huge_memory.c 62 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/sched.h>
  9. #include <linux/highmem.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/mm_inline.h>
  15. #include <linux/kthread.h>
  16. #include <linux/khugepaged.h>
  17. #include <linux/freezer.h>
  18. #include <linux/mman.h>
  19. #include <asm/tlb.h>
  20. #include <asm/pgalloc.h>
  21. #include "internal.h"
  22. /*
  23. * By default transparent hugepage support is enabled for all mappings
  24. * and khugepaged scans all mappings. Defrag is only invoked by
  25. * khugepaged hugepage allocations and by page faults inside
  26. * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  27. * allocations.
  28. */
  29. unsigned long transparent_hugepage_flags __read_mostly =
  30. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  31. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  32. #endif
  33. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  34. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  35. #endif
  36. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  37. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  38. /* default scan 8*512 pte (or vmas) every 30 second */
  39. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  40. static unsigned int khugepaged_pages_collapsed;
  41. static unsigned int khugepaged_full_scans;
  42. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  43. /* during fragmentation poll the hugepage allocator once every minute */
  44. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  45. static struct task_struct *khugepaged_thread __read_mostly;
  46. static DEFINE_MUTEX(khugepaged_mutex);
  47. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  48. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  49. /*
  50. * default collapse hugepages if there is at least one pte mapped like
  51. * it would have happened if the vma was large enough during page
  52. * fault.
  53. */
  54. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  55. static int khugepaged(void *none);
  56. static int mm_slots_hash_init(void);
  57. static int khugepaged_slab_init(void);
  58. static void khugepaged_slab_free(void);
  59. #define MM_SLOTS_HASH_HEADS 1024
  60. static struct hlist_head *mm_slots_hash __read_mostly;
  61. static struct kmem_cache *mm_slot_cache __read_mostly;
  62. /**
  63. * struct mm_slot - hash lookup from mm to mm_slot
  64. * @hash: hash collision list
  65. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  66. * @mm: the mm that this information is valid for
  67. */
  68. struct mm_slot {
  69. struct hlist_node hash;
  70. struct list_head mm_node;
  71. struct mm_struct *mm;
  72. };
  73. /**
  74. * struct khugepaged_scan - cursor for scanning
  75. * @mm_head: the head of the mm list to scan
  76. * @mm_slot: the current mm_slot we are scanning
  77. * @address: the next address inside that to be scanned
  78. *
  79. * There is only the one khugepaged_scan instance of this cursor structure.
  80. */
  81. struct khugepaged_scan {
  82. struct list_head mm_head;
  83. struct mm_slot *mm_slot;
  84. unsigned long address;
  85. };
  86. static struct khugepaged_scan khugepaged_scan = {
  87. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  88. };
  89. static int set_recommended_min_free_kbytes(void)
  90. {
  91. struct zone *zone;
  92. int nr_zones = 0;
  93. unsigned long recommended_min;
  94. extern int min_free_kbytes;
  95. if (!khugepaged_enabled())
  96. return 0;
  97. for_each_populated_zone(zone)
  98. nr_zones++;
  99. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  100. recommended_min = pageblock_nr_pages * nr_zones * 2;
  101. /*
  102. * Make sure that on average at least two pageblocks are almost free
  103. * of another type, one for a migratetype to fall back to and a
  104. * second to avoid subsequent fallbacks of other types There are 3
  105. * MIGRATE_TYPES we care about.
  106. */
  107. recommended_min += pageblock_nr_pages * nr_zones *
  108. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  109. /* don't ever allow to reserve more than 5% of the lowmem */
  110. recommended_min = min(recommended_min,
  111. (unsigned long) nr_free_buffer_pages() / 20);
  112. recommended_min <<= (PAGE_SHIFT-10);
  113. if (recommended_min > min_free_kbytes)
  114. min_free_kbytes = recommended_min;
  115. setup_per_zone_wmarks();
  116. return 0;
  117. }
  118. late_initcall(set_recommended_min_free_kbytes);
  119. static int start_khugepaged(void)
  120. {
  121. int err = 0;
  122. if (khugepaged_enabled()) {
  123. if (!khugepaged_thread)
  124. khugepaged_thread = kthread_run(khugepaged, NULL,
  125. "khugepaged");
  126. if (unlikely(IS_ERR(khugepaged_thread))) {
  127. printk(KERN_ERR
  128. "khugepaged: kthread_run(khugepaged) failed\n");
  129. err = PTR_ERR(khugepaged_thread);
  130. khugepaged_thread = NULL;
  131. }
  132. if (!list_empty(&khugepaged_scan.mm_head))
  133. wake_up_interruptible(&khugepaged_wait);
  134. set_recommended_min_free_kbytes();
  135. } else if (khugepaged_thread) {
  136. kthread_stop(khugepaged_thread);
  137. khugepaged_thread = NULL;
  138. }
  139. return err;
  140. }
  141. #ifdef CONFIG_SYSFS
  142. static ssize_t double_flag_show(struct kobject *kobj,
  143. struct kobj_attribute *attr, char *buf,
  144. enum transparent_hugepage_flag enabled,
  145. enum transparent_hugepage_flag req_madv)
  146. {
  147. if (test_bit(enabled, &transparent_hugepage_flags)) {
  148. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  149. return sprintf(buf, "[always] madvise never\n");
  150. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  151. return sprintf(buf, "always [madvise] never\n");
  152. else
  153. return sprintf(buf, "always madvise [never]\n");
  154. }
  155. static ssize_t double_flag_store(struct kobject *kobj,
  156. struct kobj_attribute *attr,
  157. const char *buf, size_t count,
  158. enum transparent_hugepage_flag enabled,
  159. enum transparent_hugepage_flag req_madv)
  160. {
  161. if (!memcmp("always", buf,
  162. min(sizeof("always")-1, count))) {
  163. set_bit(enabled, &transparent_hugepage_flags);
  164. clear_bit(req_madv, &transparent_hugepage_flags);
  165. } else if (!memcmp("madvise", buf,
  166. min(sizeof("madvise")-1, count))) {
  167. clear_bit(enabled, &transparent_hugepage_flags);
  168. set_bit(req_madv, &transparent_hugepage_flags);
  169. } else if (!memcmp("never", buf,
  170. min(sizeof("never")-1, count))) {
  171. clear_bit(enabled, &transparent_hugepage_flags);
  172. clear_bit(req_madv, &transparent_hugepage_flags);
  173. } else
  174. return -EINVAL;
  175. return count;
  176. }
  177. static ssize_t enabled_show(struct kobject *kobj,
  178. struct kobj_attribute *attr, char *buf)
  179. {
  180. return double_flag_show(kobj, attr, buf,
  181. TRANSPARENT_HUGEPAGE_FLAG,
  182. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  183. }
  184. static ssize_t enabled_store(struct kobject *kobj,
  185. struct kobj_attribute *attr,
  186. const char *buf, size_t count)
  187. {
  188. ssize_t ret;
  189. ret = double_flag_store(kobj, attr, buf, count,
  190. TRANSPARENT_HUGEPAGE_FLAG,
  191. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  192. if (ret > 0) {
  193. int err;
  194. mutex_lock(&khugepaged_mutex);
  195. err = start_khugepaged();
  196. mutex_unlock(&khugepaged_mutex);
  197. if (err)
  198. ret = err;
  199. }
  200. return ret;
  201. }
  202. static struct kobj_attribute enabled_attr =
  203. __ATTR(enabled, 0644, enabled_show, enabled_store);
  204. static ssize_t single_flag_show(struct kobject *kobj,
  205. struct kobj_attribute *attr, char *buf,
  206. enum transparent_hugepage_flag flag)
  207. {
  208. return sprintf(buf, "%d\n",
  209. !!test_bit(flag, &transparent_hugepage_flags));
  210. }
  211. static ssize_t single_flag_store(struct kobject *kobj,
  212. struct kobj_attribute *attr,
  213. const char *buf, size_t count,
  214. enum transparent_hugepage_flag flag)
  215. {
  216. unsigned long value;
  217. int ret;
  218. ret = kstrtoul(buf, 10, &value);
  219. if (ret < 0)
  220. return ret;
  221. if (value > 1)
  222. return -EINVAL;
  223. if (value)
  224. set_bit(flag, &transparent_hugepage_flags);
  225. else
  226. clear_bit(flag, &transparent_hugepage_flags);
  227. return count;
  228. }
  229. /*
  230. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  231. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  232. * memory just to allocate one more hugepage.
  233. */
  234. static ssize_t defrag_show(struct kobject *kobj,
  235. struct kobj_attribute *attr, char *buf)
  236. {
  237. return double_flag_show(kobj, attr, buf,
  238. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  239. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  240. }
  241. static ssize_t defrag_store(struct kobject *kobj,
  242. struct kobj_attribute *attr,
  243. const char *buf, size_t count)
  244. {
  245. return double_flag_store(kobj, attr, buf, count,
  246. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  247. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  248. }
  249. static struct kobj_attribute defrag_attr =
  250. __ATTR(defrag, 0644, defrag_show, defrag_store);
  251. #ifdef CONFIG_DEBUG_VM
  252. static ssize_t debug_cow_show(struct kobject *kobj,
  253. struct kobj_attribute *attr, char *buf)
  254. {
  255. return single_flag_show(kobj, attr, buf,
  256. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  257. }
  258. static ssize_t debug_cow_store(struct kobject *kobj,
  259. struct kobj_attribute *attr,
  260. const char *buf, size_t count)
  261. {
  262. return single_flag_store(kobj, attr, buf, count,
  263. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  264. }
  265. static struct kobj_attribute debug_cow_attr =
  266. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  267. #endif /* CONFIG_DEBUG_VM */
  268. static struct attribute *hugepage_attr[] = {
  269. &enabled_attr.attr,
  270. &defrag_attr.attr,
  271. #ifdef CONFIG_DEBUG_VM
  272. &debug_cow_attr.attr,
  273. #endif
  274. NULL,
  275. };
  276. static struct attribute_group hugepage_attr_group = {
  277. .attrs = hugepage_attr,
  278. };
  279. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  280. struct kobj_attribute *attr,
  281. char *buf)
  282. {
  283. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  284. }
  285. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  286. struct kobj_attribute *attr,
  287. const char *buf, size_t count)
  288. {
  289. unsigned long msecs;
  290. int err;
  291. err = strict_strtoul(buf, 10, &msecs);
  292. if (err || msecs > UINT_MAX)
  293. return -EINVAL;
  294. khugepaged_scan_sleep_millisecs = msecs;
  295. wake_up_interruptible(&khugepaged_wait);
  296. return count;
  297. }
  298. static struct kobj_attribute scan_sleep_millisecs_attr =
  299. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  300. scan_sleep_millisecs_store);
  301. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  302. struct kobj_attribute *attr,
  303. char *buf)
  304. {
  305. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  306. }
  307. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  308. struct kobj_attribute *attr,
  309. const char *buf, size_t count)
  310. {
  311. unsigned long msecs;
  312. int err;
  313. err = strict_strtoul(buf, 10, &msecs);
  314. if (err || msecs > UINT_MAX)
  315. return -EINVAL;
  316. khugepaged_alloc_sleep_millisecs = msecs;
  317. wake_up_interruptible(&khugepaged_wait);
  318. return count;
  319. }
  320. static struct kobj_attribute alloc_sleep_millisecs_attr =
  321. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  322. alloc_sleep_millisecs_store);
  323. static ssize_t pages_to_scan_show(struct kobject *kobj,
  324. struct kobj_attribute *attr,
  325. char *buf)
  326. {
  327. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  328. }
  329. static ssize_t pages_to_scan_store(struct kobject *kobj,
  330. struct kobj_attribute *attr,
  331. const char *buf, size_t count)
  332. {
  333. int err;
  334. unsigned long pages;
  335. err = strict_strtoul(buf, 10, &pages);
  336. if (err || !pages || pages > UINT_MAX)
  337. return -EINVAL;
  338. khugepaged_pages_to_scan = pages;
  339. return count;
  340. }
  341. static struct kobj_attribute pages_to_scan_attr =
  342. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  343. pages_to_scan_store);
  344. static ssize_t pages_collapsed_show(struct kobject *kobj,
  345. struct kobj_attribute *attr,
  346. char *buf)
  347. {
  348. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  349. }
  350. static struct kobj_attribute pages_collapsed_attr =
  351. __ATTR_RO(pages_collapsed);
  352. static ssize_t full_scans_show(struct kobject *kobj,
  353. struct kobj_attribute *attr,
  354. char *buf)
  355. {
  356. return sprintf(buf, "%u\n", khugepaged_full_scans);
  357. }
  358. static struct kobj_attribute full_scans_attr =
  359. __ATTR_RO(full_scans);
  360. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  361. struct kobj_attribute *attr, char *buf)
  362. {
  363. return single_flag_show(kobj, attr, buf,
  364. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  365. }
  366. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  367. struct kobj_attribute *attr,
  368. const char *buf, size_t count)
  369. {
  370. return single_flag_store(kobj, attr, buf, count,
  371. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  372. }
  373. static struct kobj_attribute khugepaged_defrag_attr =
  374. __ATTR(defrag, 0644, khugepaged_defrag_show,
  375. khugepaged_defrag_store);
  376. /*
  377. * max_ptes_none controls if khugepaged should collapse hugepages over
  378. * any unmapped ptes in turn potentially increasing the memory
  379. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  380. * reduce the available free memory in the system as it
  381. * runs. Increasing max_ptes_none will instead potentially reduce the
  382. * free memory in the system during the khugepaged scan.
  383. */
  384. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  385. struct kobj_attribute *attr,
  386. char *buf)
  387. {
  388. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  389. }
  390. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  391. struct kobj_attribute *attr,
  392. const char *buf, size_t count)
  393. {
  394. int err;
  395. unsigned long max_ptes_none;
  396. err = strict_strtoul(buf, 10, &max_ptes_none);
  397. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  398. return -EINVAL;
  399. khugepaged_max_ptes_none = max_ptes_none;
  400. return count;
  401. }
  402. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  403. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  404. khugepaged_max_ptes_none_store);
  405. static struct attribute *khugepaged_attr[] = {
  406. &khugepaged_defrag_attr.attr,
  407. &khugepaged_max_ptes_none_attr.attr,
  408. &pages_to_scan_attr.attr,
  409. &pages_collapsed_attr.attr,
  410. &full_scans_attr.attr,
  411. &scan_sleep_millisecs_attr.attr,
  412. &alloc_sleep_millisecs_attr.attr,
  413. NULL,
  414. };
  415. static struct attribute_group khugepaged_attr_group = {
  416. .attrs = khugepaged_attr,
  417. .name = "khugepaged",
  418. };
  419. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  420. {
  421. int err;
  422. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  423. if (unlikely(!*hugepage_kobj)) {
  424. printk(KERN_ERR "hugepage: failed kobject create\n");
  425. return -ENOMEM;
  426. }
  427. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  428. if (err) {
  429. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  430. goto delete_obj;
  431. }
  432. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  433. if (err) {
  434. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  435. goto remove_hp_group;
  436. }
  437. return 0;
  438. remove_hp_group:
  439. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  440. delete_obj:
  441. kobject_put(*hugepage_kobj);
  442. return err;
  443. }
  444. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  445. {
  446. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  447. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  448. kobject_put(hugepage_kobj);
  449. }
  450. #else
  451. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  452. {
  453. return 0;
  454. }
  455. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  456. {
  457. }
  458. #endif /* CONFIG_SYSFS */
  459. static int __init hugepage_init(void)
  460. {
  461. int err;
  462. struct kobject *hugepage_kobj;
  463. if (!has_transparent_hugepage()) {
  464. transparent_hugepage_flags = 0;
  465. return -EINVAL;
  466. }
  467. err = hugepage_init_sysfs(&hugepage_kobj);
  468. if (err)
  469. return err;
  470. err = khugepaged_slab_init();
  471. if (err)
  472. goto out;
  473. err = mm_slots_hash_init();
  474. if (err) {
  475. khugepaged_slab_free();
  476. goto out;
  477. }
  478. /*
  479. * By default disable transparent hugepages on smaller systems,
  480. * where the extra memory used could hurt more than TLB overhead
  481. * is likely to save. The admin can still enable it through /sys.
  482. */
  483. if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
  484. transparent_hugepage_flags = 0;
  485. start_khugepaged();
  486. return 0;
  487. out:
  488. hugepage_exit_sysfs(hugepage_kobj);
  489. return err;
  490. }
  491. module_init(hugepage_init)
  492. static int __init setup_transparent_hugepage(char *str)
  493. {
  494. int ret = 0;
  495. if (!str)
  496. goto out;
  497. if (!strcmp(str, "always")) {
  498. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  499. &transparent_hugepage_flags);
  500. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  501. &transparent_hugepage_flags);
  502. ret = 1;
  503. } else if (!strcmp(str, "madvise")) {
  504. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  505. &transparent_hugepage_flags);
  506. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  507. &transparent_hugepage_flags);
  508. ret = 1;
  509. } else if (!strcmp(str, "never")) {
  510. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  511. &transparent_hugepage_flags);
  512. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  513. &transparent_hugepage_flags);
  514. ret = 1;
  515. }
  516. out:
  517. if (!ret)
  518. printk(KERN_WARNING
  519. "transparent_hugepage= cannot parse, ignored\n");
  520. return ret;
  521. }
  522. __setup("transparent_hugepage=", setup_transparent_hugepage);
  523. static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  524. {
  525. if (likely(vma->vm_flags & VM_WRITE))
  526. pmd = pmd_mkwrite(pmd);
  527. return pmd;
  528. }
  529. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  530. struct vm_area_struct *vma,
  531. unsigned long haddr, pmd_t *pmd,
  532. struct page *page)
  533. {
  534. pgtable_t pgtable;
  535. VM_BUG_ON(!PageCompound(page));
  536. pgtable = pte_alloc_one(mm, haddr);
  537. if (unlikely(!pgtable))
  538. return VM_FAULT_OOM;
  539. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  540. __SetPageUptodate(page);
  541. spin_lock(&mm->page_table_lock);
  542. if (unlikely(!pmd_none(*pmd))) {
  543. spin_unlock(&mm->page_table_lock);
  544. mem_cgroup_uncharge_page(page);
  545. put_page(page);
  546. pte_free(mm, pgtable);
  547. } else {
  548. pmd_t entry;
  549. entry = mk_pmd(page, vma->vm_page_prot);
  550. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  551. entry = pmd_mkhuge(entry);
  552. /*
  553. * The spinlocking to take the lru_lock inside
  554. * page_add_new_anon_rmap() acts as a full memory
  555. * barrier to be sure clear_huge_page writes become
  556. * visible after the set_pmd_at() write.
  557. */
  558. page_add_new_anon_rmap(page, vma, haddr);
  559. set_pmd_at(mm, haddr, pmd, entry);
  560. pgtable_trans_huge_deposit(mm, pgtable);
  561. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  562. mm->nr_ptes++;
  563. spin_unlock(&mm->page_table_lock);
  564. }
  565. return 0;
  566. }
  567. static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
  568. {
  569. return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
  570. }
  571. static inline struct page *alloc_hugepage_vma(int defrag,
  572. struct vm_area_struct *vma,
  573. unsigned long haddr, int nd,
  574. gfp_t extra_gfp)
  575. {
  576. return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
  577. HPAGE_PMD_ORDER, vma, haddr, nd);
  578. }
  579. #ifndef CONFIG_NUMA
  580. static inline struct page *alloc_hugepage(int defrag)
  581. {
  582. return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
  583. HPAGE_PMD_ORDER);
  584. }
  585. #endif
  586. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  587. unsigned long address, pmd_t *pmd,
  588. unsigned int flags)
  589. {
  590. struct page *page;
  591. unsigned long haddr = address & HPAGE_PMD_MASK;
  592. pte_t *pte;
  593. if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
  594. if (unlikely(anon_vma_prepare(vma)))
  595. return VM_FAULT_OOM;
  596. if (unlikely(khugepaged_enter(vma)))
  597. return VM_FAULT_OOM;
  598. page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  599. vma, haddr, numa_node_id(), 0);
  600. if (unlikely(!page)) {
  601. count_vm_event(THP_FAULT_FALLBACK);
  602. goto out;
  603. }
  604. count_vm_event(THP_FAULT_ALLOC);
  605. if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
  606. put_page(page);
  607. goto out;
  608. }
  609. if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
  610. page))) {
  611. mem_cgroup_uncharge_page(page);
  612. put_page(page);
  613. goto out;
  614. }
  615. return 0;
  616. }
  617. out:
  618. /*
  619. * Use __pte_alloc instead of pte_alloc_map, because we can't
  620. * run pte_offset_map on the pmd, if an huge pmd could
  621. * materialize from under us from a different thread.
  622. */
  623. if (unlikely(__pte_alloc(mm, vma, pmd, address)))
  624. return VM_FAULT_OOM;
  625. /* if an huge pmd materialized from under us just retry later */
  626. if (unlikely(pmd_trans_huge(*pmd)))
  627. return 0;
  628. /*
  629. * A regular pmd is established and it can't morph into a huge pmd
  630. * from under us anymore at this point because we hold the mmap_sem
  631. * read mode and khugepaged takes it in write mode. So now it's
  632. * safe to run pte_offset_map().
  633. */
  634. pte = pte_offset_map(pmd, address);
  635. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  636. }
  637. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  638. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  639. struct vm_area_struct *vma)
  640. {
  641. struct page *src_page;
  642. pmd_t pmd;
  643. pgtable_t pgtable;
  644. int ret;
  645. ret = -ENOMEM;
  646. pgtable = pte_alloc_one(dst_mm, addr);
  647. if (unlikely(!pgtable))
  648. goto out;
  649. spin_lock(&dst_mm->page_table_lock);
  650. spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
  651. ret = -EAGAIN;
  652. pmd = *src_pmd;
  653. if (unlikely(!pmd_trans_huge(pmd))) {
  654. pte_free(dst_mm, pgtable);
  655. goto out_unlock;
  656. }
  657. if (unlikely(pmd_trans_splitting(pmd))) {
  658. /* split huge page running from under us */
  659. spin_unlock(&src_mm->page_table_lock);
  660. spin_unlock(&dst_mm->page_table_lock);
  661. pte_free(dst_mm, pgtable);
  662. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  663. goto out;
  664. }
  665. src_page = pmd_page(pmd);
  666. VM_BUG_ON(!PageHead(src_page));
  667. get_page(src_page);
  668. page_dup_rmap(src_page);
  669. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  670. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  671. pmd = pmd_mkold(pmd_wrprotect(pmd));
  672. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  673. pgtable_trans_huge_deposit(dst_mm, pgtable);
  674. dst_mm->nr_ptes++;
  675. ret = 0;
  676. out_unlock:
  677. spin_unlock(&src_mm->page_table_lock);
  678. spin_unlock(&dst_mm->page_table_lock);
  679. out:
  680. return ret;
  681. }
  682. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  683. struct vm_area_struct *vma,
  684. unsigned long address,
  685. pmd_t *pmd, pmd_t orig_pmd,
  686. struct page *page,
  687. unsigned long haddr)
  688. {
  689. pgtable_t pgtable;
  690. pmd_t _pmd;
  691. int ret = 0, i;
  692. struct page **pages;
  693. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  694. GFP_KERNEL);
  695. if (unlikely(!pages)) {
  696. ret |= VM_FAULT_OOM;
  697. goto out;
  698. }
  699. for (i = 0; i < HPAGE_PMD_NR; i++) {
  700. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  701. __GFP_OTHER_NODE,
  702. vma, address, page_to_nid(page));
  703. if (unlikely(!pages[i] ||
  704. mem_cgroup_newpage_charge(pages[i], mm,
  705. GFP_KERNEL))) {
  706. if (pages[i])
  707. put_page(pages[i]);
  708. mem_cgroup_uncharge_start();
  709. while (--i >= 0) {
  710. mem_cgroup_uncharge_page(pages[i]);
  711. put_page(pages[i]);
  712. }
  713. mem_cgroup_uncharge_end();
  714. kfree(pages);
  715. ret |= VM_FAULT_OOM;
  716. goto out;
  717. }
  718. }
  719. for (i = 0; i < HPAGE_PMD_NR; i++) {
  720. copy_user_highpage(pages[i], page + i,
  721. haddr + PAGE_SIZE * i, vma);
  722. __SetPageUptodate(pages[i]);
  723. cond_resched();
  724. }
  725. spin_lock(&mm->page_table_lock);
  726. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  727. goto out_free_pages;
  728. VM_BUG_ON(!PageHead(page));
  729. pmdp_clear_flush_notify(vma, haddr, pmd);
  730. /* leave pmd empty until pte is filled */
  731. pgtable = pgtable_trans_huge_withdraw(mm);
  732. pmd_populate(mm, &_pmd, pgtable);
  733. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  734. pte_t *pte, entry;
  735. entry = mk_pte(pages[i], vma->vm_page_prot);
  736. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  737. page_add_new_anon_rmap(pages[i], vma, haddr);
  738. pte = pte_offset_map(&_pmd, haddr);
  739. VM_BUG_ON(!pte_none(*pte));
  740. set_pte_at(mm, haddr, pte, entry);
  741. pte_unmap(pte);
  742. }
  743. kfree(pages);
  744. smp_wmb(); /* make pte visible before pmd */
  745. pmd_populate(mm, pmd, pgtable);
  746. page_remove_rmap(page);
  747. spin_unlock(&mm->page_table_lock);
  748. ret |= VM_FAULT_WRITE;
  749. put_page(page);
  750. out:
  751. return ret;
  752. out_free_pages:
  753. spin_unlock(&mm->page_table_lock);
  754. mem_cgroup_uncharge_start();
  755. for (i = 0; i < HPAGE_PMD_NR; i++) {
  756. mem_cgroup_uncharge_page(pages[i]);
  757. put_page(pages[i]);
  758. }
  759. mem_cgroup_uncharge_end();
  760. kfree(pages);
  761. goto out;
  762. }
  763. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  764. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  765. {
  766. int ret = 0;
  767. struct page *page, *new_page;
  768. unsigned long haddr;
  769. VM_BUG_ON(!vma->anon_vma);
  770. spin_lock(&mm->page_table_lock);
  771. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  772. goto out_unlock;
  773. page = pmd_page(orig_pmd);
  774. VM_BUG_ON(!PageCompound(page) || !PageHead(page));
  775. haddr = address & HPAGE_PMD_MASK;
  776. if (page_mapcount(page) == 1) {
  777. pmd_t entry;
  778. entry = pmd_mkyoung(orig_pmd);
  779. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  780. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  781. update_mmu_cache(vma, address, entry);
  782. ret |= VM_FAULT_WRITE;
  783. goto out_unlock;
  784. }
  785. get_page(page);
  786. spin_unlock(&mm->page_table_lock);
  787. if (transparent_hugepage_enabled(vma) &&
  788. !transparent_hugepage_debug_cow())
  789. new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  790. vma, haddr, numa_node_id(), 0);
  791. else
  792. new_page = NULL;
  793. if (unlikely(!new_page)) {
  794. count_vm_event(THP_FAULT_FALLBACK);
  795. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  796. pmd, orig_pmd, page, haddr);
  797. if (ret & VM_FAULT_OOM)
  798. split_huge_page(page);
  799. put_page(page);
  800. goto out;
  801. }
  802. count_vm_event(THP_FAULT_ALLOC);
  803. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  804. put_page(new_page);
  805. split_huge_page(page);
  806. put_page(page);
  807. ret |= VM_FAULT_OOM;
  808. goto out;
  809. }
  810. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  811. __SetPageUptodate(new_page);
  812. spin_lock(&mm->page_table_lock);
  813. put_page(page);
  814. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  815. spin_unlock(&mm->page_table_lock);
  816. mem_cgroup_uncharge_page(new_page);
  817. put_page(new_page);
  818. goto out;
  819. } else {
  820. pmd_t entry;
  821. VM_BUG_ON(!PageHead(page));
  822. entry = mk_pmd(new_page, vma->vm_page_prot);
  823. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  824. entry = pmd_mkhuge(entry);
  825. pmdp_clear_flush_notify(vma, haddr, pmd);
  826. page_add_new_anon_rmap(new_page, vma, haddr);
  827. set_pmd_at(mm, haddr, pmd, entry);
  828. update_mmu_cache(vma, address, entry);
  829. page_remove_rmap(page);
  830. put_page(page);
  831. ret |= VM_FAULT_WRITE;
  832. }
  833. out_unlock:
  834. spin_unlock(&mm->page_table_lock);
  835. out:
  836. return ret;
  837. }
  838. struct page *follow_trans_huge_pmd(struct mm_struct *mm,
  839. unsigned long addr,
  840. pmd_t *pmd,
  841. unsigned int flags)
  842. {
  843. struct page *page = NULL;
  844. assert_spin_locked(&mm->page_table_lock);
  845. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  846. goto out;
  847. page = pmd_page(*pmd);
  848. VM_BUG_ON(!PageHead(page));
  849. if (flags & FOLL_TOUCH) {
  850. pmd_t _pmd;
  851. /*
  852. * We should set the dirty bit only for FOLL_WRITE but
  853. * for now the dirty bit in the pmd is meaningless.
  854. * And if the dirty bit will become meaningful and
  855. * we'll only set it with FOLL_WRITE, an atomic
  856. * set_bit will be required on the pmd to set the
  857. * young bit, instead of the current set_pmd_at.
  858. */
  859. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  860. set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
  861. }
  862. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  863. VM_BUG_ON(!PageCompound(page));
  864. if (flags & FOLL_GET)
  865. get_page_foll(page);
  866. out:
  867. return page;
  868. }
  869. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  870. pmd_t *pmd, unsigned long addr)
  871. {
  872. int ret = 0;
  873. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  874. struct page *page;
  875. pgtable_t pgtable;
  876. pgtable = pgtable_trans_huge_withdraw(tlb->mm);
  877. page = pmd_page(*pmd);
  878. pmd_clear(pmd);
  879. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  880. page_remove_rmap(page);
  881. VM_BUG_ON(page_mapcount(page) < 0);
  882. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  883. VM_BUG_ON(!PageHead(page));
  884. tlb->mm->nr_ptes--;
  885. spin_unlock(&tlb->mm->page_table_lock);
  886. tlb_remove_page(tlb, page);
  887. pte_free(tlb->mm, pgtable);
  888. ret = 1;
  889. }
  890. return ret;
  891. }
  892. int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  893. unsigned long addr, unsigned long end,
  894. unsigned char *vec)
  895. {
  896. int ret = 0;
  897. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  898. /*
  899. * All logical pages in the range are present
  900. * if backed by a huge page.
  901. */
  902. spin_unlock(&vma->vm_mm->page_table_lock);
  903. memset(vec, 1, (end - addr) >> PAGE_SHIFT);
  904. ret = 1;
  905. }
  906. return ret;
  907. }
  908. int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
  909. unsigned long old_addr,
  910. unsigned long new_addr, unsigned long old_end,
  911. pmd_t *old_pmd, pmd_t *new_pmd)
  912. {
  913. int ret = 0;
  914. pmd_t pmd;
  915. struct mm_struct *mm = vma->vm_mm;
  916. if ((old_addr & ~HPAGE_PMD_MASK) ||
  917. (new_addr & ~HPAGE_PMD_MASK) ||
  918. old_end - old_addr < HPAGE_PMD_SIZE ||
  919. (new_vma->vm_flags & VM_NOHUGEPAGE))
  920. goto out;
  921. /*
  922. * The destination pmd shouldn't be established, free_pgtables()
  923. * should have release it.
  924. */
  925. if (WARN_ON(!pmd_none(*new_pmd))) {
  926. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  927. goto out;
  928. }
  929. ret = __pmd_trans_huge_lock(old_pmd, vma);
  930. if (ret == 1) {
  931. pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
  932. VM_BUG_ON(!pmd_none(*new_pmd));
  933. set_pmd_at(mm, new_addr, new_pmd, pmd);
  934. spin_unlock(&mm->page_table_lock);
  935. }
  936. out:
  937. return ret;
  938. }
  939. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  940. unsigned long addr, pgprot_t newprot)
  941. {
  942. struct mm_struct *mm = vma->vm_mm;
  943. int ret = 0;
  944. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  945. pmd_t entry;
  946. entry = pmdp_get_and_clear(mm, addr, pmd);
  947. entry = pmd_modify(entry, newprot);
  948. set_pmd_at(mm, addr, pmd, entry);
  949. spin_unlock(&vma->vm_mm->page_table_lock);
  950. ret = 1;
  951. }
  952. return ret;
  953. }
  954. /*
  955. * Returns 1 if a given pmd maps a stable (not under splitting) thp.
  956. * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
  957. *
  958. * Note that if it returns 1, this routine returns without unlocking page
  959. * table locks. So callers must unlock them.
  960. */
  961. int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  962. {
  963. spin_lock(&vma->vm_mm->page_table_lock);
  964. if (likely(pmd_trans_huge(*pmd))) {
  965. if (unlikely(pmd_trans_splitting(*pmd))) {
  966. spin_unlock(&vma->vm_mm->page_table_lock);
  967. wait_split_huge_page(vma->anon_vma, pmd);
  968. return -1;
  969. } else {
  970. /* Thp mapped by 'pmd' is stable, so we can
  971. * handle it as it is. */
  972. return 1;
  973. }
  974. }
  975. spin_unlock(&vma->vm_mm->page_table_lock);
  976. return 0;
  977. }
  978. pmd_t *page_check_address_pmd(struct page *page,
  979. struct mm_struct *mm,
  980. unsigned long address,
  981. enum page_check_address_pmd_flag flag)
  982. {
  983. pgd_t *pgd;
  984. pud_t *pud;
  985. pmd_t *pmd, *ret = NULL;
  986. if (address & ~HPAGE_PMD_MASK)
  987. goto out;
  988. pgd = pgd_offset(mm, address);
  989. if (!pgd_present(*pgd))
  990. goto out;
  991. pud = pud_offset(pgd, address);
  992. if (!pud_present(*pud))
  993. goto out;
  994. pmd = pmd_offset(pud, address);
  995. if (pmd_none(*pmd))
  996. goto out;
  997. if (pmd_page(*pmd) != page)
  998. goto out;
  999. /*
  1000. * split_vma() may create temporary aliased mappings. There is
  1001. * no risk as long as all huge pmd are found and have their
  1002. * splitting bit set before __split_huge_page_refcount
  1003. * runs. Finding the same huge pmd more than once during the
  1004. * same rmap walk is not a problem.
  1005. */
  1006. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  1007. pmd_trans_splitting(*pmd))
  1008. goto out;
  1009. if (pmd_trans_huge(*pmd)) {
  1010. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  1011. !pmd_trans_splitting(*pmd));
  1012. ret = pmd;
  1013. }
  1014. out:
  1015. return ret;
  1016. }
  1017. static int __split_huge_page_splitting(struct page *page,
  1018. struct vm_area_struct *vma,
  1019. unsigned long address)
  1020. {
  1021. struct mm_struct *mm = vma->vm_mm;
  1022. pmd_t *pmd;
  1023. int ret = 0;
  1024. spin_lock(&mm->page_table_lock);
  1025. pmd = page_check_address_pmd(page, mm, address,
  1026. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
  1027. if (pmd) {
  1028. /*
  1029. * We can't temporarily set the pmd to null in order
  1030. * to split it, the pmd must remain marked huge at all
  1031. * times or the VM won't take the pmd_trans_huge paths
  1032. * and it won't wait on the anon_vma->root->mutex to
  1033. * serialize against split_huge_page*.
  1034. */
  1035. pmdp_splitting_flush_notify(vma, address, pmd);
  1036. ret = 1;
  1037. }
  1038. spin_unlock(&mm->page_table_lock);
  1039. return ret;
  1040. }
  1041. static void __split_huge_page_refcount(struct page *page)
  1042. {
  1043. int i;
  1044. struct zone *zone = page_zone(page);
  1045. struct lruvec *lruvec;
  1046. int tail_count = 0;
  1047. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1048. spin_lock_irq(&zone->lru_lock);
  1049. lruvec = mem_cgroup_page_lruvec(page, zone);
  1050. compound_lock(page);
  1051. /* complete memcg works before add pages to LRU */
  1052. mem_cgroup_split_huge_fixup(page);
  1053. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  1054. struct page *page_tail = page + i;
  1055. /* tail_page->_mapcount cannot change */
  1056. BUG_ON(page_mapcount(page_tail) < 0);
  1057. tail_count += page_mapcount(page_tail);
  1058. /* check for overflow */
  1059. BUG_ON(tail_count < 0);
  1060. BUG_ON(atomic_read(&page_tail->_count) != 0);
  1061. /*
  1062. * tail_page->_count is zero and not changing from
  1063. * under us. But get_page_unless_zero() may be running
  1064. * from under us on the tail_page. If we used
  1065. * atomic_set() below instead of atomic_add(), we
  1066. * would then run atomic_set() concurrently with
  1067. * get_page_unless_zero(), and atomic_set() is
  1068. * implemented in C not using locked ops. spin_unlock
  1069. * on x86 sometime uses locked ops because of PPro
  1070. * errata 66, 92, so unless somebody can guarantee
  1071. * atomic_set() here would be safe on all archs (and
  1072. * not only on x86), it's safer to use atomic_add().
  1073. */
  1074. atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
  1075. &page_tail->_count);
  1076. /* after clearing PageTail the gup refcount can be released */
  1077. smp_mb();
  1078. /*
  1079. * retain hwpoison flag of the poisoned tail page:
  1080. * fix for the unsuitable process killed on Guest Machine(KVM)
  1081. * by the memory-failure.
  1082. */
  1083. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
  1084. page_tail->flags |= (page->flags &
  1085. ((1L << PG_referenced) |
  1086. (1L << PG_swapbacked) |
  1087. (1L << PG_mlocked) |
  1088. (1L << PG_uptodate)));
  1089. page_tail->flags |= (1L << PG_dirty);
  1090. /* clear PageTail before overwriting first_page */
  1091. smp_wmb();
  1092. /*
  1093. * __split_huge_page_splitting() already set the
  1094. * splitting bit in all pmd that could map this
  1095. * hugepage, that will ensure no CPU can alter the
  1096. * mapcount on the head page. The mapcount is only
  1097. * accounted in the head page and it has to be
  1098. * transferred to all tail pages in the below code. So
  1099. * for this code to be safe, the split the mapcount
  1100. * can't change. But that doesn't mean userland can't
  1101. * keep changing and reading the page contents while
  1102. * we transfer the mapcount, so the pmd splitting
  1103. * status is achieved setting a reserved bit in the
  1104. * pmd, not by clearing the present bit.
  1105. */
  1106. page_tail->_mapcount = page->_mapcount;
  1107. BUG_ON(page_tail->mapping);
  1108. page_tail->mapping = page->mapping;
  1109. page_tail->index = page->index + i;
  1110. BUG_ON(!PageAnon(page_tail));
  1111. BUG_ON(!PageUptodate(page_tail));
  1112. BUG_ON(!PageDirty(page_tail));
  1113. BUG_ON(!PageSwapBacked(page_tail));
  1114. lru_add_page_tail(page, page_tail, lruvec);
  1115. }
  1116. atomic_sub(tail_count, &page->_count);
  1117. BUG_ON(atomic_read(&page->_count) <= 0);
  1118. __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
  1119. __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
  1120. ClearPageCompound(page);
  1121. compound_unlock(page);
  1122. spin_unlock_irq(&zone->lru_lock);
  1123. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1124. struct page *page_tail = page + i;
  1125. BUG_ON(page_count(page_tail) <= 0);
  1126. /*
  1127. * Tail pages may be freed if there wasn't any mapping
  1128. * like if add_to_swap() is running on a lru page that
  1129. * had its mapping zapped. And freeing these pages
  1130. * requires taking the lru_lock so we do the put_page
  1131. * of the tail pages after the split is complete.
  1132. */
  1133. put_page(page_tail);
  1134. }
  1135. /*
  1136. * Only the head page (now become a regular page) is required
  1137. * to be pinned by the caller.
  1138. */
  1139. BUG_ON(page_count(page) <= 0);
  1140. }
  1141. static int __split_huge_page_map(struct page *page,
  1142. struct vm_area_struct *vma,
  1143. unsigned long address)
  1144. {
  1145. struct mm_struct *mm = vma->vm_mm;
  1146. pmd_t *pmd, _pmd;
  1147. int ret = 0, i;
  1148. pgtable_t pgtable;
  1149. unsigned long haddr;
  1150. spin_lock(&mm->page_table_lock);
  1151. pmd = page_check_address_pmd(page, mm, address,
  1152. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
  1153. if (pmd) {
  1154. pgtable = pgtable_trans_huge_withdraw(mm);
  1155. pmd_populate(mm, &_pmd, pgtable);
  1156. haddr = address;
  1157. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1158. pte_t *pte, entry;
  1159. BUG_ON(PageCompound(page+i));
  1160. entry = mk_pte(page + i, vma->vm_page_prot);
  1161. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1162. if (!pmd_write(*pmd))
  1163. entry = pte_wrprotect(entry);
  1164. else
  1165. BUG_ON(page_mapcount(page) != 1);
  1166. if (!pmd_young(*pmd))
  1167. entry = pte_mkold(entry);
  1168. pte = pte_offset_map(&_pmd, haddr);
  1169. BUG_ON(!pte_none(*pte));
  1170. set_pte_at(mm, haddr, pte, entry);
  1171. pte_unmap(pte);
  1172. }
  1173. smp_wmb(); /* make pte visible before pmd */
  1174. /*
  1175. * Up to this point the pmd is present and huge and
  1176. * userland has the whole access to the hugepage
  1177. * during the split (which happens in place). If we
  1178. * overwrite the pmd with the not-huge version
  1179. * pointing to the pte here (which of course we could
  1180. * if all CPUs were bug free), userland could trigger
  1181. * a small page size TLB miss on the small sized TLB
  1182. * while the hugepage TLB entry is still established
  1183. * in the huge TLB. Some CPU doesn't like that. See
  1184. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1185. * Erratum 383 on page 93. Intel should be safe but is
  1186. * also warns that it's only safe if the permission
  1187. * and cache attributes of the two entries loaded in
  1188. * the two TLB is identical (which should be the case
  1189. * here). But it is generally safer to never allow
  1190. * small and huge TLB entries for the same virtual
  1191. * address to be loaded simultaneously. So instead of
  1192. * doing "pmd_populate(); flush_tlb_range();" we first
  1193. * mark the current pmd notpresent (atomically because
  1194. * here the pmd_trans_huge and pmd_trans_splitting
  1195. * must remain set at all times on the pmd until the
  1196. * split is complete for this pmd), then we flush the
  1197. * SMP TLB and finally we write the non-huge version
  1198. * of the pmd entry with pmd_populate.
  1199. */
  1200. pmdp_invalidate(vma, address, pmd);
  1201. pmd_populate(mm, pmd, pgtable);
  1202. ret = 1;
  1203. }
  1204. spin_unlock(&mm->page_table_lock);
  1205. return ret;
  1206. }
  1207. /* must be called with anon_vma->root->mutex hold */
  1208. static void __split_huge_page(struct page *page,
  1209. struct anon_vma *anon_vma)
  1210. {
  1211. int mapcount, mapcount2;
  1212. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1213. struct anon_vma_chain *avc;
  1214. BUG_ON(!PageHead(page));
  1215. BUG_ON(PageTail(page));
  1216. mapcount = 0;
  1217. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1218. struct vm_area_struct *vma = avc->vma;
  1219. unsigned long addr = vma_address(page, vma);
  1220. BUG_ON(is_vma_temporary_stack(vma));
  1221. if (addr == -EFAULT)
  1222. continue;
  1223. mapcount += __split_huge_page_splitting(page, vma, addr);
  1224. }
  1225. /*
  1226. * It is critical that new vmas are added to the tail of the
  1227. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1228. * and establishes a child pmd before
  1229. * __split_huge_page_splitting() freezes the parent pmd (so if
  1230. * we fail to prevent copy_huge_pmd() from running until the
  1231. * whole __split_huge_page() is complete), we will still see
  1232. * the newly established pmd of the child later during the
  1233. * walk, to be able to set it as pmd_trans_splitting too.
  1234. */
  1235. if (mapcount != page_mapcount(page))
  1236. printk(KERN_ERR "mapcount %d page_mapcount %d\n",
  1237. mapcount, page_mapcount(page));
  1238. BUG_ON(mapcount != page_mapcount(page));
  1239. __split_huge_page_refcount(page);
  1240. mapcount2 = 0;
  1241. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1242. struct vm_area_struct *vma = avc->vma;
  1243. unsigned long addr = vma_address(page, vma);
  1244. BUG_ON(is_vma_temporary_stack(vma));
  1245. if (addr == -EFAULT)
  1246. continue;
  1247. mapcount2 += __split_huge_page_map(page, vma, addr);
  1248. }
  1249. if (mapcount != mapcount2)
  1250. printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
  1251. mapcount, mapcount2, page_mapcount(page));
  1252. BUG_ON(mapcount != mapcount2);
  1253. }
  1254. int split_huge_page(struct page *page)
  1255. {
  1256. struct anon_vma *anon_vma;
  1257. int ret = 1;
  1258. BUG_ON(!PageAnon(page));
  1259. anon_vma = page_lock_anon_vma(page);
  1260. if (!anon_vma)
  1261. goto out;
  1262. ret = 0;
  1263. if (!PageCompound(page))
  1264. goto out_unlock;
  1265. BUG_ON(!PageSwapBacked(page));
  1266. __split_huge_page(page, anon_vma);
  1267. count_vm_event(THP_SPLIT);
  1268. BUG_ON(PageCompound(page));
  1269. out_unlock:
  1270. page_unlock_anon_vma(anon_vma);
  1271. out:
  1272. return ret;
  1273. }
  1274. #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
  1275. int hugepage_madvise(struct vm_area_struct *vma,
  1276. unsigned long *vm_flags, int advice)
  1277. {
  1278. struct mm_struct *mm = vma->vm_mm;
  1279. switch (advice) {
  1280. case MADV_HUGEPAGE:
  1281. /*
  1282. * Be somewhat over-protective like KSM for now!
  1283. */
  1284. if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
  1285. return -EINVAL;
  1286. if (mm->def_flags & VM_NOHUGEPAGE)
  1287. return -EINVAL;
  1288. *vm_flags &= ~VM_NOHUGEPAGE;
  1289. *vm_flags |= VM_HUGEPAGE;
  1290. /*
  1291. * If the vma become good for khugepaged to scan,
  1292. * register it here without waiting a page fault that
  1293. * may not happen any time soon.
  1294. */
  1295. if (unlikely(khugepaged_enter_vma_merge(vma)))
  1296. return -ENOMEM;
  1297. break;
  1298. case MADV_NOHUGEPAGE:
  1299. /*
  1300. * Be somewhat over-protective like KSM for now!
  1301. */
  1302. if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
  1303. return -EINVAL;
  1304. *vm_flags &= ~VM_HUGEPAGE;
  1305. *vm_flags |= VM_NOHUGEPAGE;
  1306. /*
  1307. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1308. * this vma even if we leave the mm registered in khugepaged if
  1309. * it got registered before VM_NOHUGEPAGE was set.
  1310. */
  1311. break;
  1312. }
  1313. return 0;
  1314. }
  1315. static int __init khugepaged_slab_init(void)
  1316. {
  1317. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1318. sizeof(struct mm_slot),
  1319. __alignof__(struct mm_slot), 0, NULL);
  1320. if (!mm_slot_cache)
  1321. return -ENOMEM;
  1322. return 0;
  1323. }
  1324. static void __init khugepaged_slab_free(void)
  1325. {
  1326. kmem_cache_destroy(mm_slot_cache);
  1327. mm_slot_cache = NULL;
  1328. }
  1329. static inline struct mm_slot *alloc_mm_slot(void)
  1330. {
  1331. if (!mm_slot_cache) /* initialization failed */
  1332. return NULL;
  1333. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1334. }
  1335. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1336. {
  1337. kmem_cache_free(mm_slot_cache, mm_slot);
  1338. }
  1339. static int __init mm_slots_hash_init(void)
  1340. {
  1341. mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
  1342. GFP_KERNEL);
  1343. if (!mm_slots_hash)
  1344. return -ENOMEM;
  1345. return 0;
  1346. }
  1347. #if 0
  1348. static void __init mm_slots_hash_free(void)
  1349. {
  1350. kfree(mm_slots_hash);
  1351. mm_slots_hash = NULL;
  1352. }
  1353. #endif
  1354. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1355. {
  1356. struct mm_slot *mm_slot;
  1357. struct hlist_head *bucket;
  1358. struct hlist_node *node;
  1359. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1360. % MM_SLOTS_HASH_HEADS];
  1361. hlist_for_each_entry(mm_slot, node, bucket, hash) {
  1362. if (mm == mm_slot->mm)
  1363. return mm_slot;
  1364. }
  1365. return NULL;
  1366. }
  1367. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1368. struct mm_slot *mm_slot)
  1369. {
  1370. struct hlist_head *bucket;
  1371. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1372. % MM_SLOTS_HASH_HEADS];
  1373. mm_slot->mm = mm;
  1374. hlist_add_head(&mm_slot->hash, bucket);
  1375. }
  1376. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1377. {
  1378. return atomic_read(&mm->mm_users) == 0;
  1379. }
  1380. int __khugepaged_enter(struct mm_struct *mm)
  1381. {
  1382. struct mm_slot *mm_slot;
  1383. int wakeup;
  1384. mm_slot = alloc_mm_slot();
  1385. if (!mm_slot)
  1386. return -ENOMEM;
  1387. /* __khugepaged_exit() must not run from under us */
  1388. VM_BUG_ON(khugepaged_test_exit(mm));
  1389. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1390. free_mm_slot(mm_slot);
  1391. return 0;
  1392. }
  1393. spin_lock(&khugepaged_mm_lock);
  1394. insert_to_mm_slots_hash(mm, mm_slot);
  1395. /*
  1396. * Insert just behind the scanning cursor, to let the area settle
  1397. * down a little.
  1398. */
  1399. wakeup = list_empty(&khugepaged_scan.mm_head);
  1400. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1401. spin_unlock(&khugepaged_mm_lock);
  1402. atomic_inc(&mm->mm_count);
  1403. if (wakeup)
  1404. wake_up_interruptible(&khugepaged_wait);
  1405. return 0;
  1406. }
  1407. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1408. {
  1409. unsigned long hstart, hend;
  1410. if (!vma->anon_vma)
  1411. /*
  1412. * Not yet faulted in so we will register later in the
  1413. * page fault if needed.
  1414. */
  1415. return 0;
  1416. if (vma->vm_ops)
  1417. /* khugepaged not yet working on file or special mappings */
  1418. return 0;
  1419. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1420. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1421. hend = vma->vm_end & HPAGE_PMD_MASK;
  1422. if (hstart < hend)
  1423. return khugepaged_enter(vma);
  1424. return 0;
  1425. }
  1426. void __khugepaged_exit(struct mm_struct *mm)
  1427. {
  1428. struct mm_slot *mm_slot;
  1429. int free = 0;
  1430. spin_lock(&khugepaged_mm_lock);
  1431. mm_slot = get_mm_slot(mm);
  1432. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1433. hlist_del(&mm_slot->hash);
  1434. list_del(&mm_slot->mm_node);
  1435. free = 1;
  1436. }
  1437. spin_unlock(&khugepaged_mm_lock);
  1438. if (free) {
  1439. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1440. free_mm_slot(mm_slot);
  1441. mmdrop(mm);
  1442. } else if (mm_slot) {
  1443. /*
  1444. * This is required to serialize against
  1445. * khugepaged_test_exit() (which is guaranteed to run
  1446. * under mmap sem read mode). Stop here (after we
  1447. * return all pagetables will be destroyed) until
  1448. * khugepaged has finished working on the pagetables
  1449. * under the mmap_sem.
  1450. */
  1451. down_write(&mm->mmap_sem);
  1452. up_write(&mm->mmap_sem);
  1453. }
  1454. }
  1455. static void release_pte_page(struct page *page)
  1456. {
  1457. /* 0 stands for page_is_file_cache(page) == false */
  1458. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1459. unlock_page(page);
  1460. putback_lru_page(page);
  1461. }
  1462. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1463. {
  1464. while (--_pte >= pte) {
  1465. pte_t pteval = *_pte;
  1466. if (!pte_none(pteval))
  1467. release_pte_page(pte_page(pteval));
  1468. }
  1469. }
  1470. static void release_all_pte_pages(pte_t *pte)
  1471. {
  1472. release_pte_pages(pte, pte + HPAGE_PMD_NR);
  1473. }
  1474. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1475. unsigned long address,
  1476. pte_t *pte)
  1477. {
  1478. struct page *page;
  1479. pte_t *_pte;
  1480. int referenced = 0, isolated = 0, none = 0;
  1481. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1482. _pte++, address += PAGE_SIZE) {
  1483. pte_t pteval = *_pte;
  1484. if (pte_none(pteval)) {
  1485. if (++none <= khugepaged_max_ptes_none)
  1486. continue;
  1487. else {
  1488. release_pte_pages(pte, _pte);
  1489. goto out;
  1490. }
  1491. }
  1492. if (!pte_present(pteval) || !pte_write(pteval)) {
  1493. release_pte_pages(pte, _pte);
  1494. goto out;
  1495. }
  1496. page = vm_normal_page(vma, address, pteval);
  1497. if (unlikely(!page)) {
  1498. release_pte_pages(pte, _pte);
  1499. goto out;
  1500. }
  1501. VM_BUG_ON(PageCompound(page));
  1502. BUG_ON(!PageAnon(page));
  1503. VM_BUG_ON(!PageSwapBacked(page));
  1504. /* cannot use mapcount: can't collapse if there's a gup pin */
  1505. if (page_count(page) != 1) {
  1506. release_pte_pages(pte, _pte);
  1507. goto out;
  1508. }
  1509. /*
  1510. * We can do it before isolate_lru_page because the
  1511. * page can't be freed from under us. NOTE: PG_lock
  1512. * is needed to serialize against split_huge_page
  1513. * when invoked from the VM.
  1514. */
  1515. if (!trylock_page(page)) {
  1516. release_pte_pages(pte, _pte);
  1517. goto out;
  1518. }
  1519. /*
  1520. * Isolate the page to avoid collapsing an hugepage
  1521. * currently in use by the VM.
  1522. */
  1523. if (isolate_lru_page(page)) {
  1524. unlock_page(page);
  1525. release_pte_pages(pte, _pte);
  1526. goto out;
  1527. }
  1528. /* 0 stands for page_is_file_cache(page) == false */
  1529. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1530. VM_BUG_ON(!PageLocked(page));
  1531. VM_BUG_ON(PageLRU(page));
  1532. /* If there is no mapped pte young don't collapse the page */
  1533. if (pte_young(pteval) || PageReferenced(page) ||
  1534. mmu_notifier_test_young(vma->vm_mm, address))
  1535. referenced = 1;
  1536. }
  1537. if (unlikely(!referenced))
  1538. release_all_pte_pages(pte);
  1539. else
  1540. isolated = 1;
  1541. out:
  1542. return isolated;
  1543. }
  1544. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1545. struct vm_area_struct *vma,
  1546. unsigned long address,
  1547. spinlock_t *ptl)
  1548. {
  1549. pte_t *_pte;
  1550. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1551. pte_t pteval = *_pte;
  1552. struct page *src_page;
  1553. if (pte_none(pteval)) {
  1554. clear_user_highpage(page, address);
  1555. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1556. } else {
  1557. src_page = pte_page(pteval);
  1558. copy_user_highpage(page, src_page, address, vma);
  1559. VM_BUG_ON(page_mapcount(src_page) != 1);
  1560. release_pte_page(src_page);
  1561. /*
  1562. * ptl mostly unnecessary, but preempt has to
  1563. * be disabled to update the per-cpu stats
  1564. * inside page_remove_rmap().
  1565. */
  1566. spin_lock(ptl);
  1567. /*
  1568. * paravirt calls inside pte_clear here are
  1569. * superfluous.
  1570. */
  1571. pte_clear(vma->vm_mm, address, _pte);
  1572. page_remove_rmap(src_page);
  1573. spin_unlock(ptl);
  1574. free_page_and_swap_cache(src_page);
  1575. }
  1576. address += PAGE_SIZE;
  1577. page++;
  1578. }
  1579. }
  1580. static void khugepaged_alloc_sleep(void)
  1581. {
  1582. wait_event_freezable_timeout(khugepaged_wait, false,
  1583. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  1584. }
  1585. #ifdef CONFIG_NUMA
  1586. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1587. {
  1588. if (IS_ERR(*hpage)) {
  1589. if (!*wait)
  1590. return false;
  1591. *wait = false;
  1592. khugepaged_alloc_sleep();
  1593. } else if (*hpage) {
  1594. put_page(*hpage);
  1595. *hpage = NULL;
  1596. }
  1597. return true;
  1598. }
  1599. static struct page
  1600. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1601. struct vm_area_struct *vma, unsigned long address,
  1602. int node)
  1603. {
  1604. VM_BUG_ON(*hpage);
  1605. /*
  1606. * Allocate the page while the vma is still valid and under
  1607. * the mmap_sem read mode so there is no memory allocation
  1608. * later when we take the mmap_sem in write mode. This is more
  1609. * friendly behavior (OTOH it may actually hide bugs) to
  1610. * filesystems in userland with daemons allocating memory in
  1611. * the userland I/O paths. Allocating memory with the
  1612. * mmap_sem in read mode is good idea also to allow greater
  1613. * scalability.
  1614. */
  1615. *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
  1616. node, __GFP_OTHER_NODE);
  1617. /*
  1618. * After allocating the hugepage, release the mmap_sem read lock in
  1619. * preparation for taking it in write mode.
  1620. */
  1621. up_read(&mm->mmap_sem);
  1622. if (unlikely(!*hpage)) {
  1623. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1624. *hpage = ERR_PTR(-ENOMEM);
  1625. return NULL;
  1626. }
  1627. count_vm_event(THP_COLLAPSE_ALLOC);
  1628. return *hpage;
  1629. }
  1630. #else
  1631. static struct page *khugepaged_alloc_hugepage(bool *wait)
  1632. {
  1633. struct page *hpage;
  1634. do {
  1635. hpage = alloc_hugepage(khugepaged_defrag());
  1636. if (!hpage) {
  1637. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1638. if (!*wait)
  1639. return NULL;
  1640. *wait = false;
  1641. khugepaged_alloc_sleep();
  1642. } else
  1643. count_vm_event(THP_COLLAPSE_ALLOC);
  1644. } while (unlikely(!hpage) && likely(khugepaged_enabled()));
  1645. return hpage;
  1646. }
  1647. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1648. {
  1649. if (!*hpage)
  1650. *hpage = khugepaged_alloc_hugepage(wait);
  1651. if (unlikely(!*hpage))
  1652. return false;
  1653. return true;
  1654. }
  1655. static struct page
  1656. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1657. struct vm_area_struct *vma, unsigned long address,
  1658. int node)
  1659. {
  1660. up_read(&mm->mmap_sem);
  1661. VM_BUG_ON(!*hpage);
  1662. return *hpage;
  1663. }
  1664. #endif
  1665. static void collapse_huge_page(struct mm_struct *mm,
  1666. unsigned long address,
  1667. struct page **hpage,
  1668. struct vm_area_struct *vma,
  1669. int node)
  1670. {
  1671. pgd_t *pgd;
  1672. pud_t *pud;
  1673. pmd_t *pmd, _pmd;
  1674. pte_t *pte;
  1675. pgtable_t pgtable;
  1676. struct page *new_page;
  1677. spinlock_t *ptl;
  1678. int isolated;
  1679. unsigned long hstart, hend;
  1680. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1681. /* release the mmap_sem read lock. */
  1682. new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
  1683. if (!new_page)
  1684. return;
  1685. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
  1686. return;
  1687. /*
  1688. * Prevent all access to pagetables with the exception of
  1689. * gup_fast later hanlded by the ptep_clear_flush and the VM
  1690. * handled by the anon_vma lock + PG_lock.
  1691. */
  1692. down_write(&mm->mmap_sem);
  1693. if (unlikely(khugepaged_test_exit(mm)))
  1694. goto out;
  1695. vma = find_vma(mm, address);
  1696. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1697. hend = vma->vm_end & HPAGE_PMD_MASK;
  1698. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  1699. goto out;
  1700. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  1701. (vma->vm_flags & VM_NOHUGEPAGE))
  1702. goto out;
  1703. if (!vma->anon_vma || vma->vm_ops)
  1704. goto out;
  1705. if (is_vma_temporary_stack(vma))
  1706. goto out;
  1707. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1708. pgd = pgd_offset(mm, address);
  1709. if (!pgd_present(*pgd))
  1710. goto out;
  1711. pud = pud_offset(pgd, address);
  1712. if (!pud_present(*pud))
  1713. goto out;
  1714. pmd = pmd_offset(pud, address);
  1715. /* pmd can't go away or become huge under us */
  1716. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1717. goto out;
  1718. anon_vma_lock(vma->anon_vma);
  1719. pte = pte_offset_map(pmd, address);
  1720. ptl = pte_lockptr(mm, pmd);
  1721. spin_lock(&mm->page_table_lock); /* probably unnecessary */
  1722. /*
  1723. * After this gup_fast can't run anymore. This also removes
  1724. * any huge TLB entry from the CPU so we won't allow
  1725. * huge and small TLB entries for the same virtual address
  1726. * to avoid the risk of CPU bugs in that area.
  1727. */
  1728. _pmd = pmdp_clear_flush_notify(vma, address, pmd);
  1729. spin_unlock(&mm->page_table_lock);
  1730. spin_lock(ptl);
  1731. isolated = __collapse_huge_page_isolate(vma, address, pte);
  1732. spin_unlock(ptl);
  1733. if (unlikely(!isolated)) {
  1734. pte_unmap(pte);
  1735. spin_lock(&mm->page_table_lock);
  1736. BUG_ON(!pmd_none(*pmd));
  1737. set_pmd_at(mm, address, pmd, _pmd);
  1738. spin_unlock(&mm->page_table_lock);
  1739. anon_vma_unlock(vma->anon_vma);
  1740. goto out;
  1741. }
  1742. /*
  1743. * All pages are isolated and locked so anon_vma rmap
  1744. * can't run anymore.
  1745. */
  1746. anon_vma_unlock(vma->anon_vma);
  1747. __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
  1748. pte_unmap(pte);
  1749. __SetPageUptodate(new_page);
  1750. pgtable = pmd_pgtable(_pmd);
  1751. _pmd = mk_pmd(new_page, vma->vm_page_prot);
  1752. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  1753. _pmd = pmd_mkhuge(_pmd);
  1754. /*
  1755. * spin_lock() below is not the equivalent of smp_wmb(), so
  1756. * this is needed to avoid the copy_huge_page writes to become
  1757. * visible after the set_pmd_at() write.
  1758. */
  1759. smp_wmb();
  1760. spin_lock(&mm->page_table_lock);
  1761. BUG_ON(!pmd_none(*pmd));
  1762. page_add_new_anon_rmap(new_page, vma, address);
  1763. set_pmd_at(mm, address, pmd, _pmd);
  1764. update_mmu_cache(vma, address, _pmd);
  1765. pgtable_trans_huge_deposit(mm, pgtable);
  1766. spin_unlock(&mm->page_table_lock);
  1767. *hpage = NULL;
  1768. khugepaged_pages_collapsed++;
  1769. out_up_write:
  1770. up_write(&mm->mmap_sem);
  1771. return;
  1772. out:
  1773. mem_cgroup_uncharge_page(new_page);
  1774. goto out_up_write;
  1775. }
  1776. static int khugepaged_scan_pmd(struct mm_struct *mm,
  1777. struct vm_area_struct *vma,
  1778. unsigned long address,
  1779. struct page **hpage)
  1780. {
  1781. pgd_t *pgd;
  1782. pud_t *pud;
  1783. pmd_t *pmd;
  1784. pte_t *pte, *_pte;
  1785. int ret = 0, referenced = 0, none = 0;
  1786. struct page *page;
  1787. unsigned long _address;
  1788. spinlock_t *ptl;
  1789. int node = -1;
  1790. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1791. pgd = pgd_offset(mm, address);
  1792. if (!pgd_present(*pgd))
  1793. goto out;
  1794. pud = pud_offset(pgd, address);
  1795. if (!pud_present(*pud))
  1796. goto out;
  1797. pmd = pmd_offset(pud, address);
  1798. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1799. goto out;
  1800. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1801. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  1802. _pte++, _address += PAGE_SIZE) {
  1803. pte_t pteval = *_pte;
  1804. if (pte_none(pteval)) {
  1805. if (++none <= khugepaged_max_ptes_none)
  1806. continue;
  1807. else
  1808. goto out_unmap;
  1809. }
  1810. if (!pte_present(pteval) || !pte_write(pteval))
  1811. goto out_unmap;
  1812. page = vm_normal_page(vma, _address, pteval);
  1813. if (unlikely(!page))
  1814. goto out_unmap;
  1815. /*
  1816. * Chose the node of the first page. This could
  1817. * be more sophisticated and look at more pages,
  1818. * but isn't for now.
  1819. */
  1820. if (node == -1)
  1821. node = page_to_nid(page);
  1822. VM_BUG_ON(PageCompound(page));
  1823. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  1824. goto out_unmap;
  1825. /* cannot use mapcount: can't collapse if there's a gup pin */
  1826. if (page_count(page) != 1)
  1827. goto out_unmap;
  1828. if (pte_young(pteval) || PageReferenced(page) ||
  1829. mmu_notifier_test_young(vma->vm_mm, address))
  1830. referenced = 1;
  1831. }
  1832. if (referenced)
  1833. ret = 1;
  1834. out_unmap:
  1835. pte_unmap_unlock(pte, ptl);
  1836. if (ret)
  1837. /* collapse_huge_page will return with the mmap_sem released */
  1838. collapse_huge_page(mm, address, hpage, vma, node);
  1839. out:
  1840. return ret;
  1841. }
  1842. static void collect_mm_slot(struct mm_slot *mm_slot)
  1843. {
  1844. struct mm_struct *mm = mm_slot->mm;
  1845. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  1846. if (khugepaged_test_exit(mm)) {
  1847. /* free mm_slot */
  1848. hlist_del(&mm_slot->hash);
  1849. list_del(&mm_slot->mm_node);
  1850. /*
  1851. * Not strictly needed because the mm exited already.
  1852. *
  1853. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1854. */
  1855. /* khugepaged_mm_lock actually not necessary for the below */
  1856. free_mm_slot(mm_slot);
  1857. mmdrop(mm);
  1858. }
  1859. }
  1860. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  1861. struct page **hpage)
  1862. __releases(&khugepaged_mm_lock)
  1863. __acquires(&khugepaged_mm_lock)
  1864. {
  1865. struct mm_slot *mm_slot;
  1866. struct mm_struct *mm;
  1867. struct vm_area_struct *vma;
  1868. int progress = 0;
  1869. VM_BUG_ON(!pages);
  1870. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  1871. if (khugepaged_scan.mm_slot)
  1872. mm_slot = khugepaged_scan.mm_slot;
  1873. else {
  1874. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  1875. struct mm_slot, mm_node);
  1876. khugepaged_scan.address = 0;
  1877. khugepaged_scan.mm_slot = mm_slot;
  1878. }
  1879. spin_unlock(&khugepaged_mm_lock);
  1880. mm = mm_slot->mm;
  1881. down_read(&mm->mmap_sem);
  1882. if (unlikely(khugepaged_test_exit(mm)))
  1883. vma = NULL;
  1884. else
  1885. vma = find_vma(mm, khugepaged_scan.address);
  1886. progress++;
  1887. for (; vma; vma = vma->vm_next) {
  1888. unsigned long hstart, hend;
  1889. cond_resched();
  1890. if (unlikely(khugepaged_test_exit(mm))) {
  1891. progress++;
  1892. break;
  1893. }
  1894. if ((!(vma->vm_flags & VM_HUGEPAGE) &&
  1895. !khugepaged_always()) ||
  1896. (vma->vm_flags & VM_NOHUGEPAGE)) {
  1897. skip:
  1898. progress++;
  1899. continue;
  1900. }
  1901. if (!vma->anon_vma || vma->vm_ops)
  1902. goto skip;
  1903. if (is_vma_temporary_stack(vma))
  1904. goto skip;
  1905. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1906. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1907. hend = vma->vm_end & HPAGE_PMD_MASK;
  1908. if (hstart >= hend)
  1909. goto skip;
  1910. if (khugepaged_scan.address > hend)
  1911. goto skip;
  1912. if (khugepaged_scan.address < hstart)
  1913. khugepaged_scan.address = hstart;
  1914. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  1915. while (khugepaged_scan.address < hend) {
  1916. int ret;
  1917. cond_resched();
  1918. if (unlikely(khugepaged_test_exit(mm)))
  1919. goto breakouterloop;
  1920. VM_BUG_ON(khugepaged_scan.address < hstart ||
  1921. khugepaged_scan.address + HPAGE_PMD_SIZE >
  1922. hend);
  1923. ret = khugepaged_scan_pmd(mm, vma,
  1924. khugepaged_scan.address,
  1925. hpage);
  1926. /* move to next address */
  1927. khugepaged_scan.address += HPAGE_PMD_SIZE;
  1928. progress += HPAGE_PMD_NR;
  1929. if (ret)
  1930. /* we released mmap_sem so break loop */
  1931. goto breakouterloop_mmap_sem;
  1932. if (progress >= pages)
  1933. goto breakouterloop;
  1934. }
  1935. }
  1936. breakouterloop:
  1937. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  1938. breakouterloop_mmap_sem:
  1939. spin_lock(&khugepaged_mm_lock);
  1940. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  1941. /*
  1942. * Release the current mm_slot if this mm is about to die, or
  1943. * if we scanned all vmas of this mm.
  1944. */
  1945. if (khugepaged_test_exit(mm) || !vma) {
  1946. /*
  1947. * Make sure that if mm_users is reaching zero while
  1948. * khugepaged runs here, khugepaged_exit will find
  1949. * mm_slot not pointing to the exiting mm.
  1950. */
  1951. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  1952. khugepaged_scan.mm_slot = list_entry(
  1953. mm_slot->mm_node.next,
  1954. struct mm_slot, mm_node);
  1955. khugepaged_scan.address = 0;
  1956. } else {
  1957. khugepaged_scan.mm_slot = NULL;
  1958. khugepaged_full_scans++;
  1959. }
  1960. collect_mm_slot(mm_slot);
  1961. }
  1962. return progress;
  1963. }
  1964. static int khugepaged_has_work(void)
  1965. {
  1966. return !list_empty(&khugepaged_scan.mm_head) &&
  1967. khugepaged_enabled();
  1968. }
  1969. static int khugepaged_wait_event(void)
  1970. {
  1971. return !list_empty(&khugepaged_scan.mm_head) ||
  1972. kthread_should_stop();
  1973. }
  1974. static void khugepaged_do_scan(void)
  1975. {
  1976. struct page *hpage = NULL;
  1977. unsigned int progress = 0, pass_through_head = 0;
  1978. unsigned int pages = khugepaged_pages_to_scan;
  1979. bool wait = true;
  1980. barrier(); /* write khugepaged_pages_to_scan to local stack */
  1981. while (progress < pages) {
  1982. if (!khugepaged_prealloc_page(&hpage, &wait))
  1983. break;
  1984. cond_resched();
  1985. if (unlikely(kthread_should_stop() || freezing(current)))
  1986. break;
  1987. spin_lock(&khugepaged_mm_lock);
  1988. if (!khugepaged_scan.mm_slot)
  1989. pass_through_head++;
  1990. if (khugepaged_has_work() &&
  1991. pass_through_head < 2)
  1992. progress += khugepaged_scan_mm_slot(pages - progress,
  1993. &hpage);
  1994. else
  1995. progress = pages;
  1996. spin_unlock(&khugepaged_mm_lock);
  1997. }
  1998. if (!IS_ERR_OR_NULL(hpage))
  1999. put_page(hpage);
  2000. }
  2001. static void khugepaged_wait_work(void)
  2002. {
  2003. try_to_freeze();
  2004. if (khugepaged_has_work()) {
  2005. if (!khugepaged_scan_sleep_millisecs)
  2006. return;
  2007. wait_event_freezable_timeout(khugepaged_wait,
  2008. kthread_should_stop(),
  2009. msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
  2010. return;
  2011. }
  2012. if (khugepaged_enabled())
  2013. wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
  2014. }
  2015. static int khugepaged(void *none)
  2016. {
  2017. struct mm_slot *mm_slot;
  2018. set_freezable();
  2019. set_user_nice(current, 19);
  2020. while (!kthread_should_stop()) {
  2021. khugepaged_do_scan();
  2022. khugepaged_wait_work();
  2023. }
  2024. spin_lock(&khugepaged_mm_lock);
  2025. mm_slot = khugepaged_scan.mm_slot;
  2026. khugepaged_scan.mm_slot = NULL;
  2027. if (mm_slot)
  2028. collect_mm_slot(mm_slot);
  2029. spin_unlock(&khugepaged_mm_lock);
  2030. return 0;
  2031. }
  2032. void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
  2033. {
  2034. struct page *page;
  2035. spin_lock(&mm->page_table_lock);
  2036. if (unlikely(!pmd_trans_huge(*pmd))) {
  2037. spin_unlock(&mm->page_table_lock);
  2038. return;
  2039. }
  2040. page = pmd_page(*pmd);
  2041. VM_BUG_ON(!page_count(page));
  2042. get_page(page);
  2043. spin_unlock(&mm->page_table_lock);
  2044. split_huge_page(page);
  2045. put_page(page);
  2046. BUG_ON(pmd_trans_huge(*pmd));
  2047. }
  2048. static void split_huge_page_address(struct mm_struct *mm,
  2049. unsigned long address)
  2050. {
  2051. pgd_t *pgd;
  2052. pud_t *pud;
  2053. pmd_t *pmd;
  2054. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2055. pgd = pgd_offset(mm, address);
  2056. if (!pgd_present(*pgd))
  2057. return;
  2058. pud = pud_offset(pgd, address);
  2059. if (!pud_present(*pud))
  2060. return;
  2061. pmd = pmd_offset(pud, address);
  2062. if (!pmd_present(*pmd))
  2063. return;
  2064. /*
  2065. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2066. * materialize from under us.
  2067. */
  2068. split_huge_page_pmd(mm, pmd);
  2069. }
  2070. void __vma_adjust_trans_huge(struct vm_area_struct *vma,
  2071. unsigned long start,
  2072. unsigned long end,
  2073. long adjust_next)
  2074. {
  2075. /*
  2076. * If the new start address isn't hpage aligned and it could
  2077. * previously contain an hugepage: check if we need to split
  2078. * an huge pmd.
  2079. */
  2080. if (start & ~HPAGE_PMD_MASK &&
  2081. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2082. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2083. split_huge_page_address(vma->vm_mm, start);
  2084. /*
  2085. * If the new end address isn't hpage aligned and it could
  2086. * previously contain an hugepage: check if we need to split
  2087. * an huge pmd.
  2088. */
  2089. if (end & ~HPAGE_PMD_MASK &&
  2090. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2091. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2092. split_huge_page_address(vma->vm_mm, end);
  2093. /*
  2094. * If we're also updating the vma->vm_next->vm_start, if the new
  2095. * vm_next->vm_start isn't page aligned and it could previously
  2096. * contain an hugepage: check if we need to split an huge pmd.
  2097. */
  2098. if (adjust_next > 0) {
  2099. struct vm_area_struct *next = vma->vm_next;
  2100. unsigned long nstart = next->vm_start;
  2101. nstart += adjust_next << PAGE_SHIFT;
  2102. if (nstart & ~HPAGE_PMD_MASK &&
  2103. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2104. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2105. split_huge_page_address(next->vm_mm, nstart);
  2106. }
  2107. }