smp.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677
  1. /*
  2. * linux/arch/arm/kernel/smp.c
  3. *
  4. * Copyright (C) 2002 ARM Limited, All Rights Reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/delay.h>
  12. #include <linux/init.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/sched.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/cache.h>
  17. #include <linux/profile.h>
  18. #include <linux/errno.h>
  19. #include <linux/mm.h>
  20. #include <linux/err.h>
  21. #include <linux/cpu.h>
  22. #include <linux/seq_file.h>
  23. #include <linux/irq.h>
  24. #include <linux/percpu.h>
  25. #include <linux/clockchips.h>
  26. #include <linux/completion.h>
  27. #include <linux/cpufreq.h>
  28. #include <linux/irq_work.h>
  29. #include <linux/atomic.h>
  30. #include <asm/smp.h>
  31. #include <asm/cacheflush.h>
  32. #include <asm/cpu.h>
  33. #include <asm/cputype.h>
  34. #include <asm/exception.h>
  35. #include <asm/idmap.h>
  36. #include <asm/topology.h>
  37. #include <asm/mmu_context.h>
  38. #include <asm/pgtable.h>
  39. #include <asm/pgalloc.h>
  40. #include <asm/processor.h>
  41. #include <asm/sections.h>
  42. #include <asm/tlbflush.h>
  43. #include <asm/ptrace.h>
  44. #include <asm/smp_plat.h>
  45. #include <asm/virt.h>
  46. #include <asm/mach/arch.h>
  47. #include <asm/mpu.h>
  48. /*
  49. * as from 2.5, kernels no longer have an init_tasks structure
  50. * so we need some other way of telling a new secondary core
  51. * where to place its SVC stack
  52. */
  53. struct secondary_data secondary_data;
  54. /*
  55. * control for which core is the next to come out of the secondary
  56. * boot "holding pen"
  57. */
  58. volatile int pen_release = -1;
  59. enum ipi_msg_type {
  60. IPI_WAKEUP,
  61. IPI_TIMER,
  62. IPI_RESCHEDULE,
  63. IPI_CALL_FUNC,
  64. IPI_CALL_FUNC_SINGLE,
  65. IPI_CPU_STOP,
  66. IPI_IRQ_WORK,
  67. };
  68. static DECLARE_COMPLETION(cpu_running);
  69. static struct smp_operations smp_ops;
  70. void __init smp_set_ops(struct smp_operations *ops)
  71. {
  72. if (ops)
  73. smp_ops = *ops;
  74. };
  75. static unsigned long get_arch_pgd(pgd_t *pgd)
  76. {
  77. phys_addr_t pgdir = virt_to_phys(pgd);
  78. BUG_ON(pgdir & ARCH_PGD_MASK);
  79. return pgdir >> ARCH_PGD_SHIFT;
  80. }
  81. int __cpu_up(unsigned int cpu, struct task_struct *idle)
  82. {
  83. int ret;
  84. /*
  85. * We need to tell the secondary core where to find
  86. * its stack and the page tables.
  87. */
  88. secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
  89. #ifdef CONFIG_ARM_MPU
  90. secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
  91. #endif
  92. #ifdef CONFIG_MMU
  93. secondary_data.pgdir = get_arch_pgd(idmap_pgd);
  94. secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
  95. #endif
  96. __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
  97. outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
  98. /*
  99. * Now bring the CPU into our world.
  100. */
  101. ret = boot_secondary(cpu, idle);
  102. if (ret == 0) {
  103. /*
  104. * CPU was successfully started, wait for it
  105. * to come online or time out.
  106. */
  107. wait_for_completion_timeout(&cpu_running,
  108. msecs_to_jiffies(1000));
  109. if (!cpu_online(cpu)) {
  110. pr_crit("CPU%u: failed to come online\n", cpu);
  111. ret = -EIO;
  112. }
  113. } else {
  114. pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
  115. }
  116. memset(&secondary_data, 0, sizeof(secondary_data));
  117. return ret;
  118. }
  119. /* platform specific SMP operations */
  120. void __init smp_init_cpus(void)
  121. {
  122. if (smp_ops.smp_init_cpus)
  123. smp_ops.smp_init_cpus();
  124. }
  125. int boot_secondary(unsigned int cpu, struct task_struct *idle)
  126. {
  127. if (smp_ops.smp_boot_secondary)
  128. return smp_ops.smp_boot_secondary(cpu, idle);
  129. return -ENOSYS;
  130. }
  131. int platform_can_cpu_hotplug(void)
  132. {
  133. #ifdef CONFIG_HOTPLUG_CPU
  134. if (smp_ops.cpu_kill)
  135. return 1;
  136. #endif
  137. return 0;
  138. }
  139. #ifdef CONFIG_HOTPLUG_CPU
  140. static int platform_cpu_kill(unsigned int cpu)
  141. {
  142. if (smp_ops.cpu_kill)
  143. return smp_ops.cpu_kill(cpu);
  144. return 1;
  145. }
  146. static int platform_cpu_disable(unsigned int cpu)
  147. {
  148. if (smp_ops.cpu_disable)
  149. return smp_ops.cpu_disable(cpu);
  150. /*
  151. * By default, allow disabling all CPUs except the first one,
  152. * since this is special on a lot of platforms, e.g. because
  153. * of clock tick interrupts.
  154. */
  155. return cpu == 0 ? -EPERM : 0;
  156. }
  157. /*
  158. * __cpu_disable runs on the processor to be shutdown.
  159. */
  160. int __cpu_disable(void)
  161. {
  162. unsigned int cpu = smp_processor_id();
  163. int ret;
  164. ret = platform_cpu_disable(cpu);
  165. if (ret)
  166. return ret;
  167. /*
  168. * Take this CPU offline. Once we clear this, we can't return,
  169. * and we must not schedule until we're ready to give up the cpu.
  170. */
  171. set_cpu_online(cpu, false);
  172. /*
  173. * OK - migrate IRQs away from this CPU
  174. */
  175. migrate_irqs();
  176. /*
  177. * Flush user cache and TLB mappings, and then remove this CPU
  178. * from the vm mask set of all processes.
  179. *
  180. * Caches are flushed to the Level of Unification Inner Shareable
  181. * to write-back dirty lines to unified caches shared by all CPUs.
  182. */
  183. flush_cache_louis();
  184. local_flush_tlb_all();
  185. clear_tasks_mm_cpumask(cpu);
  186. return 0;
  187. }
  188. static DECLARE_COMPLETION(cpu_died);
  189. /*
  190. * called on the thread which is asking for a CPU to be shutdown -
  191. * waits until shutdown has completed, or it is timed out.
  192. */
  193. void __cpu_die(unsigned int cpu)
  194. {
  195. if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
  196. pr_err("CPU%u: cpu didn't die\n", cpu);
  197. return;
  198. }
  199. printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
  200. /*
  201. * platform_cpu_kill() is generally expected to do the powering off
  202. * and/or cutting of clocks to the dying CPU. Optionally, this may
  203. * be done by the CPU which is dying in preference to supporting
  204. * this call, but that means there is _no_ synchronisation between
  205. * the requesting CPU and the dying CPU actually losing power.
  206. */
  207. if (!platform_cpu_kill(cpu))
  208. printk("CPU%u: unable to kill\n", cpu);
  209. }
  210. /*
  211. * Called from the idle thread for the CPU which has been shutdown.
  212. *
  213. * Note that we disable IRQs here, but do not re-enable them
  214. * before returning to the caller. This is also the behaviour
  215. * of the other hotplug-cpu capable cores, so presumably coming
  216. * out of idle fixes this.
  217. */
  218. void __ref cpu_die(void)
  219. {
  220. unsigned int cpu = smp_processor_id();
  221. idle_task_exit();
  222. local_irq_disable();
  223. /*
  224. * Flush the data out of the L1 cache for this CPU. This must be
  225. * before the completion to ensure that data is safely written out
  226. * before platform_cpu_kill() gets called - which may disable
  227. * *this* CPU and power down its cache.
  228. */
  229. flush_cache_louis();
  230. /*
  231. * Tell __cpu_die() that this CPU is now safe to dispose of. Once
  232. * this returns, power and/or clocks can be removed at any point
  233. * from this CPU and its cache by platform_cpu_kill().
  234. */
  235. complete(&cpu_died);
  236. /*
  237. * Ensure that the cache lines associated with that completion are
  238. * written out. This covers the case where _this_ CPU is doing the
  239. * powering down, to ensure that the completion is visible to the
  240. * CPU waiting for this one.
  241. */
  242. flush_cache_louis();
  243. /*
  244. * The actual CPU shutdown procedure is at least platform (if not
  245. * CPU) specific. This may remove power, or it may simply spin.
  246. *
  247. * Platforms are generally expected *NOT* to return from this call,
  248. * although there are some which do because they have no way to
  249. * power down the CPU. These platforms are the _only_ reason we
  250. * have a return path which uses the fragment of assembly below.
  251. *
  252. * The return path should not be used for platforms which can
  253. * power off the CPU.
  254. */
  255. if (smp_ops.cpu_die)
  256. smp_ops.cpu_die(cpu);
  257. /*
  258. * Do not return to the idle loop - jump back to the secondary
  259. * cpu initialisation. There's some initialisation which needs
  260. * to be repeated to undo the effects of taking the CPU offline.
  261. */
  262. __asm__("mov sp, %0\n"
  263. " mov fp, #0\n"
  264. " b secondary_start_kernel"
  265. :
  266. : "r" (task_stack_page(current) + THREAD_SIZE - 8));
  267. }
  268. #endif /* CONFIG_HOTPLUG_CPU */
  269. /*
  270. * Called by both boot and secondaries to move global data into
  271. * per-processor storage.
  272. */
  273. static void smp_store_cpu_info(unsigned int cpuid)
  274. {
  275. struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
  276. cpu_info->loops_per_jiffy = loops_per_jiffy;
  277. cpu_info->cpuid = read_cpuid_id();
  278. store_cpu_topology(cpuid);
  279. }
  280. /*
  281. * This is the secondary CPU boot entry. We're using this CPUs
  282. * idle thread stack, but a set of temporary page tables.
  283. */
  284. asmlinkage void secondary_start_kernel(void)
  285. {
  286. struct mm_struct *mm = &init_mm;
  287. unsigned int cpu;
  288. /*
  289. * The identity mapping is uncached (strongly ordered), so
  290. * switch away from it before attempting any exclusive accesses.
  291. */
  292. cpu_switch_mm(mm->pgd, mm);
  293. local_flush_bp_all();
  294. enter_lazy_tlb(mm, current);
  295. local_flush_tlb_all();
  296. /*
  297. * All kernel threads share the same mm context; grab a
  298. * reference and switch to it.
  299. */
  300. cpu = smp_processor_id();
  301. atomic_inc(&mm->mm_count);
  302. current->active_mm = mm;
  303. cpumask_set_cpu(cpu, mm_cpumask(mm));
  304. cpu_init();
  305. printk("CPU%u: Booted secondary processor\n", cpu);
  306. preempt_disable();
  307. trace_hardirqs_off();
  308. /*
  309. * Give the platform a chance to do its own initialisation.
  310. */
  311. if (smp_ops.smp_secondary_init)
  312. smp_ops.smp_secondary_init(cpu);
  313. notify_cpu_starting(cpu);
  314. calibrate_delay();
  315. smp_store_cpu_info(cpu);
  316. /*
  317. * OK, now it's safe to let the boot CPU continue. Wait for
  318. * the CPU migration code to notice that the CPU is online
  319. * before we continue - which happens after __cpu_up returns.
  320. */
  321. set_cpu_online(cpu, true);
  322. complete(&cpu_running);
  323. local_irq_enable();
  324. local_fiq_enable();
  325. /*
  326. * OK, it's off to the idle thread for us
  327. */
  328. cpu_startup_entry(CPUHP_ONLINE);
  329. }
  330. void __init smp_cpus_done(unsigned int max_cpus)
  331. {
  332. printk(KERN_INFO "SMP: Total of %d processors activated.\n",
  333. num_online_cpus());
  334. hyp_mode_check();
  335. }
  336. void __init smp_prepare_boot_cpu(void)
  337. {
  338. set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
  339. }
  340. void __init smp_prepare_cpus(unsigned int max_cpus)
  341. {
  342. unsigned int ncores = num_possible_cpus();
  343. init_cpu_topology();
  344. smp_store_cpu_info(smp_processor_id());
  345. /*
  346. * are we trying to boot more cores than exist?
  347. */
  348. if (max_cpus > ncores)
  349. max_cpus = ncores;
  350. if (ncores > 1 && max_cpus) {
  351. /*
  352. * Initialise the present map, which describes the set of CPUs
  353. * actually populated at the present time. A platform should
  354. * re-initialize the map in the platforms smp_prepare_cpus()
  355. * if present != possible (e.g. physical hotplug).
  356. */
  357. init_cpu_present(cpu_possible_mask);
  358. /*
  359. * Initialise the SCU if there are more than one CPU
  360. * and let them know where to start.
  361. */
  362. if (smp_ops.smp_prepare_cpus)
  363. smp_ops.smp_prepare_cpus(max_cpus);
  364. }
  365. }
  366. static void (*smp_cross_call)(const struct cpumask *, unsigned int);
  367. void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
  368. {
  369. if (!smp_cross_call)
  370. smp_cross_call = fn;
  371. }
  372. void arch_send_call_function_ipi_mask(const struct cpumask *mask)
  373. {
  374. smp_cross_call(mask, IPI_CALL_FUNC);
  375. }
  376. void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
  377. {
  378. smp_cross_call(mask, IPI_WAKEUP);
  379. }
  380. void arch_send_call_function_single_ipi(int cpu)
  381. {
  382. smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
  383. }
  384. #ifdef CONFIG_IRQ_WORK
  385. void arch_irq_work_raise(void)
  386. {
  387. smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
  388. }
  389. #endif
  390. static const char *ipi_types[NR_IPI] = {
  391. #define S(x,s) [x] = s
  392. S(IPI_WAKEUP, "CPU wakeup interrupts"),
  393. S(IPI_TIMER, "Timer broadcast interrupts"),
  394. S(IPI_RESCHEDULE, "Rescheduling interrupts"),
  395. S(IPI_CALL_FUNC, "Function call interrupts"),
  396. S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
  397. S(IPI_CPU_STOP, "CPU stop interrupts"),
  398. S(IPI_IRQ_WORK, "IRQ work interrupts"),
  399. };
  400. void show_ipi_list(struct seq_file *p, int prec)
  401. {
  402. unsigned int cpu, i;
  403. for (i = 0; i < NR_IPI; i++) {
  404. seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
  405. for_each_online_cpu(cpu)
  406. seq_printf(p, "%10u ",
  407. __get_irq_stat(cpu, ipi_irqs[i]));
  408. seq_printf(p, " %s\n", ipi_types[i]);
  409. }
  410. }
  411. u64 smp_irq_stat_cpu(unsigned int cpu)
  412. {
  413. u64 sum = 0;
  414. int i;
  415. for (i = 0; i < NR_IPI; i++)
  416. sum += __get_irq_stat(cpu, ipi_irqs[i]);
  417. return sum;
  418. }
  419. #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
  420. void tick_broadcast(const struct cpumask *mask)
  421. {
  422. smp_cross_call(mask, IPI_TIMER);
  423. }
  424. #endif
  425. static DEFINE_RAW_SPINLOCK(stop_lock);
  426. /*
  427. * ipi_cpu_stop - handle IPI from smp_send_stop()
  428. */
  429. static void ipi_cpu_stop(unsigned int cpu)
  430. {
  431. if (system_state == SYSTEM_BOOTING ||
  432. system_state == SYSTEM_RUNNING) {
  433. raw_spin_lock(&stop_lock);
  434. printk(KERN_CRIT "CPU%u: stopping\n", cpu);
  435. dump_stack();
  436. raw_spin_unlock(&stop_lock);
  437. }
  438. set_cpu_online(cpu, false);
  439. local_fiq_disable();
  440. local_irq_disable();
  441. while (1)
  442. cpu_relax();
  443. }
  444. /*
  445. * Main handler for inter-processor interrupts
  446. */
  447. asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
  448. {
  449. handle_IPI(ipinr, regs);
  450. }
  451. void handle_IPI(int ipinr, struct pt_regs *regs)
  452. {
  453. unsigned int cpu = smp_processor_id();
  454. struct pt_regs *old_regs = set_irq_regs(regs);
  455. if (ipinr < NR_IPI)
  456. __inc_irq_stat(cpu, ipi_irqs[ipinr]);
  457. switch (ipinr) {
  458. case IPI_WAKEUP:
  459. break;
  460. #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
  461. case IPI_TIMER:
  462. irq_enter();
  463. tick_receive_broadcast();
  464. irq_exit();
  465. break;
  466. #endif
  467. case IPI_RESCHEDULE:
  468. scheduler_ipi();
  469. break;
  470. case IPI_CALL_FUNC:
  471. irq_enter();
  472. generic_smp_call_function_interrupt();
  473. irq_exit();
  474. break;
  475. case IPI_CALL_FUNC_SINGLE:
  476. irq_enter();
  477. generic_smp_call_function_single_interrupt();
  478. irq_exit();
  479. break;
  480. case IPI_CPU_STOP:
  481. irq_enter();
  482. ipi_cpu_stop(cpu);
  483. irq_exit();
  484. break;
  485. #ifdef CONFIG_IRQ_WORK
  486. case IPI_IRQ_WORK:
  487. irq_enter();
  488. irq_work_run();
  489. irq_exit();
  490. break;
  491. #endif
  492. default:
  493. printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
  494. cpu, ipinr);
  495. break;
  496. }
  497. set_irq_regs(old_regs);
  498. }
  499. void smp_send_reschedule(int cpu)
  500. {
  501. smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
  502. }
  503. void smp_send_stop(void)
  504. {
  505. unsigned long timeout;
  506. struct cpumask mask;
  507. cpumask_copy(&mask, cpu_online_mask);
  508. cpumask_clear_cpu(smp_processor_id(), &mask);
  509. if (!cpumask_empty(&mask))
  510. smp_cross_call(&mask, IPI_CPU_STOP);
  511. /* Wait up to one second for other CPUs to stop */
  512. timeout = USEC_PER_SEC;
  513. while (num_online_cpus() > 1 && timeout--)
  514. udelay(1);
  515. if (num_online_cpus() > 1)
  516. pr_warning("SMP: failed to stop secondary CPUs\n");
  517. }
  518. /*
  519. * not supported here
  520. */
  521. int setup_profiling_timer(unsigned int multiplier)
  522. {
  523. return -EINVAL;
  524. }
  525. #ifdef CONFIG_CPU_FREQ
  526. static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
  527. static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
  528. static unsigned long global_l_p_j_ref;
  529. static unsigned long global_l_p_j_ref_freq;
  530. static int cpufreq_callback(struct notifier_block *nb,
  531. unsigned long val, void *data)
  532. {
  533. struct cpufreq_freqs *freq = data;
  534. int cpu = freq->cpu;
  535. if (freq->flags & CPUFREQ_CONST_LOOPS)
  536. return NOTIFY_OK;
  537. if (!per_cpu(l_p_j_ref, cpu)) {
  538. per_cpu(l_p_j_ref, cpu) =
  539. per_cpu(cpu_data, cpu).loops_per_jiffy;
  540. per_cpu(l_p_j_ref_freq, cpu) = freq->old;
  541. if (!global_l_p_j_ref) {
  542. global_l_p_j_ref = loops_per_jiffy;
  543. global_l_p_j_ref_freq = freq->old;
  544. }
  545. }
  546. if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
  547. (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
  548. (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
  549. loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
  550. global_l_p_j_ref_freq,
  551. freq->new);
  552. per_cpu(cpu_data, cpu).loops_per_jiffy =
  553. cpufreq_scale(per_cpu(l_p_j_ref, cpu),
  554. per_cpu(l_p_j_ref_freq, cpu),
  555. freq->new);
  556. }
  557. return NOTIFY_OK;
  558. }
  559. static struct notifier_block cpufreq_notifier = {
  560. .notifier_call = cpufreq_callback,
  561. };
  562. static int __init register_cpufreq_notifier(void)
  563. {
  564. return cpufreq_register_notifier(&cpufreq_notifier,
  565. CPUFREQ_TRANSITION_NOTIFIER);
  566. }
  567. core_initcall(register_cpufreq_notifier);
  568. #endif