sched.c 233 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/stop_machine.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/debugfs.h>
  70. #include <linux/ctype.h>
  71. #include <linux/ftrace.h>
  72. #include <linux/slab.h>
  73. #include <linux/init_task.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include <asm/mutex.h>
  77. #ifdef CONFIG_PARAVIRT
  78. #include <asm/paravirt.h>
  79. #endif
  80. #include "sched_cpupri.h"
  81. #include "workqueue_sched.h"
  82. #include "sched_autogroup.h"
  83. #define CREATE_TRACE_POINTS
  84. #include <trace/events/sched.h>
  85. /*
  86. * Convert user-nice values [ -20 ... 0 ... 19 ]
  87. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  88. * and back.
  89. */
  90. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  91. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  92. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  93. /*
  94. * 'User priority' is the nice value converted to something we
  95. * can work with better when scaling various scheduler parameters,
  96. * it's a [ 0 ... 39 ] range.
  97. */
  98. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  99. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  100. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  101. /*
  102. * Helpers for converting nanosecond timing to jiffy resolution
  103. */
  104. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  105. #define NICE_0_LOAD SCHED_LOAD_SCALE
  106. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  107. /*
  108. * These are the 'tuning knobs' of the scheduler:
  109. *
  110. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  111. * Timeslices get refilled after they expire.
  112. */
  113. #define DEF_TIMESLICE (100 * HZ / 1000)
  114. /*
  115. * single value that denotes runtime == period, ie unlimited time.
  116. */
  117. #define RUNTIME_INF ((u64)~0ULL)
  118. static inline int rt_policy(int policy)
  119. {
  120. if (policy == SCHED_FIFO || policy == SCHED_RR)
  121. return 1;
  122. return 0;
  123. }
  124. static inline int task_has_rt_policy(struct task_struct *p)
  125. {
  126. return rt_policy(p->policy);
  127. }
  128. /*
  129. * This is the priority-queue data structure of the RT scheduling class:
  130. */
  131. struct rt_prio_array {
  132. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  133. struct list_head queue[MAX_RT_PRIO];
  134. };
  135. struct rt_bandwidth {
  136. /* nests inside the rq lock: */
  137. raw_spinlock_t rt_runtime_lock;
  138. ktime_t rt_period;
  139. u64 rt_runtime;
  140. struct hrtimer rt_period_timer;
  141. };
  142. static struct rt_bandwidth def_rt_bandwidth;
  143. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  144. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  145. {
  146. struct rt_bandwidth *rt_b =
  147. container_of(timer, struct rt_bandwidth, rt_period_timer);
  148. ktime_t now;
  149. int overrun;
  150. int idle = 0;
  151. for (;;) {
  152. now = hrtimer_cb_get_time(timer);
  153. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  154. if (!overrun)
  155. break;
  156. idle = do_sched_rt_period_timer(rt_b, overrun);
  157. }
  158. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  159. }
  160. static
  161. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  162. {
  163. rt_b->rt_period = ns_to_ktime(period);
  164. rt_b->rt_runtime = runtime;
  165. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  166. hrtimer_init(&rt_b->rt_period_timer,
  167. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  168. rt_b->rt_period_timer.function = sched_rt_period_timer;
  169. }
  170. static inline int rt_bandwidth_enabled(void)
  171. {
  172. return sysctl_sched_rt_runtime >= 0;
  173. }
  174. static void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  175. {
  176. unsigned long delta;
  177. ktime_t soft, hard, now;
  178. for (;;) {
  179. if (hrtimer_active(period_timer))
  180. break;
  181. now = hrtimer_cb_get_time(period_timer);
  182. hrtimer_forward(period_timer, now, period);
  183. soft = hrtimer_get_softexpires(period_timer);
  184. hard = hrtimer_get_expires(period_timer);
  185. delta = ktime_to_ns(ktime_sub(hard, soft));
  186. __hrtimer_start_range_ns(period_timer, soft, delta,
  187. HRTIMER_MODE_ABS_PINNED, 0);
  188. }
  189. }
  190. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  191. {
  192. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  193. return;
  194. if (hrtimer_active(&rt_b->rt_period_timer))
  195. return;
  196. raw_spin_lock(&rt_b->rt_runtime_lock);
  197. start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
  198. raw_spin_unlock(&rt_b->rt_runtime_lock);
  199. }
  200. #ifdef CONFIG_RT_GROUP_SCHED
  201. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  202. {
  203. hrtimer_cancel(&rt_b->rt_period_timer);
  204. }
  205. #endif
  206. /*
  207. * sched_domains_mutex serializes calls to init_sched_domains,
  208. * detach_destroy_domains and partition_sched_domains.
  209. */
  210. static DEFINE_MUTEX(sched_domains_mutex);
  211. #ifdef CONFIG_CGROUP_SCHED
  212. #include <linux/cgroup.h>
  213. struct cfs_rq;
  214. static LIST_HEAD(task_groups);
  215. struct cfs_bandwidth {
  216. #ifdef CONFIG_CFS_BANDWIDTH
  217. raw_spinlock_t lock;
  218. ktime_t period;
  219. u64 quota, runtime;
  220. s64 hierarchal_quota;
  221. u64 runtime_expires;
  222. int idle, timer_active;
  223. struct hrtimer period_timer, slack_timer;
  224. struct list_head throttled_cfs_rq;
  225. /* statistics */
  226. int nr_periods, nr_throttled;
  227. u64 throttled_time;
  228. #endif
  229. };
  230. /* task group related information */
  231. struct task_group {
  232. struct cgroup_subsys_state css;
  233. #ifdef CONFIG_FAIR_GROUP_SCHED
  234. /* schedulable entities of this group on each cpu */
  235. struct sched_entity **se;
  236. /* runqueue "owned" by this group on each cpu */
  237. struct cfs_rq **cfs_rq;
  238. unsigned long shares;
  239. atomic_t load_weight;
  240. #endif
  241. #ifdef CONFIG_RT_GROUP_SCHED
  242. struct sched_rt_entity **rt_se;
  243. struct rt_rq **rt_rq;
  244. struct rt_bandwidth rt_bandwidth;
  245. #endif
  246. struct rcu_head rcu;
  247. struct list_head list;
  248. struct task_group *parent;
  249. struct list_head siblings;
  250. struct list_head children;
  251. #ifdef CONFIG_SCHED_AUTOGROUP
  252. struct autogroup *autogroup;
  253. #endif
  254. struct cfs_bandwidth cfs_bandwidth;
  255. };
  256. /* task_group_lock serializes the addition/removal of task groups */
  257. static DEFINE_SPINLOCK(task_group_lock);
  258. #ifdef CONFIG_FAIR_GROUP_SCHED
  259. # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
  260. /*
  261. * A weight of 0 or 1 can cause arithmetics problems.
  262. * A weight of a cfs_rq is the sum of weights of which entities
  263. * are queued on this cfs_rq, so a weight of a entity should not be
  264. * too large, so as the shares value of a task group.
  265. * (The default weight is 1024 - so there's no practical
  266. * limitation from this.)
  267. */
  268. #define MIN_SHARES (1UL << 1)
  269. #define MAX_SHARES (1UL << 18)
  270. static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
  271. #endif
  272. /* Default task group.
  273. * Every task in system belong to this group at bootup.
  274. */
  275. struct task_group root_task_group;
  276. #endif /* CONFIG_CGROUP_SCHED */
  277. /* CFS-related fields in a runqueue */
  278. struct cfs_rq {
  279. struct load_weight load;
  280. unsigned long nr_running, h_nr_running;
  281. u64 exec_clock;
  282. u64 min_vruntime;
  283. #ifndef CONFIG_64BIT
  284. u64 min_vruntime_copy;
  285. #endif
  286. struct rb_root tasks_timeline;
  287. struct rb_node *rb_leftmost;
  288. struct list_head tasks;
  289. struct list_head *balance_iterator;
  290. /*
  291. * 'curr' points to currently running entity on this cfs_rq.
  292. * It is set to NULL otherwise (i.e when none are currently running).
  293. */
  294. struct sched_entity *curr, *next, *last, *skip;
  295. #ifdef CONFIG_SCHED_DEBUG
  296. unsigned int nr_spread_over;
  297. #endif
  298. #ifdef CONFIG_FAIR_GROUP_SCHED
  299. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  300. /*
  301. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  302. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  303. * (like users, containers etc.)
  304. *
  305. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  306. * list is used during load balance.
  307. */
  308. int on_list;
  309. struct list_head leaf_cfs_rq_list;
  310. struct task_group *tg; /* group that "owns" this runqueue */
  311. #ifdef CONFIG_SMP
  312. /*
  313. * the part of load.weight contributed by tasks
  314. */
  315. unsigned long task_weight;
  316. /*
  317. * h_load = weight * f(tg)
  318. *
  319. * Where f(tg) is the recursive weight fraction assigned to
  320. * this group.
  321. */
  322. unsigned long h_load;
  323. /*
  324. * Maintaining per-cpu shares distribution for group scheduling
  325. *
  326. * load_stamp is the last time we updated the load average
  327. * load_last is the last time we updated the load average and saw load
  328. * load_unacc_exec_time is currently unaccounted execution time
  329. */
  330. u64 load_avg;
  331. u64 load_period;
  332. u64 load_stamp, load_last, load_unacc_exec_time;
  333. unsigned long load_contribution;
  334. #endif
  335. #ifdef CONFIG_CFS_BANDWIDTH
  336. int runtime_enabled;
  337. u64 runtime_expires;
  338. s64 runtime_remaining;
  339. u64 throttled_timestamp;
  340. int throttled, throttle_count;
  341. struct list_head throttled_list;
  342. #endif
  343. #endif
  344. };
  345. #ifdef CONFIG_FAIR_GROUP_SCHED
  346. #ifdef CONFIG_CFS_BANDWIDTH
  347. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  348. {
  349. return &tg->cfs_bandwidth;
  350. }
  351. static inline u64 default_cfs_period(void);
  352. static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
  353. static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
  354. static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
  355. {
  356. struct cfs_bandwidth *cfs_b =
  357. container_of(timer, struct cfs_bandwidth, slack_timer);
  358. do_sched_cfs_slack_timer(cfs_b);
  359. return HRTIMER_NORESTART;
  360. }
  361. static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
  362. {
  363. struct cfs_bandwidth *cfs_b =
  364. container_of(timer, struct cfs_bandwidth, period_timer);
  365. ktime_t now;
  366. int overrun;
  367. int idle = 0;
  368. for (;;) {
  369. now = hrtimer_cb_get_time(timer);
  370. overrun = hrtimer_forward(timer, now, cfs_b->period);
  371. if (!overrun)
  372. break;
  373. idle = do_sched_cfs_period_timer(cfs_b, overrun);
  374. }
  375. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  376. }
  377. static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  378. {
  379. raw_spin_lock_init(&cfs_b->lock);
  380. cfs_b->runtime = 0;
  381. cfs_b->quota = RUNTIME_INF;
  382. cfs_b->period = ns_to_ktime(default_cfs_period());
  383. INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
  384. hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  385. cfs_b->period_timer.function = sched_cfs_period_timer;
  386. hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  387. cfs_b->slack_timer.function = sched_cfs_slack_timer;
  388. }
  389. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  390. {
  391. cfs_rq->runtime_enabled = 0;
  392. INIT_LIST_HEAD(&cfs_rq->throttled_list);
  393. }
  394. /* requires cfs_b->lock, may release to reprogram timer */
  395. static void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  396. {
  397. /*
  398. * The timer may be active because we're trying to set a new bandwidth
  399. * period or because we're racing with the tear-down path
  400. * (timer_active==0 becomes visible before the hrtimer call-back
  401. * terminates). In either case we ensure that it's re-programmed
  402. */
  403. while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
  404. raw_spin_unlock(&cfs_b->lock);
  405. /* ensure cfs_b->lock is available while we wait */
  406. hrtimer_cancel(&cfs_b->period_timer);
  407. raw_spin_lock(&cfs_b->lock);
  408. /* if someone else restarted the timer then we're done */
  409. if (cfs_b->timer_active)
  410. return;
  411. }
  412. cfs_b->timer_active = 1;
  413. start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
  414. }
  415. static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  416. {
  417. hrtimer_cancel(&cfs_b->period_timer);
  418. hrtimer_cancel(&cfs_b->slack_timer);
  419. }
  420. #else
  421. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  422. static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  423. static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  424. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  425. {
  426. return NULL;
  427. }
  428. #endif /* CONFIG_CFS_BANDWIDTH */
  429. #endif /* CONFIG_FAIR_GROUP_SCHED */
  430. /* Real-Time classes' related field in a runqueue: */
  431. struct rt_rq {
  432. struct rt_prio_array active;
  433. unsigned long rt_nr_running;
  434. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  435. struct {
  436. int curr; /* highest queued rt task prio */
  437. #ifdef CONFIG_SMP
  438. int next; /* next highest */
  439. #endif
  440. } highest_prio;
  441. #endif
  442. #ifdef CONFIG_SMP
  443. unsigned long rt_nr_migratory;
  444. unsigned long rt_nr_total;
  445. int overloaded;
  446. struct plist_head pushable_tasks;
  447. #endif
  448. int rt_throttled;
  449. u64 rt_time;
  450. u64 rt_runtime;
  451. /* Nests inside the rq lock: */
  452. raw_spinlock_t rt_runtime_lock;
  453. #ifdef CONFIG_RT_GROUP_SCHED
  454. unsigned long rt_nr_boosted;
  455. struct rq *rq;
  456. struct list_head leaf_rt_rq_list;
  457. struct task_group *tg;
  458. #endif
  459. };
  460. #ifdef CONFIG_SMP
  461. /*
  462. * We add the notion of a root-domain which will be used to define per-domain
  463. * variables. Each exclusive cpuset essentially defines an island domain by
  464. * fully partitioning the member cpus from any other cpuset. Whenever a new
  465. * exclusive cpuset is created, we also create and attach a new root-domain
  466. * object.
  467. *
  468. */
  469. struct root_domain {
  470. atomic_t refcount;
  471. atomic_t rto_count;
  472. struct rcu_head rcu;
  473. cpumask_var_t span;
  474. cpumask_var_t online;
  475. /*
  476. * The "RT overload" flag: it gets set if a CPU has more than
  477. * one runnable RT task.
  478. */
  479. cpumask_var_t rto_mask;
  480. struct cpupri cpupri;
  481. };
  482. /*
  483. * By default the system creates a single root-domain with all cpus as
  484. * members (mimicking the global state we have today).
  485. */
  486. static struct root_domain def_root_domain;
  487. #endif /* CONFIG_SMP */
  488. /*
  489. * This is the main, per-CPU runqueue data structure.
  490. *
  491. * Locking rule: those places that want to lock multiple runqueues
  492. * (such as the load balancing or the thread migration code), lock
  493. * acquire operations must be ordered by ascending &runqueue.
  494. */
  495. struct rq {
  496. /* runqueue lock: */
  497. raw_spinlock_t lock;
  498. /*
  499. * nr_running and cpu_load should be in the same cacheline because
  500. * remote CPUs use both these fields when doing load calculation.
  501. */
  502. unsigned long nr_running;
  503. #define CPU_LOAD_IDX_MAX 5
  504. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  505. unsigned long last_load_update_tick;
  506. #ifdef CONFIG_NO_HZ
  507. u64 nohz_stamp;
  508. unsigned char nohz_balance_kick;
  509. #endif
  510. int skip_clock_update;
  511. /* capture load from *all* tasks on this cpu: */
  512. struct load_weight load;
  513. unsigned long nr_load_updates;
  514. u64 nr_switches;
  515. struct cfs_rq cfs;
  516. struct rt_rq rt;
  517. #ifdef CONFIG_FAIR_GROUP_SCHED
  518. /* list of leaf cfs_rq on this cpu: */
  519. struct list_head leaf_cfs_rq_list;
  520. #endif
  521. #ifdef CONFIG_RT_GROUP_SCHED
  522. struct list_head leaf_rt_rq_list;
  523. #endif
  524. /*
  525. * This is part of a global counter where only the total sum
  526. * over all CPUs matters. A task can increase this counter on
  527. * one CPU and if it got migrated afterwards it may decrease
  528. * it on another CPU. Always updated under the runqueue lock:
  529. */
  530. unsigned long nr_uninterruptible;
  531. struct task_struct *curr, *idle, *stop;
  532. unsigned long next_balance;
  533. struct mm_struct *prev_mm;
  534. u64 clock;
  535. u64 clock_task;
  536. atomic_t nr_iowait;
  537. #ifdef CONFIG_SMP
  538. struct root_domain *rd;
  539. struct sched_domain *sd;
  540. unsigned long cpu_power;
  541. unsigned char idle_balance;
  542. /* For active balancing */
  543. int post_schedule;
  544. int active_balance;
  545. int push_cpu;
  546. struct cpu_stop_work active_balance_work;
  547. /* cpu of this runqueue: */
  548. int cpu;
  549. int online;
  550. u64 rt_avg;
  551. u64 age_stamp;
  552. u64 idle_stamp;
  553. u64 avg_idle;
  554. #endif
  555. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  556. u64 prev_irq_time;
  557. #endif
  558. #ifdef CONFIG_PARAVIRT
  559. u64 prev_steal_time;
  560. #endif
  561. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  562. u64 prev_steal_time_rq;
  563. #endif
  564. /* calc_load related fields */
  565. unsigned long calc_load_update;
  566. long calc_load_active;
  567. #ifdef CONFIG_SCHED_HRTICK
  568. #ifdef CONFIG_SMP
  569. int hrtick_csd_pending;
  570. struct call_single_data hrtick_csd;
  571. #endif
  572. struct hrtimer hrtick_timer;
  573. #endif
  574. #ifdef CONFIG_SCHEDSTATS
  575. /* latency stats */
  576. struct sched_info rq_sched_info;
  577. unsigned long long rq_cpu_time;
  578. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  579. /* sys_sched_yield() stats */
  580. unsigned int yld_count;
  581. /* schedule() stats */
  582. unsigned int sched_switch;
  583. unsigned int sched_count;
  584. unsigned int sched_goidle;
  585. /* try_to_wake_up() stats */
  586. unsigned int ttwu_count;
  587. unsigned int ttwu_local;
  588. #endif
  589. #ifdef CONFIG_SMP
  590. struct llist_head wake_list;
  591. #endif
  592. };
  593. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  594. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
  595. static inline int cpu_of(struct rq *rq)
  596. {
  597. #ifdef CONFIG_SMP
  598. return rq->cpu;
  599. #else
  600. return 0;
  601. #endif
  602. }
  603. #define rcu_dereference_check_sched_domain(p) \
  604. rcu_dereference_check((p), \
  605. lockdep_is_held(&sched_domains_mutex))
  606. /*
  607. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  608. * See detach_destroy_domains: synchronize_sched for details.
  609. *
  610. * The domain tree of any CPU may only be accessed from within
  611. * preempt-disabled sections.
  612. */
  613. #define for_each_domain(cpu, __sd) \
  614. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  615. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  616. #define this_rq() (&__get_cpu_var(runqueues))
  617. #define task_rq(p) cpu_rq(task_cpu(p))
  618. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  619. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  620. #ifdef CONFIG_CGROUP_SCHED
  621. /*
  622. * Return the group to which this tasks belongs.
  623. *
  624. * We use task_subsys_state_check() and extend the RCU verification with
  625. * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
  626. * task it moves into the cgroup. Therefore by holding either of those locks,
  627. * we pin the task to the current cgroup.
  628. */
  629. static inline struct task_group *task_group(struct task_struct *p)
  630. {
  631. struct task_group *tg;
  632. struct cgroup_subsys_state *css;
  633. css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
  634. lockdep_is_held(&p->pi_lock) ||
  635. lockdep_is_held(&task_rq(p)->lock));
  636. tg = container_of(css, struct task_group, css);
  637. return autogroup_task_group(p, tg);
  638. }
  639. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  640. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  641. {
  642. #ifdef CONFIG_FAIR_GROUP_SCHED
  643. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  644. p->se.parent = task_group(p)->se[cpu];
  645. #endif
  646. #ifdef CONFIG_RT_GROUP_SCHED
  647. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  648. p->rt.parent = task_group(p)->rt_se[cpu];
  649. #endif
  650. }
  651. #else /* CONFIG_CGROUP_SCHED */
  652. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  653. static inline struct task_group *task_group(struct task_struct *p)
  654. {
  655. return NULL;
  656. }
  657. #endif /* CONFIG_CGROUP_SCHED */
  658. static void update_rq_clock_task(struct rq *rq, s64 delta);
  659. static void update_rq_clock(struct rq *rq)
  660. {
  661. s64 delta;
  662. if (rq->skip_clock_update > 0)
  663. return;
  664. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  665. rq->clock += delta;
  666. update_rq_clock_task(rq, delta);
  667. }
  668. /*
  669. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  670. */
  671. #ifdef CONFIG_SCHED_DEBUG
  672. # define const_debug __read_mostly
  673. #else
  674. # define const_debug static const
  675. #endif
  676. /**
  677. * runqueue_is_locked - Returns true if the current cpu runqueue is locked
  678. * @cpu: the processor in question.
  679. *
  680. * This interface allows printk to be called with the runqueue lock
  681. * held and know whether or not it is OK to wake up the klogd.
  682. */
  683. int runqueue_is_locked(int cpu)
  684. {
  685. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  686. }
  687. /*
  688. * Debugging: various feature bits
  689. */
  690. #define SCHED_FEAT(name, enabled) \
  691. __SCHED_FEAT_##name ,
  692. enum {
  693. #include "sched_features.h"
  694. };
  695. #undef SCHED_FEAT
  696. #define SCHED_FEAT(name, enabled) \
  697. (1UL << __SCHED_FEAT_##name) * enabled |
  698. const_debug unsigned int sysctl_sched_features =
  699. #include "sched_features.h"
  700. 0;
  701. #undef SCHED_FEAT
  702. #ifdef CONFIG_SCHED_DEBUG
  703. #define SCHED_FEAT(name, enabled) \
  704. #name ,
  705. static __read_mostly char *sched_feat_names[] = {
  706. #include "sched_features.h"
  707. NULL
  708. };
  709. #undef SCHED_FEAT
  710. static int sched_feat_show(struct seq_file *m, void *v)
  711. {
  712. int i;
  713. for (i = 0; sched_feat_names[i]; i++) {
  714. if (!(sysctl_sched_features & (1UL << i)))
  715. seq_puts(m, "NO_");
  716. seq_printf(m, "%s ", sched_feat_names[i]);
  717. }
  718. seq_puts(m, "\n");
  719. return 0;
  720. }
  721. static ssize_t
  722. sched_feat_write(struct file *filp, const char __user *ubuf,
  723. size_t cnt, loff_t *ppos)
  724. {
  725. char buf[64];
  726. char *cmp;
  727. int neg = 0;
  728. int i;
  729. if (cnt > 63)
  730. cnt = 63;
  731. if (copy_from_user(&buf, ubuf, cnt))
  732. return -EFAULT;
  733. buf[cnt] = 0;
  734. cmp = strstrip(buf);
  735. if (strncmp(cmp, "NO_", 3) == 0) {
  736. neg = 1;
  737. cmp += 3;
  738. }
  739. for (i = 0; sched_feat_names[i]; i++) {
  740. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  741. if (neg)
  742. sysctl_sched_features &= ~(1UL << i);
  743. else
  744. sysctl_sched_features |= (1UL << i);
  745. break;
  746. }
  747. }
  748. if (!sched_feat_names[i])
  749. return -EINVAL;
  750. *ppos += cnt;
  751. return cnt;
  752. }
  753. static int sched_feat_open(struct inode *inode, struct file *filp)
  754. {
  755. return single_open(filp, sched_feat_show, NULL);
  756. }
  757. static const struct file_operations sched_feat_fops = {
  758. .open = sched_feat_open,
  759. .write = sched_feat_write,
  760. .read = seq_read,
  761. .llseek = seq_lseek,
  762. .release = single_release,
  763. };
  764. static __init int sched_init_debug(void)
  765. {
  766. debugfs_create_file("sched_features", 0644, NULL, NULL,
  767. &sched_feat_fops);
  768. return 0;
  769. }
  770. late_initcall(sched_init_debug);
  771. #endif
  772. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  773. /*
  774. * Number of tasks to iterate in a single balance run.
  775. * Limited because this is done with IRQs disabled.
  776. */
  777. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  778. /*
  779. * period over which we average the RT time consumption, measured
  780. * in ms.
  781. *
  782. * default: 1s
  783. */
  784. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  785. /*
  786. * period over which we measure -rt task cpu usage in us.
  787. * default: 1s
  788. */
  789. unsigned int sysctl_sched_rt_period = 1000000;
  790. static __read_mostly int scheduler_running;
  791. /*
  792. * part of the period that we allow rt tasks to run in us.
  793. * default: 0.95s
  794. */
  795. int sysctl_sched_rt_runtime = 950000;
  796. static inline u64 global_rt_period(void)
  797. {
  798. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  799. }
  800. static inline u64 global_rt_runtime(void)
  801. {
  802. if (sysctl_sched_rt_runtime < 0)
  803. return RUNTIME_INF;
  804. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  805. }
  806. #ifndef prepare_arch_switch
  807. # define prepare_arch_switch(next) do { } while (0)
  808. #endif
  809. #ifndef finish_arch_switch
  810. # define finish_arch_switch(prev) do { } while (0)
  811. #endif
  812. static inline int task_current(struct rq *rq, struct task_struct *p)
  813. {
  814. return rq->curr == p;
  815. }
  816. static inline int task_running(struct rq *rq, struct task_struct *p)
  817. {
  818. #ifdef CONFIG_SMP
  819. return p->on_cpu;
  820. #else
  821. return task_current(rq, p);
  822. #endif
  823. }
  824. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  825. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  826. {
  827. #ifdef CONFIG_SMP
  828. /*
  829. * We can optimise this out completely for !SMP, because the
  830. * SMP rebalancing from interrupt is the only thing that cares
  831. * here.
  832. */
  833. next->on_cpu = 1;
  834. #endif
  835. }
  836. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  837. {
  838. #ifdef CONFIG_SMP
  839. /*
  840. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  841. * We must ensure this doesn't happen until the switch is completely
  842. * finished.
  843. */
  844. smp_wmb();
  845. prev->on_cpu = 0;
  846. #endif
  847. #ifdef CONFIG_DEBUG_SPINLOCK
  848. /* this is a valid case when another task releases the spinlock */
  849. rq->lock.owner = current;
  850. #endif
  851. /*
  852. * If we are tracking spinlock dependencies then we have to
  853. * fix up the runqueue lock - which gets 'carried over' from
  854. * prev into current:
  855. */
  856. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  857. raw_spin_unlock_irq(&rq->lock);
  858. }
  859. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  860. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  861. {
  862. #ifdef CONFIG_SMP
  863. /*
  864. * We can optimise this out completely for !SMP, because the
  865. * SMP rebalancing from interrupt is the only thing that cares
  866. * here.
  867. */
  868. next->on_cpu = 1;
  869. #endif
  870. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  871. raw_spin_unlock_irq(&rq->lock);
  872. #else
  873. raw_spin_unlock(&rq->lock);
  874. #endif
  875. }
  876. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  877. {
  878. #ifdef CONFIG_SMP
  879. /*
  880. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  881. * We must ensure this doesn't happen until the switch is completely
  882. * finished.
  883. */
  884. smp_wmb();
  885. prev->on_cpu = 0;
  886. #endif
  887. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  888. local_irq_enable();
  889. #endif
  890. }
  891. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  892. /*
  893. * __task_rq_lock - lock the rq @p resides on.
  894. */
  895. static inline struct rq *__task_rq_lock(struct task_struct *p)
  896. __acquires(rq->lock)
  897. {
  898. struct rq *rq;
  899. lockdep_assert_held(&p->pi_lock);
  900. for (;;) {
  901. rq = task_rq(p);
  902. raw_spin_lock(&rq->lock);
  903. if (likely(rq == task_rq(p)))
  904. return rq;
  905. raw_spin_unlock(&rq->lock);
  906. }
  907. }
  908. /*
  909. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  910. */
  911. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  912. __acquires(p->pi_lock)
  913. __acquires(rq->lock)
  914. {
  915. struct rq *rq;
  916. for (;;) {
  917. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  918. rq = task_rq(p);
  919. raw_spin_lock(&rq->lock);
  920. if (likely(rq == task_rq(p)))
  921. return rq;
  922. raw_spin_unlock(&rq->lock);
  923. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  924. }
  925. }
  926. static void __task_rq_unlock(struct rq *rq)
  927. __releases(rq->lock)
  928. {
  929. raw_spin_unlock(&rq->lock);
  930. }
  931. static inline void
  932. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  933. __releases(rq->lock)
  934. __releases(p->pi_lock)
  935. {
  936. raw_spin_unlock(&rq->lock);
  937. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  938. }
  939. /*
  940. * this_rq_lock - lock this runqueue and disable interrupts.
  941. */
  942. static struct rq *this_rq_lock(void)
  943. __acquires(rq->lock)
  944. {
  945. struct rq *rq;
  946. local_irq_disable();
  947. rq = this_rq();
  948. raw_spin_lock(&rq->lock);
  949. return rq;
  950. }
  951. #ifdef CONFIG_SCHED_HRTICK
  952. /*
  953. * Use HR-timers to deliver accurate preemption points.
  954. *
  955. * Its all a bit involved since we cannot program an hrt while holding the
  956. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  957. * reschedule event.
  958. *
  959. * When we get rescheduled we reprogram the hrtick_timer outside of the
  960. * rq->lock.
  961. */
  962. /*
  963. * Use hrtick when:
  964. * - enabled by features
  965. * - hrtimer is actually high res
  966. */
  967. static inline int hrtick_enabled(struct rq *rq)
  968. {
  969. if (!sched_feat(HRTICK))
  970. return 0;
  971. if (!cpu_active(cpu_of(rq)))
  972. return 0;
  973. return hrtimer_is_hres_active(&rq->hrtick_timer);
  974. }
  975. static void hrtick_clear(struct rq *rq)
  976. {
  977. if (hrtimer_active(&rq->hrtick_timer))
  978. hrtimer_cancel(&rq->hrtick_timer);
  979. }
  980. /*
  981. * High-resolution timer tick.
  982. * Runs from hardirq context with interrupts disabled.
  983. */
  984. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  985. {
  986. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  987. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  988. raw_spin_lock(&rq->lock);
  989. update_rq_clock(rq);
  990. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  991. raw_spin_unlock(&rq->lock);
  992. return HRTIMER_NORESTART;
  993. }
  994. #ifdef CONFIG_SMP
  995. /*
  996. * called from hardirq (IPI) context
  997. */
  998. static void __hrtick_start(void *arg)
  999. {
  1000. struct rq *rq = arg;
  1001. raw_spin_lock(&rq->lock);
  1002. hrtimer_restart(&rq->hrtick_timer);
  1003. rq->hrtick_csd_pending = 0;
  1004. raw_spin_unlock(&rq->lock);
  1005. }
  1006. /*
  1007. * Called to set the hrtick timer state.
  1008. *
  1009. * called with rq->lock held and irqs disabled
  1010. */
  1011. static void hrtick_start(struct rq *rq, u64 delay)
  1012. {
  1013. struct hrtimer *timer = &rq->hrtick_timer;
  1014. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  1015. hrtimer_set_expires(timer, time);
  1016. if (rq == this_rq()) {
  1017. hrtimer_restart(timer);
  1018. } else if (!rq->hrtick_csd_pending) {
  1019. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  1020. rq->hrtick_csd_pending = 1;
  1021. }
  1022. }
  1023. static int
  1024. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  1025. {
  1026. int cpu = (int)(long)hcpu;
  1027. switch (action) {
  1028. case CPU_UP_CANCELED:
  1029. case CPU_UP_CANCELED_FROZEN:
  1030. case CPU_DOWN_PREPARE:
  1031. case CPU_DOWN_PREPARE_FROZEN:
  1032. case CPU_DEAD:
  1033. case CPU_DEAD_FROZEN:
  1034. hrtick_clear(cpu_rq(cpu));
  1035. return NOTIFY_OK;
  1036. }
  1037. return NOTIFY_DONE;
  1038. }
  1039. static __init void init_hrtick(void)
  1040. {
  1041. hotcpu_notifier(hotplug_hrtick, 0);
  1042. }
  1043. #else
  1044. /*
  1045. * Called to set the hrtick timer state.
  1046. *
  1047. * called with rq->lock held and irqs disabled
  1048. */
  1049. static void hrtick_start(struct rq *rq, u64 delay)
  1050. {
  1051. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  1052. HRTIMER_MODE_REL_PINNED, 0);
  1053. }
  1054. static inline void init_hrtick(void)
  1055. {
  1056. }
  1057. #endif /* CONFIG_SMP */
  1058. static void init_rq_hrtick(struct rq *rq)
  1059. {
  1060. #ifdef CONFIG_SMP
  1061. rq->hrtick_csd_pending = 0;
  1062. rq->hrtick_csd.flags = 0;
  1063. rq->hrtick_csd.func = __hrtick_start;
  1064. rq->hrtick_csd.info = rq;
  1065. #endif
  1066. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1067. rq->hrtick_timer.function = hrtick;
  1068. }
  1069. #else /* CONFIG_SCHED_HRTICK */
  1070. static inline void hrtick_clear(struct rq *rq)
  1071. {
  1072. }
  1073. static inline void init_rq_hrtick(struct rq *rq)
  1074. {
  1075. }
  1076. static inline void init_hrtick(void)
  1077. {
  1078. }
  1079. #endif /* CONFIG_SCHED_HRTICK */
  1080. /*
  1081. * resched_task - mark a task 'to be rescheduled now'.
  1082. *
  1083. * On UP this means the setting of the need_resched flag, on SMP it
  1084. * might also involve a cross-CPU call to trigger the scheduler on
  1085. * the target CPU.
  1086. */
  1087. #ifdef CONFIG_SMP
  1088. #ifndef tsk_is_polling
  1089. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1090. #endif
  1091. static void resched_task(struct task_struct *p)
  1092. {
  1093. int cpu;
  1094. assert_raw_spin_locked(&task_rq(p)->lock);
  1095. if (test_tsk_need_resched(p))
  1096. return;
  1097. set_tsk_need_resched(p);
  1098. cpu = task_cpu(p);
  1099. if (cpu == smp_processor_id())
  1100. return;
  1101. /* NEED_RESCHED must be visible before we test polling */
  1102. smp_mb();
  1103. if (!tsk_is_polling(p))
  1104. smp_send_reschedule(cpu);
  1105. }
  1106. static void resched_cpu(int cpu)
  1107. {
  1108. struct rq *rq = cpu_rq(cpu);
  1109. unsigned long flags;
  1110. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  1111. return;
  1112. resched_task(cpu_curr(cpu));
  1113. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1114. }
  1115. #ifdef CONFIG_NO_HZ
  1116. /*
  1117. * In the semi idle case, use the nearest busy cpu for migrating timers
  1118. * from an idle cpu. This is good for power-savings.
  1119. *
  1120. * We don't do similar optimization for completely idle system, as
  1121. * selecting an idle cpu will add more delays to the timers than intended
  1122. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  1123. */
  1124. int get_nohz_timer_target(void)
  1125. {
  1126. int cpu = smp_processor_id();
  1127. int i;
  1128. struct sched_domain *sd;
  1129. rcu_read_lock();
  1130. for_each_domain(cpu, sd) {
  1131. for_each_cpu(i, sched_domain_span(sd)) {
  1132. if (!idle_cpu(i)) {
  1133. cpu = i;
  1134. goto unlock;
  1135. }
  1136. }
  1137. }
  1138. unlock:
  1139. rcu_read_unlock();
  1140. return cpu;
  1141. }
  1142. /*
  1143. * When add_timer_on() enqueues a timer into the timer wheel of an
  1144. * idle CPU then this timer might expire before the next timer event
  1145. * which is scheduled to wake up that CPU. In case of a completely
  1146. * idle system the next event might even be infinite time into the
  1147. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1148. * leaves the inner idle loop so the newly added timer is taken into
  1149. * account when the CPU goes back to idle and evaluates the timer
  1150. * wheel for the next timer event.
  1151. */
  1152. void wake_up_idle_cpu(int cpu)
  1153. {
  1154. struct rq *rq = cpu_rq(cpu);
  1155. if (cpu == smp_processor_id())
  1156. return;
  1157. /*
  1158. * This is safe, as this function is called with the timer
  1159. * wheel base lock of (cpu) held. When the CPU is on the way
  1160. * to idle and has not yet set rq->curr to idle then it will
  1161. * be serialized on the timer wheel base lock and take the new
  1162. * timer into account automatically.
  1163. */
  1164. if (rq->curr != rq->idle)
  1165. return;
  1166. /*
  1167. * We can set TIF_RESCHED on the idle task of the other CPU
  1168. * lockless. The worst case is that the other CPU runs the
  1169. * idle task through an additional NOOP schedule()
  1170. */
  1171. set_tsk_need_resched(rq->idle);
  1172. /* NEED_RESCHED must be visible before we test polling */
  1173. smp_mb();
  1174. if (!tsk_is_polling(rq->idle))
  1175. smp_send_reschedule(cpu);
  1176. }
  1177. static inline bool got_nohz_idle_kick(void)
  1178. {
  1179. return idle_cpu(smp_processor_id()) && this_rq()->nohz_balance_kick;
  1180. }
  1181. #else /* CONFIG_NO_HZ */
  1182. static inline bool got_nohz_idle_kick(void)
  1183. {
  1184. return false;
  1185. }
  1186. #endif /* CONFIG_NO_HZ */
  1187. static u64 sched_avg_period(void)
  1188. {
  1189. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1190. }
  1191. static void sched_avg_update(struct rq *rq)
  1192. {
  1193. s64 period = sched_avg_period();
  1194. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1195. /*
  1196. * Inline assembly required to prevent the compiler
  1197. * optimising this loop into a divmod call.
  1198. * See __iter_div_u64_rem() for another example of this.
  1199. */
  1200. asm("" : "+rm" (rq->age_stamp));
  1201. rq->age_stamp += period;
  1202. rq->rt_avg /= 2;
  1203. }
  1204. }
  1205. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1206. {
  1207. rq->rt_avg += rt_delta;
  1208. sched_avg_update(rq);
  1209. }
  1210. #else /* !CONFIG_SMP */
  1211. static void resched_task(struct task_struct *p)
  1212. {
  1213. assert_raw_spin_locked(&task_rq(p)->lock);
  1214. set_tsk_need_resched(p);
  1215. }
  1216. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1217. {
  1218. }
  1219. static void sched_avg_update(struct rq *rq)
  1220. {
  1221. }
  1222. #endif /* CONFIG_SMP */
  1223. #if BITS_PER_LONG == 32
  1224. # define WMULT_CONST (~0UL)
  1225. #else
  1226. # define WMULT_CONST (1UL << 32)
  1227. #endif
  1228. #define WMULT_SHIFT 32
  1229. /*
  1230. * Shift right and round:
  1231. */
  1232. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1233. /*
  1234. * delta *= weight / lw
  1235. */
  1236. static unsigned long
  1237. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1238. struct load_weight *lw)
  1239. {
  1240. u64 tmp;
  1241. /*
  1242. * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
  1243. * entities since MIN_SHARES = 2. Treat weight as 1 if less than
  1244. * 2^SCHED_LOAD_RESOLUTION.
  1245. */
  1246. if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
  1247. tmp = (u64)delta_exec * scale_load_down(weight);
  1248. else
  1249. tmp = (u64)delta_exec;
  1250. if (!lw->inv_weight) {
  1251. unsigned long w = scale_load_down(lw->weight);
  1252. if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
  1253. lw->inv_weight = 1;
  1254. else if (unlikely(!w))
  1255. lw->inv_weight = WMULT_CONST;
  1256. else
  1257. lw->inv_weight = WMULT_CONST / w;
  1258. }
  1259. /*
  1260. * Check whether we'd overflow the 64-bit multiplication:
  1261. */
  1262. if (unlikely(tmp > WMULT_CONST))
  1263. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1264. WMULT_SHIFT/2);
  1265. else
  1266. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1267. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1268. }
  1269. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1270. {
  1271. lw->weight += inc;
  1272. lw->inv_weight = 0;
  1273. }
  1274. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1275. {
  1276. lw->weight -= dec;
  1277. lw->inv_weight = 0;
  1278. }
  1279. static inline void update_load_set(struct load_weight *lw, unsigned long w)
  1280. {
  1281. lw->weight = w;
  1282. lw->inv_weight = 0;
  1283. }
  1284. /*
  1285. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1286. * of tasks with abnormal "nice" values across CPUs the contribution that
  1287. * each task makes to its run queue's load is weighted according to its
  1288. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1289. * scaled version of the new time slice allocation that they receive on time
  1290. * slice expiry etc.
  1291. */
  1292. #define WEIGHT_IDLEPRIO 3
  1293. #define WMULT_IDLEPRIO 1431655765
  1294. /*
  1295. * Nice levels are multiplicative, with a gentle 10% change for every
  1296. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1297. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1298. * that remained on nice 0.
  1299. *
  1300. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1301. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1302. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1303. * If a task goes up by ~10% and another task goes down by ~10% then
  1304. * the relative distance between them is ~25%.)
  1305. */
  1306. static const int prio_to_weight[40] = {
  1307. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1308. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1309. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1310. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1311. /* 0 */ 1024, 820, 655, 526, 423,
  1312. /* 5 */ 335, 272, 215, 172, 137,
  1313. /* 10 */ 110, 87, 70, 56, 45,
  1314. /* 15 */ 36, 29, 23, 18, 15,
  1315. };
  1316. /*
  1317. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1318. *
  1319. * In cases where the weight does not change often, we can use the
  1320. * precalculated inverse to speed up arithmetics by turning divisions
  1321. * into multiplications:
  1322. */
  1323. static const u32 prio_to_wmult[40] = {
  1324. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1325. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1326. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1327. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1328. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1329. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1330. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1331. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1332. };
  1333. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1334. enum cpuacct_stat_index {
  1335. CPUACCT_STAT_USER, /* ... user mode */
  1336. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1337. CPUACCT_STAT_NSTATS,
  1338. };
  1339. #ifdef CONFIG_CGROUP_CPUACCT
  1340. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1341. static void cpuacct_update_stats(struct task_struct *tsk,
  1342. enum cpuacct_stat_index idx, cputime_t val);
  1343. #else
  1344. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1345. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1346. enum cpuacct_stat_index idx, cputime_t val) {}
  1347. #endif
  1348. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1349. {
  1350. update_load_add(&rq->load, load);
  1351. }
  1352. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1353. {
  1354. update_load_sub(&rq->load, load);
  1355. }
  1356. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  1357. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  1358. typedef int (*tg_visitor)(struct task_group *, void *);
  1359. /*
  1360. * Iterate task_group tree rooted at *from, calling @down when first entering a
  1361. * node and @up when leaving it for the final time.
  1362. *
  1363. * Caller must hold rcu_lock or sufficient equivalent.
  1364. */
  1365. static int walk_tg_tree_from(struct task_group *from,
  1366. tg_visitor down, tg_visitor up, void *data)
  1367. {
  1368. struct task_group *parent, *child;
  1369. int ret;
  1370. parent = from;
  1371. down:
  1372. ret = (*down)(parent, data);
  1373. if (ret)
  1374. goto out;
  1375. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1376. parent = child;
  1377. goto down;
  1378. up:
  1379. continue;
  1380. }
  1381. ret = (*up)(parent, data);
  1382. if (ret || parent == from)
  1383. goto out;
  1384. child = parent;
  1385. parent = parent->parent;
  1386. if (parent)
  1387. goto up;
  1388. out:
  1389. return ret;
  1390. }
  1391. /*
  1392. * Iterate the full tree, calling @down when first entering a node and @up when
  1393. * leaving it for the final time.
  1394. *
  1395. * Caller must hold rcu_lock or sufficient equivalent.
  1396. */
  1397. static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1398. {
  1399. return walk_tg_tree_from(&root_task_group, down, up, data);
  1400. }
  1401. static int tg_nop(struct task_group *tg, void *data)
  1402. {
  1403. return 0;
  1404. }
  1405. #endif
  1406. #ifdef CONFIG_SMP
  1407. /* Used instead of source_load when we know the type == 0 */
  1408. static unsigned long weighted_cpuload(const int cpu)
  1409. {
  1410. return cpu_rq(cpu)->load.weight;
  1411. }
  1412. /*
  1413. * Return a low guess at the load of a migration-source cpu weighted
  1414. * according to the scheduling class and "nice" value.
  1415. *
  1416. * We want to under-estimate the load of migration sources, to
  1417. * balance conservatively.
  1418. */
  1419. static unsigned long source_load(int cpu, int type)
  1420. {
  1421. struct rq *rq = cpu_rq(cpu);
  1422. unsigned long total = weighted_cpuload(cpu);
  1423. if (type == 0 || !sched_feat(LB_BIAS))
  1424. return total;
  1425. return min(rq->cpu_load[type-1], total);
  1426. }
  1427. /*
  1428. * Return a high guess at the load of a migration-target cpu weighted
  1429. * according to the scheduling class and "nice" value.
  1430. */
  1431. static unsigned long target_load(int cpu, int type)
  1432. {
  1433. struct rq *rq = cpu_rq(cpu);
  1434. unsigned long total = weighted_cpuload(cpu);
  1435. if (type == 0 || !sched_feat(LB_BIAS))
  1436. return total;
  1437. return max(rq->cpu_load[type-1], total);
  1438. }
  1439. static unsigned long power_of(int cpu)
  1440. {
  1441. return cpu_rq(cpu)->cpu_power;
  1442. }
  1443. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1444. static unsigned long cpu_avg_load_per_task(int cpu)
  1445. {
  1446. struct rq *rq = cpu_rq(cpu);
  1447. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1448. if (nr_running)
  1449. return rq->load.weight / nr_running;
  1450. return 0;
  1451. }
  1452. #ifdef CONFIG_PREEMPT
  1453. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1454. /*
  1455. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1456. * way at the expense of forcing extra atomic operations in all
  1457. * invocations. This assures that the double_lock is acquired using the
  1458. * same underlying policy as the spinlock_t on this architecture, which
  1459. * reduces latency compared to the unfair variant below. However, it
  1460. * also adds more overhead and therefore may reduce throughput.
  1461. */
  1462. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1463. __releases(this_rq->lock)
  1464. __acquires(busiest->lock)
  1465. __acquires(this_rq->lock)
  1466. {
  1467. raw_spin_unlock(&this_rq->lock);
  1468. double_rq_lock(this_rq, busiest);
  1469. return 1;
  1470. }
  1471. #else
  1472. /*
  1473. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1474. * latency by eliminating extra atomic operations when the locks are
  1475. * already in proper order on entry. This favors lower cpu-ids and will
  1476. * grant the double lock to lower cpus over higher ids under contention,
  1477. * regardless of entry order into the function.
  1478. */
  1479. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1480. __releases(this_rq->lock)
  1481. __acquires(busiest->lock)
  1482. __acquires(this_rq->lock)
  1483. {
  1484. int ret = 0;
  1485. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1486. if (busiest < this_rq) {
  1487. raw_spin_unlock(&this_rq->lock);
  1488. raw_spin_lock(&busiest->lock);
  1489. raw_spin_lock_nested(&this_rq->lock,
  1490. SINGLE_DEPTH_NESTING);
  1491. ret = 1;
  1492. } else
  1493. raw_spin_lock_nested(&busiest->lock,
  1494. SINGLE_DEPTH_NESTING);
  1495. }
  1496. return ret;
  1497. }
  1498. #endif /* CONFIG_PREEMPT */
  1499. /*
  1500. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1501. */
  1502. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1503. {
  1504. if (unlikely(!irqs_disabled())) {
  1505. /* printk() doesn't work good under rq->lock */
  1506. raw_spin_unlock(&this_rq->lock);
  1507. BUG_ON(1);
  1508. }
  1509. return _double_lock_balance(this_rq, busiest);
  1510. }
  1511. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1512. __releases(busiest->lock)
  1513. {
  1514. raw_spin_unlock(&busiest->lock);
  1515. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1516. }
  1517. /*
  1518. * double_rq_lock - safely lock two runqueues
  1519. *
  1520. * Note this does not disable interrupts like task_rq_lock,
  1521. * you need to do so manually before calling.
  1522. */
  1523. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1524. __acquires(rq1->lock)
  1525. __acquires(rq2->lock)
  1526. {
  1527. BUG_ON(!irqs_disabled());
  1528. if (rq1 == rq2) {
  1529. raw_spin_lock(&rq1->lock);
  1530. __acquire(rq2->lock); /* Fake it out ;) */
  1531. } else {
  1532. if (rq1 < rq2) {
  1533. raw_spin_lock(&rq1->lock);
  1534. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1535. } else {
  1536. raw_spin_lock(&rq2->lock);
  1537. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1538. }
  1539. }
  1540. }
  1541. /*
  1542. * double_rq_unlock - safely unlock two runqueues
  1543. *
  1544. * Note this does not restore interrupts like task_rq_unlock,
  1545. * you need to do so manually after calling.
  1546. */
  1547. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1548. __releases(rq1->lock)
  1549. __releases(rq2->lock)
  1550. {
  1551. raw_spin_unlock(&rq1->lock);
  1552. if (rq1 != rq2)
  1553. raw_spin_unlock(&rq2->lock);
  1554. else
  1555. __release(rq2->lock);
  1556. }
  1557. #else /* CONFIG_SMP */
  1558. /*
  1559. * double_rq_lock - safely lock two runqueues
  1560. *
  1561. * Note this does not disable interrupts like task_rq_lock,
  1562. * you need to do so manually before calling.
  1563. */
  1564. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1565. __acquires(rq1->lock)
  1566. __acquires(rq2->lock)
  1567. {
  1568. BUG_ON(!irqs_disabled());
  1569. BUG_ON(rq1 != rq2);
  1570. raw_spin_lock(&rq1->lock);
  1571. __acquire(rq2->lock); /* Fake it out ;) */
  1572. }
  1573. /*
  1574. * double_rq_unlock - safely unlock two runqueues
  1575. *
  1576. * Note this does not restore interrupts like task_rq_unlock,
  1577. * you need to do so manually after calling.
  1578. */
  1579. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1580. __releases(rq1->lock)
  1581. __releases(rq2->lock)
  1582. {
  1583. BUG_ON(rq1 != rq2);
  1584. raw_spin_unlock(&rq1->lock);
  1585. __release(rq2->lock);
  1586. }
  1587. #endif
  1588. static void calc_load_account_idle(struct rq *this_rq);
  1589. static void update_sysctl(void);
  1590. static int get_update_sysctl_factor(void);
  1591. static void update_cpu_load(struct rq *this_rq);
  1592. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1593. {
  1594. set_task_rq(p, cpu);
  1595. #ifdef CONFIG_SMP
  1596. /*
  1597. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1598. * successfully executed on another CPU. We must ensure that updates of
  1599. * per-task data have been completed by this moment.
  1600. */
  1601. smp_wmb();
  1602. task_thread_info(p)->cpu = cpu;
  1603. #endif
  1604. }
  1605. static const struct sched_class rt_sched_class;
  1606. #define sched_class_highest (&stop_sched_class)
  1607. #define for_each_class(class) \
  1608. for (class = sched_class_highest; class; class = class->next)
  1609. #include "sched_stats.h"
  1610. static void inc_nr_running(struct rq *rq)
  1611. {
  1612. rq->nr_running++;
  1613. }
  1614. static void dec_nr_running(struct rq *rq)
  1615. {
  1616. rq->nr_running--;
  1617. }
  1618. static void set_load_weight(struct task_struct *p)
  1619. {
  1620. int prio = p->static_prio - MAX_RT_PRIO;
  1621. struct load_weight *load = &p->se.load;
  1622. /*
  1623. * SCHED_IDLE tasks get minimal weight:
  1624. */
  1625. if (p->policy == SCHED_IDLE) {
  1626. load->weight = scale_load(WEIGHT_IDLEPRIO);
  1627. load->inv_weight = WMULT_IDLEPRIO;
  1628. return;
  1629. }
  1630. load->weight = scale_load(prio_to_weight[prio]);
  1631. load->inv_weight = prio_to_wmult[prio];
  1632. }
  1633. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1634. {
  1635. update_rq_clock(rq);
  1636. sched_info_queued(p);
  1637. p->sched_class->enqueue_task(rq, p, flags);
  1638. }
  1639. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1640. {
  1641. update_rq_clock(rq);
  1642. sched_info_dequeued(p);
  1643. p->sched_class->dequeue_task(rq, p, flags);
  1644. }
  1645. /*
  1646. * activate_task - move a task to the runqueue.
  1647. */
  1648. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1649. {
  1650. if (task_contributes_to_load(p))
  1651. rq->nr_uninterruptible--;
  1652. enqueue_task(rq, p, flags);
  1653. }
  1654. /*
  1655. * deactivate_task - remove a task from the runqueue.
  1656. */
  1657. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1658. {
  1659. if (task_contributes_to_load(p))
  1660. rq->nr_uninterruptible++;
  1661. dequeue_task(rq, p, flags);
  1662. }
  1663. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1664. /*
  1665. * There are no locks covering percpu hardirq/softirq time.
  1666. * They are only modified in account_system_vtime, on corresponding CPU
  1667. * with interrupts disabled. So, writes are safe.
  1668. * They are read and saved off onto struct rq in update_rq_clock().
  1669. * This may result in other CPU reading this CPU's irq time and can
  1670. * race with irq/account_system_vtime on this CPU. We would either get old
  1671. * or new value with a side effect of accounting a slice of irq time to wrong
  1672. * task when irq is in progress while we read rq->clock. That is a worthy
  1673. * compromise in place of having locks on each irq in account_system_time.
  1674. */
  1675. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  1676. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  1677. static DEFINE_PER_CPU(u64, irq_start_time);
  1678. static int sched_clock_irqtime;
  1679. void enable_sched_clock_irqtime(void)
  1680. {
  1681. sched_clock_irqtime = 1;
  1682. }
  1683. void disable_sched_clock_irqtime(void)
  1684. {
  1685. sched_clock_irqtime = 0;
  1686. }
  1687. #ifndef CONFIG_64BIT
  1688. static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  1689. static inline void irq_time_write_begin(void)
  1690. {
  1691. __this_cpu_inc(irq_time_seq.sequence);
  1692. smp_wmb();
  1693. }
  1694. static inline void irq_time_write_end(void)
  1695. {
  1696. smp_wmb();
  1697. __this_cpu_inc(irq_time_seq.sequence);
  1698. }
  1699. static inline u64 irq_time_read(int cpu)
  1700. {
  1701. u64 irq_time;
  1702. unsigned seq;
  1703. do {
  1704. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  1705. irq_time = per_cpu(cpu_softirq_time, cpu) +
  1706. per_cpu(cpu_hardirq_time, cpu);
  1707. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  1708. return irq_time;
  1709. }
  1710. #else /* CONFIG_64BIT */
  1711. static inline void irq_time_write_begin(void)
  1712. {
  1713. }
  1714. static inline void irq_time_write_end(void)
  1715. {
  1716. }
  1717. static inline u64 irq_time_read(int cpu)
  1718. {
  1719. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1720. }
  1721. #endif /* CONFIG_64BIT */
  1722. /*
  1723. * Called before incrementing preempt_count on {soft,}irq_enter
  1724. * and before decrementing preempt_count on {soft,}irq_exit.
  1725. */
  1726. void account_system_vtime(struct task_struct *curr)
  1727. {
  1728. unsigned long flags;
  1729. s64 delta;
  1730. int cpu;
  1731. if (!sched_clock_irqtime)
  1732. return;
  1733. local_irq_save(flags);
  1734. cpu = smp_processor_id();
  1735. delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  1736. __this_cpu_add(irq_start_time, delta);
  1737. irq_time_write_begin();
  1738. /*
  1739. * We do not account for softirq time from ksoftirqd here.
  1740. * We want to continue accounting softirq time to ksoftirqd thread
  1741. * in that case, so as not to confuse scheduler with a special task
  1742. * that do not consume any time, but still wants to run.
  1743. */
  1744. if (hardirq_count())
  1745. __this_cpu_add(cpu_hardirq_time, delta);
  1746. else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  1747. __this_cpu_add(cpu_softirq_time, delta);
  1748. irq_time_write_end();
  1749. local_irq_restore(flags);
  1750. }
  1751. EXPORT_SYMBOL_GPL(account_system_vtime);
  1752. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  1753. #ifdef CONFIG_PARAVIRT
  1754. static inline u64 steal_ticks(u64 steal)
  1755. {
  1756. if (unlikely(steal > NSEC_PER_SEC))
  1757. return div_u64(steal, TICK_NSEC);
  1758. return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
  1759. }
  1760. #endif
  1761. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1762. {
  1763. /*
  1764. * In theory, the compile should just see 0 here, and optimize out the call
  1765. * to sched_rt_avg_update. But I don't trust it...
  1766. */
  1767. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  1768. s64 steal = 0, irq_delta = 0;
  1769. #endif
  1770. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1771. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  1772. /*
  1773. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  1774. * this case when a previous update_rq_clock() happened inside a
  1775. * {soft,}irq region.
  1776. *
  1777. * When this happens, we stop ->clock_task and only update the
  1778. * prev_irq_time stamp to account for the part that fit, so that a next
  1779. * update will consume the rest. This ensures ->clock_task is
  1780. * monotonic.
  1781. *
  1782. * It does however cause some slight miss-attribution of {soft,}irq
  1783. * time, a more accurate solution would be to update the irq_time using
  1784. * the current rq->clock timestamp, except that would require using
  1785. * atomic ops.
  1786. */
  1787. if (irq_delta > delta)
  1788. irq_delta = delta;
  1789. rq->prev_irq_time += irq_delta;
  1790. delta -= irq_delta;
  1791. #endif
  1792. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  1793. if (static_branch((&paravirt_steal_rq_enabled))) {
  1794. u64 st;
  1795. steal = paravirt_steal_clock(cpu_of(rq));
  1796. steal -= rq->prev_steal_time_rq;
  1797. if (unlikely(steal > delta))
  1798. steal = delta;
  1799. st = steal_ticks(steal);
  1800. steal = st * TICK_NSEC;
  1801. rq->prev_steal_time_rq += steal;
  1802. delta -= steal;
  1803. }
  1804. #endif
  1805. rq->clock_task += delta;
  1806. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  1807. if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
  1808. sched_rt_avg_update(rq, irq_delta + steal);
  1809. #endif
  1810. }
  1811. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1812. static int irqtime_account_hi_update(void)
  1813. {
  1814. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1815. unsigned long flags;
  1816. u64 latest_ns;
  1817. int ret = 0;
  1818. local_irq_save(flags);
  1819. latest_ns = this_cpu_read(cpu_hardirq_time);
  1820. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
  1821. ret = 1;
  1822. local_irq_restore(flags);
  1823. return ret;
  1824. }
  1825. static int irqtime_account_si_update(void)
  1826. {
  1827. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1828. unsigned long flags;
  1829. u64 latest_ns;
  1830. int ret = 0;
  1831. local_irq_save(flags);
  1832. latest_ns = this_cpu_read(cpu_softirq_time);
  1833. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
  1834. ret = 1;
  1835. local_irq_restore(flags);
  1836. return ret;
  1837. }
  1838. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  1839. #define sched_clock_irqtime (0)
  1840. #endif
  1841. #include "sched_idletask.c"
  1842. #include "sched_fair.c"
  1843. #include "sched_rt.c"
  1844. #include "sched_autogroup.c"
  1845. #include "sched_stoptask.c"
  1846. #ifdef CONFIG_SCHED_DEBUG
  1847. # include "sched_debug.c"
  1848. #endif
  1849. void sched_set_stop_task(int cpu, struct task_struct *stop)
  1850. {
  1851. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  1852. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  1853. if (stop) {
  1854. /*
  1855. * Make it appear like a SCHED_FIFO task, its something
  1856. * userspace knows about and won't get confused about.
  1857. *
  1858. * Also, it will make PI more or less work without too
  1859. * much confusion -- but then, stop work should not
  1860. * rely on PI working anyway.
  1861. */
  1862. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  1863. stop->sched_class = &stop_sched_class;
  1864. }
  1865. cpu_rq(cpu)->stop = stop;
  1866. if (old_stop) {
  1867. /*
  1868. * Reset it back to a normal scheduling class so that
  1869. * it can die in pieces.
  1870. */
  1871. old_stop->sched_class = &rt_sched_class;
  1872. }
  1873. }
  1874. /*
  1875. * __normal_prio - return the priority that is based on the static prio
  1876. */
  1877. static inline int __normal_prio(struct task_struct *p)
  1878. {
  1879. return p->static_prio;
  1880. }
  1881. /*
  1882. * Calculate the expected normal priority: i.e. priority
  1883. * without taking RT-inheritance into account. Might be
  1884. * boosted by interactivity modifiers. Changes upon fork,
  1885. * setprio syscalls, and whenever the interactivity
  1886. * estimator recalculates.
  1887. */
  1888. static inline int normal_prio(struct task_struct *p)
  1889. {
  1890. int prio;
  1891. if (task_has_rt_policy(p))
  1892. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1893. else
  1894. prio = __normal_prio(p);
  1895. return prio;
  1896. }
  1897. /*
  1898. * Calculate the current priority, i.e. the priority
  1899. * taken into account by the scheduler. This value might
  1900. * be boosted by RT tasks, or might be boosted by
  1901. * interactivity modifiers. Will be RT if the task got
  1902. * RT-boosted. If not then it returns p->normal_prio.
  1903. */
  1904. static int effective_prio(struct task_struct *p)
  1905. {
  1906. p->normal_prio = normal_prio(p);
  1907. /*
  1908. * If we are RT tasks or we were boosted to RT priority,
  1909. * keep the priority unchanged. Otherwise, update priority
  1910. * to the normal priority:
  1911. */
  1912. if (!rt_prio(p->prio))
  1913. return p->normal_prio;
  1914. return p->prio;
  1915. }
  1916. /**
  1917. * task_curr - is this task currently executing on a CPU?
  1918. * @p: the task in question.
  1919. */
  1920. inline int task_curr(const struct task_struct *p)
  1921. {
  1922. return cpu_curr(task_cpu(p)) == p;
  1923. }
  1924. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1925. const struct sched_class *prev_class,
  1926. int oldprio)
  1927. {
  1928. if (prev_class != p->sched_class) {
  1929. if (prev_class->switched_from)
  1930. prev_class->switched_from(rq, p);
  1931. p->sched_class->switched_to(rq, p);
  1932. } else if (oldprio != p->prio)
  1933. p->sched_class->prio_changed(rq, p, oldprio);
  1934. }
  1935. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  1936. {
  1937. const struct sched_class *class;
  1938. if (p->sched_class == rq->curr->sched_class) {
  1939. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  1940. } else {
  1941. for_each_class(class) {
  1942. if (class == rq->curr->sched_class)
  1943. break;
  1944. if (class == p->sched_class) {
  1945. resched_task(rq->curr);
  1946. break;
  1947. }
  1948. }
  1949. }
  1950. /*
  1951. * A queue event has occurred, and we're going to schedule. In
  1952. * this case, we can save a useless back to back clock update.
  1953. */
  1954. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  1955. rq->skip_clock_update = 1;
  1956. }
  1957. #ifdef CONFIG_SMP
  1958. /*
  1959. * Is this task likely cache-hot:
  1960. */
  1961. static int
  1962. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1963. {
  1964. s64 delta;
  1965. if (p->sched_class != &fair_sched_class)
  1966. return 0;
  1967. if (unlikely(p->policy == SCHED_IDLE))
  1968. return 0;
  1969. /*
  1970. * Buddy candidates are cache hot:
  1971. */
  1972. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1973. (&p->se == cfs_rq_of(&p->se)->next ||
  1974. &p->se == cfs_rq_of(&p->se)->last))
  1975. return 1;
  1976. if (sysctl_sched_migration_cost == -1)
  1977. return 1;
  1978. if (sysctl_sched_migration_cost == 0)
  1979. return 0;
  1980. delta = now - p->se.exec_start;
  1981. return delta < (s64)sysctl_sched_migration_cost;
  1982. }
  1983. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1984. {
  1985. #ifdef CONFIG_SCHED_DEBUG
  1986. /*
  1987. * We should never call set_task_cpu() on a blocked task,
  1988. * ttwu() will sort out the placement.
  1989. */
  1990. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1991. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1992. #ifdef CONFIG_LOCKDEP
  1993. /*
  1994. * The caller should hold either p->pi_lock or rq->lock, when changing
  1995. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  1996. *
  1997. * sched_move_task() holds both and thus holding either pins the cgroup,
  1998. * see set_task_rq().
  1999. *
  2000. * Furthermore, all task_rq users should acquire both locks, see
  2001. * task_rq_lock().
  2002. */
  2003. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  2004. lockdep_is_held(&task_rq(p)->lock)));
  2005. #endif
  2006. #endif
  2007. trace_sched_migrate_task(p, new_cpu);
  2008. if (task_cpu(p) != new_cpu) {
  2009. p->se.nr_migrations++;
  2010. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  2011. }
  2012. __set_task_cpu(p, new_cpu);
  2013. }
  2014. struct migration_arg {
  2015. struct task_struct *task;
  2016. int dest_cpu;
  2017. };
  2018. static int migration_cpu_stop(void *data);
  2019. /*
  2020. * wait_task_inactive - wait for a thread to unschedule.
  2021. *
  2022. * If @match_state is nonzero, it's the @p->state value just checked and
  2023. * not expected to change. If it changes, i.e. @p might have woken up,
  2024. * then return zero. When we succeed in waiting for @p to be off its CPU,
  2025. * we return a positive number (its total switch count). If a second call
  2026. * a short while later returns the same number, the caller can be sure that
  2027. * @p has remained unscheduled the whole time.
  2028. *
  2029. * The caller must ensure that the task *will* unschedule sometime soon,
  2030. * else this function might spin for a *long* time. This function can't
  2031. * be called with interrupts off, or it may introduce deadlock with
  2032. * smp_call_function() if an IPI is sent by the same process we are
  2033. * waiting to become inactive.
  2034. */
  2035. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  2036. {
  2037. unsigned long flags;
  2038. int running, on_rq;
  2039. unsigned long ncsw;
  2040. struct rq *rq;
  2041. for (;;) {
  2042. /*
  2043. * We do the initial early heuristics without holding
  2044. * any task-queue locks at all. We'll only try to get
  2045. * the runqueue lock when things look like they will
  2046. * work out!
  2047. */
  2048. rq = task_rq(p);
  2049. /*
  2050. * If the task is actively running on another CPU
  2051. * still, just relax and busy-wait without holding
  2052. * any locks.
  2053. *
  2054. * NOTE! Since we don't hold any locks, it's not
  2055. * even sure that "rq" stays as the right runqueue!
  2056. * But we don't care, since "task_running()" will
  2057. * return false if the runqueue has changed and p
  2058. * is actually now running somewhere else!
  2059. */
  2060. while (task_running(rq, p)) {
  2061. if (match_state && unlikely(p->state != match_state))
  2062. return 0;
  2063. cpu_relax();
  2064. }
  2065. /*
  2066. * Ok, time to look more closely! We need the rq
  2067. * lock now, to be *sure*. If we're wrong, we'll
  2068. * just go back and repeat.
  2069. */
  2070. rq = task_rq_lock(p, &flags);
  2071. trace_sched_wait_task(p);
  2072. running = task_running(rq, p);
  2073. on_rq = p->on_rq;
  2074. ncsw = 0;
  2075. if (!match_state || p->state == match_state)
  2076. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  2077. task_rq_unlock(rq, p, &flags);
  2078. /*
  2079. * If it changed from the expected state, bail out now.
  2080. */
  2081. if (unlikely(!ncsw))
  2082. break;
  2083. /*
  2084. * Was it really running after all now that we
  2085. * checked with the proper locks actually held?
  2086. *
  2087. * Oops. Go back and try again..
  2088. */
  2089. if (unlikely(running)) {
  2090. cpu_relax();
  2091. continue;
  2092. }
  2093. /*
  2094. * It's not enough that it's not actively running,
  2095. * it must be off the runqueue _entirely_, and not
  2096. * preempted!
  2097. *
  2098. * So if it was still runnable (but just not actively
  2099. * running right now), it's preempted, and we should
  2100. * yield - it could be a while.
  2101. */
  2102. if (unlikely(on_rq)) {
  2103. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  2104. set_current_state(TASK_UNINTERRUPTIBLE);
  2105. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  2106. continue;
  2107. }
  2108. /*
  2109. * Ahh, all good. It wasn't running, and it wasn't
  2110. * runnable, which means that it will never become
  2111. * running in the future either. We're all done!
  2112. */
  2113. break;
  2114. }
  2115. return ncsw;
  2116. }
  2117. /***
  2118. * kick_process - kick a running thread to enter/exit the kernel
  2119. * @p: the to-be-kicked thread
  2120. *
  2121. * Cause a process which is running on another CPU to enter
  2122. * kernel-mode, without any delay. (to get signals handled.)
  2123. *
  2124. * NOTE: this function doesn't have to take the runqueue lock,
  2125. * because all it wants to ensure is that the remote task enters
  2126. * the kernel. If the IPI races and the task has been migrated
  2127. * to another CPU then no harm is done and the purpose has been
  2128. * achieved as well.
  2129. */
  2130. void kick_process(struct task_struct *p)
  2131. {
  2132. int cpu;
  2133. preempt_disable();
  2134. cpu = task_cpu(p);
  2135. if ((cpu != smp_processor_id()) && task_curr(p))
  2136. smp_send_reschedule(cpu);
  2137. preempt_enable();
  2138. }
  2139. EXPORT_SYMBOL_GPL(kick_process);
  2140. #endif /* CONFIG_SMP */
  2141. #ifdef CONFIG_SMP
  2142. /*
  2143. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  2144. */
  2145. static int select_fallback_rq(int cpu, struct task_struct *p)
  2146. {
  2147. int dest_cpu;
  2148. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  2149. /* Look for allowed, online CPU in same node. */
  2150. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  2151. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  2152. return dest_cpu;
  2153. /* Any allowed, online CPU? */
  2154. dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
  2155. if (dest_cpu < nr_cpu_ids)
  2156. return dest_cpu;
  2157. /* No more Mr. Nice Guy. */
  2158. dest_cpu = cpuset_cpus_allowed_fallback(p);
  2159. /*
  2160. * Don't tell them about moving exiting tasks or
  2161. * kernel threads (both mm NULL), since they never
  2162. * leave kernel.
  2163. */
  2164. if (p->mm && printk_ratelimit()) {
  2165. printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
  2166. task_pid_nr(p), p->comm, cpu);
  2167. }
  2168. return dest_cpu;
  2169. }
  2170. /*
  2171. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  2172. */
  2173. static inline
  2174. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  2175. {
  2176. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  2177. /*
  2178. * In order not to call set_task_cpu() on a blocking task we need
  2179. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  2180. * cpu.
  2181. *
  2182. * Since this is common to all placement strategies, this lives here.
  2183. *
  2184. * [ this allows ->select_task() to simply return task_cpu(p) and
  2185. * not worry about this generic constraint ]
  2186. */
  2187. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  2188. !cpu_online(cpu)))
  2189. cpu = select_fallback_rq(task_cpu(p), p);
  2190. return cpu;
  2191. }
  2192. static void update_avg(u64 *avg, u64 sample)
  2193. {
  2194. s64 diff = sample - *avg;
  2195. *avg += diff >> 3;
  2196. }
  2197. #endif
  2198. static void
  2199. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  2200. {
  2201. #ifdef CONFIG_SCHEDSTATS
  2202. struct rq *rq = this_rq();
  2203. #ifdef CONFIG_SMP
  2204. int this_cpu = smp_processor_id();
  2205. if (cpu == this_cpu) {
  2206. schedstat_inc(rq, ttwu_local);
  2207. schedstat_inc(p, se.statistics.nr_wakeups_local);
  2208. } else {
  2209. struct sched_domain *sd;
  2210. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  2211. rcu_read_lock();
  2212. for_each_domain(this_cpu, sd) {
  2213. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2214. schedstat_inc(sd, ttwu_wake_remote);
  2215. break;
  2216. }
  2217. }
  2218. rcu_read_unlock();
  2219. }
  2220. if (wake_flags & WF_MIGRATED)
  2221. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  2222. #endif /* CONFIG_SMP */
  2223. schedstat_inc(rq, ttwu_count);
  2224. schedstat_inc(p, se.statistics.nr_wakeups);
  2225. if (wake_flags & WF_SYNC)
  2226. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  2227. #endif /* CONFIG_SCHEDSTATS */
  2228. }
  2229. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  2230. {
  2231. activate_task(rq, p, en_flags);
  2232. p->on_rq = 1;
  2233. /* if a worker is waking up, notify workqueue */
  2234. if (p->flags & PF_WQ_WORKER)
  2235. wq_worker_waking_up(p, cpu_of(rq));
  2236. }
  2237. /*
  2238. * Mark the task runnable and perform wakeup-preemption.
  2239. */
  2240. static void
  2241. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  2242. {
  2243. trace_sched_wakeup(p, true);
  2244. check_preempt_curr(rq, p, wake_flags);
  2245. p->state = TASK_RUNNING;
  2246. #ifdef CONFIG_SMP
  2247. if (p->sched_class->task_woken)
  2248. p->sched_class->task_woken(rq, p);
  2249. if (rq->idle_stamp) {
  2250. u64 delta = rq->clock - rq->idle_stamp;
  2251. u64 max = 2*sysctl_sched_migration_cost;
  2252. if (delta > max)
  2253. rq->avg_idle = max;
  2254. else
  2255. update_avg(&rq->avg_idle, delta);
  2256. rq->idle_stamp = 0;
  2257. }
  2258. #endif
  2259. }
  2260. static void
  2261. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  2262. {
  2263. #ifdef CONFIG_SMP
  2264. if (p->sched_contributes_to_load)
  2265. rq->nr_uninterruptible--;
  2266. #endif
  2267. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  2268. ttwu_do_wakeup(rq, p, wake_flags);
  2269. }
  2270. /*
  2271. * Called in case the task @p isn't fully descheduled from its runqueue,
  2272. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  2273. * since all we need to do is flip p->state to TASK_RUNNING, since
  2274. * the task is still ->on_rq.
  2275. */
  2276. static int ttwu_remote(struct task_struct *p, int wake_flags)
  2277. {
  2278. struct rq *rq;
  2279. int ret = 0;
  2280. rq = __task_rq_lock(p);
  2281. if (p->on_rq) {
  2282. ttwu_do_wakeup(rq, p, wake_flags);
  2283. ret = 1;
  2284. }
  2285. __task_rq_unlock(rq);
  2286. return ret;
  2287. }
  2288. #ifdef CONFIG_SMP
  2289. static void sched_ttwu_pending(void)
  2290. {
  2291. struct rq *rq = this_rq();
  2292. struct llist_node *llist = llist_del_all(&rq->wake_list);
  2293. struct task_struct *p;
  2294. raw_spin_lock(&rq->lock);
  2295. while (llist) {
  2296. p = llist_entry(llist, struct task_struct, wake_entry);
  2297. llist = llist_next(llist);
  2298. ttwu_do_activate(rq, p, 0);
  2299. }
  2300. raw_spin_unlock(&rq->lock);
  2301. }
  2302. void scheduler_ipi(void)
  2303. {
  2304. if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
  2305. return;
  2306. /*
  2307. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  2308. * traditionally all their work was done from the interrupt return
  2309. * path. Now that we actually do some work, we need to make sure
  2310. * we do call them.
  2311. *
  2312. * Some archs already do call them, luckily irq_enter/exit nest
  2313. * properly.
  2314. *
  2315. * Arguably we should visit all archs and update all handlers,
  2316. * however a fair share of IPIs are still resched only so this would
  2317. * somewhat pessimize the simple resched case.
  2318. */
  2319. irq_enter();
  2320. sched_ttwu_pending();
  2321. /*
  2322. * Check if someone kicked us for doing the nohz idle load balance.
  2323. */
  2324. if (unlikely(got_nohz_idle_kick() && !need_resched())) {
  2325. this_rq()->idle_balance = 1;
  2326. raise_softirq_irqoff(SCHED_SOFTIRQ);
  2327. }
  2328. irq_exit();
  2329. }
  2330. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  2331. {
  2332. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
  2333. smp_send_reschedule(cpu);
  2334. }
  2335. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2336. static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
  2337. {
  2338. struct rq *rq;
  2339. int ret = 0;
  2340. rq = __task_rq_lock(p);
  2341. if (p->on_cpu) {
  2342. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  2343. ttwu_do_wakeup(rq, p, wake_flags);
  2344. ret = 1;
  2345. }
  2346. __task_rq_unlock(rq);
  2347. return ret;
  2348. }
  2349. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2350. #endif /* CONFIG_SMP */
  2351. static void ttwu_queue(struct task_struct *p, int cpu)
  2352. {
  2353. struct rq *rq = cpu_rq(cpu);
  2354. #if defined(CONFIG_SMP)
  2355. if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
  2356. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  2357. ttwu_queue_remote(p, cpu);
  2358. return;
  2359. }
  2360. #endif
  2361. raw_spin_lock(&rq->lock);
  2362. ttwu_do_activate(rq, p, 0);
  2363. raw_spin_unlock(&rq->lock);
  2364. }
  2365. /**
  2366. * try_to_wake_up - wake up a thread
  2367. * @p: the thread to be awakened
  2368. * @state: the mask of task states that can be woken
  2369. * @wake_flags: wake modifier flags (WF_*)
  2370. *
  2371. * Put it on the run-queue if it's not already there. The "current"
  2372. * thread is always on the run-queue (except when the actual
  2373. * re-schedule is in progress), and as such you're allowed to do
  2374. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2375. * runnable without the overhead of this.
  2376. *
  2377. * Returns %true if @p was woken up, %false if it was already running
  2378. * or @state didn't match @p's state.
  2379. */
  2380. static int
  2381. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  2382. {
  2383. unsigned long flags;
  2384. int cpu, success = 0;
  2385. smp_wmb();
  2386. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2387. if (!(p->state & state))
  2388. goto out;
  2389. success = 1; /* we're going to change ->state */
  2390. cpu = task_cpu(p);
  2391. if (p->on_rq && ttwu_remote(p, wake_flags))
  2392. goto stat;
  2393. #ifdef CONFIG_SMP
  2394. /*
  2395. * If the owning (remote) cpu is still in the middle of schedule() with
  2396. * this task as prev, wait until its done referencing the task.
  2397. */
  2398. while (p->on_cpu) {
  2399. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2400. /*
  2401. * In case the architecture enables interrupts in
  2402. * context_switch(), we cannot busy wait, since that
  2403. * would lead to deadlocks when an interrupt hits and
  2404. * tries to wake up @prev. So bail and do a complete
  2405. * remote wakeup.
  2406. */
  2407. if (ttwu_activate_remote(p, wake_flags))
  2408. goto stat;
  2409. #else
  2410. cpu_relax();
  2411. #endif
  2412. }
  2413. /*
  2414. * Pairs with the smp_wmb() in finish_lock_switch().
  2415. */
  2416. smp_rmb();
  2417. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  2418. p->state = TASK_WAKING;
  2419. if (p->sched_class->task_waking)
  2420. p->sched_class->task_waking(p);
  2421. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  2422. if (task_cpu(p) != cpu) {
  2423. wake_flags |= WF_MIGRATED;
  2424. set_task_cpu(p, cpu);
  2425. }
  2426. #endif /* CONFIG_SMP */
  2427. ttwu_queue(p, cpu);
  2428. stat:
  2429. ttwu_stat(p, cpu, wake_flags);
  2430. out:
  2431. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2432. return success;
  2433. }
  2434. /**
  2435. * try_to_wake_up_local - try to wake up a local task with rq lock held
  2436. * @p: the thread to be awakened
  2437. *
  2438. * Put @p on the run-queue if it's not already there. The caller must
  2439. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  2440. * the current task.
  2441. */
  2442. static void try_to_wake_up_local(struct task_struct *p)
  2443. {
  2444. struct rq *rq = task_rq(p);
  2445. BUG_ON(rq != this_rq());
  2446. BUG_ON(p == current);
  2447. lockdep_assert_held(&rq->lock);
  2448. if (!raw_spin_trylock(&p->pi_lock)) {
  2449. raw_spin_unlock(&rq->lock);
  2450. raw_spin_lock(&p->pi_lock);
  2451. raw_spin_lock(&rq->lock);
  2452. }
  2453. if (!(p->state & TASK_NORMAL))
  2454. goto out;
  2455. if (!p->on_rq)
  2456. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  2457. ttwu_do_wakeup(rq, p, 0);
  2458. ttwu_stat(p, smp_processor_id(), 0);
  2459. out:
  2460. raw_spin_unlock(&p->pi_lock);
  2461. }
  2462. /**
  2463. * wake_up_process - Wake up a specific process
  2464. * @p: The process to be woken up.
  2465. *
  2466. * Attempt to wake up the nominated process and move it to the set of runnable
  2467. * processes. Returns 1 if the process was woken up, 0 if it was already
  2468. * running.
  2469. *
  2470. * It may be assumed that this function implies a write memory barrier before
  2471. * changing the task state if and only if any tasks are woken up.
  2472. */
  2473. int wake_up_process(struct task_struct *p)
  2474. {
  2475. return try_to_wake_up(p, TASK_ALL, 0);
  2476. }
  2477. EXPORT_SYMBOL(wake_up_process);
  2478. int wake_up_state(struct task_struct *p, unsigned int state)
  2479. {
  2480. return try_to_wake_up(p, state, 0);
  2481. }
  2482. /*
  2483. * Perform scheduler related setup for a newly forked process p.
  2484. * p is forked by current.
  2485. *
  2486. * __sched_fork() is basic setup used by init_idle() too:
  2487. */
  2488. static void __sched_fork(struct task_struct *p)
  2489. {
  2490. p->on_rq = 0;
  2491. p->se.on_rq = 0;
  2492. p->se.exec_start = 0;
  2493. p->se.sum_exec_runtime = 0;
  2494. p->se.prev_sum_exec_runtime = 0;
  2495. p->se.nr_migrations = 0;
  2496. p->se.vruntime = 0;
  2497. INIT_LIST_HEAD(&p->se.group_node);
  2498. #ifdef CONFIG_SCHEDSTATS
  2499. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2500. #endif
  2501. INIT_LIST_HEAD(&p->rt.run_list);
  2502. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2503. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2504. #endif
  2505. }
  2506. /*
  2507. * fork()/clone()-time setup:
  2508. */
  2509. void sched_fork(struct task_struct *p)
  2510. {
  2511. unsigned long flags;
  2512. int cpu = get_cpu();
  2513. __sched_fork(p);
  2514. /*
  2515. * We mark the process as running here. This guarantees that
  2516. * nobody will actually run it, and a signal or other external
  2517. * event cannot wake it up and insert it on the runqueue either.
  2518. */
  2519. p->state = TASK_RUNNING;
  2520. /*
  2521. * Make sure we do not leak PI boosting priority to the child.
  2522. */
  2523. p->prio = current->normal_prio;
  2524. /*
  2525. * Revert to default priority/policy on fork if requested.
  2526. */
  2527. if (unlikely(p->sched_reset_on_fork)) {
  2528. if (task_has_rt_policy(p)) {
  2529. p->policy = SCHED_NORMAL;
  2530. p->static_prio = NICE_TO_PRIO(0);
  2531. p->rt_priority = 0;
  2532. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  2533. p->static_prio = NICE_TO_PRIO(0);
  2534. p->prio = p->normal_prio = __normal_prio(p);
  2535. set_load_weight(p);
  2536. /*
  2537. * We don't need the reset flag anymore after the fork. It has
  2538. * fulfilled its duty:
  2539. */
  2540. p->sched_reset_on_fork = 0;
  2541. }
  2542. if (!rt_prio(p->prio))
  2543. p->sched_class = &fair_sched_class;
  2544. if (p->sched_class->task_fork)
  2545. p->sched_class->task_fork(p);
  2546. /*
  2547. * The child is not yet in the pid-hash so no cgroup attach races,
  2548. * and the cgroup is pinned to this child due to cgroup_fork()
  2549. * is ran before sched_fork().
  2550. *
  2551. * Silence PROVE_RCU.
  2552. */
  2553. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2554. set_task_cpu(p, cpu);
  2555. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2556. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2557. if (likely(sched_info_on()))
  2558. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2559. #endif
  2560. #if defined(CONFIG_SMP)
  2561. p->on_cpu = 0;
  2562. #endif
  2563. #ifdef CONFIG_PREEMPT_COUNT
  2564. /* Want to start with kernel preemption disabled. */
  2565. task_thread_info(p)->preempt_count = 1;
  2566. #endif
  2567. #ifdef CONFIG_SMP
  2568. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2569. #endif
  2570. put_cpu();
  2571. }
  2572. /*
  2573. * wake_up_new_task - wake up a newly created task for the first time.
  2574. *
  2575. * This function will do some initial scheduler statistics housekeeping
  2576. * that must be done for every newly created context, then puts the task
  2577. * on the runqueue and wakes it.
  2578. */
  2579. void wake_up_new_task(struct task_struct *p)
  2580. {
  2581. unsigned long flags;
  2582. struct rq *rq;
  2583. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2584. #ifdef CONFIG_SMP
  2585. /*
  2586. * Fork balancing, do it here and not earlier because:
  2587. * - cpus_allowed can change in the fork path
  2588. * - any previously selected cpu might disappear through hotplug
  2589. */
  2590. set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
  2591. #endif
  2592. rq = __task_rq_lock(p);
  2593. activate_task(rq, p, 0);
  2594. p->on_rq = 1;
  2595. trace_sched_wakeup_new(p, true);
  2596. check_preempt_curr(rq, p, WF_FORK);
  2597. #ifdef CONFIG_SMP
  2598. if (p->sched_class->task_woken)
  2599. p->sched_class->task_woken(rq, p);
  2600. #endif
  2601. task_rq_unlock(rq, p, &flags);
  2602. }
  2603. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2604. /**
  2605. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2606. * @notifier: notifier struct to register
  2607. */
  2608. void preempt_notifier_register(struct preempt_notifier *notifier)
  2609. {
  2610. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2611. }
  2612. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2613. /**
  2614. * preempt_notifier_unregister - no longer interested in preemption notifications
  2615. * @notifier: notifier struct to unregister
  2616. *
  2617. * This is safe to call from within a preemption notifier.
  2618. */
  2619. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2620. {
  2621. hlist_del(&notifier->link);
  2622. }
  2623. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2624. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2625. {
  2626. struct preempt_notifier *notifier;
  2627. struct hlist_node *node;
  2628. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2629. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2630. }
  2631. static void
  2632. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2633. struct task_struct *next)
  2634. {
  2635. struct preempt_notifier *notifier;
  2636. struct hlist_node *node;
  2637. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2638. notifier->ops->sched_out(notifier, next);
  2639. }
  2640. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2641. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2642. {
  2643. }
  2644. static void
  2645. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2646. struct task_struct *next)
  2647. {
  2648. }
  2649. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2650. /**
  2651. * prepare_task_switch - prepare to switch tasks
  2652. * @rq: the runqueue preparing to switch
  2653. * @prev: the current task that is being switched out
  2654. * @next: the task we are going to switch to.
  2655. *
  2656. * This is called with the rq lock held and interrupts off. It must
  2657. * be paired with a subsequent finish_task_switch after the context
  2658. * switch.
  2659. *
  2660. * prepare_task_switch sets up locking and calls architecture specific
  2661. * hooks.
  2662. */
  2663. static inline void
  2664. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2665. struct task_struct *next)
  2666. {
  2667. sched_info_switch(prev, next);
  2668. perf_event_task_sched_out(prev, next);
  2669. fire_sched_out_preempt_notifiers(prev, next);
  2670. prepare_lock_switch(rq, next);
  2671. prepare_arch_switch(next);
  2672. trace_sched_switch(prev, next);
  2673. }
  2674. /**
  2675. * finish_task_switch - clean up after a task-switch
  2676. * @rq: runqueue associated with task-switch
  2677. * @prev: the thread we just switched away from.
  2678. *
  2679. * finish_task_switch must be called after the context switch, paired
  2680. * with a prepare_task_switch call before the context switch.
  2681. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2682. * and do any other architecture-specific cleanup actions.
  2683. *
  2684. * Note that we may have delayed dropping an mm in context_switch(). If
  2685. * so, we finish that here outside of the runqueue lock. (Doing it
  2686. * with the lock held can cause deadlocks; see schedule() for
  2687. * details.)
  2688. */
  2689. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2690. __releases(rq->lock)
  2691. {
  2692. struct mm_struct *mm = rq->prev_mm;
  2693. long prev_state;
  2694. rq->prev_mm = NULL;
  2695. /*
  2696. * A task struct has one reference for the use as "current".
  2697. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2698. * schedule one last time. The schedule call will never return, and
  2699. * the scheduled task must drop that reference.
  2700. * The test for TASK_DEAD must occur while the runqueue locks are
  2701. * still held, otherwise prev could be scheduled on another cpu, die
  2702. * there before we look at prev->state, and then the reference would
  2703. * be dropped twice.
  2704. * Manfred Spraul <manfred@colorfullife.com>
  2705. */
  2706. prev_state = prev->state;
  2707. finish_arch_switch(prev);
  2708. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2709. local_irq_disable();
  2710. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2711. perf_event_task_sched_in(prev, current);
  2712. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2713. local_irq_enable();
  2714. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2715. finish_lock_switch(rq, prev);
  2716. fire_sched_in_preempt_notifiers(current);
  2717. if (mm)
  2718. mmdrop(mm);
  2719. if (unlikely(prev_state == TASK_DEAD)) {
  2720. /*
  2721. * Remove function-return probe instances associated with this
  2722. * task and put them back on the free list.
  2723. */
  2724. kprobe_flush_task(prev);
  2725. put_task_struct(prev);
  2726. }
  2727. }
  2728. #ifdef CONFIG_SMP
  2729. /* assumes rq->lock is held */
  2730. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2731. {
  2732. if (prev->sched_class->pre_schedule)
  2733. prev->sched_class->pre_schedule(rq, prev);
  2734. }
  2735. /* rq->lock is NOT held, but preemption is disabled */
  2736. static inline void post_schedule(struct rq *rq)
  2737. {
  2738. if (rq->post_schedule) {
  2739. unsigned long flags;
  2740. raw_spin_lock_irqsave(&rq->lock, flags);
  2741. if (rq->curr->sched_class->post_schedule)
  2742. rq->curr->sched_class->post_schedule(rq);
  2743. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2744. rq->post_schedule = 0;
  2745. }
  2746. }
  2747. #else
  2748. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2749. {
  2750. }
  2751. static inline void post_schedule(struct rq *rq)
  2752. {
  2753. }
  2754. #endif
  2755. /**
  2756. * schedule_tail - first thing a freshly forked thread must call.
  2757. * @prev: the thread we just switched away from.
  2758. */
  2759. asmlinkage void schedule_tail(struct task_struct *prev)
  2760. __releases(rq->lock)
  2761. {
  2762. struct rq *rq = this_rq();
  2763. finish_task_switch(rq, prev);
  2764. /*
  2765. * FIXME: do we need to worry about rq being invalidated by the
  2766. * task_switch?
  2767. */
  2768. post_schedule(rq);
  2769. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2770. /* In this case, finish_task_switch does not reenable preemption */
  2771. preempt_enable();
  2772. #endif
  2773. if (current->set_child_tid)
  2774. put_user(task_pid_vnr(current), current->set_child_tid);
  2775. }
  2776. /*
  2777. * context_switch - switch to the new MM and the new
  2778. * thread's register state.
  2779. */
  2780. static inline void
  2781. context_switch(struct rq *rq, struct task_struct *prev,
  2782. struct task_struct *next)
  2783. {
  2784. struct mm_struct *mm, *oldmm;
  2785. prepare_task_switch(rq, prev, next);
  2786. mm = next->mm;
  2787. oldmm = prev->active_mm;
  2788. /*
  2789. * For paravirt, this is coupled with an exit in switch_to to
  2790. * combine the page table reload and the switch backend into
  2791. * one hypercall.
  2792. */
  2793. arch_start_context_switch(prev);
  2794. if (!mm) {
  2795. next->active_mm = oldmm;
  2796. atomic_inc(&oldmm->mm_count);
  2797. enter_lazy_tlb(oldmm, next);
  2798. } else
  2799. switch_mm(oldmm, mm, next);
  2800. if (!prev->mm) {
  2801. prev->active_mm = NULL;
  2802. rq->prev_mm = oldmm;
  2803. }
  2804. /*
  2805. * Since the runqueue lock will be released by the next
  2806. * task (which is an invalid locking op but in the case
  2807. * of the scheduler it's an obvious special-case), so we
  2808. * do an early lockdep release here:
  2809. */
  2810. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2811. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2812. #endif
  2813. /* Here we just switch the register state and the stack. */
  2814. switch_to(prev, next, prev);
  2815. barrier();
  2816. /*
  2817. * this_rq must be evaluated again because prev may have moved
  2818. * CPUs since it called schedule(), thus the 'rq' on its stack
  2819. * frame will be invalid.
  2820. */
  2821. finish_task_switch(this_rq(), prev);
  2822. }
  2823. /*
  2824. * nr_running, nr_uninterruptible and nr_context_switches:
  2825. *
  2826. * externally visible scheduler statistics: current number of runnable
  2827. * threads, current number of uninterruptible-sleeping threads, total
  2828. * number of context switches performed since bootup.
  2829. */
  2830. unsigned long nr_running(void)
  2831. {
  2832. unsigned long i, sum = 0;
  2833. for_each_online_cpu(i)
  2834. sum += cpu_rq(i)->nr_running;
  2835. return sum;
  2836. }
  2837. unsigned long nr_uninterruptible(void)
  2838. {
  2839. unsigned long i, sum = 0;
  2840. for_each_possible_cpu(i)
  2841. sum += cpu_rq(i)->nr_uninterruptible;
  2842. /*
  2843. * Since we read the counters lockless, it might be slightly
  2844. * inaccurate. Do not allow it to go below zero though:
  2845. */
  2846. if (unlikely((long)sum < 0))
  2847. sum = 0;
  2848. return sum;
  2849. }
  2850. unsigned long long nr_context_switches(void)
  2851. {
  2852. int i;
  2853. unsigned long long sum = 0;
  2854. for_each_possible_cpu(i)
  2855. sum += cpu_rq(i)->nr_switches;
  2856. return sum;
  2857. }
  2858. unsigned long nr_iowait(void)
  2859. {
  2860. unsigned long i, sum = 0;
  2861. for_each_possible_cpu(i)
  2862. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2863. return sum;
  2864. }
  2865. unsigned long nr_iowait_cpu(int cpu)
  2866. {
  2867. struct rq *this = cpu_rq(cpu);
  2868. return atomic_read(&this->nr_iowait);
  2869. }
  2870. unsigned long this_cpu_load(void)
  2871. {
  2872. struct rq *this = this_rq();
  2873. return this->cpu_load[0];
  2874. }
  2875. /* Variables and functions for calc_load */
  2876. static atomic_long_t calc_load_tasks;
  2877. static unsigned long calc_load_update;
  2878. unsigned long avenrun[3];
  2879. EXPORT_SYMBOL(avenrun);
  2880. static long calc_load_fold_active(struct rq *this_rq)
  2881. {
  2882. long nr_active, delta = 0;
  2883. nr_active = this_rq->nr_running;
  2884. nr_active += (long) this_rq->nr_uninterruptible;
  2885. if (nr_active != this_rq->calc_load_active) {
  2886. delta = nr_active - this_rq->calc_load_active;
  2887. this_rq->calc_load_active = nr_active;
  2888. }
  2889. return delta;
  2890. }
  2891. static unsigned long
  2892. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2893. {
  2894. load *= exp;
  2895. load += active * (FIXED_1 - exp);
  2896. load += 1UL << (FSHIFT - 1);
  2897. return load >> FSHIFT;
  2898. }
  2899. #ifdef CONFIG_NO_HZ
  2900. /*
  2901. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2902. *
  2903. * When making the ILB scale, we should try to pull this in as well.
  2904. */
  2905. static atomic_long_t calc_load_tasks_idle;
  2906. static void calc_load_account_idle(struct rq *this_rq)
  2907. {
  2908. long delta;
  2909. delta = calc_load_fold_active(this_rq);
  2910. if (delta)
  2911. atomic_long_add(delta, &calc_load_tasks_idle);
  2912. }
  2913. static long calc_load_fold_idle(void)
  2914. {
  2915. long delta = 0;
  2916. /*
  2917. * Its got a race, we don't care...
  2918. */
  2919. if (atomic_long_read(&calc_load_tasks_idle))
  2920. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2921. return delta;
  2922. }
  2923. /**
  2924. * fixed_power_int - compute: x^n, in O(log n) time
  2925. *
  2926. * @x: base of the power
  2927. * @frac_bits: fractional bits of @x
  2928. * @n: power to raise @x to.
  2929. *
  2930. * By exploiting the relation between the definition of the natural power
  2931. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  2932. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  2933. * (where: n_i \elem {0, 1}, the binary vector representing n),
  2934. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  2935. * of course trivially computable in O(log_2 n), the length of our binary
  2936. * vector.
  2937. */
  2938. static unsigned long
  2939. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  2940. {
  2941. unsigned long result = 1UL << frac_bits;
  2942. if (n) for (;;) {
  2943. if (n & 1) {
  2944. result *= x;
  2945. result += 1UL << (frac_bits - 1);
  2946. result >>= frac_bits;
  2947. }
  2948. n >>= 1;
  2949. if (!n)
  2950. break;
  2951. x *= x;
  2952. x += 1UL << (frac_bits - 1);
  2953. x >>= frac_bits;
  2954. }
  2955. return result;
  2956. }
  2957. /*
  2958. * a1 = a0 * e + a * (1 - e)
  2959. *
  2960. * a2 = a1 * e + a * (1 - e)
  2961. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  2962. * = a0 * e^2 + a * (1 - e) * (1 + e)
  2963. *
  2964. * a3 = a2 * e + a * (1 - e)
  2965. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  2966. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  2967. *
  2968. * ...
  2969. *
  2970. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  2971. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  2972. * = a0 * e^n + a * (1 - e^n)
  2973. *
  2974. * [1] application of the geometric series:
  2975. *
  2976. * n 1 - x^(n+1)
  2977. * S_n := \Sum x^i = -------------
  2978. * i=0 1 - x
  2979. */
  2980. static unsigned long
  2981. calc_load_n(unsigned long load, unsigned long exp,
  2982. unsigned long active, unsigned int n)
  2983. {
  2984. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  2985. }
  2986. /*
  2987. * NO_HZ can leave us missing all per-cpu ticks calling
  2988. * calc_load_account_active(), but since an idle CPU folds its delta into
  2989. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  2990. * in the pending idle delta if our idle period crossed a load cycle boundary.
  2991. *
  2992. * Once we've updated the global active value, we need to apply the exponential
  2993. * weights adjusted to the number of cycles missed.
  2994. */
  2995. static void calc_global_nohz(unsigned long ticks)
  2996. {
  2997. long delta, active, n;
  2998. if (time_before(jiffies, calc_load_update))
  2999. return;
  3000. /*
  3001. * If we crossed a calc_load_update boundary, make sure to fold
  3002. * any pending idle changes, the respective CPUs might have
  3003. * missed the tick driven calc_load_account_active() update
  3004. * due to NO_HZ.
  3005. */
  3006. delta = calc_load_fold_idle();
  3007. if (delta)
  3008. atomic_long_add(delta, &calc_load_tasks);
  3009. /*
  3010. * If we were idle for multiple load cycles, apply them.
  3011. */
  3012. if (ticks >= LOAD_FREQ) {
  3013. n = ticks / LOAD_FREQ;
  3014. active = atomic_long_read(&calc_load_tasks);
  3015. active = active > 0 ? active * FIXED_1 : 0;
  3016. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  3017. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  3018. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  3019. calc_load_update += n * LOAD_FREQ;
  3020. }
  3021. /*
  3022. * Its possible the remainder of the above division also crosses
  3023. * a LOAD_FREQ period, the regular check in calc_global_load()
  3024. * which comes after this will take care of that.
  3025. *
  3026. * Consider us being 11 ticks before a cycle completion, and us
  3027. * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
  3028. * age us 4 cycles, and the test in calc_global_load() will
  3029. * pick up the final one.
  3030. */
  3031. }
  3032. #else
  3033. static void calc_load_account_idle(struct rq *this_rq)
  3034. {
  3035. }
  3036. static inline long calc_load_fold_idle(void)
  3037. {
  3038. return 0;
  3039. }
  3040. static void calc_global_nohz(unsigned long ticks)
  3041. {
  3042. }
  3043. #endif
  3044. /**
  3045. * get_avenrun - get the load average array
  3046. * @loads: pointer to dest load array
  3047. * @offset: offset to add
  3048. * @shift: shift count to shift the result left
  3049. *
  3050. * These values are estimates at best, so no need for locking.
  3051. */
  3052. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  3053. {
  3054. loads[0] = (avenrun[0] + offset) << shift;
  3055. loads[1] = (avenrun[1] + offset) << shift;
  3056. loads[2] = (avenrun[2] + offset) << shift;
  3057. }
  3058. /*
  3059. * calc_load - update the avenrun load estimates 10 ticks after the
  3060. * CPUs have updated calc_load_tasks.
  3061. */
  3062. void calc_global_load(unsigned long ticks)
  3063. {
  3064. long active;
  3065. calc_global_nohz(ticks);
  3066. if (time_before(jiffies, calc_load_update + 10))
  3067. return;
  3068. active = atomic_long_read(&calc_load_tasks);
  3069. active = active > 0 ? active * FIXED_1 : 0;
  3070. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  3071. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  3072. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  3073. calc_load_update += LOAD_FREQ;
  3074. }
  3075. /*
  3076. * Called from update_cpu_load() to periodically update this CPU's
  3077. * active count.
  3078. */
  3079. static void calc_load_account_active(struct rq *this_rq)
  3080. {
  3081. long delta;
  3082. if (time_before(jiffies, this_rq->calc_load_update))
  3083. return;
  3084. delta = calc_load_fold_active(this_rq);
  3085. delta += calc_load_fold_idle();
  3086. if (delta)
  3087. atomic_long_add(delta, &calc_load_tasks);
  3088. this_rq->calc_load_update += LOAD_FREQ;
  3089. }
  3090. /*
  3091. * The exact cpuload at various idx values, calculated at every tick would be
  3092. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  3093. *
  3094. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  3095. * on nth tick when cpu may be busy, then we have:
  3096. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  3097. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  3098. *
  3099. * decay_load_missed() below does efficient calculation of
  3100. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  3101. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  3102. *
  3103. * The calculation is approximated on a 128 point scale.
  3104. * degrade_zero_ticks is the number of ticks after which load at any
  3105. * particular idx is approximated to be zero.
  3106. * degrade_factor is a precomputed table, a row for each load idx.
  3107. * Each column corresponds to degradation factor for a power of two ticks,
  3108. * based on 128 point scale.
  3109. * Example:
  3110. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  3111. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  3112. *
  3113. * With this power of 2 load factors, we can degrade the load n times
  3114. * by looking at 1 bits in n and doing as many mult/shift instead of
  3115. * n mult/shifts needed by the exact degradation.
  3116. */
  3117. #define DEGRADE_SHIFT 7
  3118. static const unsigned char
  3119. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  3120. static const unsigned char
  3121. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  3122. {0, 0, 0, 0, 0, 0, 0, 0},
  3123. {64, 32, 8, 0, 0, 0, 0, 0},
  3124. {96, 72, 40, 12, 1, 0, 0},
  3125. {112, 98, 75, 43, 15, 1, 0},
  3126. {120, 112, 98, 76, 45, 16, 2} };
  3127. /*
  3128. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  3129. * would be when CPU is idle and so we just decay the old load without
  3130. * adding any new load.
  3131. */
  3132. static unsigned long
  3133. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  3134. {
  3135. int j = 0;
  3136. if (!missed_updates)
  3137. return load;
  3138. if (missed_updates >= degrade_zero_ticks[idx])
  3139. return 0;
  3140. if (idx == 1)
  3141. return load >> missed_updates;
  3142. while (missed_updates) {
  3143. if (missed_updates % 2)
  3144. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  3145. missed_updates >>= 1;
  3146. j++;
  3147. }
  3148. return load;
  3149. }
  3150. /*
  3151. * Update rq->cpu_load[] statistics. This function is usually called every
  3152. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  3153. * every tick. We fix it up based on jiffies.
  3154. */
  3155. static void update_cpu_load(struct rq *this_rq)
  3156. {
  3157. unsigned long this_load = this_rq->load.weight;
  3158. unsigned long curr_jiffies = jiffies;
  3159. unsigned long pending_updates;
  3160. int i, scale;
  3161. this_rq->nr_load_updates++;
  3162. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  3163. if (curr_jiffies == this_rq->last_load_update_tick)
  3164. return;
  3165. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  3166. this_rq->last_load_update_tick = curr_jiffies;
  3167. /* Update our load: */
  3168. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  3169. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  3170. unsigned long old_load, new_load;
  3171. /* scale is effectively 1 << i now, and >> i divides by scale */
  3172. old_load = this_rq->cpu_load[i];
  3173. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  3174. new_load = this_load;
  3175. /*
  3176. * Round up the averaging division if load is increasing. This
  3177. * prevents us from getting stuck on 9 if the load is 10, for
  3178. * example.
  3179. */
  3180. if (new_load > old_load)
  3181. new_load += scale - 1;
  3182. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  3183. }
  3184. sched_avg_update(this_rq);
  3185. }
  3186. static void update_cpu_load_active(struct rq *this_rq)
  3187. {
  3188. update_cpu_load(this_rq);
  3189. calc_load_account_active(this_rq);
  3190. }
  3191. #ifdef CONFIG_SMP
  3192. /*
  3193. * sched_exec - execve() is a valuable balancing opportunity, because at
  3194. * this point the task has the smallest effective memory and cache footprint.
  3195. */
  3196. void sched_exec(void)
  3197. {
  3198. struct task_struct *p = current;
  3199. unsigned long flags;
  3200. int dest_cpu;
  3201. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3202. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  3203. if (dest_cpu == smp_processor_id())
  3204. goto unlock;
  3205. if (likely(cpu_active(dest_cpu))) {
  3206. struct migration_arg arg = { p, dest_cpu };
  3207. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3208. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  3209. return;
  3210. }
  3211. unlock:
  3212. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3213. }
  3214. #endif
  3215. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3216. EXPORT_PER_CPU_SYMBOL(kstat);
  3217. /*
  3218. * Return any ns on the sched_clock that have not yet been accounted in
  3219. * @p in case that task is currently running.
  3220. *
  3221. * Called with task_rq_lock() held on @rq.
  3222. */
  3223. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  3224. {
  3225. u64 ns = 0;
  3226. if (task_current(rq, p)) {
  3227. update_rq_clock(rq);
  3228. ns = rq->clock_task - p->se.exec_start;
  3229. if ((s64)ns < 0)
  3230. ns = 0;
  3231. }
  3232. return ns;
  3233. }
  3234. unsigned long long task_delta_exec(struct task_struct *p)
  3235. {
  3236. unsigned long flags;
  3237. struct rq *rq;
  3238. u64 ns = 0;
  3239. rq = task_rq_lock(p, &flags);
  3240. ns = do_task_delta_exec(p, rq);
  3241. task_rq_unlock(rq, p, &flags);
  3242. return ns;
  3243. }
  3244. /*
  3245. * Return accounted runtime for the task.
  3246. * In case the task is currently running, return the runtime plus current's
  3247. * pending runtime that have not been accounted yet.
  3248. */
  3249. unsigned long long task_sched_runtime(struct task_struct *p)
  3250. {
  3251. unsigned long flags;
  3252. struct rq *rq;
  3253. u64 ns = 0;
  3254. rq = task_rq_lock(p, &flags);
  3255. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  3256. task_rq_unlock(rq, p, &flags);
  3257. return ns;
  3258. }
  3259. /*
  3260. * Account user cpu time to a process.
  3261. * @p: the process that the cpu time gets accounted to
  3262. * @cputime: the cpu time spent in user space since the last update
  3263. * @cputime_scaled: cputime scaled by cpu frequency
  3264. */
  3265. void account_user_time(struct task_struct *p, cputime_t cputime,
  3266. cputime_t cputime_scaled)
  3267. {
  3268. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3269. cputime64_t tmp;
  3270. /* Add user time to process. */
  3271. p->utime = cputime_add(p->utime, cputime);
  3272. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3273. account_group_user_time(p, cputime);
  3274. /* Add user time to cpustat. */
  3275. tmp = cputime_to_cputime64(cputime);
  3276. if (TASK_NICE(p) > 0)
  3277. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3278. else
  3279. cpustat->user = cputime64_add(cpustat->user, tmp);
  3280. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  3281. /* Account for user time used */
  3282. acct_update_integrals(p);
  3283. }
  3284. /*
  3285. * Account guest cpu time to a process.
  3286. * @p: the process that the cpu time gets accounted to
  3287. * @cputime: the cpu time spent in virtual machine since the last update
  3288. * @cputime_scaled: cputime scaled by cpu frequency
  3289. */
  3290. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  3291. cputime_t cputime_scaled)
  3292. {
  3293. cputime64_t tmp;
  3294. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3295. tmp = cputime_to_cputime64(cputime);
  3296. /* Add guest time to process. */
  3297. p->utime = cputime_add(p->utime, cputime);
  3298. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3299. account_group_user_time(p, cputime);
  3300. p->gtime = cputime_add(p->gtime, cputime);
  3301. /* Add guest time to cpustat. */
  3302. if (TASK_NICE(p) > 0) {
  3303. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3304. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  3305. } else {
  3306. cpustat->user = cputime64_add(cpustat->user, tmp);
  3307. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3308. }
  3309. }
  3310. /*
  3311. * Account system cpu time to a process and desired cpustat field
  3312. * @p: the process that the cpu time gets accounted to
  3313. * @cputime: the cpu time spent in kernel space since the last update
  3314. * @cputime_scaled: cputime scaled by cpu frequency
  3315. * @target_cputime64: pointer to cpustat field that has to be updated
  3316. */
  3317. static inline
  3318. void __account_system_time(struct task_struct *p, cputime_t cputime,
  3319. cputime_t cputime_scaled, cputime64_t *target_cputime64)
  3320. {
  3321. cputime64_t tmp = cputime_to_cputime64(cputime);
  3322. /* Add system time to process. */
  3323. p->stime = cputime_add(p->stime, cputime);
  3324. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  3325. account_group_system_time(p, cputime);
  3326. /* Add system time to cpustat. */
  3327. *target_cputime64 = cputime64_add(*target_cputime64, tmp);
  3328. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  3329. /* Account for system time used */
  3330. acct_update_integrals(p);
  3331. }
  3332. /*
  3333. * Account system cpu time to a process.
  3334. * @p: the process that the cpu time gets accounted to
  3335. * @hardirq_offset: the offset to subtract from hardirq_count()
  3336. * @cputime: the cpu time spent in kernel space since the last update
  3337. * @cputime_scaled: cputime scaled by cpu frequency
  3338. */
  3339. void account_system_time(struct task_struct *p, int hardirq_offset,
  3340. cputime_t cputime, cputime_t cputime_scaled)
  3341. {
  3342. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3343. cputime64_t *target_cputime64;
  3344. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3345. account_guest_time(p, cputime, cputime_scaled);
  3346. return;
  3347. }
  3348. if (hardirq_count() - hardirq_offset)
  3349. target_cputime64 = &cpustat->irq;
  3350. else if (in_serving_softirq())
  3351. target_cputime64 = &cpustat->softirq;
  3352. else
  3353. target_cputime64 = &cpustat->system;
  3354. __account_system_time(p, cputime, cputime_scaled, target_cputime64);
  3355. }
  3356. /*
  3357. * Account for involuntary wait time.
  3358. * @cputime: the cpu time spent in involuntary wait
  3359. */
  3360. void account_steal_time(cputime_t cputime)
  3361. {
  3362. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3363. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3364. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  3365. }
  3366. /*
  3367. * Account for idle time.
  3368. * @cputime: the cpu time spent in idle wait
  3369. */
  3370. void account_idle_time(cputime_t cputime)
  3371. {
  3372. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3373. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3374. struct rq *rq = this_rq();
  3375. if (atomic_read(&rq->nr_iowait) > 0)
  3376. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  3377. else
  3378. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  3379. }
  3380. static __always_inline bool steal_account_process_tick(void)
  3381. {
  3382. #ifdef CONFIG_PARAVIRT
  3383. if (static_branch(&paravirt_steal_enabled)) {
  3384. u64 steal, st = 0;
  3385. steal = paravirt_steal_clock(smp_processor_id());
  3386. steal -= this_rq()->prev_steal_time;
  3387. st = steal_ticks(steal);
  3388. this_rq()->prev_steal_time += st * TICK_NSEC;
  3389. account_steal_time(st);
  3390. return st;
  3391. }
  3392. #endif
  3393. return false;
  3394. }
  3395. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  3396. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  3397. /*
  3398. * Account a tick to a process and cpustat
  3399. * @p: the process that the cpu time gets accounted to
  3400. * @user_tick: is the tick from userspace
  3401. * @rq: the pointer to rq
  3402. *
  3403. * Tick demultiplexing follows the order
  3404. * - pending hardirq update
  3405. * - pending softirq update
  3406. * - user_time
  3407. * - idle_time
  3408. * - system time
  3409. * - check for guest_time
  3410. * - else account as system_time
  3411. *
  3412. * Check for hardirq is done both for system and user time as there is
  3413. * no timer going off while we are on hardirq and hence we may never get an
  3414. * opportunity to update it solely in system time.
  3415. * p->stime and friends are only updated on system time and not on irq
  3416. * softirq as those do not count in task exec_runtime any more.
  3417. */
  3418. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3419. struct rq *rq)
  3420. {
  3421. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3422. cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
  3423. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3424. if (steal_account_process_tick())
  3425. return;
  3426. if (irqtime_account_hi_update()) {
  3427. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3428. } else if (irqtime_account_si_update()) {
  3429. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3430. } else if (this_cpu_ksoftirqd() == p) {
  3431. /*
  3432. * ksoftirqd time do not get accounted in cpu_softirq_time.
  3433. * So, we have to handle it separately here.
  3434. * Also, p->stime needs to be updated for ksoftirqd.
  3435. */
  3436. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3437. &cpustat->softirq);
  3438. } else if (user_tick) {
  3439. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3440. } else if (p == rq->idle) {
  3441. account_idle_time(cputime_one_jiffy);
  3442. } else if (p->flags & PF_VCPU) { /* System time or guest time */
  3443. account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3444. } else {
  3445. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3446. &cpustat->system);
  3447. }
  3448. }
  3449. static void irqtime_account_idle_ticks(int ticks)
  3450. {
  3451. int i;
  3452. struct rq *rq = this_rq();
  3453. for (i = 0; i < ticks; i++)
  3454. irqtime_account_process_tick(current, 0, rq);
  3455. }
  3456. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  3457. static void irqtime_account_idle_ticks(int ticks) {}
  3458. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3459. struct rq *rq) {}
  3460. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  3461. /*
  3462. * Account a single tick of cpu time.
  3463. * @p: the process that the cpu time gets accounted to
  3464. * @user_tick: indicates if the tick is a user or a system tick
  3465. */
  3466. void account_process_tick(struct task_struct *p, int user_tick)
  3467. {
  3468. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3469. struct rq *rq = this_rq();
  3470. if (sched_clock_irqtime) {
  3471. irqtime_account_process_tick(p, user_tick, rq);
  3472. return;
  3473. }
  3474. if (steal_account_process_tick())
  3475. return;
  3476. if (user_tick)
  3477. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3478. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  3479. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  3480. one_jiffy_scaled);
  3481. else
  3482. account_idle_time(cputime_one_jiffy);
  3483. }
  3484. /*
  3485. * Account multiple ticks of steal time.
  3486. * @p: the process from which the cpu time has been stolen
  3487. * @ticks: number of stolen ticks
  3488. */
  3489. void account_steal_ticks(unsigned long ticks)
  3490. {
  3491. account_steal_time(jiffies_to_cputime(ticks));
  3492. }
  3493. /*
  3494. * Account multiple ticks of idle time.
  3495. * @ticks: number of stolen ticks
  3496. */
  3497. void account_idle_ticks(unsigned long ticks)
  3498. {
  3499. if (sched_clock_irqtime) {
  3500. irqtime_account_idle_ticks(ticks);
  3501. return;
  3502. }
  3503. account_idle_time(jiffies_to_cputime(ticks));
  3504. }
  3505. #endif
  3506. /*
  3507. * Use precise platform statistics if available:
  3508. */
  3509. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3510. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3511. {
  3512. *ut = p->utime;
  3513. *st = p->stime;
  3514. }
  3515. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3516. {
  3517. struct task_cputime cputime;
  3518. thread_group_cputime(p, &cputime);
  3519. *ut = cputime.utime;
  3520. *st = cputime.stime;
  3521. }
  3522. #else
  3523. #ifndef nsecs_to_cputime
  3524. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  3525. #endif
  3526. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3527. {
  3528. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  3529. /*
  3530. * Use CFS's precise accounting:
  3531. */
  3532. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  3533. if (total) {
  3534. u64 temp = rtime;
  3535. temp *= utime;
  3536. do_div(temp, total);
  3537. utime = (cputime_t)temp;
  3538. } else
  3539. utime = rtime;
  3540. /*
  3541. * Compare with previous values, to keep monotonicity:
  3542. */
  3543. p->prev_utime = max(p->prev_utime, utime);
  3544. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  3545. *ut = p->prev_utime;
  3546. *st = p->prev_stime;
  3547. }
  3548. /*
  3549. * Must be called with siglock held.
  3550. */
  3551. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3552. {
  3553. struct signal_struct *sig = p->signal;
  3554. struct task_cputime cputime;
  3555. cputime_t rtime, utime, total;
  3556. thread_group_cputime(p, &cputime);
  3557. total = cputime_add(cputime.utime, cputime.stime);
  3558. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  3559. if (total) {
  3560. u64 temp = rtime;
  3561. temp *= cputime.utime;
  3562. do_div(temp, total);
  3563. utime = (cputime_t)temp;
  3564. } else
  3565. utime = rtime;
  3566. sig->prev_utime = max(sig->prev_utime, utime);
  3567. sig->prev_stime = max(sig->prev_stime,
  3568. cputime_sub(rtime, sig->prev_utime));
  3569. *ut = sig->prev_utime;
  3570. *st = sig->prev_stime;
  3571. }
  3572. #endif
  3573. /*
  3574. * This function gets called by the timer code, with HZ frequency.
  3575. * We call it with interrupts disabled.
  3576. */
  3577. void scheduler_tick(void)
  3578. {
  3579. int cpu = smp_processor_id();
  3580. struct rq *rq = cpu_rq(cpu);
  3581. struct task_struct *curr = rq->curr;
  3582. sched_clock_tick();
  3583. raw_spin_lock(&rq->lock);
  3584. update_rq_clock(rq);
  3585. update_cpu_load_active(rq);
  3586. curr->sched_class->task_tick(rq, curr, 0);
  3587. raw_spin_unlock(&rq->lock);
  3588. perf_event_task_tick();
  3589. #ifdef CONFIG_SMP
  3590. rq->idle_balance = idle_cpu(cpu);
  3591. trigger_load_balance(rq, cpu);
  3592. #endif
  3593. }
  3594. notrace unsigned long get_parent_ip(unsigned long addr)
  3595. {
  3596. if (in_lock_functions(addr)) {
  3597. addr = CALLER_ADDR2;
  3598. if (in_lock_functions(addr))
  3599. addr = CALLER_ADDR3;
  3600. }
  3601. return addr;
  3602. }
  3603. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3604. defined(CONFIG_PREEMPT_TRACER))
  3605. void __kprobes add_preempt_count(int val)
  3606. {
  3607. #ifdef CONFIG_DEBUG_PREEMPT
  3608. /*
  3609. * Underflow?
  3610. */
  3611. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3612. return;
  3613. #endif
  3614. preempt_count() += val;
  3615. #ifdef CONFIG_DEBUG_PREEMPT
  3616. /*
  3617. * Spinlock count overflowing soon?
  3618. */
  3619. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3620. PREEMPT_MASK - 10);
  3621. #endif
  3622. if (preempt_count() == val)
  3623. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3624. }
  3625. EXPORT_SYMBOL(add_preempt_count);
  3626. void __kprobes sub_preempt_count(int val)
  3627. {
  3628. #ifdef CONFIG_DEBUG_PREEMPT
  3629. /*
  3630. * Underflow?
  3631. */
  3632. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3633. return;
  3634. /*
  3635. * Is the spinlock portion underflowing?
  3636. */
  3637. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3638. !(preempt_count() & PREEMPT_MASK)))
  3639. return;
  3640. #endif
  3641. if (preempt_count() == val)
  3642. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3643. preempt_count() -= val;
  3644. }
  3645. EXPORT_SYMBOL(sub_preempt_count);
  3646. #endif
  3647. /*
  3648. * Print scheduling while atomic bug:
  3649. */
  3650. static noinline void __schedule_bug(struct task_struct *prev)
  3651. {
  3652. struct pt_regs *regs = get_irq_regs();
  3653. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3654. prev->comm, prev->pid, preempt_count());
  3655. debug_show_held_locks(prev);
  3656. print_modules();
  3657. if (irqs_disabled())
  3658. print_irqtrace_events(prev);
  3659. if (regs)
  3660. show_regs(regs);
  3661. else
  3662. dump_stack();
  3663. }
  3664. /*
  3665. * Various schedule()-time debugging checks and statistics:
  3666. */
  3667. static inline void schedule_debug(struct task_struct *prev)
  3668. {
  3669. /*
  3670. * Test if we are atomic. Since do_exit() needs to call into
  3671. * schedule() atomically, we ignore that path for now.
  3672. * Otherwise, whine if we are scheduling when we should not be.
  3673. */
  3674. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3675. __schedule_bug(prev);
  3676. rcu_sleep_check();
  3677. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3678. schedstat_inc(this_rq(), sched_count);
  3679. }
  3680. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3681. {
  3682. if (prev->on_rq || rq->skip_clock_update < 0)
  3683. update_rq_clock(rq);
  3684. prev->sched_class->put_prev_task(rq, prev);
  3685. }
  3686. /*
  3687. * Pick up the highest-prio task:
  3688. */
  3689. static inline struct task_struct *
  3690. pick_next_task(struct rq *rq)
  3691. {
  3692. const struct sched_class *class;
  3693. struct task_struct *p;
  3694. /*
  3695. * Optimization: we know that if all tasks are in
  3696. * the fair class we can call that function directly:
  3697. */
  3698. if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
  3699. p = fair_sched_class.pick_next_task(rq);
  3700. if (likely(p))
  3701. return p;
  3702. }
  3703. for_each_class(class) {
  3704. p = class->pick_next_task(rq);
  3705. if (p)
  3706. return p;
  3707. }
  3708. BUG(); /* the idle class will always have a runnable task */
  3709. }
  3710. /*
  3711. * __schedule() is the main scheduler function.
  3712. */
  3713. static void __sched __schedule(void)
  3714. {
  3715. struct task_struct *prev, *next;
  3716. unsigned long *switch_count;
  3717. struct rq *rq;
  3718. int cpu;
  3719. need_resched:
  3720. preempt_disable();
  3721. cpu = smp_processor_id();
  3722. rq = cpu_rq(cpu);
  3723. rcu_note_context_switch(cpu);
  3724. prev = rq->curr;
  3725. schedule_debug(prev);
  3726. if (sched_feat(HRTICK))
  3727. hrtick_clear(rq);
  3728. raw_spin_lock_irq(&rq->lock);
  3729. switch_count = &prev->nivcsw;
  3730. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3731. if (unlikely(signal_pending_state(prev->state, prev))) {
  3732. prev->state = TASK_RUNNING;
  3733. } else {
  3734. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3735. prev->on_rq = 0;
  3736. /*
  3737. * If a worker went to sleep, notify and ask workqueue
  3738. * whether it wants to wake up a task to maintain
  3739. * concurrency.
  3740. */
  3741. if (prev->flags & PF_WQ_WORKER) {
  3742. struct task_struct *to_wakeup;
  3743. to_wakeup = wq_worker_sleeping(prev, cpu);
  3744. if (to_wakeup)
  3745. try_to_wake_up_local(to_wakeup);
  3746. }
  3747. }
  3748. switch_count = &prev->nvcsw;
  3749. }
  3750. pre_schedule(rq, prev);
  3751. if (unlikely(!rq->nr_running))
  3752. idle_balance(cpu, rq);
  3753. put_prev_task(rq, prev);
  3754. next = pick_next_task(rq);
  3755. clear_tsk_need_resched(prev);
  3756. rq->skip_clock_update = 0;
  3757. if (likely(prev != next)) {
  3758. rq->nr_switches++;
  3759. rq->curr = next;
  3760. ++*switch_count;
  3761. context_switch(rq, prev, next); /* unlocks the rq */
  3762. /*
  3763. * The context switch have flipped the stack from under us
  3764. * and restored the local variables which were saved when
  3765. * this task called schedule() in the past. prev == current
  3766. * is still correct, but it can be moved to another cpu/rq.
  3767. */
  3768. cpu = smp_processor_id();
  3769. rq = cpu_rq(cpu);
  3770. } else
  3771. raw_spin_unlock_irq(&rq->lock);
  3772. post_schedule(rq);
  3773. preempt_enable_no_resched();
  3774. if (need_resched())
  3775. goto need_resched;
  3776. }
  3777. static inline void sched_submit_work(struct task_struct *tsk)
  3778. {
  3779. if (!tsk->state)
  3780. return;
  3781. /*
  3782. * If we are going to sleep and we have plugged IO queued,
  3783. * make sure to submit it to avoid deadlocks.
  3784. */
  3785. if (blk_needs_flush_plug(tsk))
  3786. blk_schedule_flush_plug(tsk);
  3787. }
  3788. asmlinkage void __sched schedule(void)
  3789. {
  3790. struct task_struct *tsk = current;
  3791. sched_submit_work(tsk);
  3792. __schedule();
  3793. }
  3794. EXPORT_SYMBOL(schedule);
  3795. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3796. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  3797. {
  3798. if (lock->owner != owner)
  3799. return false;
  3800. /*
  3801. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  3802. * lock->owner still matches owner, if that fails, owner might
  3803. * point to free()d memory, if it still matches, the rcu_read_lock()
  3804. * ensures the memory stays valid.
  3805. */
  3806. barrier();
  3807. return owner->on_cpu;
  3808. }
  3809. /*
  3810. * Look out! "owner" is an entirely speculative pointer
  3811. * access and not reliable.
  3812. */
  3813. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  3814. {
  3815. if (!sched_feat(OWNER_SPIN))
  3816. return 0;
  3817. rcu_read_lock();
  3818. while (owner_running(lock, owner)) {
  3819. if (need_resched())
  3820. break;
  3821. arch_mutex_cpu_relax();
  3822. }
  3823. rcu_read_unlock();
  3824. /*
  3825. * We break out the loop above on need_resched() and when the
  3826. * owner changed, which is a sign for heavy contention. Return
  3827. * success only when lock->owner is NULL.
  3828. */
  3829. return lock->owner == NULL;
  3830. }
  3831. #endif
  3832. #ifdef CONFIG_PREEMPT
  3833. /*
  3834. * this is the entry point to schedule() from in-kernel preemption
  3835. * off of preempt_enable. Kernel preemptions off return from interrupt
  3836. * occur there and call schedule directly.
  3837. */
  3838. asmlinkage void __sched notrace preempt_schedule(void)
  3839. {
  3840. struct thread_info *ti = current_thread_info();
  3841. /*
  3842. * If there is a non-zero preempt_count or interrupts are disabled,
  3843. * we do not want to preempt the current task. Just return..
  3844. */
  3845. if (likely(ti->preempt_count || irqs_disabled()))
  3846. return;
  3847. do {
  3848. add_preempt_count_notrace(PREEMPT_ACTIVE);
  3849. __schedule();
  3850. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  3851. /*
  3852. * Check again in case we missed a preemption opportunity
  3853. * between schedule and now.
  3854. */
  3855. barrier();
  3856. } while (need_resched());
  3857. }
  3858. EXPORT_SYMBOL(preempt_schedule);
  3859. /*
  3860. * this is the entry point to schedule() from kernel preemption
  3861. * off of irq context.
  3862. * Note, that this is called and return with irqs disabled. This will
  3863. * protect us against recursive calling from irq.
  3864. */
  3865. asmlinkage void __sched preempt_schedule_irq(void)
  3866. {
  3867. struct thread_info *ti = current_thread_info();
  3868. /* Catch callers which need to be fixed */
  3869. BUG_ON(ti->preempt_count || !irqs_disabled());
  3870. do {
  3871. add_preempt_count(PREEMPT_ACTIVE);
  3872. local_irq_enable();
  3873. __schedule();
  3874. local_irq_disable();
  3875. sub_preempt_count(PREEMPT_ACTIVE);
  3876. /*
  3877. * Check again in case we missed a preemption opportunity
  3878. * between schedule and now.
  3879. */
  3880. barrier();
  3881. } while (need_resched());
  3882. }
  3883. #endif /* CONFIG_PREEMPT */
  3884. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3885. void *key)
  3886. {
  3887. return try_to_wake_up(curr->private, mode, wake_flags);
  3888. }
  3889. EXPORT_SYMBOL(default_wake_function);
  3890. /*
  3891. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3892. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3893. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3894. *
  3895. * There are circumstances in which we can try to wake a task which has already
  3896. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3897. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3898. */
  3899. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3900. int nr_exclusive, int wake_flags, void *key)
  3901. {
  3902. wait_queue_t *curr, *next;
  3903. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3904. unsigned flags = curr->flags;
  3905. if (curr->func(curr, mode, wake_flags, key) &&
  3906. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3907. break;
  3908. }
  3909. }
  3910. /**
  3911. * __wake_up - wake up threads blocked on a waitqueue.
  3912. * @q: the waitqueue
  3913. * @mode: which threads
  3914. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3915. * @key: is directly passed to the wakeup function
  3916. *
  3917. * It may be assumed that this function implies a write memory barrier before
  3918. * changing the task state if and only if any tasks are woken up.
  3919. */
  3920. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3921. int nr_exclusive, void *key)
  3922. {
  3923. unsigned long flags;
  3924. spin_lock_irqsave(&q->lock, flags);
  3925. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3926. spin_unlock_irqrestore(&q->lock, flags);
  3927. }
  3928. EXPORT_SYMBOL(__wake_up);
  3929. /*
  3930. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3931. */
  3932. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3933. {
  3934. __wake_up_common(q, mode, 1, 0, NULL);
  3935. }
  3936. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3937. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3938. {
  3939. __wake_up_common(q, mode, 1, 0, key);
  3940. }
  3941. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  3942. /**
  3943. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3944. * @q: the waitqueue
  3945. * @mode: which threads
  3946. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3947. * @key: opaque value to be passed to wakeup targets
  3948. *
  3949. * The sync wakeup differs that the waker knows that it will schedule
  3950. * away soon, so while the target thread will be woken up, it will not
  3951. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3952. * with each other. This can prevent needless bouncing between CPUs.
  3953. *
  3954. * On UP it can prevent extra preemption.
  3955. *
  3956. * It may be assumed that this function implies a write memory barrier before
  3957. * changing the task state if and only if any tasks are woken up.
  3958. */
  3959. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3960. int nr_exclusive, void *key)
  3961. {
  3962. unsigned long flags;
  3963. int wake_flags = WF_SYNC;
  3964. if (unlikely(!q))
  3965. return;
  3966. if (unlikely(!nr_exclusive))
  3967. wake_flags = 0;
  3968. spin_lock_irqsave(&q->lock, flags);
  3969. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3970. spin_unlock_irqrestore(&q->lock, flags);
  3971. }
  3972. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3973. /*
  3974. * __wake_up_sync - see __wake_up_sync_key()
  3975. */
  3976. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3977. {
  3978. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3979. }
  3980. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3981. /**
  3982. * complete: - signals a single thread waiting on this completion
  3983. * @x: holds the state of this particular completion
  3984. *
  3985. * This will wake up a single thread waiting on this completion. Threads will be
  3986. * awakened in the same order in which they were queued.
  3987. *
  3988. * See also complete_all(), wait_for_completion() and related routines.
  3989. *
  3990. * It may be assumed that this function implies a write memory barrier before
  3991. * changing the task state if and only if any tasks are woken up.
  3992. */
  3993. void complete(struct completion *x)
  3994. {
  3995. unsigned long flags;
  3996. spin_lock_irqsave(&x->wait.lock, flags);
  3997. x->done++;
  3998. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3999. spin_unlock_irqrestore(&x->wait.lock, flags);
  4000. }
  4001. EXPORT_SYMBOL(complete);
  4002. /**
  4003. * complete_all: - signals all threads waiting on this completion
  4004. * @x: holds the state of this particular completion
  4005. *
  4006. * This will wake up all threads waiting on this particular completion event.
  4007. *
  4008. * It may be assumed that this function implies a write memory barrier before
  4009. * changing the task state if and only if any tasks are woken up.
  4010. */
  4011. void complete_all(struct completion *x)
  4012. {
  4013. unsigned long flags;
  4014. spin_lock_irqsave(&x->wait.lock, flags);
  4015. x->done += UINT_MAX/2;
  4016. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4017. spin_unlock_irqrestore(&x->wait.lock, flags);
  4018. }
  4019. EXPORT_SYMBOL(complete_all);
  4020. static inline long __sched
  4021. do_wait_for_common(struct completion *x, long timeout, int state)
  4022. {
  4023. if (!x->done) {
  4024. DECLARE_WAITQUEUE(wait, current);
  4025. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  4026. do {
  4027. if (signal_pending_state(state, current)) {
  4028. timeout = -ERESTARTSYS;
  4029. break;
  4030. }
  4031. __set_current_state(state);
  4032. spin_unlock_irq(&x->wait.lock);
  4033. timeout = schedule_timeout(timeout);
  4034. spin_lock_irq(&x->wait.lock);
  4035. } while (!x->done && timeout);
  4036. __remove_wait_queue(&x->wait, &wait);
  4037. if (!x->done)
  4038. return timeout;
  4039. }
  4040. x->done--;
  4041. return timeout ?: 1;
  4042. }
  4043. static long __sched
  4044. wait_for_common(struct completion *x, long timeout, int state)
  4045. {
  4046. might_sleep();
  4047. spin_lock_irq(&x->wait.lock);
  4048. timeout = do_wait_for_common(x, timeout, state);
  4049. spin_unlock_irq(&x->wait.lock);
  4050. return timeout;
  4051. }
  4052. /**
  4053. * wait_for_completion: - waits for completion of a task
  4054. * @x: holds the state of this particular completion
  4055. *
  4056. * This waits to be signaled for completion of a specific task. It is NOT
  4057. * interruptible and there is no timeout.
  4058. *
  4059. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4060. * and interrupt capability. Also see complete().
  4061. */
  4062. void __sched wait_for_completion(struct completion *x)
  4063. {
  4064. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4065. }
  4066. EXPORT_SYMBOL(wait_for_completion);
  4067. /**
  4068. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4069. * @x: holds the state of this particular completion
  4070. * @timeout: timeout value in jiffies
  4071. *
  4072. * This waits for either a completion of a specific task to be signaled or for a
  4073. * specified timeout to expire. The timeout is in jiffies. It is not
  4074. * interruptible.
  4075. *
  4076. * The return value is 0 if timed out, and positive (at least 1, or number of
  4077. * jiffies left till timeout) if completed.
  4078. */
  4079. unsigned long __sched
  4080. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4081. {
  4082. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4083. }
  4084. EXPORT_SYMBOL(wait_for_completion_timeout);
  4085. /**
  4086. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4087. * @x: holds the state of this particular completion
  4088. *
  4089. * This waits for completion of a specific task to be signaled. It is
  4090. * interruptible.
  4091. *
  4092. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  4093. */
  4094. int __sched wait_for_completion_interruptible(struct completion *x)
  4095. {
  4096. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4097. if (t == -ERESTARTSYS)
  4098. return t;
  4099. return 0;
  4100. }
  4101. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4102. /**
  4103. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4104. * @x: holds the state of this particular completion
  4105. * @timeout: timeout value in jiffies
  4106. *
  4107. * This waits for either a completion of a specific task to be signaled or for a
  4108. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4109. *
  4110. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  4111. * positive (at least 1, or number of jiffies left till timeout) if completed.
  4112. */
  4113. long __sched
  4114. wait_for_completion_interruptible_timeout(struct completion *x,
  4115. unsigned long timeout)
  4116. {
  4117. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4118. }
  4119. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4120. /**
  4121. * wait_for_completion_killable: - waits for completion of a task (killable)
  4122. * @x: holds the state of this particular completion
  4123. *
  4124. * This waits to be signaled for completion of a specific task. It can be
  4125. * interrupted by a kill signal.
  4126. *
  4127. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  4128. */
  4129. int __sched wait_for_completion_killable(struct completion *x)
  4130. {
  4131. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4132. if (t == -ERESTARTSYS)
  4133. return t;
  4134. return 0;
  4135. }
  4136. EXPORT_SYMBOL(wait_for_completion_killable);
  4137. /**
  4138. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  4139. * @x: holds the state of this particular completion
  4140. * @timeout: timeout value in jiffies
  4141. *
  4142. * This waits for either a completion of a specific task to be
  4143. * signaled or for a specified timeout to expire. It can be
  4144. * interrupted by a kill signal. The timeout is in jiffies.
  4145. *
  4146. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  4147. * positive (at least 1, or number of jiffies left till timeout) if completed.
  4148. */
  4149. long __sched
  4150. wait_for_completion_killable_timeout(struct completion *x,
  4151. unsigned long timeout)
  4152. {
  4153. return wait_for_common(x, timeout, TASK_KILLABLE);
  4154. }
  4155. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  4156. /**
  4157. * try_wait_for_completion - try to decrement a completion without blocking
  4158. * @x: completion structure
  4159. *
  4160. * Returns: 0 if a decrement cannot be done without blocking
  4161. * 1 if a decrement succeeded.
  4162. *
  4163. * If a completion is being used as a counting completion,
  4164. * attempt to decrement the counter without blocking. This
  4165. * enables us to avoid waiting if the resource the completion
  4166. * is protecting is not available.
  4167. */
  4168. bool try_wait_for_completion(struct completion *x)
  4169. {
  4170. unsigned long flags;
  4171. int ret = 1;
  4172. spin_lock_irqsave(&x->wait.lock, flags);
  4173. if (!x->done)
  4174. ret = 0;
  4175. else
  4176. x->done--;
  4177. spin_unlock_irqrestore(&x->wait.lock, flags);
  4178. return ret;
  4179. }
  4180. EXPORT_SYMBOL(try_wait_for_completion);
  4181. /**
  4182. * completion_done - Test to see if a completion has any waiters
  4183. * @x: completion structure
  4184. *
  4185. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4186. * 1 if there are no waiters.
  4187. *
  4188. */
  4189. bool completion_done(struct completion *x)
  4190. {
  4191. unsigned long flags;
  4192. int ret = 1;
  4193. spin_lock_irqsave(&x->wait.lock, flags);
  4194. if (!x->done)
  4195. ret = 0;
  4196. spin_unlock_irqrestore(&x->wait.lock, flags);
  4197. return ret;
  4198. }
  4199. EXPORT_SYMBOL(completion_done);
  4200. static long __sched
  4201. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4202. {
  4203. unsigned long flags;
  4204. wait_queue_t wait;
  4205. init_waitqueue_entry(&wait, current);
  4206. __set_current_state(state);
  4207. spin_lock_irqsave(&q->lock, flags);
  4208. __add_wait_queue(q, &wait);
  4209. spin_unlock(&q->lock);
  4210. timeout = schedule_timeout(timeout);
  4211. spin_lock_irq(&q->lock);
  4212. __remove_wait_queue(q, &wait);
  4213. spin_unlock_irqrestore(&q->lock, flags);
  4214. return timeout;
  4215. }
  4216. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4217. {
  4218. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4219. }
  4220. EXPORT_SYMBOL(interruptible_sleep_on);
  4221. long __sched
  4222. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4223. {
  4224. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4225. }
  4226. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4227. void __sched sleep_on(wait_queue_head_t *q)
  4228. {
  4229. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4230. }
  4231. EXPORT_SYMBOL(sleep_on);
  4232. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4233. {
  4234. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4235. }
  4236. EXPORT_SYMBOL(sleep_on_timeout);
  4237. #ifdef CONFIG_RT_MUTEXES
  4238. /*
  4239. * rt_mutex_setprio - set the current priority of a task
  4240. * @p: task
  4241. * @prio: prio value (kernel-internal form)
  4242. *
  4243. * This function changes the 'effective' priority of a task. It does
  4244. * not touch ->normal_prio like __setscheduler().
  4245. *
  4246. * Used by the rt_mutex code to implement priority inheritance logic.
  4247. */
  4248. void rt_mutex_setprio(struct task_struct *p, int prio)
  4249. {
  4250. int oldprio, on_rq, running;
  4251. struct rq *rq;
  4252. const struct sched_class *prev_class;
  4253. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4254. rq = __task_rq_lock(p);
  4255. trace_sched_pi_setprio(p, prio);
  4256. oldprio = p->prio;
  4257. prev_class = p->sched_class;
  4258. on_rq = p->on_rq;
  4259. running = task_current(rq, p);
  4260. if (on_rq)
  4261. dequeue_task(rq, p, 0);
  4262. if (running)
  4263. p->sched_class->put_prev_task(rq, p);
  4264. if (rt_prio(prio))
  4265. p->sched_class = &rt_sched_class;
  4266. else
  4267. p->sched_class = &fair_sched_class;
  4268. p->prio = prio;
  4269. if (running)
  4270. p->sched_class->set_curr_task(rq);
  4271. if (on_rq)
  4272. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  4273. check_class_changed(rq, p, prev_class, oldprio);
  4274. __task_rq_unlock(rq);
  4275. }
  4276. #endif
  4277. void set_user_nice(struct task_struct *p, long nice)
  4278. {
  4279. int old_prio, delta, on_rq;
  4280. unsigned long flags;
  4281. struct rq *rq;
  4282. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4283. return;
  4284. /*
  4285. * We have to be careful, if called from sys_setpriority(),
  4286. * the task might be in the middle of scheduling on another CPU.
  4287. */
  4288. rq = task_rq_lock(p, &flags);
  4289. /*
  4290. * The RT priorities are set via sched_setscheduler(), but we still
  4291. * allow the 'normal' nice value to be set - but as expected
  4292. * it wont have any effect on scheduling until the task is
  4293. * SCHED_FIFO/SCHED_RR:
  4294. */
  4295. if (task_has_rt_policy(p)) {
  4296. p->static_prio = NICE_TO_PRIO(nice);
  4297. goto out_unlock;
  4298. }
  4299. on_rq = p->on_rq;
  4300. if (on_rq)
  4301. dequeue_task(rq, p, 0);
  4302. p->static_prio = NICE_TO_PRIO(nice);
  4303. set_load_weight(p);
  4304. old_prio = p->prio;
  4305. p->prio = effective_prio(p);
  4306. delta = p->prio - old_prio;
  4307. if (on_rq) {
  4308. enqueue_task(rq, p, 0);
  4309. /*
  4310. * If the task increased its priority or is running and
  4311. * lowered its priority, then reschedule its CPU:
  4312. */
  4313. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4314. resched_task(rq->curr);
  4315. }
  4316. out_unlock:
  4317. task_rq_unlock(rq, p, &flags);
  4318. }
  4319. EXPORT_SYMBOL(set_user_nice);
  4320. /*
  4321. * can_nice - check if a task can reduce its nice value
  4322. * @p: task
  4323. * @nice: nice value
  4324. */
  4325. int can_nice(const struct task_struct *p, const int nice)
  4326. {
  4327. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4328. int nice_rlim = 20 - nice;
  4329. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  4330. capable(CAP_SYS_NICE));
  4331. }
  4332. #ifdef __ARCH_WANT_SYS_NICE
  4333. /*
  4334. * sys_nice - change the priority of the current process.
  4335. * @increment: priority increment
  4336. *
  4337. * sys_setpriority is a more generic, but much slower function that
  4338. * does similar things.
  4339. */
  4340. SYSCALL_DEFINE1(nice, int, increment)
  4341. {
  4342. long nice, retval;
  4343. /*
  4344. * Setpriority might change our priority at the same moment.
  4345. * We don't have to worry. Conceptually one call occurs first
  4346. * and we have a single winner.
  4347. */
  4348. if (increment < -40)
  4349. increment = -40;
  4350. if (increment > 40)
  4351. increment = 40;
  4352. nice = TASK_NICE(current) + increment;
  4353. if (nice < -20)
  4354. nice = -20;
  4355. if (nice > 19)
  4356. nice = 19;
  4357. if (increment < 0 && !can_nice(current, nice))
  4358. return -EPERM;
  4359. retval = security_task_setnice(current, nice);
  4360. if (retval)
  4361. return retval;
  4362. set_user_nice(current, nice);
  4363. return 0;
  4364. }
  4365. #endif
  4366. /**
  4367. * task_prio - return the priority value of a given task.
  4368. * @p: the task in question.
  4369. *
  4370. * This is the priority value as seen by users in /proc.
  4371. * RT tasks are offset by -200. Normal tasks are centered
  4372. * around 0, value goes from -16 to +15.
  4373. */
  4374. int task_prio(const struct task_struct *p)
  4375. {
  4376. return p->prio - MAX_RT_PRIO;
  4377. }
  4378. /**
  4379. * task_nice - return the nice value of a given task.
  4380. * @p: the task in question.
  4381. */
  4382. int task_nice(const struct task_struct *p)
  4383. {
  4384. return TASK_NICE(p);
  4385. }
  4386. EXPORT_SYMBOL(task_nice);
  4387. /**
  4388. * idle_cpu - is a given cpu idle currently?
  4389. * @cpu: the processor in question.
  4390. */
  4391. int idle_cpu(int cpu)
  4392. {
  4393. struct rq *rq = cpu_rq(cpu);
  4394. if (rq->curr != rq->idle)
  4395. return 0;
  4396. if (rq->nr_running)
  4397. return 0;
  4398. #ifdef CONFIG_SMP
  4399. if (!llist_empty(&rq->wake_list))
  4400. return 0;
  4401. #endif
  4402. return 1;
  4403. }
  4404. /**
  4405. * idle_task - return the idle task for a given cpu.
  4406. * @cpu: the processor in question.
  4407. */
  4408. struct task_struct *idle_task(int cpu)
  4409. {
  4410. return cpu_rq(cpu)->idle;
  4411. }
  4412. /**
  4413. * find_process_by_pid - find a process with a matching PID value.
  4414. * @pid: the pid in question.
  4415. */
  4416. static struct task_struct *find_process_by_pid(pid_t pid)
  4417. {
  4418. return pid ? find_task_by_vpid(pid) : current;
  4419. }
  4420. /* Actually do priority change: must hold rq lock. */
  4421. static void
  4422. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4423. {
  4424. p->policy = policy;
  4425. p->rt_priority = prio;
  4426. p->normal_prio = normal_prio(p);
  4427. /* we are holding p->pi_lock already */
  4428. p->prio = rt_mutex_getprio(p);
  4429. if (rt_prio(p->prio))
  4430. p->sched_class = &rt_sched_class;
  4431. else
  4432. p->sched_class = &fair_sched_class;
  4433. set_load_weight(p);
  4434. }
  4435. /*
  4436. * check the target process has a UID that matches the current process's
  4437. */
  4438. static bool check_same_owner(struct task_struct *p)
  4439. {
  4440. const struct cred *cred = current_cred(), *pcred;
  4441. bool match;
  4442. rcu_read_lock();
  4443. pcred = __task_cred(p);
  4444. if (cred->user->user_ns == pcred->user->user_ns)
  4445. match = (cred->euid == pcred->euid ||
  4446. cred->euid == pcred->uid);
  4447. else
  4448. match = false;
  4449. rcu_read_unlock();
  4450. return match;
  4451. }
  4452. static int __sched_setscheduler(struct task_struct *p, int policy,
  4453. const struct sched_param *param, bool user)
  4454. {
  4455. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4456. unsigned long flags;
  4457. const struct sched_class *prev_class;
  4458. struct rq *rq;
  4459. int reset_on_fork;
  4460. /* may grab non-irq protected spin_locks */
  4461. BUG_ON(in_interrupt());
  4462. recheck:
  4463. /* double check policy once rq lock held */
  4464. if (policy < 0) {
  4465. reset_on_fork = p->sched_reset_on_fork;
  4466. policy = oldpolicy = p->policy;
  4467. } else {
  4468. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  4469. policy &= ~SCHED_RESET_ON_FORK;
  4470. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4471. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4472. policy != SCHED_IDLE)
  4473. return -EINVAL;
  4474. }
  4475. /*
  4476. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4477. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4478. * SCHED_BATCH and SCHED_IDLE is 0.
  4479. */
  4480. if (param->sched_priority < 0 ||
  4481. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4482. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4483. return -EINVAL;
  4484. if (rt_policy(policy) != (param->sched_priority != 0))
  4485. return -EINVAL;
  4486. /*
  4487. * Allow unprivileged RT tasks to decrease priority:
  4488. */
  4489. if (user && !capable(CAP_SYS_NICE)) {
  4490. if (rt_policy(policy)) {
  4491. unsigned long rlim_rtprio =
  4492. task_rlimit(p, RLIMIT_RTPRIO);
  4493. /* can't set/change the rt policy */
  4494. if (policy != p->policy && !rlim_rtprio)
  4495. return -EPERM;
  4496. /* can't increase priority */
  4497. if (param->sched_priority > p->rt_priority &&
  4498. param->sched_priority > rlim_rtprio)
  4499. return -EPERM;
  4500. }
  4501. /*
  4502. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  4503. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  4504. */
  4505. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  4506. if (!can_nice(p, TASK_NICE(p)))
  4507. return -EPERM;
  4508. }
  4509. /* can't change other user's priorities */
  4510. if (!check_same_owner(p))
  4511. return -EPERM;
  4512. /* Normal users shall not reset the sched_reset_on_fork flag */
  4513. if (p->sched_reset_on_fork && !reset_on_fork)
  4514. return -EPERM;
  4515. }
  4516. if (user) {
  4517. retval = security_task_setscheduler(p);
  4518. if (retval)
  4519. return retval;
  4520. }
  4521. /*
  4522. * make sure no PI-waiters arrive (or leave) while we are
  4523. * changing the priority of the task:
  4524. *
  4525. * To be able to change p->policy safely, the appropriate
  4526. * runqueue lock must be held.
  4527. */
  4528. rq = task_rq_lock(p, &flags);
  4529. /*
  4530. * Changing the policy of the stop threads its a very bad idea
  4531. */
  4532. if (p == rq->stop) {
  4533. task_rq_unlock(rq, p, &flags);
  4534. return -EINVAL;
  4535. }
  4536. /*
  4537. * If not changing anything there's no need to proceed further:
  4538. */
  4539. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  4540. param->sched_priority == p->rt_priority))) {
  4541. __task_rq_unlock(rq);
  4542. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4543. return 0;
  4544. }
  4545. #ifdef CONFIG_RT_GROUP_SCHED
  4546. if (user) {
  4547. /*
  4548. * Do not allow realtime tasks into groups that have no runtime
  4549. * assigned.
  4550. */
  4551. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4552. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  4553. !task_group_is_autogroup(task_group(p))) {
  4554. task_rq_unlock(rq, p, &flags);
  4555. return -EPERM;
  4556. }
  4557. }
  4558. #endif
  4559. /* recheck policy now with rq lock held */
  4560. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4561. policy = oldpolicy = -1;
  4562. task_rq_unlock(rq, p, &flags);
  4563. goto recheck;
  4564. }
  4565. on_rq = p->on_rq;
  4566. running = task_current(rq, p);
  4567. if (on_rq)
  4568. deactivate_task(rq, p, 0);
  4569. if (running)
  4570. p->sched_class->put_prev_task(rq, p);
  4571. p->sched_reset_on_fork = reset_on_fork;
  4572. oldprio = p->prio;
  4573. prev_class = p->sched_class;
  4574. __setscheduler(rq, p, policy, param->sched_priority);
  4575. if (running)
  4576. p->sched_class->set_curr_task(rq);
  4577. if (on_rq)
  4578. activate_task(rq, p, 0);
  4579. check_class_changed(rq, p, prev_class, oldprio);
  4580. task_rq_unlock(rq, p, &flags);
  4581. rt_mutex_adjust_pi(p);
  4582. return 0;
  4583. }
  4584. /**
  4585. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4586. * @p: the task in question.
  4587. * @policy: new policy.
  4588. * @param: structure containing the new RT priority.
  4589. *
  4590. * NOTE that the task may be already dead.
  4591. */
  4592. int sched_setscheduler(struct task_struct *p, int policy,
  4593. const struct sched_param *param)
  4594. {
  4595. return __sched_setscheduler(p, policy, param, true);
  4596. }
  4597. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4598. /**
  4599. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4600. * @p: the task in question.
  4601. * @policy: new policy.
  4602. * @param: structure containing the new RT priority.
  4603. *
  4604. * Just like sched_setscheduler, only don't bother checking if the
  4605. * current context has permission. For example, this is needed in
  4606. * stop_machine(): we create temporary high priority worker threads,
  4607. * but our caller might not have that capability.
  4608. */
  4609. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4610. const struct sched_param *param)
  4611. {
  4612. return __sched_setscheduler(p, policy, param, false);
  4613. }
  4614. static int
  4615. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4616. {
  4617. struct sched_param lparam;
  4618. struct task_struct *p;
  4619. int retval;
  4620. if (!param || pid < 0)
  4621. return -EINVAL;
  4622. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4623. return -EFAULT;
  4624. rcu_read_lock();
  4625. retval = -ESRCH;
  4626. p = find_process_by_pid(pid);
  4627. if (p != NULL)
  4628. retval = sched_setscheduler(p, policy, &lparam);
  4629. rcu_read_unlock();
  4630. return retval;
  4631. }
  4632. /**
  4633. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4634. * @pid: the pid in question.
  4635. * @policy: new policy.
  4636. * @param: structure containing the new RT priority.
  4637. */
  4638. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4639. struct sched_param __user *, param)
  4640. {
  4641. /* negative values for policy are not valid */
  4642. if (policy < 0)
  4643. return -EINVAL;
  4644. return do_sched_setscheduler(pid, policy, param);
  4645. }
  4646. /**
  4647. * sys_sched_setparam - set/change the RT priority of a thread
  4648. * @pid: the pid in question.
  4649. * @param: structure containing the new RT priority.
  4650. */
  4651. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4652. {
  4653. return do_sched_setscheduler(pid, -1, param);
  4654. }
  4655. /**
  4656. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4657. * @pid: the pid in question.
  4658. */
  4659. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4660. {
  4661. struct task_struct *p;
  4662. int retval;
  4663. if (pid < 0)
  4664. return -EINVAL;
  4665. retval = -ESRCH;
  4666. rcu_read_lock();
  4667. p = find_process_by_pid(pid);
  4668. if (p) {
  4669. retval = security_task_getscheduler(p);
  4670. if (!retval)
  4671. retval = p->policy
  4672. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4673. }
  4674. rcu_read_unlock();
  4675. return retval;
  4676. }
  4677. /**
  4678. * sys_sched_getparam - get the RT priority of a thread
  4679. * @pid: the pid in question.
  4680. * @param: structure containing the RT priority.
  4681. */
  4682. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4683. {
  4684. struct sched_param lp;
  4685. struct task_struct *p;
  4686. int retval;
  4687. if (!param || pid < 0)
  4688. return -EINVAL;
  4689. rcu_read_lock();
  4690. p = find_process_by_pid(pid);
  4691. retval = -ESRCH;
  4692. if (!p)
  4693. goto out_unlock;
  4694. retval = security_task_getscheduler(p);
  4695. if (retval)
  4696. goto out_unlock;
  4697. lp.sched_priority = p->rt_priority;
  4698. rcu_read_unlock();
  4699. /*
  4700. * This one might sleep, we cannot do it with a spinlock held ...
  4701. */
  4702. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4703. return retval;
  4704. out_unlock:
  4705. rcu_read_unlock();
  4706. return retval;
  4707. }
  4708. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4709. {
  4710. cpumask_var_t cpus_allowed, new_mask;
  4711. struct task_struct *p;
  4712. int retval;
  4713. get_online_cpus();
  4714. rcu_read_lock();
  4715. p = find_process_by_pid(pid);
  4716. if (!p) {
  4717. rcu_read_unlock();
  4718. put_online_cpus();
  4719. return -ESRCH;
  4720. }
  4721. /* Prevent p going away */
  4722. get_task_struct(p);
  4723. rcu_read_unlock();
  4724. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4725. retval = -ENOMEM;
  4726. goto out_put_task;
  4727. }
  4728. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4729. retval = -ENOMEM;
  4730. goto out_free_cpus_allowed;
  4731. }
  4732. retval = -EPERM;
  4733. if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
  4734. goto out_unlock;
  4735. retval = security_task_setscheduler(p);
  4736. if (retval)
  4737. goto out_unlock;
  4738. cpuset_cpus_allowed(p, cpus_allowed);
  4739. cpumask_and(new_mask, in_mask, cpus_allowed);
  4740. again:
  4741. retval = set_cpus_allowed_ptr(p, new_mask);
  4742. if (!retval) {
  4743. cpuset_cpus_allowed(p, cpus_allowed);
  4744. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4745. /*
  4746. * We must have raced with a concurrent cpuset
  4747. * update. Just reset the cpus_allowed to the
  4748. * cpuset's cpus_allowed
  4749. */
  4750. cpumask_copy(new_mask, cpus_allowed);
  4751. goto again;
  4752. }
  4753. }
  4754. out_unlock:
  4755. free_cpumask_var(new_mask);
  4756. out_free_cpus_allowed:
  4757. free_cpumask_var(cpus_allowed);
  4758. out_put_task:
  4759. put_task_struct(p);
  4760. put_online_cpus();
  4761. return retval;
  4762. }
  4763. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4764. struct cpumask *new_mask)
  4765. {
  4766. if (len < cpumask_size())
  4767. cpumask_clear(new_mask);
  4768. else if (len > cpumask_size())
  4769. len = cpumask_size();
  4770. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4771. }
  4772. /**
  4773. * sys_sched_setaffinity - set the cpu affinity of a process
  4774. * @pid: pid of the process
  4775. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4776. * @user_mask_ptr: user-space pointer to the new cpu mask
  4777. */
  4778. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4779. unsigned long __user *, user_mask_ptr)
  4780. {
  4781. cpumask_var_t new_mask;
  4782. int retval;
  4783. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4784. return -ENOMEM;
  4785. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4786. if (retval == 0)
  4787. retval = sched_setaffinity(pid, new_mask);
  4788. free_cpumask_var(new_mask);
  4789. return retval;
  4790. }
  4791. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4792. {
  4793. struct task_struct *p;
  4794. unsigned long flags;
  4795. int retval;
  4796. get_online_cpus();
  4797. rcu_read_lock();
  4798. retval = -ESRCH;
  4799. p = find_process_by_pid(pid);
  4800. if (!p)
  4801. goto out_unlock;
  4802. retval = security_task_getscheduler(p);
  4803. if (retval)
  4804. goto out_unlock;
  4805. raw_spin_lock_irqsave(&p->pi_lock, flags);
  4806. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4807. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4808. out_unlock:
  4809. rcu_read_unlock();
  4810. put_online_cpus();
  4811. return retval;
  4812. }
  4813. /**
  4814. * sys_sched_getaffinity - get the cpu affinity of a process
  4815. * @pid: pid of the process
  4816. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4817. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4818. */
  4819. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4820. unsigned long __user *, user_mask_ptr)
  4821. {
  4822. int ret;
  4823. cpumask_var_t mask;
  4824. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4825. return -EINVAL;
  4826. if (len & (sizeof(unsigned long)-1))
  4827. return -EINVAL;
  4828. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4829. return -ENOMEM;
  4830. ret = sched_getaffinity(pid, mask);
  4831. if (ret == 0) {
  4832. size_t retlen = min_t(size_t, len, cpumask_size());
  4833. if (copy_to_user(user_mask_ptr, mask, retlen))
  4834. ret = -EFAULT;
  4835. else
  4836. ret = retlen;
  4837. }
  4838. free_cpumask_var(mask);
  4839. return ret;
  4840. }
  4841. /**
  4842. * sys_sched_yield - yield the current processor to other threads.
  4843. *
  4844. * This function yields the current CPU to other tasks. If there are no
  4845. * other threads running on this CPU then this function will return.
  4846. */
  4847. SYSCALL_DEFINE0(sched_yield)
  4848. {
  4849. struct rq *rq = this_rq_lock();
  4850. schedstat_inc(rq, yld_count);
  4851. current->sched_class->yield_task(rq);
  4852. /*
  4853. * Since we are going to call schedule() anyway, there's
  4854. * no need to preempt or enable interrupts:
  4855. */
  4856. __release(rq->lock);
  4857. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4858. do_raw_spin_unlock(&rq->lock);
  4859. preempt_enable_no_resched();
  4860. schedule();
  4861. return 0;
  4862. }
  4863. static inline int should_resched(void)
  4864. {
  4865. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4866. }
  4867. static void __cond_resched(void)
  4868. {
  4869. add_preempt_count(PREEMPT_ACTIVE);
  4870. __schedule();
  4871. sub_preempt_count(PREEMPT_ACTIVE);
  4872. }
  4873. int __sched _cond_resched(void)
  4874. {
  4875. if (should_resched()) {
  4876. __cond_resched();
  4877. return 1;
  4878. }
  4879. return 0;
  4880. }
  4881. EXPORT_SYMBOL(_cond_resched);
  4882. /*
  4883. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4884. * call schedule, and on return reacquire the lock.
  4885. *
  4886. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4887. * operations here to prevent schedule() from being called twice (once via
  4888. * spin_unlock(), once by hand).
  4889. */
  4890. int __cond_resched_lock(spinlock_t *lock)
  4891. {
  4892. int resched = should_resched();
  4893. int ret = 0;
  4894. lockdep_assert_held(lock);
  4895. if (spin_needbreak(lock) || resched) {
  4896. spin_unlock(lock);
  4897. if (resched)
  4898. __cond_resched();
  4899. else
  4900. cpu_relax();
  4901. ret = 1;
  4902. spin_lock(lock);
  4903. }
  4904. return ret;
  4905. }
  4906. EXPORT_SYMBOL(__cond_resched_lock);
  4907. int __sched __cond_resched_softirq(void)
  4908. {
  4909. BUG_ON(!in_softirq());
  4910. if (should_resched()) {
  4911. local_bh_enable();
  4912. __cond_resched();
  4913. local_bh_disable();
  4914. return 1;
  4915. }
  4916. return 0;
  4917. }
  4918. EXPORT_SYMBOL(__cond_resched_softirq);
  4919. /**
  4920. * yield - yield the current processor to other threads.
  4921. *
  4922. * This is a shortcut for kernel-space yielding - it marks the
  4923. * thread runnable and calls sys_sched_yield().
  4924. */
  4925. void __sched yield(void)
  4926. {
  4927. set_current_state(TASK_RUNNING);
  4928. sys_sched_yield();
  4929. }
  4930. EXPORT_SYMBOL(yield);
  4931. /**
  4932. * yield_to - yield the current processor to another thread in
  4933. * your thread group, or accelerate that thread toward the
  4934. * processor it's on.
  4935. * @p: target task
  4936. * @preempt: whether task preemption is allowed or not
  4937. *
  4938. * It's the caller's job to ensure that the target task struct
  4939. * can't go away on us before we can do any checks.
  4940. *
  4941. * Returns true if we indeed boosted the target task.
  4942. */
  4943. bool __sched yield_to(struct task_struct *p, bool preempt)
  4944. {
  4945. struct task_struct *curr = current;
  4946. struct rq *rq, *p_rq;
  4947. unsigned long flags;
  4948. bool yielded = 0;
  4949. local_irq_save(flags);
  4950. rq = this_rq();
  4951. again:
  4952. p_rq = task_rq(p);
  4953. double_rq_lock(rq, p_rq);
  4954. while (task_rq(p) != p_rq) {
  4955. double_rq_unlock(rq, p_rq);
  4956. goto again;
  4957. }
  4958. if (!curr->sched_class->yield_to_task)
  4959. goto out;
  4960. if (curr->sched_class != p->sched_class)
  4961. goto out;
  4962. if (task_running(p_rq, p) || p->state)
  4963. goto out;
  4964. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  4965. if (yielded) {
  4966. schedstat_inc(rq, yld_count);
  4967. /*
  4968. * Make p's CPU reschedule; pick_next_entity takes care of
  4969. * fairness.
  4970. */
  4971. if (preempt && rq != p_rq)
  4972. resched_task(p_rq->curr);
  4973. }
  4974. out:
  4975. double_rq_unlock(rq, p_rq);
  4976. local_irq_restore(flags);
  4977. if (yielded)
  4978. schedule();
  4979. return yielded;
  4980. }
  4981. EXPORT_SYMBOL_GPL(yield_to);
  4982. /*
  4983. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4984. * that process accounting knows that this is a task in IO wait state.
  4985. */
  4986. void __sched io_schedule(void)
  4987. {
  4988. struct rq *rq = raw_rq();
  4989. delayacct_blkio_start();
  4990. atomic_inc(&rq->nr_iowait);
  4991. blk_flush_plug(current);
  4992. current->in_iowait = 1;
  4993. schedule();
  4994. current->in_iowait = 0;
  4995. atomic_dec(&rq->nr_iowait);
  4996. delayacct_blkio_end();
  4997. }
  4998. EXPORT_SYMBOL(io_schedule);
  4999. long __sched io_schedule_timeout(long timeout)
  5000. {
  5001. struct rq *rq = raw_rq();
  5002. long ret;
  5003. delayacct_blkio_start();
  5004. atomic_inc(&rq->nr_iowait);
  5005. blk_flush_plug(current);
  5006. current->in_iowait = 1;
  5007. ret = schedule_timeout(timeout);
  5008. current->in_iowait = 0;
  5009. atomic_dec(&rq->nr_iowait);
  5010. delayacct_blkio_end();
  5011. return ret;
  5012. }
  5013. /**
  5014. * sys_sched_get_priority_max - return maximum RT priority.
  5015. * @policy: scheduling class.
  5016. *
  5017. * this syscall returns the maximum rt_priority that can be used
  5018. * by a given scheduling class.
  5019. */
  5020. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5021. {
  5022. int ret = -EINVAL;
  5023. switch (policy) {
  5024. case SCHED_FIFO:
  5025. case SCHED_RR:
  5026. ret = MAX_USER_RT_PRIO-1;
  5027. break;
  5028. case SCHED_NORMAL:
  5029. case SCHED_BATCH:
  5030. case SCHED_IDLE:
  5031. ret = 0;
  5032. break;
  5033. }
  5034. return ret;
  5035. }
  5036. /**
  5037. * sys_sched_get_priority_min - return minimum RT priority.
  5038. * @policy: scheduling class.
  5039. *
  5040. * this syscall returns the minimum rt_priority that can be used
  5041. * by a given scheduling class.
  5042. */
  5043. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5044. {
  5045. int ret = -EINVAL;
  5046. switch (policy) {
  5047. case SCHED_FIFO:
  5048. case SCHED_RR:
  5049. ret = 1;
  5050. break;
  5051. case SCHED_NORMAL:
  5052. case SCHED_BATCH:
  5053. case SCHED_IDLE:
  5054. ret = 0;
  5055. }
  5056. return ret;
  5057. }
  5058. /**
  5059. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5060. * @pid: pid of the process.
  5061. * @interval: userspace pointer to the timeslice value.
  5062. *
  5063. * this syscall writes the default timeslice value of a given process
  5064. * into the user-space timespec buffer. A value of '0' means infinity.
  5065. */
  5066. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5067. struct timespec __user *, interval)
  5068. {
  5069. struct task_struct *p;
  5070. unsigned int time_slice;
  5071. unsigned long flags;
  5072. struct rq *rq;
  5073. int retval;
  5074. struct timespec t;
  5075. if (pid < 0)
  5076. return -EINVAL;
  5077. retval = -ESRCH;
  5078. rcu_read_lock();
  5079. p = find_process_by_pid(pid);
  5080. if (!p)
  5081. goto out_unlock;
  5082. retval = security_task_getscheduler(p);
  5083. if (retval)
  5084. goto out_unlock;
  5085. rq = task_rq_lock(p, &flags);
  5086. time_slice = p->sched_class->get_rr_interval(rq, p);
  5087. task_rq_unlock(rq, p, &flags);
  5088. rcu_read_unlock();
  5089. jiffies_to_timespec(time_slice, &t);
  5090. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5091. return retval;
  5092. out_unlock:
  5093. rcu_read_unlock();
  5094. return retval;
  5095. }
  5096. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5097. void sched_show_task(struct task_struct *p)
  5098. {
  5099. unsigned long free = 0;
  5100. unsigned state;
  5101. state = p->state ? __ffs(p->state) + 1 : 0;
  5102. printk(KERN_INFO "%-15.15s %c", p->comm,
  5103. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5104. #if BITS_PER_LONG == 32
  5105. if (state == TASK_RUNNING)
  5106. printk(KERN_CONT " running ");
  5107. else
  5108. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5109. #else
  5110. if (state == TASK_RUNNING)
  5111. printk(KERN_CONT " running task ");
  5112. else
  5113. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5114. #endif
  5115. #ifdef CONFIG_DEBUG_STACK_USAGE
  5116. free = stack_not_used(p);
  5117. #endif
  5118. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  5119. task_pid_nr(p), task_pid_nr(p->real_parent),
  5120. (unsigned long)task_thread_info(p)->flags);
  5121. show_stack(p, NULL);
  5122. }
  5123. void show_state_filter(unsigned long state_filter)
  5124. {
  5125. struct task_struct *g, *p;
  5126. #if BITS_PER_LONG == 32
  5127. printk(KERN_INFO
  5128. " task PC stack pid father\n");
  5129. #else
  5130. printk(KERN_INFO
  5131. " task PC stack pid father\n");
  5132. #endif
  5133. rcu_read_lock();
  5134. do_each_thread(g, p) {
  5135. /*
  5136. * reset the NMI-timeout, listing all files on a slow
  5137. * console might take a lot of time:
  5138. */
  5139. touch_nmi_watchdog();
  5140. if (!state_filter || (p->state & state_filter))
  5141. sched_show_task(p);
  5142. } while_each_thread(g, p);
  5143. touch_all_softlockup_watchdogs();
  5144. #ifdef CONFIG_SCHED_DEBUG
  5145. sysrq_sched_debug_show();
  5146. #endif
  5147. rcu_read_unlock();
  5148. /*
  5149. * Only show locks if all tasks are dumped:
  5150. */
  5151. if (!state_filter)
  5152. debug_show_all_locks();
  5153. }
  5154. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5155. {
  5156. idle->sched_class = &idle_sched_class;
  5157. }
  5158. /**
  5159. * init_idle - set up an idle thread for a given CPU
  5160. * @idle: task in question
  5161. * @cpu: cpu the idle task belongs to
  5162. *
  5163. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5164. * flag, to make booting more robust.
  5165. */
  5166. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5167. {
  5168. struct rq *rq = cpu_rq(cpu);
  5169. unsigned long flags;
  5170. raw_spin_lock_irqsave(&rq->lock, flags);
  5171. __sched_fork(idle);
  5172. idle->state = TASK_RUNNING;
  5173. idle->se.exec_start = sched_clock();
  5174. do_set_cpus_allowed(idle, cpumask_of(cpu));
  5175. /*
  5176. * We're having a chicken and egg problem, even though we are
  5177. * holding rq->lock, the cpu isn't yet set to this cpu so the
  5178. * lockdep check in task_group() will fail.
  5179. *
  5180. * Similar case to sched_fork(). / Alternatively we could
  5181. * use task_rq_lock() here and obtain the other rq->lock.
  5182. *
  5183. * Silence PROVE_RCU
  5184. */
  5185. rcu_read_lock();
  5186. __set_task_cpu(idle, cpu);
  5187. rcu_read_unlock();
  5188. rq->curr = rq->idle = idle;
  5189. #if defined(CONFIG_SMP)
  5190. idle->on_cpu = 1;
  5191. #endif
  5192. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5193. /* Set the preempt count _outside_ the spinlocks! */
  5194. task_thread_info(idle)->preempt_count = 0;
  5195. /*
  5196. * The idle tasks have their own, simple scheduling class:
  5197. */
  5198. idle->sched_class = &idle_sched_class;
  5199. ftrace_graph_init_idle_task(idle, cpu);
  5200. #if defined(CONFIG_SMP)
  5201. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  5202. #endif
  5203. }
  5204. /*
  5205. * Increase the granularity value when there are more CPUs,
  5206. * because with more CPUs the 'effective latency' as visible
  5207. * to users decreases. But the relationship is not linear,
  5208. * so pick a second-best guess by going with the log2 of the
  5209. * number of CPUs.
  5210. *
  5211. * This idea comes from the SD scheduler of Con Kolivas:
  5212. */
  5213. static int get_update_sysctl_factor(void)
  5214. {
  5215. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  5216. unsigned int factor;
  5217. switch (sysctl_sched_tunable_scaling) {
  5218. case SCHED_TUNABLESCALING_NONE:
  5219. factor = 1;
  5220. break;
  5221. case SCHED_TUNABLESCALING_LINEAR:
  5222. factor = cpus;
  5223. break;
  5224. case SCHED_TUNABLESCALING_LOG:
  5225. default:
  5226. factor = 1 + ilog2(cpus);
  5227. break;
  5228. }
  5229. return factor;
  5230. }
  5231. static void update_sysctl(void)
  5232. {
  5233. unsigned int factor = get_update_sysctl_factor();
  5234. #define SET_SYSCTL(name) \
  5235. (sysctl_##name = (factor) * normalized_sysctl_##name)
  5236. SET_SYSCTL(sched_min_granularity);
  5237. SET_SYSCTL(sched_latency);
  5238. SET_SYSCTL(sched_wakeup_granularity);
  5239. #undef SET_SYSCTL
  5240. }
  5241. static inline void sched_init_granularity(void)
  5242. {
  5243. update_sysctl();
  5244. }
  5245. #ifdef CONFIG_SMP
  5246. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  5247. {
  5248. if (p->sched_class && p->sched_class->set_cpus_allowed)
  5249. p->sched_class->set_cpus_allowed(p, new_mask);
  5250. cpumask_copy(&p->cpus_allowed, new_mask);
  5251. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5252. }
  5253. /*
  5254. * This is how migration works:
  5255. *
  5256. * 1) we invoke migration_cpu_stop() on the target CPU using
  5257. * stop_one_cpu().
  5258. * 2) stopper starts to run (implicitly forcing the migrated thread
  5259. * off the CPU)
  5260. * 3) it checks whether the migrated task is still in the wrong runqueue.
  5261. * 4) if it's in the wrong runqueue then the migration thread removes
  5262. * it and puts it into the right queue.
  5263. * 5) stopper completes and stop_one_cpu() returns and the migration
  5264. * is done.
  5265. */
  5266. /*
  5267. * Change a given task's CPU affinity. Migrate the thread to a
  5268. * proper CPU and schedule it away if the CPU it's executing on
  5269. * is removed from the allowed bitmask.
  5270. *
  5271. * NOTE: the caller must have a valid reference to the task, the
  5272. * task must not exit() & deallocate itself prematurely. The
  5273. * call is not atomic; no spinlocks may be held.
  5274. */
  5275. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5276. {
  5277. unsigned long flags;
  5278. struct rq *rq;
  5279. unsigned int dest_cpu;
  5280. int ret = 0;
  5281. rq = task_rq_lock(p, &flags);
  5282. if (cpumask_equal(&p->cpus_allowed, new_mask))
  5283. goto out;
  5284. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  5285. ret = -EINVAL;
  5286. goto out;
  5287. }
  5288. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
  5289. ret = -EINVAL;
  5290. goto out;
  5291. }
  5292. do_set_cpus_allowed(p, new_mask);
  5293. /* Can the task run on the task's current CPU? If so, we're done */
  5294. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5295. goto out;
  5296. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  5297. if (p->on_rq) {
  5298. struct migration_arg arg = { p, dest_cpu };
  5299. /* Need help from migration thread: drop lock and wait. */
  5300. task_rq_unlock(rq, p, &flags);
  5301. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  5302. tlb_migrate_finish(p->mm);
  5303. return 0;
  5304. }
  5305. out:
  5306. task_rq_unlock(rq, p, &flags);
  5307. return ret;
  5308. }
  5309. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5310. /*
  5311. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5312. * this because either it can't run here any more (set_cpus_allowed()
  5313. * away from this CPU, or CPU going down), or because we're
  5314. * attempting to rebalance this task on exec (sched_exec).
  5315. *
  5316. * So we race with normal scheduler movements, but that's OK, as long
  5317. * as the task is no longer on this CPU.
  5318. *
  5319. * Returns non-zero if task was successfully migrated.
  5320. */
  5321. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5322. {
  5323. struct rq *rq_dest, *rq_src;
  5324. int ret = 0;
  5325. if (unlikely(!cpu_active(dest_cpu)))
  5326. return ret;
  5327. rq_src = cpu_rq(src_cpu);
  5328. rq_dest = cpu_rq(dest_cpu);
  5329. raw_spin_lock(&p->pi_lock);
  5330. double_rq_lock(rq_src, rq_dest);
  5331. /* Already moved. */
  5332. if (task_cpu(p) != src_cpu)
  5333. goto done;
  5334. /* Affinity changed (again). */
  5335. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  5336. goto fail;
  5337. /*
  5338. * If we're not on a rq, the next wake-up will ensure we're
  5339. * placed properly.
  5340. */
  5341. if (p->on_rq) {
  5342. deactivate_task(rq_src, p, 0);
  5343. set_task_cpu(p, dest_cpu);
  5344. activate_task(rq_dest, p, 0);
  5345. check_preempt_curr(rq_dest, p, 0);
  5346. }
  5347. done:
  5348. ret = 1;
  5349. fail:
  5350. double_rq_unlock(rq_src, rq_dest);
  5351. raw_spin_unlock(&p->pi_lock);
  5352. return ret;
  5353. }
  5354. /*
  5355. * migration_cpu_stop - this will be executed by a highprio stopper thread
  5356. * and performs thread migration by bumping thread off CPU then
  5357. * 'pushing' onto another runqueue.
  5358. */
  5359. static int migration_cpu_stop(void *data)
  5360. {
  5361. struct migration_arg *arg = data;
  5362. /*
  5363. * The original target cpu might have gone down and we might
  5364. * be on another cpu but it doesn't matter.
  5365. */
  5366. local_irq_disable();
  5367. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  5368. local_irq_enable();
  5369. return 0;
  5370. }
  5371. #ifdef CONFIG_HOTPLUG_CPU
  5372. /*
  5373. * Ensures that the idle task is using init_mm right before its cpu goes
  5374. * offline.
  5375. */
  5376. void idle_task_exit(void)
  5377. {
  5378. struct mm_struct *mm = current->active_mm;
  5379. BUG_ON(cpu_online(smp_processor_id()));
  5380. if (mm != &init_mm)
  5381. switch_mm(mm, &init_mm, current);
  5382. mmdrop(mm);
  5383. }
  5384. /*
  5385. * While a dead CPU has no uninterruptible tasks queued at this point,
  5386. * it might still have a nonzero ->nr_uninterruptible counter, because
  5387. * for performance reasons the counter is not stricly tracking tasks to
  5388. * their home CPUs. So we just add the counter to another CPU's counter,
  5389. * to keep the global sum constant after CPU-down:
  5390. */
  5391. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5392. {
  5393. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  5394. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5395. rq_src->nr_uninterruptible = 0;
  5396. }
  5397. /*
  5398. * remove the tasks which were accounted by rq from calc_load_tasks.
  5399. */
  5400. static void calc_global_load_remove(struct rq *rq)
  5401. {
  5402. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  5403. rq->calc_load_active = 0;
  5404. }
  5405. #ifdef CONFIG_CFS_BANDWIDTH
  5406. static void unthrottle_offline_cfs_rqs(struct rq *rq)
  5407. {
  5408. struct cfs_rq *cfs_rq;
  5409. for_each_leaf_cfs_rq(rq, cfs_rq) {
  5410. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  5411. if (!cfs_rq->runtime_enabled)
  5412. continue;
  5413. /*
  5414. * clock_task is not advancing so we just need to make sure
  5415. * there's some valid quota amount
  5416. */
  5417. cfs_rq->runtime_remaining = cfs_b->quota;
  5418. if (cfs_rq_throttled(cfs_rq))
  5419. unthrottle_cfs_rq(cfs_rq);
  5420. }
  5421. }
  5422. #else
  5423. static void unthrottle_offline_cfs_rqs(struct rq *rq) {}
  5424. #endif
  5425. /*
  5426. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  5427. * try_to_wake_up()->select_task_rq().
  5428. *
  5429. * Called with rq->lock held even though we'er in stop_machine() and
  5430. * there's no concurrency possible, we hold the required locks anyway
  5431. * because of lock validation efforts.
  5432. */
  5433. static void migrate_tasks(unsigned int dead_cpu)
  5434. {
  5435. struct rq *rq = cpu_rq(dead_cpu);
  5436. struct task_struct *next, *stop = rq->stop;
  5437. int dest_cpu;
  5438. /*
  5439. * Fudge the rq selection such that the below task selection loop
  5440. * doesn't get stuck on the currently eligible stop task.
  5441. *
  5442. * We're currently inside stop_machine() and the rq is either stuck
  5443. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  5444. * either way we should never end up calling schedule() until we're
  5445. * done here.
  5446. */
  5447. rq->stop = NULL;
  5448. /* Ensure any throttled groups are reachable by pick_next_task */
  5449. unthrottle_offline_cfs_rqs(rq);
  5450. for ( ; ; ) {
  5451. /*
  5452. * There's this thread running, bail when that's the only
  5453. * remaining thread.
  5454. */
  5455. if (rq->nr_running == 1)
  5456. break;
  5457. next = pick_next_task(rq);
  5458. BUG_ON(!next);
  5459. next->sched_class->put_prev_task(rq, next);
  5460. /* Find suitable destination for @next, with force if needed. */
  5461. dest_cpu = select_fallback_rq(dead_cpu, next);
  5462. raw_spin_unlock(&rq->lock);
  5463. __migrate_task(next, dead_cpu, dest_cpu);
  5464. raw_spin_lock(&rq->lock);
  5465. }
  5466. rq->stop = stop;
  5467. }
  5468. #endif /* CONFIG_HOTPLUG_CPU */
  5469. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5470. static struct ctl_table sd_ctl_dir[] = {
  5471. {
  5472. .procname = "sched_domain",
  5473. .mode = 0555,
  5474. },
  5475. {}
  5476. };
  5477. static struct ctl_table sd_ctl_root[] = {
  5478. {
  5479. .procname = "kernel",
  5480. .mode = 0555,
  5481. .child = sd_ctl_dir,
  5482. },
  5483. {}
  5484. };
  5485. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5486. {
  5487. struct ctl_table *entry =
  5488. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5489. return entry;
  5490. }
  5491. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5492. {
  5493. struct ctl_table *entry;
  5494. /*
  5495. * In the intermediate directories, both the child directory and
  5496. * procname are dynamically allocated and could fail but the mode
  5497. * will always be set. In the lowest directory the names are
  5498. * static strings and all have proc handlers.
  5499. */
  5500. for (entry = *tablep; entry->mode; entry++) {
  5501. if (entry->child)
  5502. sd_free_ctl_entry(&entry->child);
  5503. if (entry->proc_handler == NULL)
  5504. kfree(entry->procname);
  5505. }
  5506. kfree(*tablep);
  5507. *tablep = NULL;
  5508. }
  5509. static void
  5510. set_table_entry(struct ctl_table *entry,
  5511. const char *procname, void *data, int maxlen,
  5512. mode_t mode, proc_handler *proc_handler)
  5513. {
  5514. entry->procname = procname;
  5515. entry->data = data;
  5516. entry->maxlen = maxlen;
  5517. entry->mode = mode;
  5518. entry->proc_handler = proc_handler;
  5519. }
  5520. static struct ctl_table *
  5521. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5522. {
  5523. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5524. if (table == NULL)
  5525. return NULL;
  5526. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5527. sizeof(long), 0644, proc_doulongvec_minmax);
  5528. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5529. sizeof(long), 0644, proc_doulongvec_minmax);
  5530. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5531. sizeof(int), 0644, proc_dointvec_minmax);
  5532. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5533. sizeof(int), 0644, proc_dointvec_minmax);
  5534. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5535. sizeof(int), 0644, proc_dointvec_minmax);
  5536. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5537. sizeof(int), 0644, proc_dointvec_minmax);
  5538. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5539. sizeof(int), 0644, proc_dointvec_minmax);
  5540. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5541. sizeof(int), 0644, proc_dointvec_minmax);
  5542. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5543. sizeof(int), 0644, proc_dointvec_minmax);
  5544. set_table_entry(&table[9], "cache_nice_tries",
  5545. &sd->cache_nice_tries,
  5546. sizeof(int), 0644, proc_dointvec_minmax);
  5547. set_table_entry(&table[10], "flags", &sd->flags,
  5548. sizeof(int), 0644, proc_dointvec_minmax);
  5549. set_table_entry(&table[11], "name", sd->name,
  5550. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5551. /* &table[12] is terminator */
  5552. return table;
  5553. }
  5554. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5555. {
  5556. struct ctl_table *entry, *table;
  5557. struct sched_domain *sd;
  5558. int domain_num = 0, i;
  5559. char buf[32];
  5560. for_each_domain(cpu, sd)
  5561. domain_num++;
  5562. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5563. if (table == NULL)
  5564. return NULL;
  5565. i = 0;
  5566. for_each_domain(cpu, sd) {
  5567. snprintf(buf, 32, "domain%d", i);
  5568. entry->procname = kstrdup(buf, GFP_KERNEL);
  5569. entry->mode = 0555;
  5570. entry->child = sd_alloc_ctl_domain_table(sd);
  5571. entry++;
  5572. i++;
  5573. }
  5574. return table;
  5575. }
  5576. static struct ctl_table_header *sd_sysctl_header;
  5577. static void register_sched_domain_sysctl(void)
  5578. {
  5579. int i, cpu_num = num_possible_cpus();
  5580. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5581. char buf[32];
  5582. WARN_ON(sd_ctl_dir[0].child);
  5583. sd_ctl_dir[0].child = entry;
  5584. if (entry == NULL)
  5585. return;
  5586. for_each_possible_cpu(i) {
  5587. snprintf(buf, 32, "cpu%d", i);
  5588. entry->procname = kstrdup(buf, GFP_KERNEL);
  5589. entry->mode = 0555;
  5590. entry->child = sd_alloc_ctl_cpu_table(i);
  5591. entry++;
  5592. }
  5593. WARN_ON(sd_sysctl_header);
  5594. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5595. }
  5596. /* may be called multiple times per register */
  5597. static void unregister_sched_domain_sysctl(void)
  5598. {
  5599. if (sd_sysctl_header)
  5600. unregister_sysctl_table(sd_sysctl_header);
  5601. sd_sysctl_header = NULL;
  5602. if (sd_ctl_dir[0].child)
  5603. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5604. }
  5605. #else
  5606. static void register_sched_domain_sysctl(void)
  5607. {
  5608. }
  5609. static void unregister_sched_domain_sysctl(void)
  5610. {
  5611. }
  5612. #endif
  5613. static void set_rq_online(struct rq *rq)
  5614. {
  5615. if (!rq->online) {
  5616. const struct sched_class *class;
  5617. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5618. rq->online = 1;
  5619. for_each_class(class) {
  5620. if (class->rq_online)
  5621. class->rq_online(rq);
  5622. }
  5623. }
  5624. }
  5625. static void set_rq_offline(struct rq *rq)
  5626. {
  5627. if (rq->online) {
  5628. const struct sched_class *class;
  5629. for_each_class(class) {
  5630. if (class->rq_offline)
  5631. class->rq_offline(rq);
  5632. }
  5633. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5634. rq->online = 0;
  5635. }
  5636. }
  5637. /*
  5638. * migration_call - callback that gets triggered when a CPU is added.
  5639. * Here we can start up the necessary migration thread for the new CPU.
  5640. */
  5641. static int __cpuinit
  5642. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5643. {
  5644. int cpu = (long)hcpu;
  5645. unsigned long flags;
  5646. struct rq *rq = cpu_rq(cpu);
  5647. switch (action & ~CPU_TASKS_FROZEN) {
  5648. case CPU_UP_PREPARE:
  5649. rq->calc_load_update = calc_load_update;
  5650. break;
  5651. case CPU_ONLINE:
  5652. /* Update our root-domain */
  5653. raw_spin_lock_irqsave(&rq->lock, flags);
  5654. if (rq->rd) {
  5655. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5656. set_rq_online(rq);
  5657. }
  5658. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5659. break;
  5660. #ifdef CONFIG_HOTPLUG_CPU
  5661. case CPU_DYING:
  5662. sched_ttwu_pending();
  5663. /* Update our root-domain */
  5664. raw_spin_lock_irqsave(&rq->lock, flags);
  5665. if (rq->rd) {
  5666. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5667. set_rq_offline(rq);
  5668. }
  5669. migrate_tasks(cpu);
  5670. BUG_ON(rq->nr_running != 1); /* the migration thread */
  5671. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5672. migrate_nr_uninterruptible(rq);
  5673. calc_global_load_remove(rq);
  5674. break;
  5675. #endif
  5676. }
  5677. update_max_interval();
  5678. return NOTIFY_OK;
  5679. }
  5680. /*
  5681. * Register at high priority so that task migration (migrate_all_tasks)
  5682. * happens before everything else. This has to be lower priority than
  5683. * the notifier in the perf_event subsystem, though.
  5684. */
  5685. static struct notifier_block __cpuinitdata migration_notifier = {
  5686. .notifier_call = migration_call,
  5687. .priority = CPU_PRI_MIGRATION,
  5688. };
  5689. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  5690. unsigned long action, void *hcpu)
  5691. {
  5692. switch (action & ~CPU_TASKS_FROZEN) {
  5693. case CPU_ONLINE:
  5694. case CPU_DOWN_FAILED:
  5695. set_cpu_active((long)hcpu, true);
  5696. return NOTIFY_OK;
  5697. default:
  5698. return NOTIFY_DONE;
  5699. }
  5700. }
  5701. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  5702. unsigned long action, void *hcpu)
  5703. {
  5704. switch (action & ~CPU_TASKS_FROZEN) {
  5705. case CPU_DOWN_PREPARE:
  5706. set_cpu_active((long)hcpu, false);
  5707. return NOTIFY_OK;
  5708. default:
  5709. return NOTIFY_DONE;
  5710. }
  5711. }
  5712. static int __init migration_init(void)
  5713. {
  5714. void *cpu = (void *)(long)smp_processor_id();
  5715. int err;
  5716. /* Initialize migration for the boot CPU */
  5717. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5718. BUG_ON(err == NOTIFY_BAD);
  5719. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5720. register_cpu_notifier(&migration_notifier);
  5721. /* Register cpu active notifiers */
  5722. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  5723. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  5724. return 0;
  5725. }
  5726. early_initcall(migration_init);
  5727. #endif
  5728. #ifdef CONFIG_SMP
  5729. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  5730. #ifdef CONFIG_SCHED_DEBUG
  5731. static __read_mostly int sched_domain_debug_enabled;
  5732. static int __init sched_domain_debug_setup(char *str)
  5733. {
  5734. sched_domain_debug_enabled = 1;
  5735. return 0;
  5736. }
  5737. early_param("sched_debug", sched_domain_debug_setup);
  5738. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5739. struct cpumask *groupmask)
  5740. {
  5741. struct sched_group *group = sd->groups;
  5742. char str[256];
  5743. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5744. cpumask_clear(groupmask);
  5745. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5746. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5747. printk("does not load-balance\n");
  5748. if (sd->parent)
  5749. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5750. " has parent");
  5751. return -1;
  5752. }
  5753. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5754. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5755. printk(KERN_ERR "ERROR: domain->span does not contain "
  5756. "CPU%d\n", cpu);
  5757. }
  5758. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5759. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5760. " CPU%d\n", cpu);
  5761. }
  5762. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5763. do {
  5764. if (!group) {
  5765. printk("\n");
  5766. printk(KERN_ERR "ERROR: group is NULL\n");
  5767. break;
  5768. }
  5769. if (!group->sgp->power) {
  5770. printk(KERN_CONT "\n");
  5771. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5772. "set\n");
  5773. break;
  5774. }
  5775. if (!cpumask_weight(sched_group_cpus(group))) {
  5776. printk(KERN_CONT "\n");
  5777. printk(KERN_ERR "ERROR: empty group\n");
  5778. break;
  5779. }
  5780. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5781. printk(KERN_CONT "\n");
  5782. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5783. break;
  5784. }
  5785. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5786. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5787. printk(KERN_CONT " %s", str);
  5788. if (group->sgp->power != SCHED_POWER_SCALE) {
  5789. printk(KERN_CONT " (cpu_power = %d)",
  5790. group->sgp->power);
  5791. }
  5792. group = group->next;
  5793. } while (group != sd->groups);
  5794. printk(KERN_CONT "\n");
  5795. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5796. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5797. if (sd->parent &&
  5798. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5799. printk(KERN_ERR "ERROR: parent span is not a superset "
  5800. "of domain->span\n");
  5801. return 0;
  5802. }
  5803. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5804. {
  5805. int level = 0;
  5806. if (!sched_domain_debug_enabled)
  5807. return;
  5808. if (!sd) {
  5809. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5810. return;
  5811. }
  5812. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5813. for (;;) {
  5814. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  5815. break;
  5816. level++;
  5817. sd = sd->parent;
  5818. if (!sd)
  5819. break;
  5820. }
  5821. }
  5822. #else /* !CONFIG_SCHED_DEBUG */
  5823. # define sched_domain_debug(sd, cpu) do { } while (0)
  5824. #endif /* CONFIG_SCHED_DEBUG */
  5825. static int sd_degenerate(struct sched_domain *sd)
  5826. {
  5827. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5828. return 1;
  5829. /* Following flags need at least 2 groups */
  5830. if (sd->flags & (SD_LOAD_BALANCE |
  5831. SD_BALANCE_NEWIDLE |
  5832. SD_BALANCE_FORK |
  5833. SD_BALANCE_EXEC |
  5834. SD_SHARE_CPUPOWER |
  5835. SD_SHARE_PKG_RESOURCES)) {
  5836. if (sd->groups != sd->groups->next)
  5837. return 0;
  5838. }
  5839. /* Following flags don't use groups */
  5840. if (sd->flags & (SD_WAKE_AFFINE))
  5841. return 0;
  5842. return 1;
  5843. }
  5844. static int
  5845. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5846. {
  5847. unsigned long cflags = sd->flags, pflags = parent->flags;
  5848. if (sd_degenerate(parent))
  5849. return 1;
  5850. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5851. return 0;
  5852. /* Flags needing groups don't count if only 1 group in parent */
  5853. if (parent->groups == parent->groups->next) {
  5854. pflags &= ~(SD_LOAD_BALANCE |
  5855. SD_BALANCE_NEWIDLE |
  5856. SD_BALANCE_FORK |
  5857. SD_BALANCE_EXEC |
  5858. SD_SHARE_CPUPOWER |
  5859. SD_SHARE_PKG_RESOURCES);
  5860. if (nr_node_ids == 1)
  5861. pflags &= ~SD_SERIALIZE;
  5862. }
  5863. if (~cflags & pflags)
  5864. return 0;
  5865. return 1;
  5866. }
  5867. static void free_rootdomain(struct rcu_head *rcu)
  5868. {
  5869. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  5870. cpupri_cleanup(&rd->cpupri);
  5871. free_cpumask_var(rd->rto_mask);
  5872. free_cpumask_var(rd->online);
  5873. free_cpumask_var(rd->span);
  5874. kfree(rd);
  5875. }
  5876. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5877. {
  5878. struct root_domain *old_rd = NULL;
  5879. unsigned long flags;
  5880. raw_spin_lock_irqsave(&rq->lock, flags);
  5881. if (rq->rd) {
  5882. old_rd = rq->rd;
  5883. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5884. set_rq_offline(rq);
  5885. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5886. /*
  5887. * If we dont want to free the old_rt yet then
  5888. * set old_rd to NULL to skip the freeing later
  5889. * in this function:
  5890. */
  5891. if (!atomic_dec_and_test(&old_rd->refcount))
  5892. old_rd = NULL;
  5893. }
  5894. atomic_inc(&rd->refcount);
  5895. rq->rd = rd;
  5896. cpumask_set_cpu(rq->cpu, rd->span);
  5897. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5898. set_rq_online(rq);
  5899. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5900. if (old_rd)
  5901. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  5902. }
  5903. static int init_rootdomain(struct root_domain *rd)
  5904. {
  5905. memset(rd, 0, sizeof(*rd));
  5906. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5907. goto out;
  5908. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5909. goto free_span;
  5910. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5911. goto free_online;
  5912. if (cpupri_init(&rd->cpupri) != 0)
  5913. goto free_rto_mask;
  5914. return 0;
  5915. free_rto_mask:
  5916. free_cpumask_var(rd->rto_mask);
  5917. free_online:
  5918. free_cpumask_var(rd->online);
  5919. free_span:
  5920. free_cpumask_var(rd->span);
  5921. out:
  5922. return -ENOMEM;
  5923. }
  5924. static void init_defrootdomain(void)
  5925. {
  5926. init_rootdomain(&def_root_domain);
  5927. atomic_set(&def_root_domain.refcount, 1);
  5928. }
  5929. static struct root_domain *alloc_rootdomain(void)
  5930. {
  5931. struct root_domain *rd;
  5932. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5933. if (!rd)
  5934. return NULL;
  5935. if (init_rootdomain(rd) != 0) {
  5936. kfree(rd);
  5937. return NULL;
  5938. }
  5939. return rd;
  5940. }
  5941. static void free_sched_groups(struct sched_group *sg, int free_sgp)
  5942. {
  5943. struct sched_group *tmp, *first;
  5944. if (!sg)
  5945. return;
  5946. first = sg;
  5947. do {
  5948. tmp = sg->next;
  5949. if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
  5950. kfree(sg->sgp);
  5951. kfree(sg);
  5952. sg = tmp;
  5953. } while (sg != first);
  5954. }
  5955. static void free_sched_domain(struct rcu_head *rcu)
  5956. {
  5957. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  5958. /*
  5959. * If its an overlapping domain it has private groups, iterate and
  5960. * nuke them all.
  5961. */
  5962. if (sd->flags & SD_OVERLAP) {
  5963. free_sched_groups(sd->groups, 1);
  5964. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  5965. kfree(sd->groups->sgp);
  5966. kfree(sd->groups);
  5967. }
  5968. kfree(sd);
  5969. }
  5970. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  5971. {
  5972. call_rcu(&sd->rcu, free_sched_domain);
  5973. }
  5974. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  5975. {
  5976. for (; sd; sd = sd->parent)
  5977. destroy_sched_domain(sd, cpu);
  5978. }
  5979. /*
  5980. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5981. * hold the hotplug lock.
  5982. */
  5983. static void
  5984. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5985. {
  5986. struct rq *rq = cpu_rq(cpu);
  5987. struct sched_domain *tmp;
  5988. /* Remove the sched domains which do not contribute to scheduling. */
  5989. for (tmp = sd; tmp; ) {
  5990. struct sched_domain *parent = tmp->parent;
  5991. if (!parent)
  5992. break;
  5993. if (sd_parent_degenerate(tmp, parent)) {
  5994. tmp->parent = parent->parent;
  5995. if (parent->parent)
  5996. parent->parent->child = tmp;
  5997. destroy_sched_domain(parent, cpu);
  5998. } else
  5999. tmp = tmp->parent;
  6000. }
  6001. if (sd && sd_degenerate(sd)) {
  6002. tmp = sd;
  6003. sd = sd->parent;
  6004. destroy_sched_domain(tmp, cpu);
  6005. if (sd)
  6006. sd->child = NULL;
  6007. }
  6008. sched_domain_debug(sd, cpu);
  6009. rq_attach_root(rq, rd);
  6010. tmp = rq->sd;
  6011. rcu_assign_pointer(rq->sd, sd);
  6012. destroy_sched_domains(tmp, cpu);
  6013. }
  6014. /* cpus with isolated domains */
  6015. static cpumask_var_t cpu_isolated_map;
  6016. /* Setup the mask of cpus configured for isolated domains */
  6017. static int __init isolated_cpu_setup(char *str)
  6018. {
  6019. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  6020. cpulist_parse(str, cpu_isolated_map);
  6021. return 1;
  6022. }
  6023. __setup("isolcpus=", isolated_cpu_setup);
  6024. #ifdef CONFIG_NUMA
  6025. /**
  6026. * find_next_best_node - find the next node to include in a sched_domain
  6027. * @node: node whose sched_domain we're building
  6028. * @used_nodes: nodes already in the sched_domain
  6029. *
  6030. * Find the next node to include in a given scheduling domain. Simply
  6031. * finds the closest node not already in the @used_nodes map.
  6032. *
  6033. * Should use nodemask_t.
  6034. */
  6035. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6036. {
  6037. int i, n, val, min_val, best_node = -1;
  6038. min_val = INT_MAX;
  6039. for (i = 0; i < nr_node_ids; i++) {
  6040. /* Start at @node */
  6041. n = (node + i) % nr_node_ids;
  6042. if (!nr_cpus_node(n))
  6043. continue;
  6044. /* Skip already used nodes */
  6045. if (node_isset(n, *used_nodes))
  6046. continue;
  6047. /* Simple min distance search */
  6048. val = node_distance(node, n);
  6049. if (val < min_val) {
  6050. min_val = val;
  6051. best_node = n;
  6052. }
  6053. }
  6054. if (best_node != -1)
  6055. node_set(best_node, *used_nodes);
  6056. return best_node;
  6057. }
  6058. /**
  6059. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6060. * @node: node whose cpumask we're constructing
  6061. * @span: resulting cpumask
  6062. *
  6063. * Given a node, construct a good cpumask for its sched_domain to span. It
  6064. * should be one that prevents unnecessary balancing, but also spreads tasks
  6065. * out optimally.
  6066. */
  6067. static void sched_domain_node_span(int node, struct cpumask *span)
  6068. {
  6069. nodemask_t used_nodes;
  6070. int i;
  6071. cpumask_clear(span);
  6072. nodes_clear(used_nodes);
  6073. cpumask_or(span, span, cpumask_of_node(node));
  6074. node_set(node, used_nodes);
  6075. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6076. int next_node = find_next_best_node(node, &used_nodes);
  6077. if (next_node < 0)
  6078. break;
  6079. cpumask_or(span, span, cpumask_of_node(next_node));
  6080. }
  6081. }
  6082. static const struct cpumask *cpu_node_mask(int cpu)
  6083. {
  6084. lockdep_assert_held(&sched_domains_mutex);
  6085. sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
  6086. return sched_domains_tmpmask;
  6087. }
  6088. static const struct cpumask *cpu_allnodes_mask(int cpu)
  6089. {
  6090. return cpu_possible_mask;
  6091. }
  6092. #endif /* CONFIG_NUMA */
  6093. static const struct cpumask *cpu_cpu_mask(int cpu)
  6094. {
  6095. return cpumask_of_node(cpu_to_node(cpu));
  6096. }
  6097. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6098. struct sd_data {
  6099. struct sched_domain **__percpu sd;
  6100. struct sched_group **__percpu sg;
  6101. struct sched_group_power **__percpu sgp;
  6102. };
  6103. struct s_data {
  6104. struct sched_domain ** __percpu sd;
  6105. struct root_domain *rd;
  6106. };
  6107. enum s_alloc {
  6108. sa_rootdomain,
  6109. sa_sd,
  6110. sa_sd_storage,
  6111. sa_none,
  6112. };
  6113. struct sched_domain_topology_level;
  6114. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  6115. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  6116. #define SDTL_OVERLAP 0x01
  6117. struct sched_domain_topology_level {
  6118. sched_domain_init_f init;
  6119. sched_domain_mask_f mask;
  6120. int flags;
  6121. struct sd_data data;
  6122. };
  6123. static int
  6124. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  6125. {
  6126. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  6127. const struct cpumask *span = sched_domain_span(sd);
  6128. struct cpumask *covered = sched_domains_tmpmask;
  6129. struct sd_data *sdd = sd->private;
  6130. struct sched_domain *child;
  6131. int i;
  6132. cpumask_clear(covered);
  6133. for_each_cpu(i, span) {
  6134. struct cpumask *sg_span;
  6135. if (cpumask_test_cpu(i, covered))
  6136. continue;
  6137. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6138. GFP_KERNEL, cpu_to_node(i));
  6139. if (!sg)
  6140. goto fail;
  6141. sg_span = sched_group_cpus(sg);
  6142. child = *per_cpu_ptr(sdd->sd, i);
  6143. if (child->child) {
  6144. child = child->child;
  6145. cpumask_copy(sg_span, sched_domain_span(child));
  6146. } else
  6147. cpumask_set_cpu(i, sg_span);
  6148. cpumask_or(covered, covered, sg_span);
  6149. sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
  6150. atomic_inc(&sg->sgp->ref);
  6151. if (cpumask_test_cpu(cpu, sg_span))
  6152. groups = sg;
  6153. if (!first)
  6154. first = sg;
  6155. if (last)
  6156. last->next = sg;
  6157. last = sg;
  6158. last->next = first;
  6159. }
  6160. sd->groups = groups;
  6161. return 0;
  6162. fail:
  6163. free_sched_groups(first, 0);
  6164. return -ENOMEM;
  6165. }
  6166. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  6167. {
  6168. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  6169. struct sched_domain *child = sd->child;
  6170. if (child)
  6171. cpu = cpumask_first(sched_domain_span(child));
  6172. if (sg) {
  6173. *sg = *per_cpu_ptr(sdd->sg, cpu);
  6174. (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
  6175. atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
  6176. }
  6177. return cpu;
  6178. }
  6179. /*
  6180. * build_sched_groups will build a circular linked list of the groups
  6181. * covered by the given span, and will set each group's ->cpumask correctly,
  6182. * and ->cpu_power to 0.
  6183. *
  6184. * Assumes the sched_domain tree is fully constructed
  6185. */
  6186. static int
  6187. build_sched_groups(struct sched_domain *sd, int cpu)
  6188. {
  6189. struct sched_group *first = NULL, *last = NULL;
  6190. struct sd_data *sdd = sd->private;
  6191. const struct cpumask *span = sched_domain_span(sd);
  6192. struct cpumask *covered;
  6193. int i;
  6194. get_group(cpu, sdd, &sd->groups);
  6195. atomic_inc(&sd->groups->ref);
  6196. if (cpu != cpumask_first(sched_domain_span(sd)))
  6197. return 0;
  6198. lockdep_assert_held(&sched_domains_mutex);
  6199. covered = sched_domains_tmpmask;
  6200. cpumask_clear(covered);
  6201. for_each_cpu(i, span) {
  6202. struct sched_group *sg;
  6203. int group = get_group(i, sdd, &sg);
  6204. int j;
  6205. if (cpumask_test_cpu(i, covered))
  6206. continue;
  6207. cpumask_clear(sched_group_cpus(sg));
  6208. sg->sgp->power = 0;
  6209. for_each_cpu(j, span) {
  6210. if (get_group(j, sdd, NULL) != group)
  6211. continue;
  6212. cpumask_set_cpu(j, covered);
  6213. cpumask_set_cpu(j, sched_group_cpus(sg));
  6214. }
  6215. if (!first)
  6216. first = sg;
  6217. if (last)
  6218. last->next = sg;
  6219. last = sg;
  6220. }
  6221. last->next = first;
  6222. return 0;
  6223. }
  6224. /*
  6225. * Initialize sched groups cpu_power.
  6226. *
  6227. * cpu_power indicates the capacity of sched group, which is used while
  6228. * distributing the load between different sched groups in a sched domain.
  6229. * Typically cpu_power for all the groups in a sched domain will be same unless
  6230. * there are asymmetries in the topology. If there are asymmetries, group
  6231. * having more cpu_power will pickup more load compared to the group having
  6232. * less cpu_power.
  6233. */
  6234. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6235. {
  6236. struct sched_group *sg = sd->groups;
  6237. WARN_ON(!sd || !sg);
  6238. do {
  6239. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  6240. sg = sg->next;
  6241. } while (sg != sd->groups);
  6242. if (cpu != group_first_cpu(sg))
  6243. return;
  6244. update_group_power(sd, cpu);
  6245. }
  6246. /*
  6247. * Initializers for schedule domains
  6248. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6249. */
  6250. #ifdef CONFIG_SCHED_DEBUG
  6251. # define SD_INIT_NAME(sd, type) sd->name = #type
  6252. #else
  6253. # define SD_INIT_NAME(sd, type) do { } while (0)
  6254. #endif
  6255. #define SD_INIT_FUNC(type) \
  6256. static noinline struct sched_domain * \
  6257. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  6258. { \
  6259. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  6260. *sd = SD_##type##_INIT; \
  6261. SD_INIT_NAME(sd, type); \
  6262. sd->private = &tl->data; \
  6263. return sd; \
  6264. }
  6265. SD_INIT_FUNC(CPU)
  6266. #ifdef CONFIG_NUMA
  6267. SD_INIT_FUNC(ALLNODES)
  6268. SD_INIT_FUNC(NODE)
  6269. #endif
  6270. #ifdef CONFIG_SCHED_SMT
  6271. SD_INIT_FUNC(SIBLING)
  6272. #endif
  6273. #ifdef CONFIG_SCHED_MC
  6274. SD_INIT_FUNC(MC)
  6275. #endif
  6276. #ifdef CONFIG_SCHED_BOOK
  6277. SD_INIT_FUNC(BOOK)
  6278. #endif
  6279. static int default_relax_domain_level = -1;
  6280. int sched_domain_level_max;
  6281. static int __init setup_relax_domain_level(char *str)
  6282. {
  6283. unsigned long val;
  6284. val = simple_strtoul(str, NULL, 0);
  6285. if (val < sched_domain_level_max)
  6286. default_relax_domain_level = val;
  6287. return 1;
  6288. }
  6289. __setup("relax_domain_level=", setup_relax_domain_level);
  6290. static void set_domain_attribute(struct sched_domain *sd,
  6291. struct sched_domain_attr *attr)
  6292. {
  6293. int request;
  6294. if (!attr || attr->relax_domain_level < 0) {
  6295. if (default_relax_domain_level < 0)
  6296. return;
  6297. else
  6298. request = default_relax_domain_level;
  6299. } else
  6300. request = attr->relax_domain_level;
  6301. if (request < sd->level) {
  6302. /* turn off idle balance on this domain */
  6303. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6304. } else {
  6305. /* turn on idle balance on this domain */
  6306. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6307. }
  6308. }
  6309. static void __sdt_free(const struct cpumask *cpu_map);
  6310. static int __sdt_alloc(const struct cpumask *cpu_map);
  6311. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  6312. const struct cpumask *cpu_map)
  6313. {
  6314. switch (what) {
  6315. case sa_rootdomain:
  6316. if (!atomic_read(&d->rd->refcount))
  6317. free_rootdomain(&d->rd->rcu); /* fall through */
  6318. case sa_sd:
  6319. free_percpu(d->sd); /* fall through */
  6320. case sa_sd_storage:
  6321. __sdt_free(cpu_map); /* fall through */
  6322. case sa_none:
  6323. break;
  6324. }
  6325. }
  6326. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  6327. const struct cpumask *cpu_map)
  6328. {
  6329. memset(d, 0, sizeof(*d));
  6330. if (__sdt_alloc(cpu_map))
  6331. return sa_sd_storage;
  6332. d->sd = alloc_percpu(struct sched_domain *);
  6333. if (!d->sd)
  6334. return sa_sd_storage;
  6335. d->rd = alloc_rootdomain();
  6336. if (!d->rd)
  6337. return sa_sd;
  6338. return sa_rootdomain;
  6339. }
  6340. /*
  6341. * NULL the sd_data elements we've used to build the sched_domain and
  6342. * sched_group structure so that the subsequent __free_domain_allocs()
  6343. * will not free the data we're using.
  6344. */
  6345. static void claim_allocations(int cpu, struct sched_domain *sd)
  6346. {
  6347. struct sd_data *sdd = sd->private;
  6348. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  6349. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  6350. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  6351. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  6352. if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
  6353. *per_cpu_ptr(sdd->sgp, cpu) = NULL;
  6354. }
  6355. #ifdef CONFIG_SCHED_SMT
  6356. static const struct cpumask *cpu_smt_mask(int cpu)
  6357. {
  6358. return topology_thread_cpumask(cpu);
  6359. }
  6360. #endif
  6361. /*
  6362. * Topology list, bottom-up.
  6363. */
  6364. static struct sched_domain_topology_level default_topology[] = {
  6365. #ifdef CONFIG_SCHED_SMT
  6366. { sd_init_SIBLING, cpu_smt_mask, },
  6367. #endif
  6368. #ifdef CONFIG_SCHED_MC
  6369. { sd_init_MC, cpu_coregroup_mask, },
  6370. #endif
  6371. #ifdef CONFIG_SCHED_BOOK
  6372. { sd_init_BOOK, cpu_book_mask, },
  6373. #endif
  6374. { sd_init_CPU, cpu_cpu_mask, },
  6375. #ifdef CONFIG_NUMA
  6376. { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
  6377. { sd_init_ALLNODES, cpu_allnodes_mask, },
  6378. #endif
  6379. { NULL, },
  6380. };
  6381. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  6382. static int __sdt_alloc(const struct cpumask *cpu_map)
  6383. {
  6384. struct sched_domain_topology_level *tl;
  6385. int j;
  6386. for (tl = sched_domain_topology; tl->init; tl++) {
  6387. struct sd_data *sdd = &tl->data;
  6388. sdd->sd = alloc_percpu(struct sched_domain *);
  6389. if (!sdd->sd)
  6390. return -ENOMEM;
  6391. sdd->sg = alloc_percpu(struct sched_group *);
  6392. if (!sdd->sg)
  6393. return -ENOMEM;
  6394. sdd->sgp = alloc_percpu(struct sched_group_power *);
  6395. if (!sdd->sgp)
  6396. return -ENOMEM;
  6397. for_each_cpu(j, cpu_map) {
  6398. struct sched_domain *sd;
  6399. struct sched_group *sg;
  6400. struct sched_group_power *sgp;
  6401. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  6402. GFP_KERNEL, cpu_to_node(j));
  6403. if (!sd)
  6404. return -ENOMEM;
  6405. *per_cpu_ptr(sdd->sd, j) = sd;
  6406. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6407. GFP_KERNEL, cpu_to_node(j));
  6408. if (!sg)
  6409. return -ENOMEM;
  6410. *per_cpu_ptr(sdd->sg, j) = sg;
  6411. sgp = kzalloc_node(sizeof(struct sched_group_power),
  6412. GFP_KERNEL, cpu_to_node(j));
  6413. if (!sgp)
  6414. return -ENOMEM;
  6415. *per_cpu_ptr(sdd->sgp, j) = sgp;
  6416. }
  6417. }
  6418. return 0;
  6419. }
  6420. static void __sdt_free(const struct cpumask *cpu_map)
  6421. {
  6422. struct sched_domain_topology_level *tl;
  6423. int j;
  6424. for (tl = sched_domain_topology; tl->init; tl++) {
  6425. struct sd_data *sdd = &tl->data;
  6426. for_each_cpu(j, cpu_map) {
  6427. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
  6428. if (sd && (sd->flags & SD_OVERLAP))
  6429. free_sched_groups(sd->groups, 0);
  6430. kfree(*per_cpu_ptr(sdd->sd, j));
  6431. kfree(*per_cpu_ptr(sdd->sg, j));
  6432. kfree(*per_cpu_ptr(sdd->sgp, j));
  6433. }
  6434. free_percpu(sdd->sd);
  6435. free_percpu(sdd->sg);
  6436. free_percpu(sdd->sgp);
  6437. }
  6438. }
  6439. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  6440. struct s_data *d, const struct cpumask *cpu_map,
  6441. struct sched_domain_attr *attr, struct sched_domain *child,
  6442. int cpu)
  6443. {
  6444. struct sched_domain *sd = tl->init(tl, cpu);
  6445. if (!sd)
  6446. return child;
  6447. set_domain_attribute(sd, attr);
  6448. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  6449. if (child) {
  6450. sd->level = child->level + 1;
  6451. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  6452. child->parent = sd;
  6453. }
  6454. sd->child = child;
  6455. return sd;
  6456. }
  6457. /*
  6458. * Build sched domains for a given set of cpus and attach the sched domains
  6459. * to the individual cpus
  6460. */
  6461. static int build_sched_domains(const struct cpumask *cpu_map,
  6462. struct sched_domain_attr *attr)
  6463. {
  6464. enum s_alloc alloc_state = sa_none;
  6465. struct sched_domain *sd;
  6466. struct s_data d;
  6467. int i, ret = -ENOMEM;
  6468. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6469. if (alloc_state != sa_rootdomain)
  6470. goto error;
  6471. /* Set up domains for cpus specified by the cpu_map. */
  6472. for_each_cpu(i, cpu_map) {
  6473. struct sched_domain_topology_level *tl;
  6474. sd = NULL;
  6475. for (tl = sched_domain_topology; tl->init; tl++) {
  6476. sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
  6477. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  6478. sd->flags |= SD_OVERLAP;
  6479. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  6480. break;
  6481. }
  6482. while (sd->child)
  6483. sd = sd->child;
  6484. *per_cpu_ptr(d.sd, i) = sd;
  6485. }
  6486. /* Build the groups for the domains */
  6487. for_each_cpu(i, cpu_map) {
  6488. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  6489. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  6490. if (sd->flags & SD_OVERLAP) {
  6491. if (build_overlap_sched_groups(sd, i))
  6492. goto error;
  6493. } else {
  6494. if (build_sched_groups(sd, i))
  6495. goto error;
  6496. }
  6497. }
  6498. }
  6499. /* Calculate CPU power for physical packages and nodes */
  6500. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  6501. if (!cpumask_test_cpu(i, cpu_map))
  6502. continue;
  6503. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  6504. claim_allocations(i, sd);
  6505. init_sched_groups_power(i, sd);
  6506. }
  6507. }
  6508. /* Attach the domains */
  6509. rcu_read_lock();
  6510. for_each_cpu(i, cpu_map) {
  6511. sd = *per_cpu_ptr(d.sd, i);
  6512. cpu_attach_domain(sd, d.rd, i);
  6513. }
  6514. rcu_read_unlock();
  6515. ret = 0;
  6516. error:
  6517. __free_domain_allocs(&d, alloc_state, cpu_map);
  6518. return ret;
  6519. }
  6520. static cpumask_var_t *doms_cur; /* current sched domains */
  6521. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6522. static struct sched_domain_attr *dattr_cur;
  6523. /* attribues of custom domains in 'doms_cur' */
  6524. /*
  6525. * Special case: If a kmalloc of a doms_cur partition (array of
  6526. * cpumask) fails, then fallback to a single sched domain,
  6527. * as determined by the single cpumask fallback_doms.
  6528. */
  6529. static cpumask_var_t fallback_doms;
  6530. /*
  6531. * arch_update_cpu_topology lets virtualized architectures update the
  6532. * cpu core maps. It is supposed to return 1 if the topology changed
  6533. * or 0 if it stayed the same.
  6534. */
  6535. int __attribute__((weak)) arch_update_cpu_topology(void)
  6536. {
  6537. return 0;
  6538. }
  6539. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6540. {
  6541. int i;
  6542. cpumask_var_t *doms;
  6543. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6544. if (!doms)
  6545. return NULL;
  6546. for (i = 0; i < ndoms; i++) {
  6547. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6548. free_sched_domains(doms, i);
  6549. return NULL;
  6550. }
  6551. }
  6552. return doms;
  6553. }
  6554. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6555. {
  6556. unsigned int i;
  6557. for (i = 0; i < ndoms; i++)
  6558. free_cpumask_var(doms[i]);
  6559. kfree(doms);
  6560. }
  6561. /*
  6562. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6563. * For now this just excludes isolated cpus, but could be used to
  6564. * exclude other special cases in the future.
  6565. */
  6566. static int init_sched_domains(const struct cpumask *cpu_map)
  6567. {
  6568. int err;
  6569. arch_update_cpu_topology();
  6570. ndoms_cur = 1;
  6571. doms_cur = alloc_sched_domains(ndoms_cur);
  6572. if (!doms_cur)
  6573. doms_cur = &fallback_doms;
  6574. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6575. dattr_cur = NULL;
  6576. err = build_sched_domains(doms_cur[0], NULL);
  6577. register_sched_domain_sysctl();
  6578. return err;
  6579. }
  6580. /*
  6581. * Detach sched domains from a group of cpus specified in cpu_map
  6582. * These cpus will now be attached to the NULL domain
  6583. */
  6584. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6585. {
  6586. int i;
  6587. rcu_read_lock();
  6588. for_each_cpu(i, cpu_map)
  6589. cpu_attach_domain(NULL, &def_root_domain, i);
  6590. rcu_read_unlock();
  6591. }
  6592. /* handle null as "default" */
  6593. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6594. struct sched_domain_attr *new, int idx_new)
  6595. {
  6596. struct sched_domain_attr tmp;
  6597. /* fast path */
  6598. if (!new && !cur)
  6599. return 1;
  6600. tmp = SD_ATTR_INIT;
  6601. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6602. new ? (new + idx_new) : &tmp,
  6603. sizeof(struct sched_domain_attr));
  6604. }
  6605. /*
  6606. * Partition sched domains as specified by the 'ndoms_new'
  6607. * cpumasks in the array doms_new[] of cpumasks. This compares
  6608. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6609. * It destroys each deleted domain and builds each new domain.
  6610. *
  6611. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6612. * The masks don't intersect (don't overlap.) We should setup one
  6613. * sched domain for each mask. CPUs not in any of the cpumasks will
  6614. * not be load balanced. If the same cpumask appears both in the
  6615. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6616. * it as it is.
  6617. *
  6618. * The passed in 'doms_new' should be allocated using
  6619. * alloc_sched_domains. This routine takes ownership of it and will
  6620. * free_sched_domains it when done with it. If the caller failed the
  6621. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6622. * and partition_sched_domains() will fallback to the single partition
  6623. * 'fallback_doms', it also forces the domains to be rebuilt.
  6624. *
  6625. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6626. * ndoms_new == 0 is a special case for destroying existing domains,
  6627. * and it will not create the default domain.
  6628. *
  6629. * Call with hotplug lock held
  6630. */
  6631. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6632. struct sched_domain_attr *dattr_new)
  6633. {
  6634. int i, j, n;
  6635. int new_topology;
  6636. mutex_lock(&sched_domains_mutex);
  6637. /* always unregister in case we don't destroy any domains */
  6638. unregister_sched_domain_sysctl();
  6639. /* Let architecture update cpu core mappings. */
  6640. new_topology = arch_update_cpu_topology();
  6641. n = doms_new ? ndoms_new : 0;
  6642. /* Destroy deleted domains */
  6643. for (i = 0; i < ndoms_cur; i++) {
  6644. for (j = 0; j < n && !new_topology; j++) {
  6645. if (cpumask_equal(doms_cur[i], doms_new[j])
  6646. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6647. goto match1;
  6648. }
  6649. /* no match - a current sched domain not in new doms_new[] */
  6650. detach_destroy_domains(doms_cur[i]);
  6651. match1:
  6652. ;
  6653. }
  6654. if (doms_new == NULL) {
  6655. ndoms_cur = 0;
  6656. doms_new = &fallback_doms;
  6657. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6658. WARN_ON_ONCE(dattr_new);
  6659. }
  6660. /* Build new domains */
  6661. for (i = 0; i < ndoms_new; i++) {
  6662. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6663. if (cpumask_equal(doms_new[i], doms_cur[j])
  6664. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6665. goto match2;
  6666. }
  6667. /* no match - add a new doms_new */
  6668. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  6669. match2:
  6670. ;
  6671. }
  6672. /* Remember the new sched domains */
  6673. if (doms_cur != &fallback_doms)
  6674. free_sched_domains(doms_cur, ndoms_cur);
  6675. kfree(dattr_cur); /* kfree(NULL) is safe */
  6676. doms_cur = doms_new;
  6677. dattr_cur = dattr_new;
  6678. ndoms_cur = ndoms_new;
  6679. register_sched_domain_sysctl();
  6680. mutex_unlock(&sched_domains_mutex);
  6681. }
  6682. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6683. static void reinit_sched_domains(void)
  6684. {
  6685. get_online_cpus();
  6686. /* Destroy domains first to force the rebuild */
  6687. partition_sched_domains(0, NULL, NULL);
  6688. rebuild_sched_domains();
  6689. put_online_cpus();
  6690. }
  6691. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6692. {
  6693. unsigned int level = 0;
  6694. if (sscanf(buf, "%u", &level) != 1)
  6695. return -EINVAL;
  6696. /*
  6697. * level is always be positive so don't check for
  6698. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6699. * What happens on 0 or 1 byte write,
  6700. * need to check for count as well?
  6701. */
  6702. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6703. return -EINVAL;
  6704. if (smt)
  6705. sched_smt_power_savings = level;
  6706. else
  6707. sched_mc_power_savings = level;
  6708. reinit_sched_domains();
  6709. return count;
  6710. }
  6711. #ifdef CONFIG_SCHED_MC
  6712. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6713. struct sysdev_class_attribute *attr,
  6714. char *page)
  6715. {
  6716. return sprintf(page, "%u\n", sched_mc_power_savings);
  6717. }
  6718. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6719. struct sysdev_class_attribute *attr,
  6720. const char *buf, size_t count)
  6721. {
  6722. return sched_power_savings_store(buf, count, 0);
  6723. }
  6724. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6725. sched_mc_power_savings_show,
  6726. sched_mc_power_savings_store);
  6727. #endif
  6728. #ifdef CONFIG_SCHED_SMT
  6729. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6730. struct sysdev_class_attribute *attr,
  6731. char *page)
  6732. {
  6733. return sprintf(page, "%u\n", sched_smt_power_savings);
  6734. }
  6735. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6736. struct sysdev_class_attribute *attr,
  6737. const char *buf, size_t count)
  6738. {
  6739. return sched_power_savings_store(buf, count, 1);
  6740. }
  6741. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6742. sched_smt_power_savings_show,
  6743. sched_smt_power_savings_store);
  6744. #endif
  6745. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6746. {
  6747. int err = 0;
  6748. #ifdef CONFIG_SCHED_SMT
  6749. if (smt_capable())
  6750. err = sysfs_create_file(&cls->kset.kobj,
  6751. &attr_sched_smt_power_savings.attr);
  6752. #endif
  6753. #ifdef CONFIG_SCHED_MC
  6754. if (!err && mc_capable())
  6755. err = sysfs_create_file(&cls->kset.kobj,
  6756. &attr_sched_mc_power_savings.attr);
  6757. #endif
  6758. return err;
  6759. }
  6760. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6761. /*
  6762. * Update cpusets according to cpu_active mask. If cpusets are
  6763. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6764. * around partition_sched_domains().
  6765. */
  6766. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6767. void *hcpu)
  6768. {
  6769. switch (action & ~CPU_TASKS_FROZEN) {
  6770. case CPU_ONLINE:
  6771. case CPU_DOWN_FAILED:
  6772. cpuset_update_active_cpus();
  6773. return NOTIFY_OK;
  6774. default:
  6775. return NOTIFY_DONE;
  6776. }
  6777. }
  6778. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6779. void *hcpu)
  6780. {
  6781. switch (action & ~CPU_TASKS_FROZEN) {
  6782. case CPU_DOWN_PREPARE:
  6783. cpuset_update_active_cpus();
  6784. return NOTIFY_OK;
  6785. default:
  6786. return NOTIFY_DONE;
  6787. }
  6788. }
  6789. static int update_runtime(struct notifier_block *nfb,
  6790. unsigned long action, void *hcpu)
  6791. {
  6792. int cpu = (int)(long)hcpu;
  6793. switch (action) {
  6794. case CPU_DOWN_PREPARE:
  6795. case CPU_DOWN_PREPARE_FROZEN:
  6796. disable_runtime(cpu_rq(cpu));
  6797. return NOTIFY_OK;
  6798. case CPU_DOWN_FAILED:
  6799. case CPU_DOWN_FAILED_FROZEN:
  6800. case CPU_ONLINE:
  6801. case CPU_ONLINE_FROZEN:
  6802. enable_runtime(cpu_rq(cpu));
  6803. return NOTIFY_OK;
  6804. default:
  6805. return NOTIFY_DONE;
  6806. }
  6807. }
  6808. void __init sched_init_smp(void)
  6809. {
  6810. cpumask_var_t non_isolated_cpus;
  6811. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6812. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6813. get_online_cpus();
  6814. mutex_lock(&sched_domains_mutex);
  6815. init_sched_domains(cpu_active_mask);
  6816. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6817. if (cpumask_empty(non_isolated_cpus))
  6818. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6819. mutex_unlock(&sched_domains_mutex);
  6820. put_online_cpus();
  6821. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6822. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6823. /* RT runtime code needs to handle some hotplug events */
  6824. hotcpu_notifier(update_runtime, 0);
  6825. init_hrtick();
  6826. /* Move init over to a non-isolated CPU */
  6827. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6828. BUG();
  6829. sched_init_granularity();
  6830. free_cpumask_var(non_isolated_cpus);
  6831. init_sched_rt_class();
  6832. }
  6833. #else
  6834. void __init sched_init_smp(void)
  6835. {
  6836. sched_init_granularity();
  6837. }
  6838. #endif /* CONFIG_SMP */
  6839. const_debug unsigned int sysctl_timer_migration = 1;
  6840. int in_sched_functions(unsigned long addr)
  6841. {
  6842. return in_lock_functions(addr) ||
  6843. (addr >= (unsigned long)__sched_text_start
  6844. && addr < (unsigned long)__sched_text_end);
  6845. }
  6846. static void init_cfs_rq(struct cfs_rq *cfs_rq)
  6847. {
  6848. cfs_rq->tasks_timeline = RB_ROOT;
  6849. INIT_LIST_HEAD(&cfs_rq->tasks);
  6850. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6851. #ifndef CONFIG_64BIT
  6852. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  6853. #endif
  6854. }
  6855. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6856. {
  6857. struct rt_prio_array *array;
  6858. int i;
  6859. array = &rt_rq->active;
  6860. for (i = 0; i < MAX_RT_PRIO; i++) {
  6861. INIT_LIST_HEAD(array->queue + i);
  6862. __clear_bit(i, array->bitmap);
  6863. }
  6864. /* delimiter for bitsearch: */
  6865. __set_bit(MAX_RT_PRIO, array->bitmap);
  6866. #if defined CONFIG_SMP
  6867. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6868. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6869. rt_rq->rt_nr_migratory = 0;
  6870. rt_rq->overloaded = 0;
  6871. plist_head_init(&rt_rq->pushable_tasks);
  6872. #endif
  6873. rt_rq->rt_time = 0;
  6874. rt_rq->rt_throttled = 0;
  6875. rt_rq->rt_runtime = 0;
  6876. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6877. }
  6878. #ifdef CONFIG_FAIR_GROUP_SCHED
  6879. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6880. struct sched_entity *se, int cpu,
  6881. struct sched_entity *parent)
  6882. {
  6883. struct rq *rq = cpu_rq(cpu);
  6884. cfs_rq->tg = tg;
  6885. cfs_rq->rq = rq;
  6886. #ifdef CONFIG_SMP
  6887. /* allow initial update_cfs_load() to truncate */
  6888. cfs_rq->load_stamp = 1;
  6889. #endif
  6890. init_cfs_rq_runtime(cfs_rq);
  6891. tg->cfs_rq[cpu] = cfs_rq;
  6892. tg->se[cpu] = se;
  6893. /* se could be NULL for root_task_group */
  6894. if (!se)
  6895. return;
  6896. if (!parent)
  6897. se->cfs_rq = &rq->cfs;
  6898. else
  6899. se->cfs_rq = parent->my_q;
  6900. se->my_q = cfs_rq;
  6901. update_load_set(&se->load, 0);
  6902. se->parent = parent;
  6903. }
  6904. #endif
  6905. #ifdef CONFIG_RT_GROUP_SCHED
  6906. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6907. struct sched_rt_entity *rt_se, int cpu,
  6908. struct sched_rt_entity *parent)
  6909. {
  6910. struct rq *rq = cpu_rq(cpu);
  6911. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6912. rt_rq->rt_nr_boosted = 0;
  6913. rt_rq->rq = rq;
  6914. rt_rq->tg = tg;
  6915. tg->rt_rq[cpu] = rt_rq;
  6916. tg->rt_se[cpu] = rt_se;
  6917. if (!rt_se)
  6918. return;
  6919. if (!parent)
  6920. rt_se->rt_rq = &rq->rt;
  6921. else
  6922. rt_se->rt_rq = parent->my_q;
  6923. rt_se->my_q = rt_rq;
  6924. rt_se->parent = parent;
  6925. INIT_LIST_HEAD(&rt_se->run_list);
  6926. }
  6927. #endif
  6928. void __init sched_init(void)
  6929. {
  6930. int i, j;
  6931. unsigned long alloc_size = 0, ptr;
  6932. #ifdef CONFIG_FAIR_GROUP_SCHED
  6933. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6934. #endif
  6935. #ifdef CONFIG_RT_GROUP_SCHED
  6936. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6937. #endif
  6938. #ifdef CONFIG_CPUMASK_OFFSTACK
  6939. alloc_size += num_possible_cpus() * cpumask_size();
  6940. #endif
  6941. if (alloc_size) {
  6942. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6943. #ifdef CONFIG_FAIR_GROUP_SCHED
  6944. root_task_group.se = (struct sched_entity **)ptr;
  6945. ptr += nr_cpu_ids * sizeof(void **);
  6946. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6947. ptr += nr_cpu_ids * sizeof(void **);
  6948. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6949. #ifdef CONFIG_RT_GROUP_SCHED
  6950. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6951. ptr += nr_cpu_ids * sizeof(void **);
  6952. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6953. ptr += nr_cpu_ids * sizeof(void **);
  6954. #endif /* CONFIG_RT_GROUP_SCHED */
  6955. #ifdef CONFIG_CPUMASK_OFFSTACK
  6956. for_each_possible_cpu(i) {
  6957. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6958. ptr += cpumask_size();
  6959. }
  6960. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6961. }
  6962. #ifdef CONFIG_SMP
  6963. init_defrootdomain();
  6964. #endif
  6965. init_rt_bandwidth(&def_rt_bandwidth,
  6966. global_rt_period(), global_rt_runtime());
  6967. #ifdef CONFIG_RT_GROUP_SCHED
  6968. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6969. global_rt_period(), global_rt_runtime());
  6970. #endif /* CONFIG_RT_GROUP_SCHED */
  6971. #ifdef CONFIG_CGROUP_SCHED
  6972. list_add(&root_task_group.list, &task_groups);
  6973. INIT_LIST_HEAD(&root_task_group.children);
  6974. autogroup_init(&init_task);
  6975. #endif /* CONFIG_CGROUP_SCHED */
  6976. for_each_possible_cpu(i) {
  6977. struct rq *rq;
  6978. rq = cpu_rq(i);
  6979. raw_spin_lock_init(&rq->lock);
  6980. rq->nr_running = 0;
  6981. rq->calc_load_active = 0;
  6982. rq->calc_load_update = jiffies + LOAD_FREQ;
  6983. init_cfs_rq(&rq->cfs);
  6984. init_rt_rq(&rq->rt, rq);
  6985. #ifdef CONFIG_FAIR_GROUP_SCHED
  6986. root_task_group.shares = root_task_group_load;
  6987. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6988. /*
  6989. * How much cpu bandwidth does root_task_group get?
  6990. *
  6991. * In case of task-groups formed thr' the cgroup filesystem, it
  6992. * gets 100% of the cpu resources in the system. This overall
  6993. * system cpu resource is divided among the tasks of
  6994. * root_task_group and its child task-groups in a fair manner,
  6995. * based on each entity's (task or task-group's) weight
  6996. * (se->load.weight).
  6997. *
  6998. * In other words, if root_task_group has 10 tasks of weight
  6999. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7000. * then A0's share of the cpu resource is:
  7001. *
  7002. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7003. *
  7004. * We achieve this by letting root_task_group's tasks sit
  7005. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  7006. */
  7007. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  7008. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  7009. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7010. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7011. #ifdef CONFIG_RT_GROUP_SCHED
  7012. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7013. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  7014. #endif
  7015. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7016. rq->cpu_load[j] = 0;
  7017. rq->last_load_update_tick = jiffies;
  7018. #ifdef CONFIG_SMP
  7019. rq->sd = NULL;
  7020. rq->rd = NULL;
  7021. rq->cpu_power = SCHED_POWER_SCALE;
  7022. rq->post_schedule = 0;
  7023. rq->active_balance = 0;
  7024. rq->next_balance = jiffies;
  7025. rq->push_cpu = 0;
  7026. rq->cpu = i;
  7027. rq->online = 0;
  7028. rq->idle_stamp = 0;
  7029. rq->avg_idle = 2*sysctl_sched_migration_cost;
  7030. rq_attach_root(rq, &def_root_domain);
  7031. #ifdef CONFIG_NO_HZ
  7032. rq->nohz_balance_kick = 0;
  7033. #endif
  7034. #endif
  7035. init_rq_hrtick(rq);
  7036. atomic_set(&rq->nr_iowait, 0);
  7037. }
  7038. set_load_weight(&init_task);
  7039. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7040. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7041. #endif
  7042. #ifdef CONFIG_SMP
  7043. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7044. #endif
  7045. #ifdef CONFIG_RT_MUTEXES
  7046. plist_head_init(&init_task.pi_waiters);
  7047. #endif
  7048. /*
  7049. * The boot idle thread does lazy MMU switching as well:
  7050. */
  7051. atomic_inc(&init_mm.mm_count);
  7052. enter_lazy_tlb(&init_mm, current);
  7053. /*
  7054. * Make us the idle thread. Technically, schedule() should not be
  7055. * called from this thread, however somewhere below it might be,
  7056. * but because we are the idle thread, we just pick up running again
  7057. * when this runqueue becomes "idle".
  7058. */
  7059. init_idle(current, smp_processor_id());
  7060. calc_load_update = jiffies + LOAD_FREQ;
  7061. /*
  7062. * During early bootup we pretend to be a normal task:
  7063. */
  7064. current->sched_class = &fair_sched_class;
  7065. #ifdef CONFIG_SMP
  7066. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  7067. #ifdef CONFIG_NO_HZ
  7068. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  7069. alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
  7070. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  7071. atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
  7072. atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
  7073. #endif
  7074. /* May be allocated at isolcpus cmdline parse time */
  7075. if (cpu_isolated_map == NULL)
  7076. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  7077. #endif /* SMP */
  7078. scheduler_running = 1;
  7079. }
  7080. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  7081. static inline int preempt_count_equals(int preempt_offset)
  7082. {
  7083. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  7084. return (nested == preempt_offset);
  7085. }
  7086. void __might_sleep(const char *file, int line, int preempt_offset)
  7087. {
  7088. static unsigned long prev_jiffy; /* ratelimiting */
  7089. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  7090. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  7091. system_state != SYSTEM_RUNNING || oops_in_progress)
  7092. return;
  7093. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7094. return;
  7095. prev_jiffy = jiffies;
  7096. printk(KERN_ERR
  7097. "BUG: sleeping function called from invalid context at %s:%d\n",
  7098. file, line);
  7099. printk(KERN_ERR
  7100. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7101. in_atomic(), irqs_disabled(),
  7102. current->pid, current->comm);
  7103. debug_show_held_locks(current);
  7104. if (irqs_disabled())
  7105. print_irqtrace_events(current);
  7106. dump_stack();
  7107. }
  7108. EXPORT_SYMBOL(__might_sleep);
  7109. #endif
  7110. #ifdef CONFIG_MAGIC_SYSRQ
  7111. static void normalize_task(struct rq *rq, struct task_struct *p)
  7112. {
  7113. const struct sched_class *prev_class = p->sched_class;
  7114. int old_prio = p->prio;
  7115. int on_rq;
  7116. on_rq = p->on_rq;
  7117. if (on_rq)
  7118. deactivate_task(rq, p, 0);
  7119. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7120. if (on_rq) {
  7121. activate_task(rq, p, 0);
  7122. resched_task(rq->curr);
  7123. }
  7124. check_class_changed(rq, p, prev_class, old_prio);
  7125. }
  7126. void normalize_rt_tasks(void)
  7127. {
  7128. struct task_struct *g, *p;
  7129. unsigned long flags;
  7130. struct rq *rq;
  7131. read_lock_irqsave(&tasklist_lock, flags);
  7132. do_each_thread(g, p) {
  7133. /*
  7134. * Only normalize user tasks:
  7135. */
  7136. if (!p->mm)
  7137. continue;
  7138. p->se.exec_start = 0;
  7139. #ifdef CONFIG_SCHEDSTATS
  7140. p->se.statistics.wait_start = 0;
  7141. p->se.statistics.sleep_start = 0;
  7142. p->se.statistics.block_start = 0;
  7143. #endif
  7144. if (!rt_task(p)) {
  7145. /*
  7146. * Renice negative nice level userspace
  7147. * tasks back to 0:
  7148. */
  7149. if (TASK_NICE(p) < 0 && p->mm)
  7150. set_user_nice(p, 0);
  7151. continue;
  7152. }
  7153. raw_spin_lock(&p->pi_lock);
  7154. rq = __task_rq_lock(p);
  7155. normalize_task(rq, p);
  7156. __task_rq_unlock(rq);
  7157. raw_spin_unlock(&p->pi_lock);
  7158. } while_each_thread(g, p);
  7159. read_unlock_irqrestore(&tasklist_lock, flags);
  7160. }
  7161. #endif /* CONFIG_MAGIC_SYSRQ */
  7162. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  7163. /*
  7164. * These functions are only useful for the IA64 MCA handling, or kdb.
  7165. *
  7166. * They can only be called when the whole system has been
  7167. * stopped - every CPU needs to be quiescent, and no scheduling
  7168. * activity can take place. Using them for anything else would
  7169. * be a serious bug, and as a result, they aren't even visible
  7170. * under any other configuration.
  7171. */
  7172. /**
  7173. * curr_task - return the current task for a given cpu.
  7174. * @cpu: the processor in question.
  7175. *
  7176. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7177. */
  7178. struct task_struct *curr_task(int cpu)
  7179. {
  7180. return cpu_curr(cpu);
  7181. }
  7182. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  7183. #ifdef CONFIG_IA64
  7184. /**
  7185. * set_curr_task - set the current task for a given cpu.
  7186. * @cpu: the processor in question.
  7187. * @p: the task pointer to set.
  7188. *
  7189. * Description: This function must only be used when non-maskable interrupts
  7190. * are serviced on a separate stack. It allows the architecture to switch the
  7191. * notion of the current task on a cpu in a non-blocking manner. This function
  7192. * must be called with all CPU's synchronized, and interrupts disabled, the
  7193. * and caller must save the original value of the current task (see
  7194. * curr_task() above) and restore that value before reenabling interrupts and
  7195. * re-starting the system.
  7196. *
  7197. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7198. */
  7199. void set_curr_task(int cpu, struct task_struct *p)
  7200. {
  7201. cpu_curr(cpu) = p;
  7202. }
  7203. #endif
  7204. #ifdef CONFIG_FAIR_GROUP_SCHED
  7205. static void free_fair_sched_group(struct task_group *tg)
  7206. {
  7207. int i;
  7208. destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
  7209. for_each_possible_cpu(i) {
  7210. if (tg->cfs_rq)
  7211. kfree(tg->cfs_rq[i]);
  7212. if (tg->se)
  7213. kfree(tg->se[i]);
  7214. }
  7215. kfree(tg->cfs_rq);
  7216. kfree(tg->se);
  7217. }
  7218. static
  7219. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7220. {
  7221. struct cfs_rq *cfs_rq;
  7222. struct sched_entity *se;
  7223. int i;
  7224. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7225. if (!tg->cfs_rq)
  7226. goto err;
  7227. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7228. if (!tg->se)
  7229. goto err;
  7230. tg->shares = NICE_0_LOAD;
  7231. init_cfs_bandwidth(tg_cfs_bandwidth(tg));
  7232. for_each_possible_cpu(i) {
  7233. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7234. GFP_KERNEL, cpu_to_node(i));
  7235. if (!cfs_rq)
  7236. goto err;
  7237. se = kzalloc_node(sizeof(struct sched_entity),
  7238. GFP_KERNEL, cpu_to_node(i));
  7239. if (!se)
  7240. goto err_free_rq;
  7241. init_cfs_rq(cfs_rq);
  7242. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  7243. }
  7244. return 1;
  7245. err_free_rq:
  7246. kfree(cfs_rq);
  7247. err:
  7248. return 0;
  7249. }
  7250. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7251. {
  7252. struct rq *rq = cpu_rq(cpu);
  7253. unsigned long flags;
  7254. /*
  7255. * Only empty task groups can be destroyed; so we can speculatively
  7256. * check on_list without danger of it being re-added.
  7257. */
  7258. if (!tg->cfs_rq[cpu]->on_list)
  7259. return;
  7260. raw_spin_lock_irqsave(&rq->lock, flags);
  7261. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  7262. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7263. }
  7264. #else /* !CONFIG_FAIR_GROUP_SCHED */
  7265. static inline void free_fair_sched_group(struct task_group *tg)
  7266. {
  7267. }
  7268. static inline
  7269. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7270. {
  7271. return 1;
  7272. }
  7273. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7274. {
  7275. }
  7276. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7277. #ifdef CONFIG_RT_GROUP_SCHED
  7278. static void free_rt_sched_group(struct task_group *tg)
  7279. {
  7280. int i;
  7281. if (tg->rt_se)
  7282. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7283. for_each_possible_cpu(i) {
  7284. if (tg->rt_rq)
  7285. kfree(tg->rt_rq[i]);
  7286. if (tg->rt_se)
  7287. kfree(tg->rt_se[i]);
  7288. }
  7289. kfree(tg->rt_rq);
  7290. kfree(tg->rt_se);
  7291. }
  7292. static
  7293. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7294. {
  7295. struct rt_rq *rt_rq;
  7296. struct sched_rt_entity *rt_se;
  7297. int i;
  7298. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7299. if (!tg->rt_rq)
  7300. goto err;
  7301. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7302. if (!tg->rt_se)
  7303. goto err;
  7304. init_rt_bandwidth(&tg->rt_bandwidth,
  7305. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7306. for_each_possible_cpu(i) {
  7307. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7308. GFP_KERNEL, cpu_to_node(i));
  7309. if (!rt_rq)
  7310. goto err;
  7311. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7312. GFP_KERNEL, cpu_to_node(i));
  7313. if (!rt_se)
  7314. goto err_free_rq;
  7315. init_rt_rq(rt_rq, cpu_rq(i));
  7316. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  7317. init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
  7318. }
  7319. return 1;
  7320. err_free_rq:
  7321. kfree(rt_rq);
  7322. err:
  7323. return 0;
  7324. }
  7325. #else /* !CONFIG_RT_GROUP_SCHED */
  7326. static inline void free_rt_sched_group(struct task_group *tg)
  7327. {
  7328. }
  7329. static inline
  7330. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7331. {
  7332. return 1;
  7333. }
  7334. #endif /* CONFIG_RT_GROUP_SCHED */
  7335. #ifdef CONFIG_CGROUP_SCHED
  7336. static void free_sched_group(struct task_group *tg)
  7337. {
  7338. free_fair_sched_group(tg);
  7339. free_rt_sched_group(tg);
  7340. autogroup_free(tg);
  7341. kfree(tg);
  7342. }
  7343. /* allocate runqueue etc for a new task group */
  7344. struct task_group *sched_create_group(struct task_group *parent)
  7345. {
  7346. struct task_group *tg;
  7347. unsigned long flags;
  7348. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7349. if (!tg)
  7350. return ERR_PTR(-ENOMEM);
  7351. if (!alloc_fair_sched_group(tg, parent))
  7352. goto err;
  7353. if (!alloc_rt_sched_group(tg, parent))
  7354. goto err;
  7355. spin_lock_irqsave(&task_group_lock, flags);
  7356. list_add_rcu(&tg->list, &task_groups);
  7357. WARN_ON(!parent); /* root should already exist */
  7358. tg->parent = parent;
  7359. INIT_LIST_HEAD(&tg->children);
  7360. list_add_rcu(&tg->siblings, &parent->children);
  7361. spin_unlock_irqrestore(&task_group_lock, flags);
  7362. return tg;
  7363. err:
  7364. free_sched_group(tg);
  7365. return ERR_PTR(-ENOMEM);
  7366. }
  7367. /* rcu callback to free various structures associated with a task group */
  7368. static void free_sched_group_rcu(struct rcu_head *rhp)
  7369. {
  7370. /* now it should be safe to free those cfs_rqs */
  7371. free_sched_group(container_of(rhp, struct task_group, rcu));
  7372. }
  7373. /* Destroy runqueue etc associated with a task group */
  7374. void sched_destroy_group(struct task_group *tg)
  7375. {
  7376. unsigned long flags;
  7377. int i;
  7378. /* end participation in shares distribution */
  7379. for_each_possible_cpu(i)
  7380. unregister_fair_sched_group(tg, i);
  7381. spin_lock_irqsave(&task_group_lock, flags);
  7382. list_del_rcu(&tg->list);
  7383. list_del_rcu(&tg->siblings);
  7384. spin_unlock_irqrestore(&task_group_lock, flags);
  7385. /* wait for possible concurrent references to cfs_rqs complete */
  7386. call_rcu(&tg->rcu, free_sched_group_rcu);
  7387. }
  7388. /* change task's runqueue when it moves between groups.
  7389. * The caller of this function should have put the task in its new group
  7390. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7391. * reflect its new group.
  7392. */
  7393. void sched_move_task(struct task_struct *tsk)
  7394. {
  7395. int on_rq, running;
  7396. unsigned long flags;
  7397. struct rq *rq;
  7398. rq = task_rq_lock(tsk, &flags);
  7399. running = task_current(rq, tsk);
  7400. on_rq = tsk->on_rq;
  7401. if (on_rq)
  7402. dequeue_task(rq, tsk, 0);
  7403. if (unlikely(running))
  7404. tsk->sched_class->put_prev_task(rq, tsk);
  7405. #ifdef CONFIG_FAIR_GROUP_SCHED
  7406. if (tsk->sched_class->task_move_group)
  7407. tsk->sched_class->task_move_group(tsk, on_rq);
  7408. else
  7409. #endif
  7410. set_task_rq(tsk, task_cpu(tsk));
  7411. if (unlikely(running))
  7412. tsk->sched_class->set_curr_task(rq);
  7413. if (on_rq)
  7414. enqueue_task(rq, tsk, 0);
  7415. task_rq_unlock(rq, tsk, &flags);
  7416. }
  7417. #endif /* CONFIG_CGROUP_SCHED */
  7418. #ifdef CONFIG_FAIR_GROUP_SCHED
  7419. static DEFINE_MUTEX(shares_mutex);
  7420. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7421. {
  7422. int i;
  7423. unsigned long flags;
  7424. /*
  7425. * We can't change the weight of the root cgroup.
  7426. */
  7427. if (!tg->se[0])
  7428. return -EINVAL;
  7429. shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
  7430. mutex_lock(&shares_mutex);
  7431. if (tg->shares == shares)
  7432. goto done;
  7433. tg->shares = shares;
  7434. for_each_possible_cpu(i) {
  7435. struct rq *rq = cpu_rq(i);
  7436. struct sched_entity *se;
  7437. se = tg->se[i];
  7438. /* Propagate contribution to hierarchy */
  7439. raw_spin_lock_irqsave(&rq->lock, flags);
  7440. for_each_sched_entity(se)
  7441. update_cfs_shares(group_cfs_rq(se));
  7442. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7443. }
  7444. done:
  7445. mutex_unlock(&shares_mutex);
  7446. return 0;
  7447. }
  7448. unsigned long sched_group_shares(struct task_group *tg)
  7449. {
  7450. return tg->shares;
  7451. }
  7452. #endif
  7453. #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
  7454. static unsigned long to_ratio(u64 period, u64 runtime)
  7455. {
  7456. if (runtime == RUNTIME_INF)
  7457. return 1ULL << 20;
  7458. return div64_u64(runtime << 20, period);
  7459. }
  7460. #endif
  7461. #ifdef CONFIG_RT_GROUP_SCHED
  7462. /*
  7463. * Ensure that the real time constraints are schedulable.
  7464. */
  7465. static DEFINE_MUTEX(rt_constraints_mutex);
  7466. /* Must be called with tasklist_lock held */
  7467. static inline int tg_has_rt_tasks(struct task_group *tg)
  7468. {
  7469. struct task_struct *g, *p;
  7470. do_each_thread(g, p) {
  7471. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7472. return 1;
  7473. } while_each_thread(g, p);
  7474. return 0;
  7475. }
  7476. struct rt_schedulable_data {
  7477. struct task_group *tg;
  7478. u64 rt_period;
  7479. u64 rt_runtime;
  7480. };
  7481. static int tg_rt_schedulable(struct task_group *tg, void *data)
  7482. {
  7483. struct rt_schedulable_data *d = data;
  7484. struct task_group *child;
  7485. unsigned long total, sum = 0;
  7486. u64 period, runtime;
  7487. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7488. runtime = tg->rt_bandwidth.rt_runtime;
  7489. if (tg == d->tg) {
  7490. period = d->rt_period;
  7491. runtime = d->rt_runtime;
  7492. }
  7493. /*
  7494. * Cannot have more runtime than the period.
  7495. */
  7496. if (runtime > period && runtime != RUNTIME_INF)
  7497. return -EINVAL;
  7498. /*
  7499. * Ensure we don't starve existing RT tasks.
  7500. */
  7501. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7502. return -EBUSY;
  7503. total = to_ratio(period, runtime);
  7504. /*
  7505. * Nobody can have more than the global setting allows.
  7506. */
  7507. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7508. return -EINVAL;
  7509. /*
  7510. * The sum of our children's runtime should not exceed our own.
  7511. */
  7512. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7513. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7514. runtime = child->rt_bandwidth.rt_runtime;
  7515. if (child == d->tg) {
  7516. period = d->rt_period;
  7517. runtime = d->rt_runtime;
  7518. }
  7519. sum += to_ratio(period, runtime);
  7520. }
  7521. if (sum > total)
  7522. return -EINVAL;
  7523. return 0;
  7524. }
  7525. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7526. {
  7527. int ret;
  7528. struct rt_schedulable_data data = {
  7529. .tg = tg,
  7530. .rt_period = period,
  7531. .rt_runtime = runtime,
  7532. };
  7533. rcu_read_lock();
  7534. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  7535. rcu_read_unlock();
  7536. return ret;
  7537. }
  7538. static int tg_set_rt_bandwidth(struct task_group *tg,
  7539. u64 rt_period, u64 rt_runtime)
  7540. {
  7541. int i, err = 0;
  7542. mutex_lock(&rt_constraints_mutex);
  7543. read_lock(&tasklist_lock);
  7544. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7545. if (err)
  7546. goto unlock;
  7547. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7548. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7549. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7550. for_each_possible_cpu(i) {
  7551. struct rt_rq *rt_rq = tg->rt_rq[i];
  7552. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7553. rt_rq->rt_runtime = rt_runtime;
  7554. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7555. }
  7556. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7557. unlock:
  7558. read_unlock(&tasklist_lock);
  7559. mutex_unlock(&rt_constraints_mutex);
  7560. return err;
  7561. }
  7562. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7563. {
  7564. u64 rt_runtime, rt_period;
  7565. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7566. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7567. if (rt_runtime_us < 0)
  7568. rt_runtime = RUNTIME_INF;
  7569. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  7570. }
  7571. long sched_group_rt_runtime(struct task_group *tg)
  7572. {
  7573. u64 rt_runtime_us;
  7574. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7575. return -1;
  7576. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7577. do_div(rt_runtime_us, NSEC_PER_USEC);
  7578. return rt_runtime_us;
  7579. }
  7580. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7581. {
  7582. u64 rt_runtime, rt_period;
  7583. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7584. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7585. if (rt_period == 0)
  7586. return -EINVAL;
  7587. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  7588. }
  7589. long sched_group_rt_period(struct task_group *tg)
  7590. {
  7591. u64 rt_period_us;
  7592. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7593. do_div(rt_period_us, NSEC_PER_USEC);
  7594. return rt_period_us;
  7595. }
  7596. static int sched_rt_global_constraints(void)
  7597. {
  7598. u64 runtime, period;
  7599. int ret = 0;
  7600. if (sysctl_sched_rt_period <= 0)
  7601. return -EINVAL;
  7602. runtime = global_rt_runtime();
  7603. period = global_rt_period();
  7604. /*
  7605. * Sanity check on the sysctl variables.
  7606. */
  7607. if (runtime > period && runtime != RUNTIME_INF)
  7608. return -EINVAL;
  7609. mutex_lock(&rt_constraints_mutex);
  7610. read_lock(&tasklist_lock);
  7611. ret = __rt_schedulable(NULL, 0, 0);
  7612. read_unlock(&tasklist_lock);
  7613. mutex_unlock(&rt_constraints_mutex);
  7614. return ret;
  7615. }
  7616. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7617. {
  7618. /* Don't accept realtime tasks when there is no way for them to run */
  7619. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7620. return 0;
  7621. return 1;
  7622. }
  7623. #else /* !CONFIG_RT_GROUP_SCHED */
  7624. static int sched_rt_global_constraints(void)
  7625. {
  7626. unsigned long flags;
  7627. int i;
  7628. if (sysctl_sched_rt_period <= 0)
  7629. return -EINVAL;
  7630. /*
  7631. * There's always some RT tasks in the root group
  7632. * -- migration, kstopmachine etc..
  7633. */
  7634. if (sysctl_sched_rt_runtime == 0)
  7635. return -EBUSY;
  7636. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7637. for_each_possible_cpu(i) {
  7638. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7639. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7640. rt_rq->rt_runtime = global_rt_runtime();
  7641. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7642. }
  7643. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7644. return 0;
  7645. }
  7646. #endif /* CONFIG_RT_GROUP_SCHED */
  7647. int sched_rt_handler(struct ctl_table *table, int write,
  7648. void __user *buffer, size_t *lenp,
  7649. loff_t *ppos)
  7650. {
  7651. int ret;
  7652. int old_period, old_runtime;
  7653. static DEFINE_MUTEX(mutex);
  7654. mutex_lock(&mutex);
  7655. old_period = sysctl_sched_rt_period;
  7656. old_runtime = sysctl_sched_rt_runtime;
  7657. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7658. if (!ret && write) {
  7659. ret = sched_rt_global_constraints();
  7660. if (ret) {
  7661. sysctl_sched_rt_period = old_period;
  7662. sysctl_sched_rt_runtime = old_runtime;
  7663. } else {
  7664. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7665. def_rt_bandwidth.rt_period =
  7666. ns_to_ktime(global_rt_period());
  7667. }
  7668. }
  7669. mutex_unlock(&mutex);
  7670. return ret;
  7671. }
  7672. #ifdef CONFIG_CGROUP_SCHED
  7673. /* return corresponding task_group object of a cgroup */
  7674. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7675. {
  7676. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7677. struct task_group, css);
  7678. }
  7679. static struct cgroup_subsys_state *
  7680. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7681. {
  7682. struct task_group *tg, *parent;
  7683. if (!cgrp->parent) {
  7684. /* This is early initialization for the top cgroup */
  7685. return &root_task_group.css;
  7686. }
  7687. parent = cgroup_tg(cgrp->parent);
  7688. tg = sched_create_group(parent);
  7689. if (IS_ERR(tg))
  7690. return ERR_PTR(-ENOMEM);
  7691. return &tg->css;
  7692. }
  7693. static void
  7694. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7695. {
  7696. struct task_group *tg = cgroup_tg(cgrp);
  7697. sched_destroy_group(tg);
  7698. }
  7699. static int
  7700. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7701. {
  7702. #ifdef CONFIG_RT_GROUP_SCHED
  7703. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7704. return -EINVAL;
  7705. #else
  7706. /* We don't support RT-tasks being in separate groups */
  7707. if (tsk->sched_class != &fair_sched_class)
  7708. return -EINVAL;
  7709. #endif
  7710. return 0;
  7711. }
  7712. static void
  7713. cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7714. {
  7715. sched_move_task(tsk);
  7716. }
  7717. static void
  7718. cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7719. struct cgroup *old_cgrp, struct task_struct *task)
  7720. {
  7721. /*
  7722. * cgroup_exit() is called in the copy_process() failure path.
  7723. * Ignore this case since the task hasn't ran yet, this avoids
  7724. * trying to poke a half freed task state from generic code.
  7725. */
  7726. if (!(task->flags & PF_EXITING))
  7727. return;
  7728. sched_move_task(task);
  7729. }
  7730. #ifdef CONFIG_FAIR_GROUP_SCHED
  7731. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7732. u64 shareval)
  7733. {
  7734. return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
  7735. }
  7736. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7737. {
  7738. struct task_group *tg = cgroup_tg(cgrp);
  7739. return (u64) scale_load_down(tg->shares);
  7740. }
  7741. #ifdef CONFIG_CFS_BANDWIDTH
  7742. static DEFINE_MUTEX(cfs_constraints_mutex);
  7743. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  7744. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  7745. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  7746. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  7747. {
  7748. int i, ret = 0, runtime_enabled;
  7749. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
  7750. if (tg == &root_task_group)
  7751. return -EINVAL;
  7752. /*
  7753. * Ensure we have at some amount of bandwidth every period. This is
  7754. * to prevent reaching a state of large arrears when throttled via
  7755. * entity_tick() resulting in prolonged exit starvation.
  7756. */
  7757. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  7758. return -EINVAL;
  7759. /*
  7760. * Likewise, bound things on the otherside by preventing insane quota
  7761. * periods. This also allows us to normalize in computing quota
  7762. * feasibility.
  7763. */
  7764. if (period > max_cfs_quota_period)
  7765. return -EINVAL;
  7766. mutex_lock(&cfs_constraints_mutex);
  7767. ret = __cfs_schedulable(tg, period, quota);
  7768. if (ret)
  7769. goto out_unlock;
  7770. runtime_enabled = quota != RUNTIME_INF;
  7771. raw_spin_lock_irq(&cfs_b->lock);
  7772. cfs_b->period = ns_to_ktime(period);
  7773. cfs_b->quota = quota;
  7774. __refill_cfs_bandwidth_runtime(cfs_b);
  7775. /* restart the period timer (if active) to handle new period expiry */
  7776. if (runtime_enabled && cfs_b->timer_active) {
  7777. /* force a reprogram */
  7778. cfs_b->timer_active = 0;
  7779. __start_cfs_bandwidth(cfs_b);
  7780. }
  7781. raw_spin_unlock_irq(&cfs_b->lock);
  7782. for_each_possible_cpu(i) {
  7783. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  7784. struct rq *rq = rq_of(cfs_rq);
  7785. raw_spin_lock_irq(&rq->lock);
  7786. cfs_rq->runtime_enabled = runtime_enabled;
  7787. cfs_rq->runtime_remaining = 0;
  7788. if (cfs_rq_throttled(cfs_rq))
  7789. unthrottle_cfs_rq(cfs_rq);
  7790. raw_spin_unlock_irq(&rq->lock);
  7791. }
  7792. out_unlock:
  7793. mutex_unlock(&cfs_constraints_mutex);
  7794. return ret;
  7795. }
  7796. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  7797. {
  7798. u64 quota, period;
  7799. period = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
  7800. if (cfs_quota_us < 0)
  7801. quota = RUNTIME_INF;
  7802. else
  7803. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  7804. return tg_set_cfs_bandwidth(tg, period, quota);
  7805. }
  7806. long tg_get_cfs_quota(struct task_group *tg)
  7807. {
  7808. u64 quota_us;
  7809. if (tg_cfs_bandwidth(tg)->quota == RUNTIME_INF)
  7810. return -1;
  7811. quota_us = tg_cfs_bandwidth(tg)->quota;
  7812. do_div(quota_us, NSEC_PER_USEC);
  7813. return quota_us;
  7814. }
  7815. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  7816. {
  7817. u64 quota, period;
  7818. period = (u64)cfs_period_us * NSEC_PER_USEC;
  7819. quota = tg_cfs_bandwidth(tg)->quota;
  7820. if (period <= 0)
  7821. return -EINVAL;
  7822. return tg_set_cfs_bandwidth(tg, period, quota);
  7823. }
  7824. long tg_get_cfs_period(struct task_group *tg)
  7825. {
  7826. u64 cfs_period_us;
  7827. cfs_period_us = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
  7828. do_div(cfs_period_us, NSEC_PER_USEC);
  7829. return cfs_period_us;
  7830. }
  7831. static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
  7832. {
  7833. return tg_get_cfs_quota(cgroup_tg(cgrp));
  7834. }
  7835. static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
  7836. s64 cfs_quota_us)
  7837. {
  7838. return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
  7839. }
  7840. static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7841. {
  7842. return tg_get_cfs_period(cgroup_tg(cgrp));
  7843. }
  7844. static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7845. u64 cfs_period_us)
  7846. {
  7847. return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
  7848. }
  7849. struct cfs_schedulable_data {
  7850. struct task_group *tg;
  7851. u64 period, quota;
  7852. };
  7853. /*
  7854. * normalize group quota/period to be quota/max_period
  7855. * note: units are usecs
  7856. */
  7857. static u64 normalize_cfs_quota(struct task_group *tg,
  7858. struct cfs_schedulable_data *d)
  7859. {
  7860. u64 quota, period;
  7861. if (tg == d->tg) {
  7862. period = d->period;
  7863. quota = d->quota;
  7864. } else {
  7865. period = tg_get_cfs_period(tg);
  7866. quota = tg_get_cfs_quota(tg);
  7867. }
  7868. /* note: these should typically be equivalent */
  7869. if (quota == RUNTIME_INF || quota == -1)
  7870. return RUNTIME_INF;
  7871. return to_ratio(period, quota);
  7872. }
  7873. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  7874. {
  7875. struct cfs_schedulable_data *d = data;
  7876. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
  7877. s64 quota = 0, parent_quota = -1;
  7878. if (!tg->parent) {
  7879. quota = RUNTIME_INF;
  7880. } else {
  7881. struct cfs_bandwidth *parent_b = tg_cfs_bandwidth(tg->parent);
  7882. quota = normalize_cfs_quota(tg, d);
  7883. parent_quota = parent_b->hierarchal_quota;
  7884. /*
  7885. * ensure max(child_quota) <= parent_quota, inherit when no
  7886. * limit is set
  7887. */
  7888. if (quota == RUNTIME_INF)
  7889. quota = parent_quota;
  7890. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  7891. return -EINVAL;
  7892. }
  7893. cfs_b->hierarchal_quota = quota;
  7894. return 0;
  7895. }
  7896. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  7897. {
  7898. int ret;
  7899. struct cfs_schedulable_data data = {
  7900. .tg = tg,
  7901. .period = period,
  7902. .quota = quota,
  7903. };
  7904. if (quota != RUNTIME_INF) {
  7905. do_div(data.period, NSEC_PER_USEC);
  7906. do_div(data.quota, NSEC_PER_USEC);
  7907. }
  7908. rcu_read_lock();
  7909. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  7910. rcu_read_unlock();
  7911. return ret;
  7912. }
  7913. static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7914. struct cgroup_map_cb *cb)
  7915. {
  7916. struct task_group *tg = cgroup_tg(cgrp);
  7917. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
  7918. cb->fill(cb, "nr_periods", cfs_b->nr_periods);
  7919. cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
  7920. cb->fill(cb, "throttled_time", cfs_b->throttled_time);
  7921. return 0;
  7922. }
  7923. #endif /* CONFIG_CFS_BANDWIDTH */
  7924. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7925. #ifdef CONFIG_RT_GROUP_SCHED
  7926. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7927. s64 val)
  7928. {
  7929. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7930. }
  7931. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7932. {
  7933. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7934. }
  7935. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7936. u64 rt_period_us)
  7937. {
  7938. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7939. }
  7940. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7941. {
  7942. return sched_group_rt_period(cgroup_tg(cgrp));
  7943. }
  7944. #endif /* CONFIG_RT_GROUP_SCHED */
  7945. static struct cftype cpu_files[] = {
  7946. #ifdef CONFIG_FAIR_GROUP_SCHED
  7947. {
  7948. .name = "shares",
  7949. .read_u64 = cpu_shares_read_u64,
  7950. .write_u64 = cpu_shares_write_u64,
  7951. },
  7952. #endif
  7953. #ifdef CONFIG_CFS_BANDWIDTH
  7954. {
  7955. .name = "cfs_quota_us",
  7956. .read_s64 = cpu_cfs_quota_read_s64,
  7957. .write_s64 = cpu_cfs_quota_write_s64,
  7958. },
  7959. {
  7960. .name = "cfs_period_us",
  7961. .read_u64 = cpu_cfs_period_read_u64,
  7962. .write_u64 = cpu_cfs_period_write_u64,
  7963. },
  7964. {
  7965. .name = "stat",
  7966. .read_map = cpu_stats_show,
  7967. },
  7968. #endif
  7969. #ifdef CONFIG_RT_GROUP_SCHED
  7970. {
  7971. .name = "rt_runtime_us",
  7972. .read_s64 = cpu_rt_runtime_read,
  7973. .write_s64 = cpu_rt_runtime_write,
  7974. },
  7975. {
  7976. .name = "rt_period_us",
  7977. .read_u64 = cpu_rt_period_read_uint,
  7978. .write_u64 = cpu_rt_period_write_uint,
  7979. },
  7980. #endif
  7981. };
  7982. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7983. {
  7984. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7985. }
  7986. struct cgroup_subsys cpu_cgroup_subsys = {
  7987. .name = "cpu",
  7988. .create = cpu_cgroup_create,
  7989. .destroy = cpu_cgroup_destroy,
  7990. .can_attach_task = cpu_cgroup_can_attach_task,
  7991. .attach_task = cpu_cgroup_attach_task,
  7992. .exit = cpu_cgroup_exit,
  7993. .populate = cpu_cgroup_populate,
  7994. .subsys_id = cpu_cgroup_subsys_id,
  7995. .early_init = 1,
  7996. };
  7997. #endif /* CONFIG_CGROUP_SCHED */
  7998. #ifdef CONFIG_CGROUP_CPUACCT
  7999. /*
  8000. * CPU accounting code for task groups.
  8001. *
  8002. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  8003. * (balbir@in.ibm.com).
  8004. */
  8005. /* track cpu usage of a group of tasks and its child groups */
  8006. struct cpuacct {
  8007. struct cgroup_subsys_state css;
  8008. /* cpuusage holds pointer to a u64-type object on every cpu */
  8009. u64 __percpu *cpuusage;
  8010. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  8011. struct cpuacct *parent;
  8012. };
  8013. struct cgroup_subsys cpuacct_subsys;
  8014. /* return cpu accounting group corresponding to this container */
  8015. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  8016. {
  8017. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  8018. struct cpuacct, css);
  8019. }
  8020. /* return cpu accounting group to which this task belongs */
  8021. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  8022. {
  8023. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  8024. struct cpuacct, css);
  8025. }
  8026. /* create a new cpu accounting group */
  8027. static struct cgroup_subsys_state *cpuacct_create(
  8028. struct cgroup_subsys *ss, struct cgroup *cgrp)
  8029. {
  8030. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  8031. int i;
  8032. if (!ca)
  8033. goto out;
  8034. ca->cpuusage = alloc_percpu(u64);
  8035. if (!ca->cpuusage)
  8036. goto out_free_ca;
  8037. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8038. if (percpu_counter_init(&ca->cpustat[i], 0))
  8039. goto out_free_counters;
  8040. if (cgrp->parent)
  8041. ca->parent = cgroup_ca(cgrp->parent);
  8042. return &ca->css;
  8043. out_free_counters:
  8044. while (--i >= 0)
  8045. percpu_counter_destroy(&ca->cpustat[i]);
  8046. free_percpu(ca->cpuusage);
  8047. out_free_ca:
  8048. kfree(ca);
  8049. out:
  8050. return ERR_PTR(-ENOMEM);
  8051. }
  8052. /* destroy an existing cpu accounting group */
  8053. static void
  8054. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8055. {
  8056. struct cpuacct *ca = cgroup_ca(cgrp);
  8057. int i;
  8058. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8059. percpu_counter_destroy(&ca->cpustat[i]);
  8060. free_percpu(ca->cpuusage);
  8061. kfree(ca);
  8062. }
  8063. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  8064. {
  8065. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8066. u64 data;
  8067. #ifndef CONFIG_64BIT
  8068. /*
  8069. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  8070. */
  8071. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  8072. data = *cpuusage;
  8073. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  8074. #else
  8075. data = *cpuusage;
  8076. #endif
  8077. return data;
  8078. }
  8079. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  8080. {
  8081. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8082. #ifndef CONFIG_64BIT
  8083. /*
  8084. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  8085. */
  8086. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  8087. *cpuusage = val;
  8088. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  8089. #else
  8090. *cpuusage = val;
  8091. #endif
  8092. }
  8093. /* return total cpu usage (in nanoseconds) of a group */
  8094. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  8095. {
  8096. struct cpuacct *ca = cgroup_ca(cgrp);
  8097. u64 totalcpuusage = 0;
  8098. int i;
  8099. for_each_present_cpu(i)
  8100. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  8101. return totalcpuusage;
  8102. }
  8103. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  8104. u64 reset)
  8105. {
  8106. struct cpuacct *ca = cgroup_ca(cgrp);
  8107. int err = 0;
  8108. int i;
  8109. if (reset) {
  8110. err = -EINVAL;
  8111. goto out;
  8112. }
  8113. for_each_present_cpu(i)
  8114. cpuacct_cpuusage_write(ca, i, 0);
  8115. out:
  8116. return err;
  8117. }
  8118. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  8119. struct seq_file *m)
  8120. {
  8121. struct cpuacct *ca = cgroup_ca(cgroup);
  8122. u64 percpu;
  8123. int i;
  8124. for_each_present_cpu(i) {
  8125. percpu = cpuacct_cpuusage_read(ca, i);
  8126. seq_printf(m, "%llu ", (unsigned long long) percpu);
  8127. }
  8128. seq_printf(m, "\n");
  8129. return 0;
  8130. }
  8131. static const char *cpuacct_stat_desc[] = {
  8132. [CPUACCT_STAT_USER] = "user",
  8133. [CPUACCT_STAT_SYSTEM] = "system",
  8134. };
  8135. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  8136. struct cgroup_map_cb *cb)
  8137. {
  8138. struct cpuacct *ca = cgroup_ca(cgrp);
  8139. int i;
  8140. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  8141. s64 val = percpu_counter_read(&ca->cpustat[i]);
  8142. val = cputime64_to_clock_t(val);
  8143. cb->fill(cb, cpuacct_stat_desc[i], val);
  8144. }
  8145. return 0;
  8146. }
  8147. static struct cftype files[] = {
  8148. {
  8149. .name = "usage",
  8150. .read_u64 = cpuusage_read,
  8151. .write_u64 = cpuusage_write,
  8152. },
  8153. {
  8154. .name = "usage_percpu",
  8155. .read_seq_string = cpuacct_percpu_seq_read,
  8156. },
  8157. {
  8158. .name = "stat",
  8159. .read_map = cpuacct_stats_show,
  8160. },
  8161. };
  8162. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8163. {
  8164. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  8165. }
  8166. /*
  8167. * charge this task's execution time to its accounting group.
  8168. *
  8169. * called with rq->lock held.
  8170. */
  8171. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  8172. {
  8173. struct cpuacct *ca;
  8174. int cpu;
  8175. if (unlikely(!cpuacct_subsys.active))
  8176. return;
  8177. cpu = task_cpu(tsk);
  8178. rcu_read_lock();
  8179. ca = task_ca(tsk);
  8180. for (; ca; ca = ca->parent) {
  8181. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8182. *cpuusage += cputime;
  8183. }
  8184. rcu_read_unlock();
  8185. }
  8186. /*
  8187. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  8188. * in cputime_t units. As a result, cpuacct_update_stats calls
  8189. * percpu_counter_add with values large enough to always overflow the
  8190. * per cpu batch limit causing bad SMP scalability.
  8191. *
  8192. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  8193. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  8194. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  8195. */
  8196. #ifdef CONFIG_SMP
  8197. #define CPUACCT_BATCH \
  8198. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  8199. #else
  8200. #define CPUACCT_BATCH 0
  8201. #endif
  8202. /*
  8203. * Charge the system/user time to the task's accounting group.
  8204. */
  8205. static void cpuacct_update_stats(struct task_struct *tsk,
  8206. enum cpuacct_stat_index idx, cputime_t val)
  8207. {
  8208. struct cpuacct *ca;
  8209. int batch = CPUACCT_BATCH;
  8210. if (unlikely(!cpuacct_subsys.active))
  8211. return;
  8212. rcu_read_lock();
  8213. ca = task_ca(tsk);
  8214. do {
  8215. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  8216. ca = ca->parent;
  8217. } while (ca);
  8218. rcu_read_unlock();
  8219. }
  8220. struct cgroup_subsys cpuacct_subsys = {
  8221. .name = "cpuacct",
  8222. .create = cpuacct_create,
  8223. .destroy = cpuacct_destroy,
  8224. .populate = cpuacct_populate,
  8225. .subsys_id = cpuacct_subsys_id,
  8226. };
  8227. #endif /* CONFIG_CGROUP_CPUACCT */