nv50_pm.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689
  1. /*
  2. * Copyright 2010 Red Hat Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Ben Skeggs
  23. */
  24. #include "drmP.h"
  25. #include "nouveau_drv.h"
  26. #include "nouveau_bios.h"
  27. #include "nouveau_hw.h"
  28. #include "nouveau_pm.h"
  29. enum clk_src {
  30. clk_src_crystal,
  31. clk_src_href,
  32. clk_src_hclk,
  33. clk_src_hclkm3,
  34. clk_src_hclkm3d2,
  35. clk_src_host,
  36. clk_src_nvclk,
  37. clk_src_sclk,
  38. clk_src_mclk,
  39. clk_src_vdec,
  40. clk_src_dom6
  41. };
  42. static u32 read_clk(struct drm_device *, enum clk_src);
  43. static u32
  44. read_div(struct drm_device *dev)
  45. {
  46. struct drm_nouveau_private *dev_priv = dev->dev_private;
  47. switch (dev_priv->chipset) {
  48. case 0x50: /* it exists, but only has bit 31, not the dividers.. */
  49. case 0x84:
  50. case 0x86:
  51. case 0x98:
  52. case 0xa0:
  53. return nv_rd32(dev, 0x004700);
  54. case 0x92:
  55. case 0x94:
  56. case 0x96:
  57. return nv_rd32(dev, 0x004800);
  58. default:
  59. return 0x00000000;
  60. }
  61. }
  62. static u32
  63. read_pll_src(struct drm_device *dev, u32 base)
  64. {
  65. struct drm_nouveau_private *dev_priv = dev->dev_private;
  66. u32 coef, ref = read_clk(dev, clk_src_crystal);
  67. u32 rsel = nv_rd32(dev, 0x00e18c);
  68. int P, N, M, id;
  69. switch (dev_priv->chipset) {
  70. case 0x50:
  71. case 0xa0:
  72. switch (base) {
  73. case 0x4020:
  74. case 0x4028: id = !!(rsel & 0x00000004); break;
  75. case 0x4008: id = !!(rsel & 0x00000008); break;
  76. case 0x4030: id = 0; break;
  77. default:
  78. NV_ERROR(dev, "ref: bad pll 0x%06x\n", base);
  79. return 0;
  80. }
  81. coef = nv_rd32(dev, 0x00e81c + (id * 0x0c));
  82. ref *= (coef & 0x01000000) ? 2 : 4;
  83. P = (coef & 0x00070000) >> 16;
  84. N = ((coef & 0x0000ff00) >> 8) + 1;
  85. M = ((coef & 0x000000ff) >> 0) + 1;
  86. break;
  87. case 0x84:
  88. case 0x86:
  89. case 0x92:
  90. coef = nv_rd32(dev, 0x00e81c);
  91. P = (coef & 0x00070000) >> 16;
  92. N = (coef & 0x0000ff00) >> 8;
  93. M = (coef & 0x000000ff) >> 0;
  94. break;
  95. case 0x94:
  96. case 0x96:
  97. case 0x98:
  98. rsel = nv_rd32(dev, 0x00c050);
  99. switch (base) {
  100. case 0x4020: rsel = (rsel & 0x00000003) >> 0; break;
  101. case 0x4008: rsel = (rsel & 0x0000000c) >> 2; break;
  102. case 0x4028: rsel = (rsel & 0x00001800) >> 11; break;
  103. case 0x4030: rsel = 3; break;
  104. default:
  105. NV_ERROR(dev, "ref: bad pll 0x%06x\n", base);
  106. return 0;
  107. }
  108. switch (rsel) {
  109. case 0: id = 1; break;
  110. case 1: return read_clk(dev, clk_src_crystal);
  111. case 2: return read_clk(dev, clk_src_href);
  112. case 3: id = 0; break;
  113. }
  114. coef = nv_rd32(dev, 0x00e81c + (id * 0x28));
  115. P = (nv_rd32(dev, 0x00e824 + (id * 0x28)) >> 16) & 7;
  116. P += (coef & 0x00070000) >> 16;
  117. N = (coef & 0x0000ff00) >> 8;
  118. M = (coef & 0x000000ff) >> 0;
  119. break;
  120. default:
  121. BUG_ON(1);
  122. }
  123. if (M)
  124. return (ref * N / M) >> P;
  125. return 0;
  126. }
  127. static u32
  128. read_pll_ref(struct drm_device *dev, u32 base)
  129. {
  130. u32 src, mast = nv_rd32(dev, 0x00c040);
  131. switch (base) {
  132. case 0x004028:
  133. src = !!(mast & 0x00200000);
  134. break;
  135. case 0x004020:
  136. src = !!(mast & 0x00400000);
  137. break;
  138. case 0x004008:
  139. src = !!(mast & 0x00010000);
  140. break;
  141. case 0x004030:
  142. src = !!(mast & 0x02000000);
  143. break;
  144. case 0x00e810:
  145. return read_clk(dev, clk_src_crystal);
  146. default:
  147. NV_ERROR(dev, "bad pll 0x%06x\n", base);
  148. return 0;
  149. }
  150. if (src)
  151. return read_clk(dev, clk_src_href);
  152. return read_pll_src(dev, base);
  153. }
  154. static u32
  155. read_pll(struct drm_device *dev, u32 base)
  156. {
  157. struct drm_nouveau_private *dev_priv = dev->dev_private;
  158. u32 mast = nv_rd32(dev, 0x00c040);
  159. u32 ctrl = nv_rd32(dev, base + 0);
  160. u32 coef = nv_rd32(dev, base + 4);
  161. u32 ref = read_pll_ref(dev, base);
  162. u32 clk = 0;
  163. int N1, N2, M1, M2;
  164. if (base == 0x004028 && (mast & 0x00100000)) {
  165. /* wtf, appears to only disable post-divider on nva0 */
  166. if (dev_priv->chipset != 0xa0)
  167. return read_clk(dev, clk_src_dom6);
  168. }
  169. N2 = (coef & 0xff000000) >> 24;
  170. M2 = (coef & 0x00ff0000) >> 16;
  171. N1 = (coef & 0x0000ff00) >> 8;
  172. M1 = (coef & 0x000000ff);
  173. if ((ctrl & 0x80000000) && M1) {
  174. clk = ref * N1 / M1;
  175. if ((ctrl & 0x40000100) == 0x40000000) {
  176. if (M2)
  177. clk = clk * N2 / M2;
  178. else
  179. clk = 0;
  180. }
  181. }
  182. return clk;
  183. }
  184. static u32
  185. read_clk(struct drm_device *dev, enum clk_src src)
  186. {
  187. struct drm_nouveau_private *dev_priv = dev->dev_private;
  188. u32 mast = nv_rd32(dev, 0x00c040);
  189. u32 P = 0;
  190. switch (src) {
  191. case clk_src_crystal:
  192. return dev_priv->crystal;
  193. case clk_src_href:
  194. return 100000; /* PCIE reference clock */
  195. case clk_src_hclk:
  196. return read_clk(dev, clk_src_href) * 27778 / 10000;
  197. case clk_src_hclkm3:
  198. return read_clk(dev, clk_src_hclk) * 3;
  199. case clk_src_hclkm3d2:
  200. return read_clk(dev, clk_src_hclk) * 3 / 2;
  201. case clk_src_host:
  202. switch (mast & 0x30000000) {
  203. case 0x00000000: return read_clk(dev, clk_src_href);
  204. case 0x10000000: break;
  205. case 0x20000000: /* !0x50 */
  206. case 0x30000000: return read_clk(dev, clk_src_hclk);
  207. }
  208. break;
  209. case clk_src_nvclk:
  210. if (!(mast & 0x00100000))
  211. P = (nv_rd32(dev, 0x004028) & 0x00070000) >> 16;
  212. switch (mast & 0x00000003) {
  213. case 0x00000000: return read_clk(dev, clk_src_crystal) >> P;
  214. case 0x00000001: return read_clk(dev, clk_src_dom6);
  215. case 0x00000002: return read_pll(dev, 0x004020) >> P;
  216. case 0x00000003: return read_pll(dev, 0x004028) >> P;
  217. }
  218. break;
  219. case clk_src_sclk:
  220. P = (nv_rd32(dev, 0x004020) & 0x00070000) >> 16;
  221. switch (mast & 0x00000030) {
  222. case 0x00000000:
  223. if (mast & 0x00000080)
  224. return read_clk(dev, clk_src_host) >> P;
  225. return read_clk(dev, clk_src_crystal) >> P;
  226. case 0x00000010: break;
  227. case 0x00000020: return read_pll(dev, 0x004028) >> P;
  228. case 0x00000030: return read_pll(dev, 0x004020) >> P;
  229. }
  230. break;
  231. case clk_src_mclk:
  232. P = (nv_rd32(dev, 0x004008) & 0x00070000) >> 16;
  233. if (nv_rd32(dev, 0x004008) & 0x00000200) {
  234. switch (mast & 0x0000c000) {
  235. case 0x00000000:
  236. return read_clk(dev, clk_src_crystal) >> P;
  237. case 0x00008000:
  238. case 0x0000c000:
  239. return read_clk(dev, clk_src_href) >> P;
  240. }
  241. } else {
  242. return read_pll(dev, 0x004008) >> P;
  243. }
  244. break;
  245. case clk_src_vdec:
  246. P = (read_div(dev) & 0x00000700) >> 8;
  247. switch (dev_priv->chipset) {
  248. case 0x84:
  249. case 0x86:
  250. case 0x92:
  251. case 0x94:
  252. case 0x96:
  253. case 0xa0:
  254. switch (mast & 0x00000c00) {
  255. case 0x00000000:
  256. if (dev_priv->chipset == 0xa0) /* wtf?? */
  257. return read_clk(dev, clk_src_nvclk) >> P;
  258. return read_clk(dev, clk_src_crystal) >> P;
  259. case 0x00000400:
  260. return 0;
  261. case 0x00000800:
  262. if (mast & 0x01000000)
  263. return read_pll(dev, 0x004028) >> P;
  264. return read_pll(dev, 0x004030) >> P;
  265. case 0x00000c00:
  266. return read_clk(dev, clk_src_nvclk) >> P;
  267. }
  268. break;
  269. case 0x98:
  270. switch (mast & 0x00000c00) {
  271. case 0x00000000:
  272. return read_clk(dev, clk_src_nvclk) >> P;
  273. case 0x00000400:
  274. return 0;
  275. case 0x00000800:
  276. return read_clk(dev, clk_src_hclkm3d2) >> P;
  277. case 0x00000c00:
  278. return read_clk(dev, clk_src_mclk) >> P;
  279. }
  280. break;
  281. }
  282. break;
  283. case clk_src_dom6:
  284. switch (dev_priv->chipset) {
  285. case 0x50:
  286. case 0xa0:
  287. return read_pll(dev, 0x00e810) >> 2;
  288. case 0x84:
  289. case 0x86:
  290. case 0x92:
  291. case 0x94:
  292. case 0x96:
  293. case 0x98:
  294. P = (read_div(dev) & 0x00000007) >> 0;
  295. switch (mast & 0x0c000000) {
  296. case 0x00000000: return read_clk(dev, clk_src_href);
  297. case 0x04000000: break;
  298. case 0x08000000: return read_clk(dev, clk_src_hclk);
  299. case 0x0c000000:
  300. return read_clk(dev, clk_src_hclkm3) >> P;
  301. }
  302. break;
  303. default:
  304. break;
  305. }
  306. default:
  307. break;
  308. }
  309. NV_DEBUG(dev, "unknown clock source %d 0x%08x\n", src, mast);
  310. return 0;
  311. }
  312. int
  313. nv50_pm_clocks_get(struct drm_device *dev, struct nouveau_pm_level *perflvl)
  314. {
  315. struct drm_nouveau_private *dev_priv = dev->dev_private;
  316. if (dev_priv->chipset == 0xaa ||
  317. dev_priv->chipset == 0xac)
  318. return 0;
  319. perflvl->core = read_clk(dev, clk_src_nvclk);
  320. perflvl->shader = read_clk(dev, clk_src_sclk);
  321. perflvl->memory = read_clk(dev, clk_src_mclk);
  322. if (dev_priv->chipset != 0x50) {
  323. perflvl->vdec = read_clk(dev, clk_src_vdec);
  324. perflvl->dom6 = read_clk(dev, clk_src_dom6);
  325. }
  326. return 0;
  327. }
  328. struct nv50_pm_state {
  329. u32 emast;
  330. u32 nctrl;
  331. u32 ncoef;
  332. u32 sctrl;
  333. u32 scoef;
  334. u32 amast;
  335. u32 pdivs;
  336. u32 mscript;
  337. u32 mctrl;
  338. u32 mcoef;
  339. };
  340. static u32
  341. calc_pll(struct drm_device *dev, u32 reg, struct pll_lims *pll,
  342. u32 clk, int *N1, int *M1, int *log2P)
  343. {
  344. struct nouveau_pll_vals coef;
  345. int ret;
  346. ret = get_pll_limits(dev, reg, pll);
  347. if (ret)
  348. return 0;
  349. pll->vco2.maxfreq = 0;
  350. pll->refclk = read_pll_ref(dev, reg);
  351. if (!pll->refclk)
  352. return 0;
  353. ret = nouveau_calc_pll_mnp(dev, pll, clk, &coef);
  354. if (ret == 0)
  355. return 0;
  356. *N1 = coef.N1;
  357. *M1 = coef.M1;
  358. *log2P = coef.log2P;
  359. return ret;
  360. }
  361. static inline u32
  362. calc_div(u32 src, u32 target, int *div)
  363. {
  364. u32 clk0 = src, clk1 = src;
  365. for (*div = 0; *div <= 7; (*div)++) {
  366. if (clk0 <= target) {
  367. clk1 = clk0 << (*div ? 1 : 0);
  368. break;
  369. }
  370. clk0 >>= 1;
  371. }
  372. if (target - clk0 <= clk1 - target)
  373. return clk0;
  374. (*div)--;
  375. return clk1;
  376. }
  377. static inline u32
  378. clk_same(u32 a, u32 b)
  379. {
  380. return ((a / 1000) == (b / 1000));
  381. }
  382. void *
  383. nv50_pm_clocks_pre(struct drm_device *dev, struct nouveau_pm_level *perflvl)
  384. {
  385. struct drm_nouveau_private *dev_priv = dev->dev_private;
  386. struct nv50_pm_state *info;
  387. struct pll_lims pll;
  388. int ret = -EINVAL;
  389. int N, M, P1, P2;
  390. u32 clk, out;
  391. if (dev_priv->chipset == 0xaa ||
  392. dev_priv->chipset == 0xac)
  393. return ERR_PTR(-ENODEV);
  394. info = kmalloc(sizeof(*info), GFP_KERNEL);
  395. if (!info)
  396. return ERR_PTR(-ENOMEM);
  397. /* core: for the moment at least, always use nvpll */
  398. clk = calc_pll(dev, 0x4028, &pll, perflvl->core, &N, &M, &P1);
  399. if (clk == 0)
  400. goto error;
  401. info->emast = 0x00000003;
  402. info->nctrl = 0x80000000 | (P1 << 19) | (P1 << 16);
  403. info->ncoef = (N << 8) | M;
  404. /* shader: tie to nvclk if possible, otherwise use spll. have to be
  405. * very careful that the shader clock is at least twice the core, or
  406. * some chipsets will be very unhappy. i expect most or all of these
  407. * cases will be handled by tying to nvclk, but it's possible there's
  408. * corners
  409. */
  410. if (P1-- && perflvl->shader == (perflvl->core << 1)) {
  411. info->emast |= 0x00000020;
  412. info->sctrl = 0x00000000 | (P1 << 19) | (P1 << 16);
  413. info->scoef = nv_rd32(dev, 0x004024);
  414. } else {
  415. clk = calc_pll(dev, 0x4020, &pll, perflvl->shader, &N, &M, &P1);
  416. if (clk == 0)
  417. goto error;
  418. info->emast |= 0x00000030;
  419. info->sctrl = 0x80000000 | (P1 << 19) | (P1 << 16);
  420. info->scoef = (N << 8) | M;
  421. }
  422. /* memory: use pcie refclock if possible, otherwise use mpll */
  423. info->mscript = perflvl->memscript;
  424. if (clk_same(perflvl->memory, read_clk(dev, clk_src_href))) {
  425. info->mctrl = 0x00000200 | (pll.log2p_bias << 19);
  426. info->mcoef = nv_rd32(dev, 0x400c);
  427. } else
  428. if (perflvl->memory) {
  429. clk = calc_pll(dev, 0x4008, &pll, perflvl->memory,
  430. &N, &M, &P1);
  431. if (clk == 0)
  432. goto error;
  433. info->mctrl = 0x80000000 | (P1 << 22) | (P1 << 16);
  434. info->mctrl |= pll.log2p_bias << 19;
  435. info->mcoef = (N << 8) | M;
  436. } else {
  437. info->mctrl = 0x00000000;
  438. }
  439. /* vdec: avoid modifying xpll until we know exactly how the other
  440. * clock domains work, i suspect at least some of them can also be
  441. * tied to xpll...
  442. */
  443. info->amast = nv_rd32(dev, 0x00c040);
  444. info->pdivs = read_div(dev);
  445. if (perflvl->vdec) {
  446. /* see how close we can get using nvclk as a source */
  447. clk = calc_div(perflvl->core, perflvl->vdec, &P1);
  448. /* see how close we can get using xpll/hclk as a source */
  449. if (dev_priv->chipset != 0x98)
  450. out = read_pll(dev, 0x004030);
  451. else
  452. out = read_clk(dev, clk_src_hclkm3d2);
  453. out = calc_div(out, perflvl->vdec, &P2);
  454. /* select whichever gets us closest */
  455. info->amast &= ~0x00000c00;
  456. info->pdivs &= ~0x00000700;
  457. if (abs((int)perflvl->vdec - clk) <=
  458. abs((int)perflvl->vdec - out)) {
  459. if (dev_priv->chipset != 0x98)
  460. info->amast |= 0x00000c00;
  461. info->pdivs |= P1 << 8;
  462. } else {
  463. info->amast |= 0x00000800;
  464. info->pdivs |= P2 << 8;
  465. }
  466. }
  467. /* dom6: nfi what this is, but we're limited to various combinations
  468. * of the host clock frequency
  469. */
  470. if (perflvl->dom6) {
  471. info->amast &= ~0x0c000000;
  472. if (clk_same(perflvl->dom6, read_clk(dev, clk_src_href))) {
  473. info->amast |= 0x00000000;
  474. } else
  475. if (clk_same(perflvl->dom6, read_clk(dev, clk_src_hclk))) {
  476. info->amast |= 0x08000000;
  477. } else {
  478. clk = read_clk(dev, clk_src_hclk) * 3;
  479. clk = calc_div(clk, perflvl->dom6, &P1);
  480. info->amast |= 0x0c000000;
  481. info->pdivs = (info->pdivs & ~0x00000007) | P1;
  482. }
  483. }
  484. return info;
  485. error:
  486. kfree(info);
  487. return ERR_PTR(ret);
  488. }
  489. int
  490. nv50_pm_clocks_set(struct drm_device *dev, void *data)
  491. {
  492. struct drm_nouveau_private *dev_priv = dev->dev_private;
  493. struct nv50_pm_state *info = data;
  494. struct bit_entry M;
  495. int ret = 0;
  496. /* halt and idle execution engines */
  497. nv_mask(dev, 0x002504, 0x00000001, 0x00000001);
  498. if (!nv_wait(dev, 0x002504, 0x00000010, 0x00000010))
  499. goto error;
  500. /* reclock vdec/dom6 */
  501. nv_mask(dev, 0x00c040, 0x00000c00, 0x00000000);
  502. switch (dev_priv->chipset) {
  503. case 0x92:
  504. case 0x94:
  505. case 0x96:
  506. nv_mask(dev, 0x004800, 0x00000707, info->pdivs);
  507. break;
  508. default:
  509. nv_mask(dev, 0x004700, 0x00000707, info->pdivs);
  510. break;
  511. }
  512. nv_mask(dev, 0x00c040, 0x0c000c00, info->amast);
  513. /* core/shader: make sure sclk/nvclk are disconnected from their
  514. * plls (nvclk to dom6, sclk to hclk), modify the plls, and
  515. * reconnect sclk/nvclk to their new clock source
  516. */
  517. if (dev_priv->chipset < 0x92)
  518. nv_mask(dev, 0x00c040, 0x001000b0, 0x00100080); /* grrr! */
  519. else
  520. nv_mask(dev, 0x00c040, 0x000000b3, 0x00000081);
  521. nv_mask(dev, 0x004020, 0xc03f0100, info->sctrl);
  522. nv_wr32(dev, 0x004024, info->scoef);
  523. nv_mask(dev, 0x004028, 0xc03f0100, info->nctrl);
  524. nv_wr32(dev, 0x00402c, info->ncoef);
  525. nv_mask(dev, 0x00c040, 0x00100033, info->emast);
  526. /* memory */
  527. if (!info->mctrl)
  528. goto resume;
  529. /* execute some scripts that do ??? from the vbios.. */
  530. if (!bit_table(dev, 'M', &M) && M.version == 1) {
  531. if (M.length >= 6)
  532. nouveau_bios_init_exec(dev, ROM16(M.data[5]));
  533. if (M.length >= 8)
  534. nouveau_bios_init_exec(dev, ROM16(M.data[7]));
  535. if (M.length >= 10)
  536. nouveau_bios_init_exec(dev, ROM16(M.data[9]));
  537. nouveau_bios_init_exec(dev, info->mscript);
  538. }
  539. /* disable display */
  540. if (dev_priv->chipset >= 0x92) {
  541. nv_wr32(dev, 0x611200, 0x00003300);
  542. udelay(100);
  543. }
  544. /* prepare ram for reclocking */
  545. nv_wr32(dev, 0x1002d4, 0x00000001); /* precharge */
  546. nv_wr32(dev, 0x1002d0, 0x00000001); /* refresh */
  547. nv_wr32(dev, 0x1002d0, 0x00000001); /* refresh */
  548. nv_mask(dev, 0x100210, 0x80000000, 0x00000000); /* no auto-refresh */
  549. nv_wr32(dev, 0x1002dc, 0x00000001); /* enable self-refresh */
  550. /* modify mpll */
  551. nv_mask(dev, 0x00c040, 0x0000c000, 0x0000c000);
  552. nv_mask(dev, 0x004008, 0x01ff0200, 0x00000200 | info->mctrl);
  553. nv_wr32(dev, 0x00400c, info->mcoef);
  554. udelay(100);
  555. nv_mask(dev, 0x004008, 0x81ff0200, info->mctrl);
  556. /* re-enable normal operation of memory controller */
  557. nv_wr32(dev, 0x1002dc, 0x00000000);
  558. nv_mask(dev, 0x100210, 0x80000000, 0x80000000);
  559. udelay(100);
  560. /* re-enable display */
  561. if (dev_priv->chipset >= 0x92)
  562. nv_wr32(dev, 0x611200, 0x00003330);
  563. goto resume;
  564. error:
  565. ret = -EBUSY;
  566. resume:
  567. nv_mask(dev, 0x002504, 0x00000001, 0x00000000);
  568. kfree(info);
  569. return ret;
  570. }
  571. static int
  572. pwm_info(struct drm_device *dev, struct dcb_gpio_entry *gpio,
  573. int *ctrl, int *line, int *indx)
  574. {
  575. if (gpio->line == 0x04) {
  576. *ctrl = 0x00e100;
  577. *line = 4;
  578. *indx = 0;
  579. } else
  580. if (gpio->line == 0x09) {
  581. *ctrl = 0x00e100;
  582. *line = 9;
  583. *indx = 1;
  584. } else
  585. if (gpio->line == 0x10) {
  586. *ctrl = 0x00e28c;
  587. *line = 0;
  588. *indx = 0;
  589. } else {
  590. NV_ERROR(dev, "unknown pwm ctrl for gpio %d\n", gpio->line);
  591. return -ENODEV;
  592. }
  593. return 0;
  594. }
  595. int
  596. nv50_pm_pwm_get(struct drm_device *dev, struct dcb_gpio_entry *gpio,
  597. u32 *divs, u32 *duty)
  598. {
  599. int ctrl, line, id, ret = pwm_info(dev, gpio, &ctrl, &line, &id);
  600. if (ret)
  601. return ret;
  602. if (nv_rd32(dev, ctrl) & (1 << line)) {
  603. *divs = nv_rd32(dev, 0x00e114 + (id * 8));
  604. *duty = nv_rd32(dev, 0x00e118 + (id * 8));
  605. return 0;
  606. }
  607. return -EINVAL;
  608. }
  609. int
  610. nv50_pm_pwm_set(struct drm_device *dev, struct dcb_gpio_entry *gpio,
  611. u32 divs, u32 duty)
  612. {
  613. int ctrl, line, id, ret = pwm_info(dev, gpio, &ctrl, &line, &id);
  614. if (ret)
  615. return ret;
  616. nv_mask(dev, ctrl, 0x00010001 << line, 0x00000001 << line);
  617. nv_wr32(dev, 0x00e114 + (id * 8), divs);
  618. nv_wr32(dev, 0x00e118 + (id * 8), duty | 0x80000000);
  619. return 0;
  620. }