qdev,
  2776. &hmem_regs->rspBaseAddrLow,
  2777. LS_64BITS(qdev->rsp_q_phy_addr));
  2778. ql_write_page1_reg(qdev, &hmem_regs->rspLength, NUM_RSP_Q_ENTRIES);
  2779. /* Large Buffer Queue */
  2780. ql_write_page1_reg(qdev,
  2781. &hmem_regs->rxLargeQBaseAddrHigh,
  2782. MS_64BITS(qdev->lrg_buf_q_phy_addr));
  2783. ql_write_page1_reg(qdev,
  2784. &hmem_regs->rxLargeQBaseAddrLow,
  2785. LS_64BITS(qdev->lrg_buf_q_phy_addr));
  2786. ql_write_page1_reg(qdev, &hmem_regs->rxLargeQLength, qdev->num_lbufq_entries);
  2787. ql_write_page1_reg(qdev,
  2788. &hmem_regs->rxLargeBufferLength,
  2789. qdev->lrg_buffer_len);
  2790. /* Small Buffer Queue */
  2791. ql_write_page1_reg(qdev,
  2792. &hmem_regs->rxSmallQBaseAddrHigh,
  2793. MS_64BITS(qdev->small_buf_q_phy_addr));
  2794. ql_write_page1_reg(qdev,
  2795. &hmem_regs->rxSmallQBaseAddrLow,
  2796. LS_64BITS(qdev->small_buf_q_phy_addr));
  2797. ql_write_page1_reg(qdev, &hmem_regs->rxSmallQLength, NUM_SBUFQ_ENTRIES);
  2798. ql_write_page1_reg(qdev,
  2799. &hmem_regs->rxSmallBufferLength,
  2800. QL_SMALL_BUFFER_SIZE);
  2801. qdev->small_buf_q_producer_index = NUM_SBUFQ_ENTRIES - 1;
  2802. qdev->small_buf_release_cnt = 8;
  2803. qdev->lrg_buf_q_producer_index = qdev->num_lbufq_entries - 1;
  2804. qdev->lrg_buf_release_cnt = 8;
  2805. qdev->lrg_buf_next_free =
  2806. (struct bufq_addr_element *)qdev->lrg_buf_q_virt_addr;
  2807. qdev->small_buf_index = 0;
  2808. qdev->lrg_buf_index = 0;
  2809. qdev->lrg_buf_free_count = 0;
  2810. qdev->lrg_buf_free_head = NULL;
  2811. qdev->lrg_buf_free_tail = NULL;
  2812. ql_write_common_reg(qdev,
  2813. &port_regs->CommonRegs.
  2814. rxSmallQProducerIndex,
  2815. qdev->small_buf_q_producer_index);
  2816. ql_write_common_reg(qdev,
  2817. &port_regs->CommonRegs.
  2818. rxLargeQProducerIndex,
  2819. qdev->lrg_buf_q_producer_index);
  2820. /*
  2821. * Find out if the chip has already been initialized. If it has, then
  2822. * we skip some of the initialization.
  2823. */
  2824. clear_bit(QL_LINK_MASTER, &qdev->flags);
  2825. value = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2826. if ((value & PORT_STATUS_IC) == 0) {
  2827. /* Chip has not been configured yet, so let it rip. */
  2828. if(ql_init_misc_registers(qdev)) {
  2829. status = -1;
  2830. goto out;
  2831. }
  2832. value = qdev->nvram_data.tcpMaxWindowSize;
  2833. ql_write_page0_reg(qdev, &port_regs->tcpMaxWindow, value);
  2834. value = (0xFFFF << 16) | qdev->nvram_data.extHwConfig;
  2835. if(ql_sem_spinlock(qdev, QL_FLASH_SEM_MASK,
  2836. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
  2837. * 2) << 13)) {
  2838. status = -1;
  2839. goto out;
  2840. }
  2841. ql_write_page0_reg(qdev, &port_regs->ExternalHWConfig, value);
  2842. ql_write_page0_reg(qdev, &port_regs->InternalChipConfig,
  2843. (((INTERNAL_CHIP_SD | INTERNAL_CHIP_WE) <<
  2844. 16) | (INTERNAL_CHIP_SD |
  2845. INTERNAL_CHIP_WE)));
  2846. ql_sem_unlock(qdev, QL_FLASH_SEM_MASK);
  2847. }
  2848. if (qdev->mac_index)
  2849. ql_write_page0_reg(qdev,
  2850. &port_regs->mac1MaxFrameLengthReg,
  2851. qdev->max_frame_size);
  2852. else
  2853. ql_write_page0_reg(qdev,
  2854. &port_regs->mac0MaxFrameLengthReg,
  2855. qdev->max_frame_size);
  2856. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  2857. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  2858. 2) << 7)) {
  2859. status = -1;
  2860. goto out;
  2861. }
  2862. PHY_Setup(qdev);
  2863. ql_init_scan_mode(qdev);
  2864. ql_get_phy_owner(qdev);
  2865. /* Load the MAC Configuration */
  2866. /* Program lower 32 bits of the MAC address */
  2867. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2868. (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
  2869. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  2870. ((qdev->ndev->dev_addr[2] << 24)
  2871. | (qdev->ndev->dev_addr[3] << 16)
  2872. | (qdev->ndev->dev_addr[4] << 8)
  2873. | qdev->ndev->dev_addr[5]));
  2874. /* Program top 16 bits of the MAC address */
  2875. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2876. ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
  2877. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  2878. ((qdev->ndev->dev_addr[0] << 8)
  2879. | qdev->ndev->dev_addr[1]));
  2880. /* Enable Primary MAC */
  2881. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2882. ((MAC_ADDR_INDIRECT_PTR_REG_PE << 16) |
  2883. MAC_ADDR_INDIRECT_PTR_REG_PE));
  2884. /* Clear Primary and Secondary IP addresses */
  2885. ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
  2886. ((IP_ADDR_INDEX_REG_MASK << 16) |
  2887. (qdev->mac_index << 2)));
  2888. ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
  2889. ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
  2890. ((IP_ADDR_INDEX_REG_MASK << 16) |
  2891. ((qdev->mac_index << 2) + 1)));
  2892. ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
  2893. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  2894. /* Indicate Configuration Complete */
  2895. ql_write_page0_reg(qdev,
  2896. &port_regs->portControl,
  2897. ((PORT_CONTROL_CC << 16) | PORT_CONTROL_CC));
  2898. do {
  2899. value = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2900. if (value & PORT_STATUS_IC)
  2901. break;
  2902. msleep(500);
  2903. } while (--delay);
  2904. if (delay == 0) {
  2905. printk(KERN_ERR PFX
  2906. "%s: Hw Initialization timeout.\n", qdev->ndev->name);
  2907. status = -1;
  2908. goto out;
  2909. }
  2910. /* Enable Ethernet Function */
  2911. if (qdev->device_id == QL3032_DEVICE_ID) {
  2912. value =
  2913. (QL3032_PORT_CONTROL_EF | QL3032_PORT_CONTROL_KIE |
  2914. QL3032_PORT_CONTROL_EIv6 | QL3032_PORT_CONTROL_EIv4 |
  2915. QL3032_PORT_CONTROL_ET);
  2916. ql_write_page0_reg(qdev, &port_regs->functionControl,
  2917. ((value << 16) | value));
  2918. } else {
  2919. value =
  2920. (PORT_CONTROL_EF | PORT_CONTROL_ET | PORT_CONTROL_EI |
  2921. PORT_CONTROL_HH);
  2922. ql_write_page0_reg(qdev, &port_regs->portControl,
  2923. ((value << 16) | value));
  2924. }
  2925. out:
  2926. return status;
  2927. }
  2928. /*
  2929. * Caller holds hw_lock.
  2930. */
  2931. static int ql_adapter_reset(struct ql3_adapter *qdev)
  2932. {
  2933. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2934. int status = 0;
  2935. u16 value;
  2936. int max_wait_time;
  2937. set_bit(QL_RESET_ACTIVE, &qdev->flags);
  2938. clear_bit(QL_RESET_DONE, &qdev->flags);
  2939. /*
  2940. * Issue soft reset to chip.
  2941. */
  2942. printk(KERN_DEBUG PFX
  2943. "%s: Issue soft reset to chip.\n",
  2944. qdev->ndev->name);
  2945. ql_write_common_reg(qdev,
  2946. &port_regs->CommonRegs.ispControlStatus,
  2947. ((ISP_CONTROL_SR << 16) | ISP_CONTROL_SR));
  2948. /* Wait 3 seconds for reset to complete. */
  2949. printk(KERN_DEBUG PFX
  2950. "%s: Wait 10 milliseconds for reset to complete.\n",
  2951. qdev->ndev->name);
  2952. /* Wait until the firmware tells us the Soft Reset is done */
  2953. max_wait_time = 5;
  2954. do {
  2955. value =
  2956. ql_read_common_reg(qdev,
  2957. &port_regs->CommonRegs.ispControlStatus);
  2958. if ((value & ISP_CONTROL_SR) == 0)
  2959. break;
  2960. ssleep(1);
  2961. } while ((--max_wait_time));
  2962. /*
  2963. * Also, make sure that the Network Reset Interrupt bit has been
  2964. * cleared after the soft reset has taken place.
  2965. */
  2966. value =
  2967. ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
  2968. if (value & ISP_CONTROL_RI) {
  2969. printk(KERN_DEBUG PFX
  2970. "ql_adapter_reset: clearing RI after reset.\n");
  2971. ql_write_common_reg(qdev,
  2972. &port_regs->CommonRegs.
  2973. ispControlStatus,
  2974. ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
  2975. }
  2976. if (max_wait_time == 0) {
  2977. /* Issue Force Soft Reset */
  2978. ql_write_common_reg(qdev,
  2979. &port_regs->CommonRegs.
  2980. ispControlStatus,
  2981. ((ISP_CONTROL_FSR << 16) |
  2982. ISP_CONTROL_FSR));
  2983. /*
  2984. * Wait until the firmware tells us the Force Soft Reset is
  2985. * done
  2986. */
  2987. max_wait_time = 5;
  2988. do {
  2989. value =
  2990. ql_read_common_reg(qdev,
  2991. &port_regs->CommonRegs.
  2992. ispControlStatus);
  2993. if ((value & ISP_CONTROL_FSR) == 0) {
  2994. break;
  2995. }
  2996. ssleep(1);
  2997. } while ((--max_wait_time));
  2998. }
  2999. if (max_wait_time == 0)
  3000. status = 1;
  3001. clear_bit(QL_RESET_ACTIVE, &qdev->flags);
  3002. set_bit(QL_RESET_DONE, &qdev->flags);
  3003. return status;
  3004. }
  3005. static void ql_set_mac_info(struct ql3_adapter *qdev)
  3006. {
  3007. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  3008. u32 value, port_status;
  3009. u8 func_number;
  3010. /* Get the function number */
  3011. value =
  3012. ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
  3013. func_number = (u8) ((value >> 4) & OPCODE_FUNC_ID_MASK);
  3014. port_status = ql_read_page0_reg(qdev, &port_regs->portStatus);
  3015. switch (value & ISP_CONTROL_FN_MASK) {
  3016. case ISP_CONTROL_FN0_NET:
  3017. qdev->mac_index = 0;
  3018. qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
  3019. qdev->tcp_ob_opcode = OUTBOUND_TCP_IOCB | func_number;
  3020. qdev->update_ob_opcode = UPDATE_NCB_IOCB | func_number;
  3021. qdev->mb_bit_mask = FN0_MA_BITS_MASK;
  3022. qdev->PHYAddr = PORT0_PHY_ADDRESS;
  3023. if (port_status & PORT_STATUS_SM0)
  3024. set_bit(QL_LINK_OPTICAL,&qdev->flags);
  3025. else
  3026. clear_bit(QL_LINK_OPTICAL,&qdev->flags);
  3027. break;
  3028. case ISP_CONTROL_FN1_NET:
  3029. qdev->mac_index = 1;
  3030. qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
  3031. qdev->tcp_ob_opcode = OUTBOUND_TCP_IOCB | func_number;
  3032. qdev->update_ob_opcode = UPDATE_NCB_IOCB | func_number;
  3033. qdev->mb_bit_mask = FN1_MA_BITS_MASK;
  3034. qdev->PHYAddr = PORT1_PHY_ADDRESS;
  3035. if (port_status & PORT_STATUS_SM1)
  3036. set_bit(QL_LINK_OPTICAL,&qdev->flags);
  3037. else
  3038. clear_bit(QL_LINK_OPTICAL,&qdev->flags);
  3039. break;
  3040. case ISP_CONTROL_FN0_SCSI:
  3041. case ISP_CONTROL_FN1_SCSI:
  3042. default:
  3043. printk(KERN_DEBUG PFX
  3044. "%s: Invalid function number, ispControlStatus = 0x%x\n",
  3045. qdev->ndev->name,value);
  3046. break;
  3047. }
  3048. qdev->numPorts = qdev->nvram_data.numPorts;
  3049. }
  3050. static void ql_display_dev_info(struct net_device *ndev)
  3051. {
  3052. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  3053. struct pci_dev *pdev = qdev->pdev;
  3054. printk(KERN_INFO PFX
  3055. "\n%s Adapter %d RevisionID %d found %s on PCI slot %d.\n",
  3056. DRV_NAME, qdev->index, qdev->chip_rev_id,
  3057. (qdev->device_id == QL3032_DEVICE_ID) ? "QLA3032" : "QLA3022",
  3058. qdev->pci_slot);
  3059. printk(KERN_INFO PFX
  3060. "%s Interface.\n",
  3061. test_bit(QL_LINK_OPTICAL,&qdev->flags) ? "OPTICAL" : "COPPER");
  3062. /*
  3063. * Print PCI bus width/type.
  3064. */
  3065. printk(KERN_INFO PFX
  3066. "Bus interface is %s %s.\n",
  3067. ((qdev->pci_width == 64) ? "64-bit" : "32-bit"),
  3068. ((qdev->pci_x) ? "PCI-X" : "PCI"));
  3069. printk(KERN_INFO PFX
  3070. "mem IO base address adjusted = 0x%p\n",
  3071. qdev->mem_map_registers);
  3072. printk(KERN_INFO PFX "Interrupt number = %d\n", pdev->irq);
  3073. if (netif_msg_probe(qdev))
  3074. printk(KERN_INFO PFX
  3075. "%s: MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
  3076. ndev->name, ndev->dev_addr[0], ndev->dev_addr[1],
  3077. ndev->dev_addr[2], ndev->dev_addr[3], ndev->dev_addr[4],
  3078. ndev->dev_addr[5]);
  3079. }
  3080. static int ql_adapter_down(struct ql3_adapter *qdev, int do_reset)
  3081. {
  3082. struct net_device *ndev = qdev->ndev;
  3083. int retval = 0;
  3084. netif_stop_queue(ndev);
  3085. netif_carrier_off(ndev);
  3086. clear_bit(QL_ADAPTER_UP,&qdev->flags);
  3087. clear_bit(QL_LINK_MASTER,&qdev->flags);
  3088. ql_disable_interrupts(qdev);
  3089. free_irq(qdev->pdev->irq, ndev);
  3090. if (qdev->msi && test_bit(QL_MSI_ENABLED,&qdev->flags)) {
  3091. printk(KERN_INFO PFX
  3092. "%s: calling pci_disable_msi().\n", qdev->ndev->name);
  3093. clear_bit(QL_MSI_ENABLED,&qdev->flags);
  3094. pci_disable_msi(qdev->pdev);
  3095. }
  3096. del_timer_sync(&qdev->adapter_timer);
  3097. napi_disable(&qdev->napi);
  3098. if (do_reset) {
  3099. int soft_reset;
  3100. unsigned long hw_flags;
  3101. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3102. if (ql_wait_for_drvr_lock(qdev)) {
  3103. if ((soft_reset = ql_adapter_reset(qdev))) {
  3104. printk(KERN_ERR PFX
  3105. "%s: ql_adapter_reset(%d) FAILED!\n",
  3106. ndev->name, qdev->index);
  3107. }
  3108. printk(KERN_ERR PFX
  3109. "%s: Releaseing driver lock via chip reset.\n",ndev->name);
  3110. } else {
  3111. printk(KERN_ERR PFX
  3112. "%s: Could not acquire driver lock to do "
  3113. "reset!\n", ndev->name);
  3114. retval = -1;
  3115. }
  3116. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3117. }
  3118. ql_free_mem_resources(qdev);
  3119. return retval;
  3120. }
  3121. static int ql_adapter_up(struct ql3_adapter *qdev)
  3122. {
  3123. struct net_device *ndev = qdev->ndev;
  3124. int err;
  3125. unsigned long irq_flags = IRQF_SAMPLE_RANDOM | IRQF_SHARED;
  3126. unsigned long hw_flags;
  3127. if (ql_alloc_mem_resources(qdev)) {
  3128. printk(KERN_ERR PFX
  3129. "%s Unable to allocate buffers.\n", ndev->name);
  3130. return -ENOMEM;
  3131. }
  3132. if (qdev->msi) {
  3133. if (pci_enable_msi(qdev->pdev)) {
  3134. printk(KERN_ERR PFX
  3135. "%s: User requested MSI, but MSI failed to "
  3136. "initialize. Continuing without MSI.\n",
  3137. qdev->ndev->name);
  3138. qdev->msi = 0;
  3139. } else {
  3140. printk(KERN_INFO PFX "%s: MSI Enabled...\n", qdev->ndev->name);
  3141. set_bit(QL_MSI_ENABLED,&qdev->flags);
  3142. irq_flags &= ~IRQF_SHARED;
  3143. }
  3144. }
  3145. if ((err = request_irq(qdev->pdev->irq,
  3146. ql3xxx_isr,
  3147. irq_flags, ndev->name, ndev))) {
  3148. printk(KERN_ERR PFX
  3149. "%s: Failed to reserve interrupt %d already in use.\n",
  3150. ndev->name, qdev->pdev->irq);
  3151. goto err_irq;
  3152. }
  3153. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3154. if ((err = ql_wait_for_drvr_lock(qdev))) {
  3155. if ((err = ql_adapter_initialize(qdev))) {
  3156. printk(KERN_ERR PFX
  3157. "%s: Unable to initialize adapter.\n",
  3158. ndev->name);
  3159. goto err_init;
  3160. }
  3161. printk(KERN_ERR PFX
  3162. "%s: Releaseing driver lock.\n",ndev->name);
  3163. ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
  3164. } else {
  3165. printk(KERN_ERR PFX
  3166. "%s: Could not aquire driver lock.\n",
  3167. ndev->name);
  3168. goto err_lock;
  3169. }
  3170. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3171. set_bit(QL_ADAPTER_UP,&qdev->flags);
  3172. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  3173. napi_enable(&qdev->napi);
  3174. ql_enable_interrupts(qdev);
  3175. return 0;
  3176. err_init:
  3177. ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
  3178. err_lock:
  3179. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3180. free_irq(qdev->pdev->irq, ndev);
  3181. err_irq:
  3182. if (qdev->msi && test_bit(QL_MSI_ENABLED,&qdev->flags)) {
  3183. printk(KERN_INFO PFX
  3184. "%s: calling pci_disable_msi().\n",
  3185. qdev->ndev->name);
  3186. clear_bit(QL_MSI_ENABLED,&qdev->flags);
  3187. pci_disable_msi(qdev->pdev);
  3188. }
  3189. return err;
  3190. }
  3191. static int ql_cycle_adapter(struct ql3_adapter *qdev, int reset)
  3192. {
  3193. if( ql_adapter_down(qdev,reset) || ql_adapter_up(qdev)) {
  3194. printk(KERN_ERR PFX
  3195. "%s: Driver up/down cycle failed, "
  3196. "closing device\n",qdev->ndev->name);
  3197. dev_close(qdev->ndev);
  3198. return -1;
  3199. }
  3200. return 0;
  3201. }
  3202. static int ql3xxx_close(struct net_device *ndev)
  3203. {
  3204. struct ql3_adapter *qdev = netdev_priv(ndev);
  3205. /*
  3206. * Wait for device to recover from a reset.
  3207. * (Rarely happens, but possible.)
  3208. */
  3209. while (!test_bit(QL_ADAPTER_UP,&qdev->flags))
  3210. msleep(50);
  3211. ql_adapter_down(qdev,QL_DO_RESET);
  3212. return 0;
  3213. }
  3214. static int ql3xxx_open(struct net_device *ndev)
  3215. {
  3216. struct ql3_adapter *qdev = netdev_priv(ndev);
  3217. return (ql_adapter_up(qdev));
  3218. }
  3219. static struct net_device_stats *ql3xxx_get_stats(struct net_device *dev)
  3220. {
  3221. struct ql3_adapter *qdev = (struct ql3_adapter *)dev->priv;
  3222. return &qdev->stats;
  3223. }
  3224. static void ql3xxx_set_multicast_list(struct net_device *ndev)
  3225. {
  3226. /*
  3227. * We are manually parsing the list in the net_device structure.
  3228. */
  3229. return;
  3230. }
  3231. static int ql3xxx_set_mac_address(struct net_device *ndev, void *p)
  3232. {
  3233. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  3234. struct ql3xxx_port_registers __iomem *port_regs =
  3235. qdev->mem_map_registers;
  3236. struct sockaddr *addr = p;
  3237. unsigned long hw_flags;
  3238. if (netif_running(ndev))
  3239. return -EBUSY;
  3240. if (!is_valid_ether_addr(addr->sa_data))
  3241. return -EADDRNOTAVAIL;
  3242. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3243. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3244. /* Program lower 32 bits of the MAC address */
  3245. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  3246. (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
  3247. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  3248. ((ndev->dev_addr[2] << 24) | (ndev->
  3249. dev_addr[3] << 16) |
  3250. (ndev->dev_addr[4] << 8) | ndev->dev_addr[5]));
  3251. /* Program top 16 bits of the MAC address */
  3252. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  3253. ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
  3254. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  3255. ((ndev->dev_addr[0] << 8) | ndev->dev_addr[1]));
  3256. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3257. return 0;
  3258. }
  3259. static void ql3xxx_tx_timeout(struct net_device *ndev)
  3260. {
  3261. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  3262. printk(KERN_ERR PFX "%s: Resetting...\n", ndev->name);
  3263. /*
  3264. * Stop the queues, we've got a problem.
  3265. */
  3266. netif_stop_queue(ndev);
  3267. /*
  3268. * Wake up the worker to process this event.
  3269. */
  3270. queue_delayed_work(qdev->workqueue, &qdev->tx_timeout_work, 0);
  3271. }
  3272. static void ql_reset_work(struct work_struct *work)
  3273. {
  3274. struct ql3_adapter *qdev =
  3275. container_of(work, struct ql3_adapter, reset_work.work);
  3276. struct net_device *ndev = qdev->ndev;
  3277. u32 value;
  3278. struct ql_tx_buf_cb *tx_cb;
  3279. int max_wait_time, i;
  3280. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  3281. unsigned long hw_flags;
  3282. if (test_bit((QL_RESET_PER_SCSI | QL_RESET_START),&qdev->flags)) {
  3283. clear_bit(QL_LINK_MASTER,&qdev->flags);
  3284. /*
  3285. * Loop through the active list and return the skb.
  3286. */
  3287. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  3288. int j;
  3289. tx_cb = &qdev->tx_buf[i];
  3290. if (tx_cb->skb) {
  3291. printk(KERN_DEBUG PFX
  3292. "%s: Freeing lost SKB.\n",
  3293. qdev->ndev->name);
  3294. pci_unmap_single(qdev->pdev,
  3295. pci_unmap_addr(&tx_cb->map[0], mapaddr),
  3296. pci_unmap_len(&tx_cb->map[0], maplen),
  3297. PCI_DMA_TODEVICE);
  3298. for(j=1;j<tx_cb->seg_count;j++) {
  3299. pci_unmap_page(qdev->pdev,
  3300. pci_unmap_addr(&tx_cb->map[j],mapaddr),
  3301. pci_unmap_len(&tx_cb->map[j],maplen),
  3302. PCI_DMA_TODEVICE);
  3303. }
  3304. dev_kfree_skb(tx_cb->skb);
  3305. tx_cb->skb = NULL;
  3306. }
  3307. }
  3308. printk(KERN_ERR PFX
  3309. "%s: Clearing NRI after reset.\n", qdev->ndev->name);
  3310. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3311. ql_write_common_reg(qdev,
  3312. &port_regs->CommonRegs.
  3313. ispControlStatus,
  3314. ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
  3315. /*
  3316. * Wait the for Soft Reset to Complete.
  3317. */
  3318. max_wait_time = 10;
  3319. do {
  3320. value = ql_read_common_reg(qdev,
  3321. &port_regs->CommonRegs.
  3322. ispControlStatus);
  3323. if ((value & ISP_CONTROL_SR) == 0) {
  3324. printk(KERN_DEBUG PFX
  3325. "%s: reset completed.\n",
  3326. qdev->ndev->name);
  3327. break;
  3328. }
  3329. if (value & ISP_CONTROL_RI) {
  3330. printk(KERN_DEBUG PFX
  3331. "%s: clearing NRI after reset.\n",
  3332. qdev->ndev->name);
  3333. ql_write_common_reg(qdev,
  3334. &port_regs->
  3335. CommonRegs.
  3336. ispControlStatus,
  3337. ((ISP_CONTROL_RI <<
  3338. 16) | ISP_CONTROL_RI));
  3339. }
  3340. ssleep(1);
  3341. } while (--max_wait_time);
  3342. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3343. if (value & ISP_CONTROL_SR) {
  3344. /*
  3345. * Set the reset flags and clear the board again.
  3346. * Nothing else to do...
  3347. */
  3348. printk(KERN_ERR PFX
  3349. "%s: Timed out waiting for reset to "
  3350. "complete.\n", ndev->name);
  3351. printk(KERN_ERR PFX
  3352. "%s: Do a reset.\n", ndev->name);
  3353. clear_bit(QL_RESET_PER_SCSI,&qdev->flags);
  3354. clear_bit(QL_RESET_START,&qdev->flags);
  3355. ql_cycle_adapter(qdev,QL_DO_RESET);
  3356. return;
  3357. }
  3358. clear_bit(QL_RESET_ACTIVE,&qdev->flags);
  3359. clear_bit(QL_RESET_PER_SCSI,&qdev->flags);
  3360. clear_bit(QL_RESET_START,&qdev->flags);
  3361. ql_cycle_adapter(qdev,QL_NO_RESET);
  3362. }
  3363. }
  3364. static void ql_tx_timeout_work(struct work_struct *work)
  3365. {
  3366. struct ql3_adapter *qdev =
  3367. container_of(work, struct ql3_adapter, tx_timeout_work.work);
  3368. ql_cycle_adapter(qdev, QL_DO_RESET);
  3369. }
  3370. static void ql_get_board_info(struct ql3_adapter *qdev)
  3371. {
  3372. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  3373. u32 value;
  3374. value = ql_read_page0_reg_l(qdev, &port_regs->portStatus);
  3375. qdev->chip_rev_id = ((value & PORT_STATUS_REV_ID_MASK) >> 12);
  3376. if (value & PORT_STATUS_64)
  3377. qdev->pci_width = 64;
  3378. else
  3379. qdev->pci_width = 32;
  3380. if (value & PORT_STATUS_X)
  3381. qdev->pci_x = 1;
  3382. else
  3383. qdev->pci_x = 0;
  3384. qdev->pci_slot = (u8) PCI_SLOT(qdev->pdev->devfn);
  3385. }
  3386. static void ql3xxx_timer(unsigned long ptr)
  3387. {
  3388. struct ql3_adapter *qdev = (struct ql3_adapter *)ptr;
  3389. if (test_bit(QL_RESET_ACTIVE,&qdev->flags)) {
  3390. printk(KERN_DEBUG PFX
  3391. "%s: Reset in progress.\n",
  3392. qdev->ndev->name);
  3393. goto end;
  3394. }
  3395. ql_link_state_machine(qdev);
  3396. /* Restart timer on 2 second interval. */
  3397. end:
  3398. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  3399. }
  3400. static int __devinit ql3xxx_probe(struct pci_dev *pdev,
  3401. const struct pci_device_id *pci_entry)
  3402. {
  3403. struct net_device *ndev = NULL;
  3404. struct ql3_adapter *qdev = NULL;
  3405. static int cards_found = 0;
  3406. int pci_using_dac, err;
  3407. err = pci_enable_device(pdev);
  3408. if (err) {
  3409. printk(KERN_ERR PFX "%s cannot enable PCI device\n",
  3410. pci_name(pdev));
  3411. goto err_out;
  3412. }
  3413. err = pci_request_regions(pdev, DRV_NAME);
  3414. if (err) {
  3415. printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
  3416. pci_name(pdev));
  3417. goto err_out_disable_pdev;
  3418. }
  3419. pci_set_master(pdev);
  3420. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  3421. pci_using_dac = 1;
  3422. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  3423. } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  3424. pci_using_dac = 0;
  3425. err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  3426. }
  3427. if (err) {
  3428. printk(KERN_ERR PFX "%s no usable DMA configuration\n",
  3429. pci_name(pdev));
  3430. goto err_out_free_regions;
  3431. }
  3432. ndev = alloc_etherdev(sizeof(struct ql3_adapter));
  3433. if (!ndev) {
  3434. printk(KERN_ERR PFX "%s could not alloc etherdev\n",
  3435. pci_name(pdev));
  3436. err = -ENOMEM;
  3437. goto err_out_free_regions;
  3438. }
  3439. SET_MODULE_OWNER(ndev);
  3440. SET_NETDEV_DEV(ndev, &pdev->dev);
  3441. pci_set_drvdata(pdev, ndev);
  3442. qdev = netdev_priv(ndev);
  3443. qdev->index = cards_found;
  3444. qdev->ndev = ndev;
  3445. qdev->pdev = pdev;
  3446. qdev->device_id = pci_entry->device;
  3447. qdev->port_link_state = LS_DOWN;
  3448. if (msi)
  3449. qdev->msi = 1;
  3450. qdev->msg_enable = netif_msg_init(debug, default_msg);
  3451. if (pci_using_dac)
  3452. ndev->features |= NETIF_F_HIGHDMA;
  3453. if (qdev->device_id == QL3032_DEVICE_ID)
  3454. ndev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  3455. qdev->mem_map_registers =
  3456. ioremap_nocache(pci_resource_start(pdev, 1),
  3457. pci_resource_len(qdev->pdev, 1));
  3458. if (!qdev->mem_map_registers) {
  3459. printk(KERN_ERR PFX "%s: cannot map device registers\n",
  3460. pci_name(pdev));
  3461. err = -EIO;
  3462. goto err_out_free_ndev;
  3463. }
  3464. spin_lock_init(&qdev->adapter_lock);
  3465. spin_lock_init(&qdev->hw_lock);
  3466. /* Set driver entry points */
  3467. ndev->open = ql3xxx_open;
  3468. ndev->hard_start_xmit = ql3xxx_send;
  3469. ndev->stop = ql3xxx_close;
  3470. ndev->get_stats = ql3xxx_get_stats;
  3471. ndev->set_multicast_list = ql3xxx_set_multicast_list;
  3472. SET_ETHTOOL_OPS(ndev, &ql3xxx_ethtool_ops);
  3473. ndev->set_mac_address = ql3xxx_set_mac_address;
  3474. ndev->tx_timeout = ql3xxx_tx_timeout;
  3475. ndev->watchdog_timeo = 5 * HZ;
  3476. netif_napi_add(ndev, &qdev->napi, ql_poll, 64);
  3477. ndev->irq = pdev->irq;
  3478. /* make sure the EEPROM is good */
  3479. if (ql_get_nvram_params(qdev)) {
  3480. printk(KERN_ALERT PFX
  3481. "ql3xxx_probe: Adapter #%d, Invalid NVRAM parameters.\n",
  3482. qdev->index);
  3483. err = -EIO;
  3484. goto err_out_iounmap;
  3485. }
  3486. ql_set_mac_info(qdev);
  3487. /* Validate and set parameters */
  3488. if (qdev->mac_index) {
  3489. ndev->mtu = qdev->nvram_data.macCfg_port1.etherMtu_mac ;
  3490. memcpy(ndev->dev_addr, &qdev->nvram_data.funcCfg_fn2.macAddress,
  3491. ETH_ALEN);
  3492. } else {
  3493. ndev->mtu = qdev->nvram_data.macCfg_port0.etherMtu_mac ;
  3494. memcpy(ndev->dev_addr, &qdev->nvram_data.funcCfg_fn0.macAddress,
  3495. ETH_ALEN);
  3496. }
  3497. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3498. ndev->tx_queue_len = NUM_REQ_Q_ENTRIES;
  3499. /* Turn off support for multicasting */
  3500. ndev->flags &= ~IFF_MULTICAST;
  3501. /* Record PCI bus information. */
  3502. ql_get_board_info(qdev);
  3503. /*
  3504. * Set the Maximum Memory Read Byte Count value. We do this to handle
  3505. * jumbo frames.
  3506. */
  3507. if (qdev->pci_x) {
  3508. pci_write_config_word(pdev, (int)0x4e, (u16) 0x0036);
  3509. }
  3510. err = register_netdev(ndev);
  3511. if (err) {
  3512. printk(KERN_ERR PFX "%s: cannot register net device\n",
  3513. pci_name(pdev));
  3514. goto err_out_iounmap;
  3515. }
  3516. /* we're going to reset, so assume we have no link for now */
  3517. netif_carrier_off(ndev);
  3518. netif_stop_queue(ndev);
  3519. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  3520. INIT_DELAYED_WORK(&qdev->reset_work, ql_reset_work);
  3521. INIT_DELAYED_WORK(&qdev->tx_timeout_work, ql_tx_timeout_work);
  3522. init_timer(&qdev->adapter_timer);
  3523. qdev->adapter_timer.function = ql3xxx_timer;
  3524. qdev->adapter_timer.expires = jiffies + HZ * 2; /* two second delay */
  3525. qdev->adapter_timer.data = (unsigned long)qdev;
  3526. if(!cards_found) {
  3527. printk(KERN_ALERT PFX "%s\n", DRV_STRING);
  3528. printk(KERN_ALERT PFX "Driver name: %s, Version: %s.\n",
  3529. DRV_NAME, DRV_VERSION);
  3530. }
  3531. ql_display_dev_info(ndev);
  3532. cards_found++;
  3533. return 0;
  3534. err_out_iounmap:
  3535. iounmap(qdev->mem_map_registers);
  3536. err_out_free_ndev:
  3537. free_netdev(ndev);
  3538. err_out_free_regions:
  3539. pci_release_regions(pdev);
  3540. err_out_disable_pdev:
  3541. pci_disable_device(pdev);
  3542. pci_set_drvdata(pdev, NULL);
  3543. err_out:
  3544. return err;
  3545. }
  3546. static void __devexit ql3xxx_remove(struct pci_dev *pdev)
  3547. {
  3548. struct net_device *ndev = pci_get_drvdata(pdev);
  3549. struct ql3_adapter *qdev = netdev_priv(ndev);
  3550. unregister_netdev(ndev);
  3551. qdev = netdev_priv(ndev);
  3552. ql_disable_interrupts(qdev);
  3553. if (qdev->workqueue) {
  3554. cancel_delayed_work(&qdev->reset_work);
  3555. cancel_delayed_work(&qdev->tx_timeout_work);
  3556. destroy_workqueue(qdev->workqueue);
  3557. qdev->workqueue = NULL;
  3558. }
  3559. iounmap(qdev->mem_map_registers);
  3560. pci_release_regions(pdev);
  3561. pci_set_drvdata(pdev, NULL);
  3562. free_netdev(ndev);
  3563. }
  3564. static struct pci_driver ql3xxx_driver = {
  3565. .name = DRV_NAME,
  3566. .id_table = ql3xxx_pci_tbl,
  3567. .probe = ql3xxx_probe,
  3568. .remove = __devexit_p(ql3xxx_remove),
  3569. };
  3570. static int __init ql3xxx_init_module(void)
  3571. {
  3572. return pci_register_driver(&ql3xxx_driver);
  3573. }
  3574. static void __exit ql3xxx_exit(void)
  3575. {
  3576. pci_unregister_driver(&ql3xxx_driver);
  3577. }
  3578. module_init(ql3xxx_init_module);
  3579. module_exit(ql3xxx_exit);