i915_gem.c 106 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/shmem_fs.h>
  34. #include <linux/slab.h>
  35. #include <linux/swap.h>
  36. #include <linux/pci.h>
  37. static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  39. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  40. static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
  41. bool write);
  42. static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  43. uint64_t offset,
  44. uint64_t size);
  45. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
  46. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  47. unsigned alignment,
  48. bool map_and_fenceable);
  49. static void i915_gem_clear_fence_reg(struct drm_device *dev,
  50. struct drm_i915_fence_reg *reg);
  51. static int i915_gem_phys_pwrite(struct drm_device *dev,
  52. struct drm_i915_gem_object *obj,
  53. struct drm_i915_gem_pwrite *args,
  54. struct drm_file *file);
  55. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
  56. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  57. struct shrink_control *sc);
  58. /* some bookkeeping */
  59. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  60. size_t size)
  61. {
  62. dev_priv->mm.object_count++;
  63. dev_priv->mm.object_memory += size;
  64. }
  65. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  66. size_t size)
  67. {
  68. dev_priv->mm.object_count--;
  69. dev_priv->mm.object_memory -= size;
  70. }
  71. static int
  72. i915_gem_wait_for_error(struct drm_device *dev)
  73. {
  74. struct drm_i915_private *dev_priv = dev->dev_private;
  75. struct completion *x = &dev_priv->error_completion;
  76. unsigned long flags;
  77. int ret;
  78. if (!atomic_read(&dev_priv->mm.wedged))
  79. return 0;
  80. ret = wait_for_completion_interruptible(x);
  81. if (ret)
  82. return ret;
  83. if (atomic_read(&dev_priv->mm.wedged)) {
  84. /* GPU is hung, bump the completion count to account for
  85. * the token we just consumed so that we never hit zero and
  86. * end up waiting upon a subsequent completion event that
  87. * will never happen.
  88. */
  89. spin_lock_irqsave(&x->wait.lock, flags);
  90. x->done++;
  91. spin_unlock_irqrestore(&x->wait.lock, flags);
  92. }
  93. return 0;
  94. }
  95. int i915_mutex_lock_interruptible(struct drm_device *dev)
  96. {
  97. int ret;
  98. ret = i915_gem_wait_for_error(dev);
  99. if (ret)
  100. return ret;
  101. ret = mutex_lock_interruptible(&dev->struct_mutex);
  102. if (ret)
  103. return ret;
  104. WARN_ON(i915_verify_lists(dev));
  105. return 0;
  106. }
  107. static inline bool
  108. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  109. {
  110. return obj->gtt_space && !obj->active && obj->pin_count == 0;
  111. }
  112. void i915_gem_do_init(struct drm_device *dev,
  113. unsigned long start,
  114. unsigned long mappable_end,
  115. unsigned long end)
  116. {
  117. drm_i915_private_t *dev_priv = dev->dev_private;
  118. drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
  119. dev_priv->mm.gtt_start = start;
  120. dev_priv->mm.gtt_mappable_end = mappable_end;
  121. dev_priv->mm.gtt_end = end;
  122. dev_priv->mm.gtt_total = end - start;
  123. dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
  124. /* Take over this portion of the GTT */
  125. intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
  126. }
  127. int
  128. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  129. struct drm_file *file)
  130. {
  131. struct drm_i915_gem_init *args = data;
  132. if (args->gtt_start >= args->gtt_end ||
  133. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  134. return -EINVAL;
  135. mutex_lock(&dev->struct_mutex);
  136. i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
  137. mutex_unlock(&dev->struct_mutex);
  138. return 0;
  139. }
  140. int
  141. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  142. struct drm_file *file)
  143. {
  144. struct drm_i915_private *dev_priv = dev->dev_private;
  145. struct drm_i915_gem_get_aperture *args = data;
  146. struct drm_i915_gem_object *obj;
  147. size_t pinned;
  148. if (!(dev->driver->driver_features & DRIVER_GEM))
  149. return -ENODEV;
  150. pinned = 0;
  151. mutex_lock(&dev->struct_mutex);
  152. list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
  153. pinned += obj->gtt_space->size;
  154. mutex_unlock(&dev->struct_mutex);
  155. args->aper_size = dev_priv->mm.gtt_total;
  156. args->aper_available_size = args->aper_size - pinned;
  157. return 0;
  158. }
  159. static int
  160. i915_gem_create(struct drm_file *file,
  161. struct drm_device *dev,
  162. uint64_t size,
  163. uint32_t *handle_p)
  164. {
  165. struct drm_i915_gem_object *obj;
  166. int ret;
  167. u32 handle;
  168. size = roundup(size, PAGE_SIZE);
  169. if (size == 0)
  170. return -EINVAL;
  171. /* Allocate the new object */
  172. obj = i915_gem_alloc_object(dev, size);
  173. if (obj == NULL)
  174. return -ENOMEM;
  175. ret = drm_gem_handle_create(file, &obj->base, &handle);
  176. if (ret) {
  177. drm_gem_object_release(&obj->base);
  178. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  179. kfree(obj);
  180. return ret;
  181. }
  182. /* drop reference from allocate - handle holds it now */
  183. drm_gem_object_unreference(&obj->base);
  184. trace_i915_gem_object_create(obj);
  185. *handle_p = handle;
  186. return 0;
  187. }
  188. int
  189. i915_gem_dumb_create(struct drm_file *file,
  190. struct drm_device *dev,
  191. struct drm_mode_create_dumb *args)
  192. {
  193. /* have to work out size/pitch and return them */
  194. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  195. args->size = args->pitch * args->height;
  196. return i915_gem_create(file, dev,
  197. args->size, &args->handle);
  198. }
  199. int i915_gem_dumb_destroy(struct drm_file *file,
  200. struct drm_device *dev,
  201. uint32_t handle)
  202. {
  203. return drm_gem_handle_delete(file, handle);
  204. }
  205. /**
  206. * Creates a new mm object and returns a handle to it.
  207. */
  208. int
  209. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  210. struct drm_file *file)
  211. {
  212. struct drm_i915_gem_create *args = data;
  213. return i915_gem_create(file, dev,
  214. args->size, &args->handle);
  215. }
  216. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  217. {
  218. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  219. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  220. obj->tiling_mode != I915_TILING_NONE;
  221. }
  222. static inline void
  223. slow_shmem_copy(struct page *dst_page,
  224. int dst_offset,
  225. struct page *src_page,
  226. int src_offset,
  227. int length)
  228. {
  229. char *dst_vaddr, *src_vaddr;
  230. dst_vaddr = kmap(dst_page);
  231. src_vaddr = kmap(src_page);
  232. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  233. kunmap(src_page);
  234. kunmap(dst_page);
  235. }
  236. static inline void
  237. slow_shmem_bit17_copy(struct page *gpu_page,
  238. int gpu_offset,
  239. struct page *cpu_page,
  240. int cpu_offset,
  241. int length,
  242. int is_read)
  243. {
  244. char *gpu_vaddr, *cpu_vaddr;
  245. /* Use the unswizzled path if this page isn't affected. */
  246. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  247. if (is_read)
  248. return slow_shmem_copy(cpu_page, cpu_offset,
  249. gpu_page, gpu_offset, length);
  250. else
  251. return slow_shmem_copy(gpu_page, gpu_offset,
  252. cpu_page, cpu_offset, length);
  253. }
  254. gpu_vaddr = kmap(gpu_page);
  255. cpu_vaddr = kmap(cpu_page);
  256. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  257. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  258. */
  259. while (length > 0) {
  260. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  261. int this_length = min(cacheline_end - gpu_offset, length);
  262. int swizzled_gpu_offset = gpu_offset ^ 64;
  263. if (is_read) {
  264. memcpy(cpu_vaddr + cpu_offset,
  265. gpu_vaddr + swizzled_gpu_offset,
  266. this_length);
  267. } else {
  268. memcpy(gpu_vaddr + swizzled_gpu_offset,
  269. cpu_vaddr + cpu_offset,
  270. this_length);
  271. }
  272. cpu_offset += this_length;
  273. gpu_offset += this_length;
  274. length -= this_length;
  275. }
  276. kunmap(cpu_page);
  277. kunmap(gpu_page);
  278. }
  279. /**
  280. * This is the fast shmem pread path, which attempts to copy_from_user directly
  281. * from the backing pages of the object to the user's address space. On a
  282. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  283. */
  284. static int
  285. i915_gem_shmem_pread_fast(struct drm_device *dev,
  286. struct drm_i915_gem_object *obj,
  287. struct drm_i915_gem_pread *args,
  288. struct drm_file *file)
  289. {
  290. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  291. ssize_t remain;
  292. loff_t offset;
  293. char __user *user_data;
  294. int page_offset, page_length;
  295. user_data = (char __user *) (uintptr_t) args->data_ptr;
  296. remain = args->size;
  297. offset = args->offset;
  298. while (remain > 0) {
  299. struct page *page;
  300. char *vaddr;
  301. int ret;
  302. /* Operation in this page
  303. *
  304. * page_offset = offset within page
  305. * page_length = bytes to copy for this page
  306. */
  307. page_offset = offset_in_page(offset);
  308. page_length = remain;
  309. if ((page_offset + remain) > PAGE_SIZE)
  310. page_length = PAGE_SIZE - page_offset;
  311. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  312. if (IS_ERR(page))
  313. return PTR_ERR(page);
  314. vaddr = kmap_atomic(page);
  315. ret = __copy_to_user_inatomic(user_data,
  316. vaddr + page_offset,
  317. page_length);
  318. kunmap_atomic(vaddr);
  319. mark_page_accessed(page);
  320. page_cache_release(page);
  321. if (ret)
  322. return -EFAULT;
  323. remain -= page_length;
  324. user_data += page_length;
  325. offset += page_length;
  326. }
  327. return 0;
  328. }
  329. /**
  330. * This is the fallback shmem pread path, which allocates temporary storage
  331. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  332. * can copy out of the object's backing pages while holding the struct mutex
  333. * and not take page faults.
  334. */
  335. static int
  336. i915_gem_shmem_pread_slow(struct drm_device *dev,
  337. struct drm_i915_gem_object *obj,
  338. struct drm_i915_gem_pread *args,
  339. struct drm_file *file)
  340. {
  341. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  342. struct mm_struct *mm = current->mm;
  343. struct page **user_pages;
  344. ssize_t remain;
  345. loff_t offset, pinned_pages, i;
  346. loff_t first_data_page, last_data_page, num_pages;
  347. int shmem_page_offset;
  348. int data_page_index, data_page_offset;
  349. int page_length;
  350. int ret;
  351. uint64_t data_ptr = args->data_ptr;
  352. int do_bit17_swizzling;
  353. remain = args->size;
  354. /* Pin the user pages containing the data. We can't fault while
  355. * holding the struct mutex, yet we want to hold it while
  356. * dereferencing the user data.
  357. */
  358. first_data_page = data_ptr / PAGE_SIZE;
  359. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  360. num_pages = last_data_page - first_data_page + 1;
  361. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  362. if (user_pages == NULL)
  363. return -ENOMEM;
  364. mutex_unlock(&dev->struct_mutex);
  365. down_read(&mm->mmap_sem);
  366. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  367. num_pages, 1, 0, user_pages, NULL);
  368. up_read(&mm->mmap_sem);
  369. mutex_lock(&dev->struct_mutex);
  370. if (pinned_pages < num_pages) {
  371. ret = -EFAULT;
  372. goto out;
  373. }
  374. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  375. args->offset,
  376. args->size);
  377. if (ret)
  378. goto out;
  379. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  380. offset = args->offset;
  381. while (remain > 0) {
  382. struct page *page;
  383. /* Operation in this page
  384. *
  385. * shmem_page_offset = offset within page in shmem file
  386. * data_page_index = page number in get_user_pages return
  387. * data_page_offset = offset with data_page_index page.
  388. * page_length = bytes to copy for this page
  389. */
  390. shmem_page_offset = offset_in_page(offset);
  391. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  392. data_page_offset = offset_in_page(data_ptr);
  393. page_length = remain;
  394. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  395. page_length = PAGE_SIZE - shmem_page_offset;
  396. if ((data_page_offset + page_length) > PAGE_SIZE)
  397. page_length = PAGE_SIZE - data_page_offset;
  398. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  399. if (IS_ERR(page)) {
  400. ret = PTR_ERR(page);
  401. goto out;
  402. }
  403. if (do_bit17_swizzling) {
  404. slow_shmem_bit17_copy(page,
  405. shmem_page_offset,
  406. user_pages[data_page_index],
  407. data_page_offset,
  408. page_length,
  409. 1);
  410. } else {
  411. slow_shmem_copy(user_pages[data_page_index],
  412. data_page_offset,
  413. page,
  414. shmem_page_offset,
  415. page_length);
  416. }
  417. mark_page_accessed(page);
  418. page_cache_release(page);
  419. remain -= page_length;
  420. data_ptr += page_length;
  421. offset += page_length;
  422. }
  423. out:
  424. for (i = 0; i < pinned_pages; i++) {
  425. SetPageDirty(user_pages[i]);
  426. mark_page_accessed(user_pages[i]);
  427. page_cache_release(user_pages[i]);
  428. }
  429. drm_free_large(user_pages);
  430. return ret;
  431. }
  432. /**
  433. * Reads data from the object referenced by handle.
  434. *
  435. * On error, the contents of *data are undefined.
  436. */
  437. int
  438. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  439. struct drm_file *file)
  440. {
  441. struct drm_i915_gem_pread *args = data;
  442. struct drm_i915_gem_object *obj;
  443. int ret = 0;
  444. if (args->size == 0)
  445. return 0;
  446. if (!access_ok(VERIFY_WRITE,
  447. (char __user *)(uintptr_t)args->data_ptr,
  448. args->size))
  449. return -EFAULT;
  450. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  451. args->size);
  452. if (ret)
  453. return -EFAULT;
  454. ret = i915_mutex_lock_interruptible(dev);
  455. if (ret)
  456. return ret;
  457. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  458. if (&obj->base == NULL) {
  459. ret = -ENOENT;
  460. goto unlock;
  461. }
  462. /* Bounds check source. */
  463. if (args->offset > obj->base.size ||
  464. args->size > obj->base.size - args->offset) {
  465. ret = -EINVAL;
  466. goto out;
  467. }
  468. trace_i915_gem_object_pread(obj, args->offset, args->size);
  469. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  470. args->offset,
  471. args->size);
  472. if (ret)
  473. goto out;
  474. ret = -EFAULT;
  475. if (!i915_gem_object_needs_bit17_swizzle(obj))
  476. ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
  477. if (ret == -EFAULT)
  478. ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
  479. out:
  480. drm_gem_object_unreference(&obj->base);
  481. unlock:
  482. mutex_unlock(&dev->struct_mutex);
  483. return ret;
  484. }
  485. /* This is the fast write path which cannot handle
  486. * page faults in the source data
  487. */
  488. static inline int
  489. fast_user_write(struct io_mapping *mapping,
  490. loff_t page_base, int page_offset,
  491. char __user *user_data,
  492. int length)
  493. {
  494. char *vaddr_atomic;
  495. unsigned long unwritten;
  496. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  497. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  498. user_data, length);
  499. io_mapping_unmap_atomic(vaddr_atomic);
  500. return unwritten;
  501. }
  502. /* Here's the write path which can sleep for
  503. * page faults
  504. */
  505. static inline void
  506. slow_kernel_write(struct io_mapping *mapping,
  507. loff_t gtt_base, int gtt_offset,
  508. struct page *user_page, int user_offset,
  509. int length)
  510. {
  511. char __iomem *dst_vaddr;
  512. char *src_vaddr;
  513. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  514. src_vaddr = kmap(user_page);
  515. memcpy_toio(dst_vaddr + gtt_offset,
  516. src_vaddr + user_offset,
  517. length);
  518. kunmap(user_page);
  519. io_mapping_unmap(dst_vaddr);
  520. }
  521. /**
  522. * This is the fast pwrite path, where we copy the data directly from the
  523. * user into the GTT, uncached.
  524. */
  525. static int
  526. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  527. struct drm_i915_gem_object *obj,
  528. struct drm_i915_gem_pwrite *args,
  529. struct drm_file *file)
  530. {
  531. drm_i915_private_t *dev_priv = dev->dev_private;
  532. ssize_t remain;
  533. loff_t offset, page_base;
  534. char __user *user_data;
  535. int page_offset, page_length;
  536. user_data = (char __user *) (uintptr_t) args->data_ptr;
  537. remain = args->size;
  538. offset = obj->gtt_offset + args->offset;
  539. while (remain > 0) {
  540. /* Operation in this page
  541. *
  542. * page_base = page offset within aperture
  543. * page_offset = offset within page
  544. * page_length = bytes to copy for this page
  545. */
  546. page_base = offset & PAGE_MASK;
  547. page_offset = offset_in_page(offset);
  548. page_length = remain;
  549. if ((page_offset + remain) > PAGE_SIZE)
  550. page_length = PAGE_SIZE - page_offset;
  551. /* If we get a fault while copying data, then (presumably) our
  552. * source page isn't available. Return the error and we'll
  553. * retry in the slow path.
  554. */
  555. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  556. page_offset, user_data, page_length))
  557. return -EFAULT;
  558. remain -= page_length;
  559. user_data += page_length;
  560. offset += page_length;
  561. }
  562. return 0;
  563. }
  564. /**
  565. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  566. * the memory and maps it using kmap_atomic for copying.
  567. *
  568. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  569. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  570. */
  571. static int
  572. i915_gem_gtt_pwrite_slow(struct drm_device *dev,
  573. struct drm_i915_gem_object *obj,
  574. struct drm_i915_gem_pwrite *args,
  575. struct drm_file *file)
  576. {
  577. drm_i915_private_t *dev_priv = dev->dev_private;
  578. ssize_t remain;
  579. loff_t gtt_page_base, offset;
  580. loff_t first_data_page, last_data_page, num_pages;
  581. loff_t pinned_pages, i;
  582. struct page **user_pages;
  583. struct mm_struct *mm = current->mm;
  584. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  585. int ret;
  586. uint64_t data_ptr = args->data_ptr;
  587. remain = args->size;
  588. /* Pin the user pages containing the data. We can't fault while
  589. * holding the struct mutex, and all of the pwrite implementations
  590. * want to hold it while dereferencing the user data.
  591. */
  592. first_data_page = data_ptr / PAGE_SIZE;
  593. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  594. num_pages = last_data_page - first_data_page + 1;
  595. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  596. if (user_pages == NULL)
  597. return -ENOMEM;
  598. mutex_unlock(&dev->struct_mutex);
  599. down_read(&mm->mmap_sem);
  600. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  601. num_pages, 0, 0, user_pages, NULL);
  602. up_read(&mm->mmap_sem);
  603. mutex_lock(&dev->struct_mutex);
  604. if (pinned_pages < num_pages) {
  605. ret = -EFAULT;
  606. goto out_unpin_pages;
  607. }
  608. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  609. if (ret)
  610. goto out_unpin_pages;
  611. ret = i915_gem_object_put_fence(obj);
  612. if (ret)
  613. goto out_unpin_pages;
  614. offset = obj->gtt_offset + args->offset;
  615. while (remain > 0) {
  616. /* Operation in this page
  617. *
  618. * gtt_page_base = page offset within aperture
  619. * gtt_page_offset = offset within page in aperture
  620. * data_page_index = page number in get_user_pages return
  621. * data_page_offset = offset with data_page_index page.
  622. * page_length = bytes to copy for this page
  623. */
  624. gtt_page_base = offset & PAGE_MASK;
  625. gtt_page_offset = offset_in_page(offset);
  626. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  627. data_page_offset = offset_in_page(data_ptr);
  628. page_length = remain;
  629. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  630. page_length = PAGE_SIZE - gtt_page_offset;
  631. if ((data_page_offset + page_length) > PAGE_SIZE)
  632. page_length = PAGE_SIZE - data_page_offset;
  633. slow_kernel_write(dev_priv->mm.gtt_mapping,
  634. gtt_page_base, gtt_page_offset,
  635. user_pages[data_page_index],
  636. data_page_offset,
  637. page_length);
  638. remain -= page_length;
  639. offset += page_length;
  640. data_ptr += page_length;
  641. }
  642. out_unpin_pages:
  643. for (i = 0; i < pinned_pages; i++)
  644. page_cache_release(user_pages[i]);
  645. drm_free_large(user_pages);
  646. return ret;
  647. }
  648. /**
  649. * This is the fast shmem pwrite path, which attempts to directly
  650. * copy_from_user into the kmapped pages backing the object.
  651. */
  652. static int
  653. i915_gem_shmem_pwrite_fast(struct drm_device *dev,
  654. struct drm_i915_gem_object *obj,
  655. struct drm_i915_gem_pwrite *args,
  656. struct drm_file *file)
  657. {
  658. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  659. ssize_t remain;
  660. loff_t offset;
  661. char __user *user_data;
  662. int page_offset, page_length;
  663. user_data = (char __user *) (uintptr_t) args->data_ptr;
  664. remain = args->size;
  665. offset = args->offset;
  666. obj->dirty = 1;
  667. while (remain > 0) {
  668. struct page *page;
  669. char *vaddr;
  670. int ret;
  671. /* Operation in this page
  672. *
  673. * page_offset = offset within page
  674. * page_length = bytes to copy for this page
  675. */
  676. page_offset = offset_in_page(offset);
  677. page_length = remain;
  678. if ((page_offset + remain) > PAGE_SIZE)
  679. page_length = PAGE_SIZE - page_offset;
  680. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  681. if (IS_ERR(page))
  682. return PTR_ERR(page);
  683. vaddr = kmap_atomic(page);
  684. ret = __copy_from_user_inatomic(vaddr + page_offset,
  685. user_data,
  686. page_length);
  687. kunmap_atomic(vaddr);
  688. set_page_dirty(page);
  689. mark_page_accessed(page);
  690. page_cache_release(page);
  691. /* If we get a fault while copying data, then (presumably) our
  692. * source page isn't available. Return the error and we'll
  693. * retry in the slow path.
  694. */
  695. if (ret)
  696. return -EFAULT;
  697. remain -= page_length;
  698. user_data += page_length;
  699. offset += page_length;
  700. }
  701. return 0;
  702. }
  703. /**
  704. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  705. * the memory and maps it using kmap_atomic for copying.
  706. *
  707. * This avoids taking mmap_sem for faulting on the user's address while the
  708. * struct_mutex is held.
  709. */
  710. static int
  711. i915_gem_shmem_pwrite_slow(struct drm_device *dev,
  712. struct drm_i915_gem_object *obj,
  713. struct drm_i915_gem_pwrite *args,
  714. struct drm_file *file)
  715. {
  716. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  717. struct mm_struct *mm = current->mm;
  718. struct page **user_pages;
  719. ssize_t remain;
  720. loff_t offset, pinned_pages, i;
  721. loff_t first_data_page, last_data_page, num_pages;
  722. int shmem_page_offset;
  723. int data_page_index, data_page_offset;
  724. int page_length;
  725. int ret;
  726. uint64_t data_ptr = args->data_ptr;
  727. int do_bit17_swizzling;
  728. remain = args->size;
  729. /* Pin the user pages containing the data. We can't fault while
  730. * holding the struct mutex, and all of the pwrite implementations
  731. * want to hold it while dereferencing the user data.
  732. */
  733. first_data_page = data_ptr / PAGE_SIZE;
  734. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  735. num_pages = last_data_page - first_data_page + 1;
  736. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  737. if (user_pages == NULL)
  738. return -ENOMEM;
  739. mutex_unlock(&dev->struct_mutex);
  740. down_read(&mm->mmap_sem);
  741. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  742. num_pages, 0, 0, user_pages, NULL);
  743. up_read(&mm->mmap_sem);
  744. mutex_lock(&dev->struct_mutex);
  745. if (pinned_pages < num_pages) {
  746. ret = -EFAULT;
  747. goto out;
  748. }
  749. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  750. if (ret)
  751. goto out;
  752. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  753. offset = args->offset;
  754. obj->dirty = 1;
  755. while (remain > 0) {
  756. struct page *page;
  757. /* Operation in this page
  758. *
  759. * shmem_page_offset = offset within page in shmem file
  760. * data_page_index = page number in get_user_pages return
  761. * data_page_offset = offset with data_page_index page.
  762. * page_length = bytes to copy for this page
  763. */
  764. shmem_page_offset = offset_in_page(offset);
  765. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  766. data_page_offset = offset_in_page(data_ptr);
  767. page_length = remain;
  768. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  769. page_length = PAGE_SIZE - shmem_page_offset;
  770. if ((data_page_offset + page_length) > PAGE_SIZE)
  771. page_length = PAGE_SIZE - data_page_offset;
  772. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  773. if (IS_ERR(page)) {
  774. ret = PTR_ERR(page);
  775. goto out;
  776. }
  777. if (do_bit17_swizzling) {
  778. slow_shmem_bit17_copy(page,
  779. shmem_page_offset,
  780. user_pages[data_page_index],
  781. data_page_offset,
  782. page_length,
  783. 0);
  784. } else {
  785. slow_shmem_copy(page,
  786. shmem_page_offset,
  787. user_pages[data_page_index],
  788. data_page_offset,
  789. page_length);
  790. }
  791. set_page_dirty(page);
  792. mark_page_accessed(page);
  793. page_cache_release(page);
  794. remain -= page_length;
  795. data_ptr += page_length;
  796. offset += page_length;
  797. }
  798. out:
  799. for (i = 0; i < pinned_pages; i++)
  800. page_cache_release(user_pages[i]);
  801. drm_free_large(user_pages);
  802. return ret;
  803. }
  804. /**
  805. * Writes data to the object referenced by handle.
  806. *
  807. * On error, the contents of the buffer that were to be modified are undefined.
  808. */
  809. int
  810. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  811. struct drm_file *file)
  812. {
  813. struct drm_i915_gem_pwrite *args = data;
  814. struct drm_i915_gem_object *obj;
  815. int ret;
  816. if (args->size == 0)
  817. return 0;
  818. if (!access_ok(VERIFY_READ,
  819. (char __user *)(uintptr_t)args->data_ptr,
  820. args->size))
  821. return -EFAULT;
  822. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  823. args->size);
  824. if (ret)
  825. return -EFAULT;
  826. ret = i915_mutex_lock_interruptible(dev);
  827. if (ret)
  828. return ret;
  829. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  830. if (&obj->base == NULL) {
  831. ret = -ENOENT;
  832. goto unlock;
  833. }
  834. /* Bounds check destination. */
  835. if (args->offset > obj->base.size ||
  836. args->size > obj->base.size - args->offset) {
  837. ret = -EINVAL;
  838. goto out;
  839. }
  840. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  841. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  842. * it would end up going through the fenced access, and we'll get
  843. * different detiling behavior between reading and writing.
  844. * pread/pwrite currently are reading and writing from the CPU
  845. * perspective, requiring manual detiling by the client.
  846. */
  847. if (obj->phys_obj)
  848. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  849. else if (obj->gtt_space &&
  850. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  851. ret = i915_gem_object_pin(obj, 0, true);
  852. if (ret)
  853. goto out;
  854. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  855. if (ret)
  856. goto out_unpin;
  857. ret = i915_gem_object_put_fence(obj);
  858. if (ret)
  859. goto out_unpin;
  860. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  861. if (ret == -EFAULT)
  862. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  863. out_unpin:
  864. i915_gem_object_unpin(obj);
  865. } else {
  866. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  867. if (ret)
  868. goto out;
  869. ret = -EFAULT;
  870. if (!i915_gem_object_needs_bit17_swizzle(obj))
  871. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
  872. if (ret == -EFAULT)
  873. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
  874. }
  875. out:
  876. drm_gem_object_unreference(&obj->base);
  877. unlock:
  878. mutex_unlock(&dev->struct_mutex);
  879. return ret;
  880. }
  881. /**
  882. * Called when user space prepares to use an object with the CPU, either
  883. * through the mmap ioctl's mapping or a GTT mapping.
  884. */
  885. int
  886. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  887. struct drm_file *file)
  888. {
  889. struct drm_i915_gem_set_domain *args = data;
  890. struct drm_i915_gem_object *obj;
  891. uint32_t read_domains = args->read_domains;
  892. uint32_t write_domain = args->write_domain;
  893. int ret;
  894. if (!(dev->driver->driver_features & DRIVER_GEM))
  895. return -ENODEV;
  896. /* Only handle setting domains to types used by the CPU. */
  897. if (write_domain & I915_GEM_GPU_DOMAINS)
  898. return -EINVAL;
  899. if (read_domains & I915_GEM_GPU_DOMAINS)
  900. return -EINVAL;
  901. /* Having something in the write domain implies it's in the read
  902. * domain, and only that read domain. Enforce that in the request.
  903. */
  904. if (write_domain != 0 && read_domains != write_domain)
  905. return -EINVAL;
  906. ret = i915_mutex_lock_interruptible(dev);
  907. if (ret)
  908. return ret;
  909. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  910. if (&obj->base == NULL) {
  911. ret = -ENOENT;
  912. goto unlock;
  913. }
  914. if (read_domains & I915_GEM_DOMAIN_GTT) {
  915. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  916. /* Silently promote "you're not bound, there was nothing to do"
  917. * to success, since the client was just asking us to
  918. * make sure everything was done.
  919. */
  920. if (ret == -EINVAL)
  921. ret = 0;
  922. } else {
  923. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  924. }
  925. drm_gem_object_unreference(&obj->base);
  926. unlock:
  927. mutex_unlock(&dev->struct_mutex);
  928. return ret;
  929. }
  930. /**
  931. * Called when user space has done writes to this buffer
  932. */
  933. int
  934. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  935. struct drm_file *file)
  936. {
  937. struct drm_i915_gem_sw_finish *args = data;
  938. struct drm_i915_gem_object *obj;
  939. int ret = 0;
  940. if (!(dev->driver->driver_features & DRIVER_GEM))
  941. return -ENODEV;
  942. ret = i915_mutex_lock_interruptible(dev);
  943. if (ret)
  944. return ret;
  945. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  946. if (&obj->base == NULL) {
  947. ret = -ENOENT;
  948. goto unlock;
  949. }
  950. /* Pinned buffers may be scanout, so flush the cache */
  951. if (obj->pin_count)
  952. i915_gem_object_flush_cpu_write_domain(obj);
  953. drm_gem_object_unreference(&obj->base);
  954. unlock:
  955. mutex_unlock(&dev->struct_mutex);
  956. return ret;
  957. }
  958. /**
  959. * Maps the contents of an object, returning the address it is mapped
  960. * into.
  961. *
  962. * While the mapping holds a reference on the contents of the object, it doesn't
  963. * imply a ref on the object itself.
  964. */
  965. int
  966. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  967. struct drm_file *file)
  968. {
  969. struct drm_i915_private *dev_priv = dev->dev_private;
  970. struct drm_i915_gem_mmap *args = data;
  971. struct drm_gem_object *obj;
  972. unsigned long addr;
  973. if (!(dev->driver->driver_features & DRIVER_GEM))
  974. return -ENODEV;
  975. obj = drm_gem_object_lookup(dev, file, args->handle);
  976. if (obj == NULL)
  977. return -ENOENT;
  978. if (obj->size > dev_priv->mm.gtt_mappable_end) {
  979. drm_gem_object_unreference_unlocked(obj);
  980. return -E2BIG;
  981. }
  982. down_write(&current->mm->mmap_sem);
  983. addr = do_mmap(obj->filp, 0, args->size,
  984. PROT_READ | PROT_WRITE, MAP_SHARED,
  985. args->offset);
  986. up_write(&current->mm->mmap_sem);
  987. drm_gem_object_unreference_unlocked(obj);
  988. if (IS_ERR((void *)addr))
  989. return addr;
  990. args->addr_ptr = (uint64_t) addr;
  991. return 0;
  992. }
  993. /**
  994. * i915_gem_fault - fault a page into the GTT
  995. * vma: VMA in question
  996. * vmf: fault info
  997. *
  998. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  999. * from userspace. The fault handler takes care of binding the object to
  1000. * the GTT (if needed), allocating and programming a fence register (again,
  1001. * only if needed based on whether the old reg is still valid or the object
  1002. * is tiled) and inserting a new PTE into the faulting process.
  1003. *
  1004. * Note that the faulting process may involve evicting existing objects
  1005. * from the GTT and/or fence registers to make room. So performance may
  1006. * suffer if the GTT working set is large or there are few fence registers
  1007. * left.
  1008. */
  1009. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1010. {
  1011. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  1012. struct drm_device *dev = obj->base.dev;
  1013. drm_i915_private_t *dev_priv = dev->dev_private;
  1014. pgoff_t page_offset;
  1015. unsigned long pfn;
  1016. int ret = 0;
  1017. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1018. /* We don't use vmf->pgoff since that has the fake offset */
  1019. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1020. PAGE_SHIFT;
  1021. ret = i915_mutex_lock_interruptible(dev);
  1022. if (ret)
  1023. goto out;
  1024. trace_i915_gem_object_fault(obj, page_offset, true, write);
  1025. /* Now bind it into the GTT if needed */
  1026. if (!obj->map_and_fenceable) {
  1027. ret = i915_gem_object_unbind(obj);
  1028. if (ret)
  1029. goto unlock;
  1030. }
  1031. if (!obj->gtt_space) {
  1032. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  1033. if (ret)
  1034. goto unlock;
  1035. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1036. if (ret)
  1037. goto unlock;
  1038. }
  1039. if (obj->tiling_mode == I915_TILING_NONE)
  1040. ret = i915_gem_object_put_fence(obj);
  1041. else
  1042. ret = i915_gem_object_get_fence(obj, NULL);
  1043. if (ret)
  1044. goto unlock;
  1045. if (i915_gem_object_is_inactive(obj))
  1046. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1047. obj->fault_mappable = true;
  1048. pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
  1049. page_offset;
  1050. /* Finally, remap it using the new GTT offset */
  1051. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1052. unlock:
  1053. mutex_unlock(&dev->struct_mutex);
  1054. out:
  1055. switch (ret) {
  1056. case -EIO:
  1057. case -EAGAIN:
  1058. /* Give the error handler a chance to run and move the
  1059. * objects off the GPU active list. Next time we service the
  1060. * fault, we should be able to transition the page into the
  1061. * GTT without touching the GPU (and so avoid further
  1062. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  1063. * with coherency, just lost writes.
  1064. */
  1065. set_need_resched();
  1066. case 0:
  1067. case -ERESTARTSYS:
  1068. case -EINTR:
  1069. return VM_FAULT_NOPAGE;
  1070. case -ENOMEM:
  1071. return VM_FAULT_OOM;
  1072. default:
  1073. return VM_FAULT_SIGBUS;
  1074. }
  1075. }
  1076. /**
  1077. * i915_gem_release_mmap - remove physical page mappings
  1078. * @obj: obj in question
  1079. *
  1080. * Preserve the reservation of the mmapping with the DRM core code, but
  1081. * relinquish ownership of the pages back to the system.
  1082. *
  1083. * It is vital that we remove the page mapping if we have mapped a tiled
  1084. * object through the GTT and then lose the fence register due to
  1085. * resource pressure. Similarly if the object has been moved out of the
  1086. * aperture, than pages mapped into userspace must be revoked. Removing the
  1087. * mapping will then trigger a page fault on the next user access, allowing
  1088. * fixup by i915_gem_fault().
  1089. */
  1090. void
  1091. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  1092. {
  1093. if (!obj->fault_mappable)
  1094. return;
  1095. if (obj->base.dev->dev_mapping)
  1096. unmap_mapping_range(obj->base.dev->dev_mapping,
  1097. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  1098. obj->base.size, 1);
  1099. obj->fault_mappable = false;
  1100. }
  1101. static uint32_t
  1102. i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
  1103. {
  1104. uint32_t gtt_size;
  1105. if (INTEL_INFO(dev)->gen >= 4 ||
  1106. tiling_mode == I915_TILING_NONE)
  1107. return size;
  1108. /* Previous chips need a power-of-two fence region when tiling */
  1109. if (INTEL_INFO(dev)->gen == 3)
  1110. gtt_size = 1024*1024;
  1111. else
  1112. gtt_size = 512*1024;
  1113. while (gtt_size < size)
  1114. gtt_size <<= 1;
  1115. return gtt_size;
  1116. }
  1117. /**
  1118. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1119. * @obj: object to check
  1120. *
  1121. * Return the required GTT alignment for an object, taking into account
  1122. * potential fence register mapping.
  1123. */
  1124. static uint32_t
  1125. i915_gem_get_gtt_alignment(struct drm_device *dev,
  1126. uint32_t size,
  1127. int tiling_mode)
  1128. {
  1129. /*
  1130. * Minimum alignment is 4k (GTT page size), but might be greater
  1131. * if a fence register is needed for the object.
  1132. */
  1133. if (INTEL_INFO(dev)->gen >= 4 ||
  1134. tiling_mode == I915_TILING_NONE)
  1135. return 4096;
  1136. /*
  1137. * Previous chips need to be aligned to the size of the smallest
  1138. * fence register that can contain the object.
  1139. */
  1140. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1141. }
  1142. /**
  1143. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1144. * unfenced object
  1145. * @dev: the device
  1146. * @size: size of the object
  1147. * @tiling_mode: tiling mode of the object
  1148. *
  1149. * Return the required GTT alignment for an object, only taking into account
  1150. * unfenced tiled surface requirements.
  1151. */
  1152. uint32_t
  1153. i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
  1154. uint32_t size,
  1155. int tiling_mode)
  1156. {
  1157. /*
  1158. * Minimum alignment is 4k (GTT page size) for sane hw.
  1159. */
  1160. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1161. tiling_mode == I915_TILING_NONE)
  1162. return 4096;
  1163. /* Previous hardware however needs to be aligned to a power-of-two
  1164. * tile height. The simplest method for determining this is to reuse
  1165. * the power-of-tile object size.
  1166. */
  1167. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1168. }
  1169. int
  1170. i915_gem_mmap_gtt(struct drm_file *file,
  1171. struct drm_device *dev,
  1172. uint32_t handle,
  1173. uint64_t *offset)
  1174. {
  1175. struct drm_i915_private *dev_priv = dev->dev_private;
  1176. struct drm_i915_gem_object *obj;
  1177. int ret;
  1178. if (!(dev->driver->driver_features & DRIVER_GEM))
  1179. return -ENODEV;
  1180. ret = i915_mutex_lock_interruptible(dev);
  1181. if (ret)
  1182. return ret;
  1183. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1184. if (&obj->base == NULL) {
  1185. ret = -ENOENT;
  1186. goto unlock;
  1187. }
  1188. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1189. ret = -E2BIG;
  1190. goto out;
  1191. }
  1192. if (obj->madv != I915_MADV_WILLNEED) {
  1193. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1194. ret = -EINVAL;
  1195. goto out;
  1196. }
  1197. if (!obj->base.map_list.map) {
  1198. ret = drm_gem_create_mmap_offset(&obj->base);
  1199. if (ret)
  1200. goto out;
  1201. }
  1202. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1203. out:
  1204. drm_gem_object_unreference(&obj->base);
  1205. unlock:
  1206. mutex_unlock(&dev->struct_mutex);
  1207. return ret;
  1208. }
  1209. /**
  1210. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1211. * @dev: DRM device
  1212. * @data: GTT mapping ioctl data
  1213. * @file: GEM object info
  1214. *
  1215. * Simply returns the fake offset to userspace so it can mmap it.
  1216. * The mmap call will end up in drm_gem_mmap(), which will set things
  1217. * up so we can get faults in the handler above.
  1218. *
  1219. * The fault handler will take care of binding the object into the GTT
  1220. * (since it may have been evicted to make room for something), allocating
  1221. * a fence register, and mapping the appropriate aperture address into
  1222. * userspace.
  1223. */
  1224. int
  1225. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1226. struct drm_file *file)
  1227. {
  1228. struct drm_i915_gem_mmap_gtt *args = data;
  1229. if (!(dev->driver->driver_features & DRIVER_GEM))
  1230. return -ENODEV;
  1231. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1232. }
  1233. static int
  1234. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
  1235. gfp_t gfpmask)
  1236. {
  1237. int page_count, i;
  1238. struct address_space *mapping;
  1239. struct inode *inode;
  1240. struct page *page;
  1241. /* Get the list of pages out of our struct file. They'll be pinned
  1242. * at this point until we release them.
  1243. */
  1244. page_count = obj->base.size / PAGE_SIZE;
  1245. BUG_ON(obj->pages != NULL);
  1246. obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1247. if (obj->pages == NULL)
  1248. return -ENOMEM;
  1249. inode = obj->base.filp->f_path.dentry->d_inode;
  1250. mapping = inode->i_mapping;
  1251. gfpmask |= mapping_gfp_mask(mapping);
  1252. for (i = 0; i < page_count; i++) {
  1253. page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
  1254. if (IS_ERR(page))
  1255. goto err_pages;
  1256. obj->pages[i] = page;
  1257. }
  1258. if (i915_gem_object_needs_bit17_swizzle(obj))
  1259. i915_gem_object_do_bit_17_swizzle(obj);
  1260. return 0;
  1261. err_pages:
  1262. while (i--)
  1263. page_cache_release(obj->pages[i]);
  1264. drm_free_large(obj->pages);
  1265. obj->pages = NULL;
  1266. return PTR_ERR(page);
  1267. }
  1268. static void
  1269. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1270. {
  1271. int page_count = obj->base.size / PAGE_SIZE;
  1272. int i;
  1273. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1274. if (i915_gem_object_needs_bit17_swizzle(obj))
  1275. i915_gem_object_save_bit_17_swizzle(obj);
  1276. if (obj->madv == I915_MADV_DONTNEED)
  1277. obj->dirty = 0;
  1278. for (i = 0; i < page_count; i++) {
  1279. if (obj->dirty)
  1280. set_page_dirty(obj->pages[i]);
  1281. if (obj->madv == I915_MADV_WILLNEED)
  1282. mark_page_accessed(obj->pages[i]);
  1283. page_cache_release(obj->pages[i]);
  1284. }
  1285. obj->dirty = 0;
  1286. drm_free_large(obj->pages);
  1287. obj->pages = NULL;
  1288. }
  1289. void
  1290. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1291. struct intel_ring_buffer *ring,
  1292. u32 seqno)
  1293. {
  1294. struct drm_device *dev = obj->base.dev;
  1295. struct drm_i915_private *dev_priv = dev->dev_private;
  1296. BUG_ON(ring == NULL);
  1297. obj->ring = ring;
  1298. /* Add a reference if we're newly entering the active list. */
  1299. if (!obj->active) {
  1300. drm_gem_object_reference(&obj->base);
  1301. obj->active = 1;
  1302. }
  1303. /* Move from whatever list we were on to the tail of execution. */
  1304. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1305. list_move_tail(&obj->ring_list, &ring->active_list);
  1306. obj->last_rendering_seqno = seqno;
  1307. if (obj->fenced_gpu_access) {
  1308. struct drm_i915_fence_reg *reg;
  1309. BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
  1310. obj->last_fenced_seqno = seqno;
  1311. obj->last_fenced_ring = ring;
  1312. reg = &dev_priv->fence_regs[obj->fence_reg];
  1313. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1314. }
  1315. }
  1316. static void
  1317. i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
  1318. {
  1319. list_del_init(&obj->ring_list);
  1320. obj->last_rendering_seqno = 0;
  1321. }
  1322. static void
  1323. i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
  1324. {
  1325. struct drm_device *dev = obj->base.dev;
  1326. drm_i915_private_t *dev_priv = dev->dev_private;
  1327. BUG_ON(!obj->active);
  1328. list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
  1329. i915_gem_object_move_off_active(obj);
  1330. }
  1331. static void
  1332. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1333. {
  1334. struct drm_device *dev = obj->base.dev;
  1335. struct drm_i915_private *dev_priv = dev->dev_private;
  1336. if (obj->pin_count != 0)
  1337. list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
  1338. else
  1339. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1340. BUG_ON(!list_empty(&obj->gpu_write_list));
  1341. BUG_ON(!obj->active);
  1342. obj->ring = NULL;
  1343. i915_gem_object_move_off_active(obj);
  1344. obj->fenced_gpu_access = false;
  1345. obj->active = 0;
  1346. obj->pending_gpu_write = false;
  1347. drm_gem_object_unreference(&obj->base);
  1348. WARN_ON(i915_verify_lists(dev));
  1349. }
  1350. /* Immediately discard the backing storage */
  1351. static void
  1352. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1353. {
  1354. struct inode *inode;
  1355. /* Our goal here is to return as much of the memory as
  1356. * is possible back to the system as we are called from OOM.
  1357. * To do this we must instruct the shmfs to drop all of its
  1358. * backing pages, *now*.
  1359. */
  1360. inode = obj->base.filp->f_path.dentry->d_inode;
  1361. shmem_truncate_range(inode, 0, (loff_t)-1);
  1362. obj->madv = __I915_MADV_PURGED;
  1363. }
  1364. static inline int
  1365. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1366. {
  1367. return obj->madv == I915_MADV_DONTNEED;
  1368. }
  1369. static void
  1370. i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
  1371. uint32_t flush_domains)
  1372. {
  1373. struct drm_i915_gem_object *obj, *next;
  1374. list_for_each_entry_safe(obj, next,
  1375. &ring->gpu_write_list,
  1376. gpu_write_list) {
  1377. if (obj->base.write_domain & flush_domains) {
  1378. uint32_t old_write_domain = obj->base.write_domain;
  1379. obj->base.write_domain = 0;
  1380. list_del_init(&obj->gpu_write_list);
  1381. i915_gem_object_move_to_active(obj, ring,
  1382. i915_gem_next_request_seqno(ring));
  1383. trace_i915_gem_object_change_domain(obj,
  1384. obj->base.read_domains,
  1385. old_write_domain);
  1386. }
  1387. }
  1388. }
  1389. int
  1390. i915_add_request(struct intel_ring_buffer *ring,
  1391. struct drm_file *file,
  1392. struct drm_i915_gem_request *request)
  1393. {
  1394. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1395. uint32_t seqno;
  1396. int was_empty;
  1397. int ret;
  1398. BUG_ON(request == NULL);
  1399. ret = ring->add_request(ring, &seqno);
  1400. if (ret)
  1401. return ret;
  1402. trace_i915_gem_request_add(ring, seqno);
  1403. request->seqno = seqno;
  1404. request->ring = ring;
  1405. request->emitted_jiffies = jiffies;
  1406. was_empty = list_empty(&ring->request_list);
  1407. list_add_tail(&request->list, &ring->request_list);
  1408. if (file) {
  1409. struct drm_i915_file_private *file_priv = file->driver_priv;
  1410. spin_lock(&file_priv->mm.lock);
  1411. request->file_priv = file_priv;
  1412. list_add_tail(&request->client_list,
  1413. &file_priv->mm.request_list);
  1414. spin_unlock(&file_priv->mm.lock);
  1415. }
  1416. ring->outstanding_lazy_request = false;
  1417. if (!dev_priv->mm.suspended) {
  1418. if (i915_enable_hangcheck) {
  1419. mod_timer(&dev_priv->hangcheck_timer,
  1420. jiffies +
  1421. msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1422. }
  1423. if (was_empty)
  1424. queue_delayed_work(dev_priv->wq,
  1425. &dev_priv->mm.retire_work, HZ);
  1426. }
  1427. return 0;
  1428. }
  1429. static inline void
  1430. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1431. {
  1432. struct drm_i915_file_private *file_priv = request->file_priv;
  1433. if (!file_priv)
  1434. return;
  1435. spin_lock(&file_priv->mm.lock);
  1436. if (request->file_priv) {
  1437. list_del(&request->client_list);
  1438. request->file_priv = NULL;
  1439. }
  1440. spin_unlock(&file_priv->mm.lock);
  1441. }
  1442. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1443. struct intel_ring_buffer *ring)
  1444. {
  1445. while (!list_empty(&ring->request_list)) {
  1446. struct drm_i915_gem_request *request;
  1447. request = list_first_entry(&ring->request_list,
  1448. struct drm_i915_gem_request,
  1449. list);
  1450. list_del(&request->list);
  1451. i915_gem_request_remove_from_client(request);
  1452. kfree(request);
  1453. }
  1454. while (!list_empty(&ring->active_list)) {
  1455. struct drm_i915_gem_object *obj;
  1456. obj = list_first_entry(&ring->active_list,
  1457. struct drm_i915_gem_object,
  1458. ring_list);
  1459. obj->base.write_domain = 0;
  1460. list_del_init(&obj->gpu_write_list);
  1461. i915_gem_object_move_to_inactive(obj);
  1462. }
  1463. }
  1464. static void i915_gem_reset_fences(struct drm_device *dev)
  1465. {
  1466. struct drm_i915_private *dev_priv = dev->dev_private;
  1467. int i;
  1468. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  1469. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1470. struct drm_i915_gem_object *obj = reg->obj;
  1471. if (!obj)
  1472. continue;
  1473. if (obj->tiling_mode)
  1474. i915_gem_release_mmap(obj);
  1475. reg->obj->fence_reg = I915_FENCE_REG_NONE;
  1476. reg->obj->fenced_gpu_access = false;
  1477. reg->obj->last_fenced_seqno = 0;
  1478. reg->obj->last_fenced_ring = NULL;
  1479. i915_gem_clear_fence_reg(dev, reg);
  1480. }
  1481. }
  1482. void i915_gem_reset(struct drm_device *dev)
  1483. {
  1484. struct drm_i915_private *dev_priv = dev->dev_private;
  1485. struct drm_i915_gem_object *obj;
  1486. int i;
  1487. for (i = 0; i < I915_NUM_RINGS; i++)
  1488. i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
  1489. /* Remove anything from the flushing lists. The GPU cache is likely
  1490. * to be lost on reset along with the data, so simply move the
  1491. * lost bo to the inactive list.
  1492. */
  1493. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1494. obj = list_first_entry(&dev_priv->mm.flushing_list,
  1495. struct drm_i915_gem_object,
  1496. mm_list);
  1497. obj->base.write_domain = 0;
  1498. list_del_init(&obj->gpu_write_list);
  1499. i915_gem_object_move_to_inactive(obj);
  1500. }
  1501. /* Move everything out of the GPU domains to ensure we do any
  1502. * necessary invalidation upon reuse.
  1503. */
  1504. list_for_each_entry(obj,
  1505. &dev_priv->mm.inactive_list,
  1506. mm_list)
  1507. {
  1508. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1509. }
  1510. /* The fence registers are invalidated so clear them out */
  1511. i915_gem_reset_fences(dev);
  1512. }
  1513. /**
  1514. * This function clears the request list as sequence numbers are passed.
  1515. */
  1516. static void
  1517. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1518. {
  1519. uint32_t seqno;
  1520. int i;
  1521. if (list_empty(&ring->request_list))
  1522. return;
  1523. WARN_ON(i915_verify_lists(ring->dev));
  1524. seqno = ring->get_seqno(ring);
  1525. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1526. if (seqno >= ring->sync_seqno[i])
  1527. ring->sync_seqno[i] = 0;
  1528. while (!list_empty(&ring->request_list)) {
  1529. struct drm_i915_gem_request *request;
  1530. request = list_first_entry(&ring->request_list,
  1531. struct drm_i915_gem_request,
  1532. list);
  1533. if (!i915_seqno_passed(seqno, request->seqno))
  1534. break;
  1535. trace_i915_gem_request_retire(ring, request->seqno);
  1536. list_del(&request->list);
  1537. i915_gem_request_remove_from_client(request);
  1538. kfree(request);
  1539. }
  1540. /* Move any buffers on the active list that are no longer referenced
  1541. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1542. */
  1543. while (!list_empty(&ring->active_list)) {
  1544. struct drm_i915_gem_object *obj;
  1545. obj = list_first_entry(&ring->active_list,
  1546. struct drm_i915_gem_object,
  1547. ring_list);
  1548. if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
  1549. break;
  1550. if (obj->base.write_domain != 0)
  1551. i915_gem_object_move_to_flushing(obj);
  1552. else
  1553. i915_gem_object_move_to_inactive(obj);
  1554. }
  1555. if (unlikely(ring->trace_irq_seqno &&
  1556. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1557. ring->irq_put(ring);
  1558. ring->trace_irq_seqno = 0;
  1559. }
  1560. WARN_ON(i915_verify_lists(ring->dev));
  1561. }
  1562. void
  1563. i915_gem_retire_requests(struct drm_device *dev)
  1564. {
  1565. drm_i915_private_t *dev_priv = dev->dev_private;
  1566. int i;
  1567. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1568. struct drm_i915_gem_object *obj, *next;
  1569. /* We must be careful that during unbind() we do not
  1570. * accidentally infinitely recurse into retire requests.
  1571. * Currently:
  1572. * retire -> free -> unbind -> wait -> retire_ring
  1573. */
  1574. list_for_each_entry_safe(obj, next,
  1575. &dev_priv->mm.deferred_free_list,
  1576. mm_list)
  1577. i915_gem_free_object_tail(obj);
  1578. }
  1579. for (i = 0; i < I915_NUM_RINGS; i++)
  1580. i915_gem_retire_requests_ring(&dev_priv->ring[i]);
  1581. }
  1582. static void
  1583. i915_gem_retire_work_handler(struct work_struct *work)
  1584. {
  1585. drm_i915_private_t *dev_priv;
  1586. struct drm_device *dev;
  1587. bool idle;
  1588. int i;
  1589. dev_priv = container_of(work, drm_i915_private_t,
  1590. mm.retire_work.work);
  1591. dev = dev_priv->dev;
  1592. /* Come back later if the device is busy... */
  1593. if (!mutex_trylock(&dev->struct_mutex)) {
  1594. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1595. return;
  1596. }
  1597. i915_gem_retire_requests(dev);
  1598. /* Send a periodic flush down the ring so we don't hold onto GEM
  1599. * objects indefinitely.
  1600. */
  1601. idle = true;
  1602. for (i = 0; i < I915_NUM_RINGS; i++) {
  1603. struct intel_ring_buffer *ring = &dev_priv->ring[i];
  1604. if (!list_empty(&ring->gpu_write_list)) {
  1605. struct drm_i915_gem_request *request;
  1606. int ret;
  1607. ret = i915_gem_flush_ring(ring,
  1608. 0, I915_GEM_GPU_DOMAINS);
  1609. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1610. if (ret || request == NULL ||
  1611. i915_add_request(ring, NULL, request))
  1612. kfree(request);
  1613. }
  1614. idle &= list_empty(&ring->request_list);
  1615. }
  1616. if (!dev_priv->mm.suspended && !idle)
  1617. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1618. mutex_unlock(&dev->struct_mutex);
  1619. }
  1620. /**
  1621. * Waits for a sequence number to be signaled, and cleans up the
  1622. * request and object lists appropriately for that event.
  1623. */
  1624. int
  1625. i915_wait_request(struct intel_ring_buffer *ring,
  1626. uint32_t seqno)
  1627. {
  1628. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1629. u32 ier;
  1630. int ret = 0;
  1631. BUG_ON(seqno == 0);
  1632. if (atomic_read(&dev_priv->mm.wedged)) {
  1633. struct completion *x = &dev_priv->error_completion;
  1634. bool recovery_complete;
  1635. unsigned long flags;
  1636. /* Give the error handler a chance to run. */
  1637. spin_lock_irqsave(&x->wait.lock, flags);
  1638. recovery_complete = x->done > 0;
  1639. spin_unlock_irqrestore(&x->wait.lock, flags);
  1640. return recovery_complete ? -EIO : -EAGAIN;
  1641. }
  1642. if (seqno == ring->outstanding_lazy_request) {
  1643. struct drm_i915_gem_request *request;
  1644. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1645. if (request == NULL)
  1646. return -ENOMEM;
  1647. ret = i915_add_request(ring, NULL, request);
  1648. if (ret) {
  1649. kfree(request);
  1650. return ret;
  1651. }
  1652. seqno = request->seqno;
  1653. }
  1654. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1655. if (HAS_PCH_SPLIT(ring->dev))
  1656. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1657. else
  1658. ier = I915_READ(IER);
  1659. if (!ier) {
  1660. DRM_ERROR("something (likely vbetool) disabled "
  1661. "interrupts, re-enabling\n");
  1662. ring->dev->driver->irq_preinstall(ring->dev);
  1663. ring->dev->driver->irq_postinstall(ring->dev);
  1664. }
  1665. trace_i915_gem_request_wait_begin(ring, seqno);
  1666. ring->waiting_seqno = seqno;
  1667. if (ring->irq_get(ring)) {
  1668. if (dev_priv->mm.interruptible)
  1669. ret = wait_event_interruptible(ring->irq_queue,
  1670. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1671. || atomic_read(&dev_priv->mm.wedged));
  1672. else
  1673. wait_event(ring->irq_queue,
  1674. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1675. || atomic_read(&dev_priv->mm.wedged));
  1676. ring->irq_put(ring);
  1677. } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
  1678. seqno) ||
  1679. atomic_read(&dev_priv->mm.wedged), 3000))
  1680. ret = -EBUSY;
  1681. ring->waiting_seqno = 0;
  1682. trace_i915_gem_request_wait_end(ring, seqno);
  1683. }
  1684. if (atomic_read(&dev_priv->mm.wedged))
  1685. ret = -EAGAIN;
  1686. if (ret && ret != -ERESTARTSYS)
  1687. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1688. __func__, ret, seqno, ring->get_seqno(ring),
  1689. dev_priv->next_seqno);
  1690. /* Directly dispatch request retiring. While we have the work queue
  1691. * to handle this, the waiter on a request often wants an associated
  1692. * buffer to have made it to the inactive list, and we would need
  1693. * a separate wait queue to handle that.
  1694. */
  1695. if (ret == 0)
  1696. i915_gem_retire_requests_ring(ring);
  1697. return ret;
  1698. }
  1699. /**
  1700. * Ensures that all rendering to the object has completed and the object is
  1701. * safe to unbind from the GTT or access from the CPU.
  1702. */
  1703. int
  1704. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
  1705. {
  1706. int ret;
  1707. /* This function only exists to support waiting for existing rendering,
  1708. * not for emitting required flushes.
  1709. */
  1710. BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1711. /* If there is rendering queued on the buffer being evicted, wait for
  1712. * it.
  1713. */
  1714. if (obj->active) {
  1715. ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
  1716. if (ret)
  1717. return ret;
  1718. }
  1719. return 0;
  1720. }
  1721. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  1722. {
  1723. u32 old_write_domain, old_read_domains;
  1724. /* Act a barrier for all accesses through the GTT */
  1725. mb();
  1726. /* Force a pagefault for domain tracking on next user access */
  1727. i915_gem_release_mmap(obj);
  1728. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  1729. return;
  1730. old_read_domains = obj->base.read_domains;
  1731. old_write_domain = obj->base.write_domain;
  1732. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  1733. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  1734. trace_i915_gem_object_change_domain(obj,
  1735. old_read_domains,
  1736. old_write_domain);
  1737. }
  1738. /**
  1739. * Unbinds an object from the GTT aperture.
  1740. */
  1741. int
  1742. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  1743. {
  1744. int ret = 0;
  1745. if (obj->gtt_space == NULL)
  1746. return 0;
  1747. if (obj->pin_count != 0) {
  1748. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1749. return -EINVAL;
  1750. }
  1751. ret = i915_gem_object_finish_gpu(obj);
  1752. if (ret == -ERESTARTSYS)
  1753. return ret;
  1754. /* Continue on if we fail due to EIO, the GPU is hung so we
  1755. * should be safe and we need to cleanup or else we might
  1756. * cause memory corruption through use-after-free.
  1757. */
  1758. i915_gem_object_finish_gtt(obj);
  1759. /* Move the object to the CPU domain to ensure that
  1760. * any possible CPU writes while it's not in the GTT
  1761. * are flushed when we go to remap it.
  1762. */
  1763. if (ret == 0)
  1764. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1765. if (ret == -ERESTARTSYS)
  1766. return ret;
  1767. if (ret) {
  1768. /* In the event of a disaster, abandon all caches and
  1769. * hope for the best.
  1770. */
  1771. i915_gem_clflush_object(obj);
  1772. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1773. }
  1774. /* release the fence reg _after_ flushing */
  1775. ret = i915_gem_object_put_fence(obj);
  1776. if (ret == -ERESTARTSYS)
  1777. return ret;
  1778. trace_i915_gem_object_unbind(obj);
  1779. i915_gem_gtt_unbind_object(obj);
  1780. i915_gem_object_put_pages_gtt(obj);
  1781. list_del_init(&obj->gtt_list);
  1782. list_del_init(&obj->mm_list);
  1783. /* Avoid an unnecessary call to unbind on rebind. */
  1784. obj->map_and_fenceable = true;
  1785. drm_mm_put_block(obj->gtt_space);
  1786. obj->gtt_space = NULL;
  1787. obj->gtt_offset = 0;
  1788. if (i915_gem_object_is_purgeable(obj))
  1789. i915_gem_object_truncate(obj);
  1790. return ret;
  1791. }
  1792. int
  1793. i915_gem_flush_ring(struct intel_ring_buffer *ring,
  1794. uint32_t invalidate_domains,
  1795. uint32_t flush_domains)
  1796. {
  1797. int ret;
  1798. if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
  1799. return 0;
  1800. trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
  1801. ret = ring->flush(ring, invalidate_domains, flush_domains);
  1802. if (ret)
  1803. return ret;
  1804. if (flush_domains & I915_GEM_GPU_DOMAINS)
  1805. i915_gem_process_flushing_list(ring, flush_domains);
  1806. return 0;
  1807. }
  1808. static int i915_ring_idle(struct intel_ring_buffer *ring)
  1809. {
  1810. int ret;
  1811. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1812. return 0;
  1813. if (!list_empty(&ring->gpu_write_list)) {
  1814. ret = i915_gem_flush_ring(ring,
  1815. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1816. if (ret)
  1817. return ret;
  1818. }
  1819. return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
  1820. }
  1821. int
  1822. i915_gpu_idle(struct drm_device *dev)
  1823. {
  1824. drm_i915_private_t *dev_priv = dev->dev_private;
  1825. int ret, i;
  1826. /* Flush everything onto the inactive list. */
  1827. for (i = 0; i < I915_NUM_RINGS; i++) {
  1828. ret = i915_ring_idle(&dev_priv->ring[i]);
  1829. if (ret)
  1830. return ret;
  1831. }
  1832. return 0;
  1833. }
  1834. static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
  1835. struct intel_ring_buffer *pipelined)
  1836. {
  1837. struct drm_device *dev = obj->base.dev;
  1838. drm_i915_private_t *dev_priv = dev->dev_private;
  1839. u32 size = obj->gtt_space->size;
  1840. int regnum = obj->fence_reg;
  1841. uint64_t val;
  1842. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1843. 0xfffff000) << 32;
  1844. val |= obj->gtt_offset & 0xfffff000;
  1845. val |= (uint64_t)((obj->stride / 128) - 1) <<
  1846. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1847. if (obj->tiling_mode == I915_TILING_Y)
  1848. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1849. val |= I965_FENCE_REG_VALID;
  1850. if (pipelined) {
  1851. int ret = intel_ring_begin(pipelined, 6);
  1852. if (ret)
  1853. return ret;
  1854. intel_ring_emit(pipelined, MI_NOOP);
  1855. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1856. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
  1857. intel_ring_emit(pipelined, (u32)val);
  1858. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
  1859. intel_ring_emit(pipelined, (u32)(val >> 32));
  1860. intel_ring_advance(pipelined);
  1861. } else
  1862. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
  1863. return 0;
  1864. }
  1865. static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
  1866. struct intel_ring_buffer *pipelined)
  1867. {
  1868. struct drm_device *dev = obj->base.dev;
  1869. drm_i915_private_t *dev_priv = dev->dev_private;
  1870. u32 size = obj->gtt_space->size;
  1871. int regnum = obj->fence_reg;
  1872. uint64_t val;
  1873. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1874. 0xfffff000) << 32;
  1875. val |= obj->gtt_offset & 0xfffff000;
  1876. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1877. if (obj->tiling_mode == I915_TILING_Y)
  1878. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1879. val |= I965_FENCE_REG_VALID;
  1880. if (pipelined) {
  1881. int ret = intel_ring_begin(pipelined, 6);
  1882. if (ret)
  1883. return ret;
  1884. intel_ring_emit(pipelined, MI_NOOP);
  1885. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1886. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
  1887. intel_ring_emit(pipelined, (u32)val);
  1888. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
  1889. intel_ring_emit(pipelined, (u32)(val >> 32));
  1890. intel_ring_advance(pipelined);
  1891. } else
  1892. I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
  1893. return 0;
  1894. }
  1895. static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
  1896. struct intel_ring_buffer *pipelined)
  1897. {
  1898. struct drm_device *dev = obj->base.dev;
  1899. drm_i915_private_t *dev_priv = dev->dev_private;
  1900. u32 size = obj->gtt_space->size;
  1901. u32 fence_reg, val, pitch_val;
  1902. int tile_width;
  1903. if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  1904. (size & -size) != size ||
  1905. (obj->gtt_offset & (size - 1)),
  1906. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  1907. obj->gtt_offset, obj->map_and_fenceable, size))
  1908. return -EINVAL;
  1909. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  1910. tile_width = 128;
  1911. else
  1912. tile_width = 512;
  1913. /* Note: pitch better be a power of two tile widths */
  1914. pitch_val = obj->stride / tile_width;
  1915. pitch_val = ffs(pitch_val) - 1;
  1916. val = obj->gtt_offset;
  1917. if (obj->tiling_mode == I915_TILING_Y)
  1918. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1919. val |= I915_FENCE_SIZE_BITS(size);
  1920. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1921. val |= I830_FENCE_REG_VALID;
  1922. fence_reg = obj->fence_reg;
  1923. if (fence_reg < 8)
  1924. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  1925. else
  1926. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  1927. if (pipelined) {
  1928. int ret = intel_ring_begin(pipelined, 4);
  1929. if (ret)
  1930. return ret;
  1931. intel_ring_emit(pipelined, MI_NOOP);
  1932. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1933. intel_ring_emit(pipelined, fence_reg);
  1934. intel_ring_emit(pipelined, val);
  1935. intel_ring_advance(pipelined);
  1936. } else
  1937. I915_WRITE(fence_reg, val);
  1938. return 0;
  1939. }
  1940. static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
  1941. struct intel_ring_buffer *pipelined)
  1942. {
  1943. struct drm_device *dev = obj->base.dev;
  1944. drm_i915_private_t *dev_priv = dev->dev_private;
  1945. u32 size = obj->gtt_space->size;
  1946. int regnum = obj->fence_reg;
  1947. uint32_t val;
  1948. uint32_t pitch_val;
  1949. if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  1950. (size & -size) != size ||
  1951. (obj->gtt_offset & (size - 1)),
  1952. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  1953. obj->gtt_offset, size))
  1954. return -EINVAL;
  1955. pitch_val = obj->stride / 128;
  1956. pitch_val = ffs(pitch_val) - 1;
  1957. val = obj->gtt_offset;
  1958. if (obj->tiling_mode == I915_TILING_Y)
  1959. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1960. val |= I830_FENCE_SIZE_BITS(size);
  1961. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1962. val |= I830_FENCE_REG_VALID;
  1963. if (pipelined) {
  1964. int ret = intel_ring_begin(pipelined, 4);
  1965. if (ret)
  1966. return ret;
  1967. intel_ring_emit(pipelined, MI_NOOP);
  1968. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1969. intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
  1970. intel_ring_emit(pipelined, val);
  1971. intel_ring_advance(pipelined);
  1972. } else
  1973. I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
  1974. return 0;
  1975. }
  1976. static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
  1977. {
  1978. return i915_seqno_passed(ring->get_seqno(ring), seqno);
  1979. }
  1980. static int
  1981. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
  1982. struct intel_ring_buffer *pipelined)
  1983. {
  1984. int ret;
  1985. if (obj->fenced_gpu_access) {
  1986. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  1987. ret = i915_gem_flush_ring(obj->last_fenced_ring,
  1988. 0, obj->base.write_domain);
  1989. if (ret)
  1990. return ret;
  1991. }
  1992. obj->fenced_gpu_access = false;
  1993. }
  1994. if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
  1995. if (!ring_passed_seqno(obj->last_fenced_ring,
  1996. obj->last_fenced_seqno)) {
  1997. ret = i915_wait_request(obj->last_fenced_ring,
  1998. obj->last_fenced_seqno);
  1999. if (ret)
  2000. return ret;
  2001. }
  2002. obj->last_fenced_seqno = 0;
  2003. obj->last_fenced_ring = NULL;
  2004. }
  2005. /* Ensure that all CPU reads are completed before installing a fence
  2006. * and all writes before removing the fence.
  2007. */
  2008. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  2009. mb();
  2010. return 0;
  2011. }
  2012. int
  2013. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  2014. {
  2015. int ret;
  2016. if (obj->tiling_mode)
  2017. i915_gem_release_mmap(obj);
  2018. ret = i915_gem_object_flush_fence(obj, NULL);
  2019. if (ret)
  2020. return ret;
  2021. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2022. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2023. i915_gem_clear_fence_reg(obj->base.dev,
  2024. &dev_priv->fence_regs[obj->fence_reg]);
  2025. obj->fence_reg = I915_FENCE_REG_NONE;
  2026. }
  2027. return 0;
  2028. }
  2029. static struct drm_i915_fence_reg *
  2030. i915_find_fence_reg(struct drm_device *dev,
  2031. struct intel_ring_buffer *pipelined)
  2032. {
  2033. struct drm_i915_private *dev_priv = dev->dev_private;
  2034. struct drm_i915_fence_reg *reg, *first, *avail;
  2035. int i;
  2036. /* First try to find a free reg */
  2037. avail = NULL;
  2038. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2039. reg = &dev_priv->fence_regs[i];
  2040. if (!reg->obj)
  2041. return reg;
  2042. if (!reg->obj->pin_count)
  2043. avail = reg;
  2044. }
  2045. if (avail == NULL)
  2046. return NULL;
  2047. /* None available, try to steal one or wait for a user to finish */
  2048. avail = first = NULL;
  2049. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2050. if (reg->obj->pin_count)
  2051. continue;
  2052. if (first == NULL)
  2053. first = reg;
  2054. if (!pipelined ||
  2055. !reg->obj->last_fenced_ring ||
  2056. reg->obj->last_fenced_ring == pipelined) {
  2057. avail = reg;
  2058. break;
  2059. }
  2060. }
  2061. if (avail == NULL)
  2062. avail = first;
  2063. return avail;
  2064. }
  2065. /**
  2066. * i915_gem_object_get_fence - set up a fence reg for an object
  2067. * @obj: object to map through a fence reg
  2068. * @pipelined: ring on which to queue the change, or NULL for CPU access
  2069. * @interruptible: must we wait uninterruptibly for the register to retire?
  2070. *
  2071. * When mapping objects through the GTT, userspace wants to be able to write
  2072. * to them without having to worry about swizzling if the object is tiled.
  2073. *
  2074. * This function walks the fence regs looking for a free one for @obj,
  2075. * stealing one if it can't find any.
  2076. *
  2077. * It then sets up the reg based on the object's properties: address, pitch
  2078. * and tiling format.
  2079. */
  2080. int
  2081. i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
  2082. struct intel_ring_buffer *pipelined)
  2083. {
  2084. struct drm_device *dev = obj->base.dev;
  2085. struct drm_i915_private *dev_priv = dev->dev_private;
  2086. struct drm_i915_fence_reg *reg;
  2087. int ret;
  2088. /* XXX disable pipelining. There are bugs. Shocking. */
  2089. pipelined = NULL;
  2090. /* Just update our place in the LRU if our fence is getting reused. */
  2091. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2092. reg = &dev_priv->fence_regs[obj->fence_reg];
  2093. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2094. if (obj->tiling_changed) {
  2095. ret = i915_gem_object_flush_fence(obj, pipelined);
  2096. if (ret)
  2097. return ret;
  2098. if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
  2099. pipelined = NULL;
  2100. if (pipelined) {
  2101. reg->setup_seqno =
  2102. i915_gem_next_request_seqno(pipelined);
  2103. obj->last_fenced_seqno = reg->setup_seqno;
  2104. obj->last_fenced_ring = pipelined;
  2105. }
  2106. goto update;
  2107. }
  2108. if (!pipelined) {
  2109. if (reg->setup_seqno) {
  2110. if (!ring_passed_seqno(obj->last_fenced_ring,
  2111. reg->setup_seqno)) {
  2112. ret = i915_wait_request(obj->last_fenced_ring,
  2113. reg->setup_seqno);
  2114. if (ret)
  2115. return ret;
  2116. }
  2117. reg->setup_seqno = 0;
  2118. }
  2119. } else if (obj->last_fenced_ring &&
  2120. obj->last_fenced_ring != pipelined) {
  2121. ret = i915_gem_object_flush_fence(obj, pipelined);
  2122. if (ret)
  2123. return ret;
  2124. }
  2125. return 0;
  2126. }
  2127. reg = i915_find_fence_reg(dev, pipelined);
  2128. if (reg == NULL)
  2129. return -ENOSPC;
  2130. ret = i915_gem_object_flush_fence(obj, pipelined);
  2131. if (ret)
  2132. return ret;
  2133. if (reg->obj) {
  2134. struct drm_i915_gem_object *old = reg->obj;
  2135. drm_gem_object_reference(&old->base);
  2136. if (old->tiling_mode)
  2137. i915_gem_release_mmap(old);
  2138. ret = i915_gem_object_flush_fence(old, pipelined);
  2139. if (ret) {
  2140. drm_gem_object_unreference(&old->base);
  2141. return ret;
  2142. }
  2143. if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
  2144. pipelined = NULL;
  2145. old->fence_reg = I915_FENCE_REG_NONE;
  2146. old->last_fenced_ring = pipelined;
  2147. old->last_fenced_seqno =
  2148. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2149. drm_gem_object_unreference(&old->base);
  2150. } else if (obj->last_fenced_seqno == 0)
  2151. pipelined = NULL;
  2152. reg->obj = obj;
  2153. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2154. obj->fence_reg = reg - dev_priv->fence_regs;
  2155. obj->last_fenced_ring = pipelined;
  2156. reg->setup_seqno =
  2157. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2158. obj->last_fenced_seqno = reg->setup_seqno;
  2159. update:
  2160. obj->tiling_changed = false;
  2161. switch (INTEL_INFO(dev)->gen) {
  2162. case 7:
  2163. case 6:
  2164. ret = sandybridge_write_fence_reg(obj, pipelined);
  2165. break;
  2166. case 5:
  2167. case 4:
  2168. ret = i965_write_fence_reg(obj, pipelined);
  2169. break;
  2170. case 3:
  2171. ret = i915_write_fence_reg(obj, pipelined);
  2172. break;
  2173. case 2:
  2174. ret = i830_write_fence_reg(obj, pipelined);
  2175. break;
  2176. }
  2177. return ret;
  2178. }
  2179. /**
  2180. * i915_gem_clear_fence_reg - clear out fence register info
  2181. * @obj: object to clear
  2182. *
  2183. * Zeroes out the fence register itself and clears out the associated
  2184. * data structures in dev_priv and obj.
  2185. */
  2186. static void
  2187. i915_gem_clear_fence_reg(struct drm_device *dev,
  2188. struct drm_i915_fence_reg *reg)
  2189. {
  2190. drm_i915_private_t *dev_priv = dev->dev_private;
  2191. uint32_t fence_reg = reg - dev_priv->fence_regs;
  2192. switch (INTEL_INFO(dev)->gen) {
  2193. case 7:
  2194. case 6:
  2195. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
  2196. break;
  2197. case 5:
  2198. case 4:
  2199. I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
  2200. break;
  2201. case 3:
  2202. if (fence_reg >= 8)
  2203. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  2204. else
  2205. case 2:
  2206. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  2207. I915_WRITE(fence_reg, 0);
  2208. break;
  2209. }
  2210. list_del_init(&reg->lru_list);
  2211. reg->obj = NULL;
  2212. reg->setup_seqno = 0;
  2213. }
  2214. /**
  2215. * Finds free space in the GTT aperture and binds the object there.
  2216. */
  2217. static int
  2218. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2219. unsigned alignment,
  2220. bool map_and_fenceable)
  2221. {
  2222. struct drm_device *dev = obj->base.dev;
  2223. drm_i915_private_t *dev_priv = dev->dev_private;
  2224. struct drm_mm_node *free_space;
  2225. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2226. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2227. bool mappable, fenceable;
  2228. int ret;
  2229. if (obj->madv != I915_MADV_WILLNEED) {
  2230. DRM_ERROR("Attempting to bind a purgeable object\n");
  2231. return -EINVAL;
  2232. }
  2233. fence_size = i915_gem_get_gtt_size(dev,
  2234. obj->base.size,
  2235. obj->tiling_mode);
  2236. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2237. obj->base.size,
  2238. obj->tiling_mode);
  2239. unfenced_alignment =
  2240. i915_gem_get_unfenced_gtt_alignment(dev,
  2241. obj->base.size,
  2242. obj->tiling_mode);
  2243. if (alignment == 0)
  2244. alignment = map_and_fenceable ? fence_alignment :
  2245. unfenced_alignment;
  2246. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2247. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2248. return -EINVAL;
  2249. }
  2250. size = map_and_fenceable ? fence_size : obj->base.size;
  2251. /* If the object is bigger than the entire aperture, reject it early
  2252. * before evicting everything in a vain attempt to find space.
  2253. */
  2254. if (obj->base.size >
  2255. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2256. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2257. return -E2BIG;
  2258. }
  2259. search_free:
  2260. if (map_and_fenceable)
  2261. free_space =
  2262. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2263. size, alignment, 0,
  2264. dev_priv->mm.gtt_mappable_end,
  2265. 0);
  2266. else
  2267. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2268. size, alignment, 0);
  2269. if (free_space != NULL) {
  2270. if (map_and_fenceable)
  2271. obj->gtt_space =
  2272. drm_mm_get_block_range_generic(free_space,
  2273. size, alignment, 0,
  2274. dev_priv->mm.gtt_mappable_end,
  2275. 0);
  2276. else
  2277. obj->gtt_space =
  2278. drm_mm_get_block(free_space, size, alignment);
  2279. }
  2280. if (obj->gtt_space == NULL) {
  2281. /* If the gtt is empty and we're still having trouble
  2282. * fitting our object in, we're out of memory.
  2283. */
  2284. ret = i915_gem_evict_something(dev, size, alignment,
  2285. map_and_fenceable);
  2286. if (ret)
  2287. return ret;
  2288. goto search_free;
  2289. }
  2290. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2291. if (ret) {
  2292. drm_mm_put_block(obj->gtt_space);
  2293. obj->gtt_space = NULL;
  2294. if (ret == -ENOMEM) {
  2295. /* first try to reclaim some memory by clearing the GTT */
  2296. ret = i915_gem_evict_everything(dev, false);
  2297. if (ret) {
  2298. /* now try to shrink everyone else */
  2299. if (gfpmask) {
  2300. gfpmask = 0;
  2301. goto search_free;
  2302. }
  2303. return -ENOMEM;
  2304. }
  2305. goto search_free;
  2306. }
  2307. return ret;
  2308. }
  2309. ret = i915_gem_gtt_bind_object(obj);
  2310. if (ret) {
  2311. i915_gem_object_put_pages_gtt(obj);
  2312. drm_mm_put_block(obj->gtt_space);
  2313. obj->gtt_space = NULL;
  2314. if (i915_gem_evict_everything(dev, false))
  2315. return ret;
  2316. goto search_free;
  2317. }
  2318. list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
  2319. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2320. /* Assert that the object is not currently in any GPU domain. As it
  2321. * wasn't in the GTT, there shouldn't be any way it could have been in
  2322. * a GPU cache
  2323. */
  2324. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  2325. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  2326. obj->gtt_offset = obj->gtt_space->start;
  2327. fenceable =
  2328. obj->gtt_space->size == fence_size &&
  2329. (obj->gtt_space->start & (fence_alignment - 1)) == 0;
  2330. mappable =
  2331. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2332. obj->map_and_fenceable = mappable && fenceable;
  2333. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2334. return 0;
  2335. }
  2336. void
  2337. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2338. {
  2339. /* If we don't have a page list set up, then we're not pinned
  2340. * to GPU, and we can ignore the cache flush because it'll happen
  2341. * again at bind time.
  2342. */
  2343. if (obj->pages == NULL)
  2344. return;
  2345. /* If the GPU is snooping the contents of the CPU cache,
  2346. * we do not need to manually clear the CPU cache lines. However,
  2347. * the caches are only snooped when the render cache is
  2348. * flushed/invalidated. As we always have to emit invalidations
  2349. * and flushes when moving into and out of the RENDER domain, correct
  2350. * snooping behaviour occurs naturally as the result of our domain
  2351. * tracking.
  2352. */
  2353. if (obj->cache_level != I915_CACHE_NONE)
  2354. return;
  2355. trace_i915_gem_object_clflush(obj);
  2356. drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
  2357. }
  2358. /** Flushes any GPU write domain for the object if it's dirty. */
  2359. static int
  2360. i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
  2361. {
  2362. if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2363. return 0;
  2364. /* Queue the GPU write cache flushing we need. */
  2365. return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2366. }
  2367. /** Flushes the GTT write domain for the object if it's dirty. */
  2368. static void
  2369. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2370. {
  2371. uint32_t old_write_domain;
  2372. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2373. return;
  2374. /* No actual flushing is required for the GTT write domain. Writes
  2375. * to it immediately go to main memory as far as we know, so there's
  2376. * no chipset flush. It also doesn't land in render cache.
  2377. *
  2378. * However, we do have to enforce the order so that all writes through
  2379. * the GTT land before any writes to the device, such as updates to
  2380. * the GATT itself.
  2381. */
  2382. wmb();
  2383. old_write_domain = obj->base.write_domain;
  2384. obj->base.write_domain = 0;
  2385. trace_i915_gem_object_change_domain(obj,
  2386. obj->base.read_domains,
  2387. old_write_domain);
  2388. }
  2389. /** Flushes the CPU write domain for the object if it's dirty. */
  2390. static void
  2391. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2392. {
  2393. uint32_t old_write_domain;
  2394. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2395. return;
  2396. i915_gem_clflush_object(obj);
  2397. intel_gtt_chipset_flush();
  2398. old_write_domain = obj->base.write_domain;
  2399. obj->base.write_domain = 0;
  2400. trace_i915_gem_object_change_domain(obj,
  2401. obj->base.read_domains,
  2402. old_write_domain);
  2403. }
  2404. /**
  2405. * Moves a single object to the GTT read, and possibly write domain.
  2406. *
  2407. * This function returns when the move is complete, including waiting on
  2408. * flushes to occur.
  2409. */
  2410. int
  2411. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2412. {
  2413. uint32_t old_write_domain, old_read_domains;
  2414. int ret;
  2415. /* Not valid to be called on unbound objects. */
  2416. if (obj->gtt_space == NULL)
  2417. return -EINVAL;
  2418. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2419. return 0;
  2420. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2421. if (ret)
  2422. return ret;
  2423. if (obj->pending_gpu_write || write) {
  2424. ret = i915_gem_object_wait_rendering(obj);
  2425. if (ret)
  2426. return ret;
  2427. }
  2428. i915_gem_object_flush_cpu_write_domain(obj);
  2429. old_write_domain = obj->base.write_domain;
  2430. old_read_domains = obj->base.read_domains;
  2431. /* It should now be out of any other write domains, and we can update
  2432. * the domain values for our changes.
  2433. */
  2434. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2435. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2436. if (write) {
  2437. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2438. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2439. obj->dirty = 1;
  2440. }
  2441. trace_i915_gem_object_change_domain(obj,
  2442. old_read_domains,
  2443. old_write_domain);
  2444. return 0;
  2445. }
  2446. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  2447. enum i915_cache_level cache_level)
  2448. {
  2449. int ret;
  2450. if (obj->cache_level == cache_level)
  2451. return 0;
  2452. if (obj->pin_count) {
  2453. DRM_DEBUG("can not change the cache level of pinned objects\n");
  2454. return -EBUSY;
  2455. }
  2456. if (obj->gtt_space) {
  2457. ret = i915_gem_object_finish_gpu(obj);
  2458. if (ret)
  2459. return ret;
  2460. i915_gem_object_finish_gtt(obj);
  2461. /* Before SandyBridge, you could not use tiling or fence
  2462. * registers with snooped memory, so relinquish any fences
  2463. * currently pointing to our region in the aperture.
  2464. */
  2465. if (INTEL_INFO(obj->base.dev)->gen < 6) {
  2466. ret = i915_gem_object_put_fence(obj);
  2467. if (ret)
  2468. return ret;
  2469. }
  2470. i915_gem_gtt_rebind_object(obj, cache_level);
  2471. }
  2472. if (cache_level == I915_CACHE_NONE) {
  2473. u32 old_read_domains, old_write_domain;
  2474. /* If we're coming from LLC cached, then we haven't
  2475. * actually been tracking whether the data is in the
  2476. * CPU cache or not, since we only allow one bit set
  2477. * in obj->write_domain and have been skipping the clflushes.
  2478. * Just set it to the CPU cache for now.
  2479. */
  2480. WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
  2481. WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
  2482. old_read_domains = obj->base.read_domains;
  2483. old_write_domain = obj->base.write_domain;
  2484. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2485. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2486. trace_i915_gem_object_change_domain(obj,
  2487. old_read_domains,
  2488. old_write_domain);
  2489. }
  2490. obj->cache_level = cache_level;
  2491. return 0;
  2492. }
  2493. /*
  2494. * Prepare buffer for display plane (scanout, cursors, etc).
  2495. * Can be called from an uninterruptible phase (modesetting) and allows
  2496. * any flushes to be pipelined (for pageflips).
  2497. *
  2498. * For the display plane, we want to be in the GTT but out of any write
  2499. * domains. So in many ways this looks like set_to_gtt_domain() apart from the
  2500. * ability to pipeline the waits, pinning and any additional subtleties
  2501. * that may differentiate the display plane from ordinary buffers.
  2502. */
  2503. int
  2504. i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
  2505. u32 alignment,
  2506. struct intel_ring_buffer *pipelined)
  2507. {
  2508. u32 old_read_domains, old_write_domain;
  2509. int ret;
  2510. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2511. if (ret)
  2512. return ret;
  2513. if (pipelined != obj->ring) {
  2514. ret = i915_gem_object_wait_rendering(obj);
  2515. if (ret == -ERESTARTSYS)
  2516. return ret;
  2517. }
  2518. /* The display engine is not coherent with the LLC cache on gen6. As
  2519. * a result, we make sure that the pinning that is about to occur is
  2520. * done with uncached PTEs. This is lowest common denominator for all
  2521. * chipsets.
  2522. *
  2523. * However for gen6+, we could do better by using the GFDT bit instead
  2524. * of uncaching, which would allow us to flush all the LLC-cached data
  2525. * with that bit in the PTE to main memory with just one PIPE_CONTROL.
  2526. */
  2527. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
  2528. if (ret)
  2529. return ret;
  2530. /* As the user may map the buffer once pinned in the display plane
  2531. * (e.g. libkms for the bootup splash), we have to ensure that we
  2532. * always use map_and_fenceable for all scanout buffers.
  2533. */
  2534. ret = i915_gem_object_pin(obj, alignment, true);
  2535. if (ret)
  2536. return ret;
  2537. i915_gem_object_flush_cpu_write_domain(obj);
  2538. old_write_domain = obj->base.write_domain;
  2539. old_read_domains = obj->base.read_domains;
  2540. /* It should now be out of any other write domains, and we can update
  2541. * the domain values for our changes.
  2542. */
  2543. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2544. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2545. trace_i915_gem_object_change_domain(obj,
  2546. old_read_domains,
  2547. old_write_domain);
  2548. return 0;
  2549. }
  2550. int
  2551. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  2552. {
  2553. int ret;
  2554. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  2555. return 0;
  2556. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2557. ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2558. if (ret)
  2559. return ret;
  2560. }
  2561. /* Ensure that we invalidate the GPU's caches and TLBs. */
  2562. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  2563. return i915_gem_object_wait_rendering(obj);
  2564. }
  2565. /**
  2566. * Moves a single object to the CPU read, and possibly write domain.
  2567. *
  2568. * This function returns when the move is complete, including waiting on
  2569. * flushes to occur.
  2570. */
  2571. static int
  2572. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2573. {
  2574. uint32_t old_write_domain, old_read_domains;
  2575. int ret;
  2576. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2577. return 0;
  2578. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2579. if (ret)
  2580. return ret;
  2581. ret = i915_gem_object_wait_rendering(obj);
  2582. if (ret)
  2583. return ret;
  2584. i915_gem_object_flush_gtt_write_domain(obj);
  2585. /* If we have a partially-valid cache of the object in the CPU,
  2586. * finish invalidating it and free the per-page flags.
  2587. */
  2588. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2589. old_write_domain = obj->base.write_domain;
  2590. old_read_domains = obj->base.read_domains;
  2591. /* Flush the CPU cache if it's still invalid. */
  2592. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2593. i915_gem_clflush_object(obj);
  2594. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2595. }
  2596. /* It should now be out of any other write domains, and we can update
  2597. * the domain values for our changes.
  2598. */
  2599. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2600. /* If we're writing through the CPU, then the GPU read domains will
  2601. * need to be invalidated at next use.
  2602. */
  2603. if (write) {
  2604. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2605. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2606. }
  2607. trace_i915_gem_object_change_domain(obj,
  2608. old_read_domains,
  2609. old_write_domain);
  2610. return 0;
  2611. }
  2612. /**
  2613. * Moves the object from a partially CPU read to a full one.
  2614. *
  2615. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2616. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2617. */
  2618. static void
  2619. i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
  2620. {
  2621. if (!obj->page_cpu_valid)
  2622. return;
  2623. /* If we're partially in the CPU read domain, finish moving it in.
  2624. */
  2625. if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
  2626. int i;
  2627. for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
  2628. if (obj->page_cpu_valid[i])
  2629. continue;
  2630. drm_clflush_pages(obj->pages + i, 1);
  2631. }
  2632. }
  2633. /* Free the page_cpu_valid mappings which are now stale, whether
  2634. * or not we've got I915_GEM_DOMAIN_CPU.
  2635. */
  2636. kfree(obj->page_cpu_valid);
  2637. obj->page_cpu_valid = NULL;
  2638. }
  2639. /**
  2640. * Set the CPU read domain on a range of the object.
  2641. *
  2642. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2643. * not entirely valid. The page_cpu_valid member of the object flags which
  2644. * pages have been flushed, and will be respected by
  2645. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2646. * of the whole object.
  2647. *
  2648. * This function returns when the move is complete, including waiting on
  2649. * flushes to occur.
  2650. */
  2651. static int
  2652. i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  2653. uint64_t offset, uint64_t size)
  2654. {
  2655. uint32_t old_read_domains;
  2656. int i, ret;
  2657. if (offset == 0 && size == obj->base.size)
  2658. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2659. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2660. if (ret)
  2661. return ret;
  2662. ret = i915_gem_object_wait_rendering(obj);
  2663. if (ret)
  2664. return ret;
  2665. i915_gem_object_flush_gtt_write_domain(obj);
  2666. /* If we're already fully in the CPU read domain, we're done. */
  2667. if (obj->page_cpu_valid == NULL &&
  2668. (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2669. return 0;
  2670. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2671. * newly adding I915_GEM_DOMAIN_CPU
  2672. */
  2673. if (obj->page_cpu_valid == NULL) {
  2674. obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
  2675. GFP_KERNEL);
  2676. if (obj->page_cpu_valid == NULL)
  2677. return -ENOMEM;
  2678. } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2679. memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
  2680. /* Flush the cache on any pages that are still invalid from the CPU's
  2681. * perspective.
  2682. */
  2683. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2684. i++) {
  2685. if (obj->page_cpu_valid[i])
  2686. continue;
  2687. drm_clflush_pages(obj->pages + i, 1);
  2688. obj->page_cpu_valid[i] = 1;
  2689. }
  2690. /* It should now be out of any other write domains, and we can update
  2691. * the domain values for our changes.
  2692. */
  2693. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2694. old_read_domains = obj->base.read_domains;
  2695. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2696. trace_i915_gem_object_change_domain(obj,
  2697. old_read_domains,
  2698. obj->base.write_domain);
  2699. return 0;
  2700. }
  2701. /* Throttle our rendering by waiting until the ring has completed our requests
  2702. * emitted over 20 msec ago.
  2703. *
  2704. * Note that if we were to use the current jiffies each time around the loop,
  2705. * we wouldn't escape the function with any frames outstanding if the time to
  2706. * render a frame was over 20ms.
  2707. *
  2708. * This should get us reasonable parallelism between CPU and GPU but also
  2709. * relatively low latency when blocking on a particular request to finish.
  2710. */
  2711. static int
  2712. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2713. {
  2714. struct drm_i915_private *dev_priv = dev->dev_private;
  2715. struct drm_i915_file_private *file_priv = file->driver_priv;
  2716. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2717. struct drm_i915_gem_request *request;
  2718. struct intel_ring_buffer *ring = NULL;
  2719. u32 seqno = 0;
  2720. int ret;
  2721. if (atomic_read(&dev_priv->mm.wedged))
  2722. return -EIO;
  2723. spin_lock(&file_priv->mm.lock);
  2724. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2725. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2726. break;
  2727. ring = request->ring;
  2728. seqno = request->seqno;
  2729. }
  2730. spin_unlock(&file_priv->mm.lock);
  2731. if (seqno == 0)
  2732. return 0;
  2733. ret = 0;
  2734. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  2735. /* And wait for the seqno passing without holding any locks and
  2736. * causing extra latency for others. This is safe as the irq
  2737. * generation is designed to be run atomically and so is
  2738. * lockless.
  2739. */
  2740. if (ring->irq_get(ring)) {
  2741. ret = wait_event_interruptible(ring->irq_queue,
  2742. i915_seqno_passed(ring->get_seqno(ring), seqno)
  2743. || atomic_read(&dev_priv->mm.wedged));
  2744. ring->irq_put(ring);
  2745. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  2746. ret = -EIO;
  2747. }
  2748. }
  2749. if (ret == 0)
  2750. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2751. return ret;
  2752. }
  2753. int
  2754. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2755. uint32_t alignment,
  2756. bool map_and_fenceable)
  2757. {
  2758. struct drm_device *dev = obj->base.dev;
  2759. struct drm_i915_private *dev_priv = dev->dev_private;
  2760. int ret;
  2761. BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  2762. WARN_ON(i915_verify_lists(dev));
  2763. if (obj->gtt_space != NULL) {
  2764. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2765. (map_and_fenceable && !obj->map_and_fenceable)) {
  2766. WARN(obj->pin_count,
  2767. "bo is already pinned with incorrect alignment:"
  2768. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2769. " obj->map_and_fenceable=%d\n",
  2770. obj->gtt_offset, alignment,
  2771. map_and_fenceable,
  2772. obj->map_and_fenceable);
  2773. ret = i915_gem_object_unbind(obj);
  2774. if (ret)
  2775. return ret;
  2776. }
  2777. }
  2778. if (obj->gtt_space == NULL) {
  2779. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2780. map_and_fenceable);
  2781. if (ret)
  2782. return ret;
  2783. }
  2784. if (obj->pin_count++ == 0) {
  2785. if (!obj->active)
  2786. list_move_tail(&obj->mm_list,
  2787. &dev_priv->mm.pinned_list);
  2788. }
  2789. obj->pin_mappable |= map_and_fenceable;
  2790. WARN_ON(i915_verify_lists(dev));
  2791. return 0;
  2792. }
  2793. void
  2794. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2795. {
  2796. struct drm_device *dev = obj->base.dev;
  2797. drm_i915_private_t *dev_priv = dev->dev_private;
  2798. WARN_ON(i915_verify_lists(dev));
  2799. BUG_ON(obj->pin_count == 0);
  2800. BUG_ON(obj->gtt_space == NULL);
  2801. if (--obj->pin_count == 0) {
  2802. if (!obj->active)
  2803. list_move_tail(&obj->mm_list,
  2804. &dev_priv->mm.inactive_list);
  2805. obj->pin_mappable = false;
  2806. }
  2807. WARN_ON(i915_verify_lists(dev));
  2808. }
  2809. int
  2810. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2811. struct drm_file *file)
  2812. {
  2813. struct drm_i915_gem_pin *args = data;
  2814. struct drm_i915_gem_object *obj;
  2815. int ret;
  2816. ret = i915_mutex_lock_interruptible(dev);
  2817. if (ret)
  2818. return ret;
  2819. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2820. if (&obj->base == NULL) {
  2821. ret = -ENOENT;
  2822. goto unlock;
  2823. }
  2824. if (obj->madv != I915_MADV_WILLNEED) {
  2825. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2826. ret = -EINVAL;
  2827. goto out;
  2828. }
  2829. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2830. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2831. args->handle);
  2832. ret = -EINVAL;
  2833. goto out;
  2834. }
  2835. obj->user_pin_count++;
  2836. obj->pin_filp = file;
  2837. if (obj->user_pin_count == 1) {
  2838. ret = i915_gem_object_pin(obj, args->alignment, true);
  2839. if (ret)
  2840. goto out;
  2841. }
  2842. /* XXX - flush the CPU caches for pinned objects
  2843. * as the X server doesn't manage domains yet
  2844. */
  2845. i915_gem_object_flush_cpu_write_domain(obj);
  2846. args->offset = obj->gtt_offset;
  2847. out:
  2848. drm_gem_object_unreference(&obj->base);
  2849. unlock:
  2850. mutex_unlock(&dev->struct_mutex);
  2851. return ret;
  2852. }
  2853. int
  2854. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2855. struct drm_file *file)
  2856. {
  2857. struct drm_i915_gem_pin *args = data;
  2858. struct drm_i915_gem_object *obj;
  2859. int ret;
  2860. ret = i915_mutex_lock_interruptible(dev);
  2861. if (ret)
  2862. return ret;
  2863. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2864. if (&obj->base == NULL) {
  2865. ret = -ENOENT;
  2866. goto unlock;
  2867. }
  2868. if (obj->pin_filp != file) {
  2869. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2870. args->handle);
  2871. ret = -EINVAL;
  2872. goto out;
  2873. }
  2874. obj->user_pin_count--;
  2875. if (obj->user_pin_count == 0) {
  2876. obj->pin_filp = NULL;
  2877. i915_gem_object_unpin(obj);
  2878. }
  2879. out:
  2880. drm_gem_object_unreference(&obj->base);
  2881. unlock:
  2882. mutex_unlock(&dev->struct_mutex);
  2883. return ret;
  2884. }
  2885. int
  2886. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2887. struct drm_file *file)
  2888. {
  2889. struct drm_i915_gem_busy *args = data;
  2890. struct drm_i915_gem_object *obj;
  2891. int ret;
  2892. ret = i915_mutex_lock_interruptible(dev);
  2893. if (ret)
  2894. return ret;
  2895. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2896. if (&obj->base == NULL) {
  2897. ret = -ENOENT;
  2898. goto unlock;
  2899. }
  2900. /* Count all active objects as busy, even if they are currently not used
  2901. * by the gpu. Users of this interface expect objects to eventually
  2902. * become non-busy without any further actions, therefore emit any
  2903. * necessary flushes here.
  2904. */
  2905. args->busy = obj->active;
  2906. if (args->busy) {
  2907. /* Unconditionally flush objects, even when the gpu still uses this
  2908. * object. Userspace calling this function indicates that it wants to
  2909. * use this buffer rather sooner than later, so issuing the required
  2910. * flush earlier is beneficial.
  2911. */
  2912. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2913. ret = i915_gem_flush_ring(obj->ring,
  2914. 0, obj->base.write_domain);
  2915. } else if (obj->ring->outstanding_lazy_request ==
  2916. obj->last_rendering_seqno) {
  2917. struct drm_i915_gem_request *request;
  2918. /* This ring is not being cleared by active usage,
  2919. * so emit a request to do so.
  2920. */
  2921. request = kzalloc(sizeof(*request), GFP_KERNEL);
  2922. if (request) {
  2923. ret = i915_add_request(obj->ring, NULL, request);
  2924. if (ret)
  2925. kfree(request);
  2926. } else
  2927. ret = -ENOMEM;
  2928. }
  2929. /* Update the active list for the hardware's current position.
  2930. * Otherwise this only updates on a delayed timer or when irqs
  2931. * are actually unmasked, and our working set ends up being
  2932. * larger than required.
  2933. */
  2934. i915_gem_retire_requests_ring(obj->ring);
  2935. args->busy = obj->active;
  2936. }
  2937. drm_gem_object_unreference(&obj->base);
  2938. unlock:
  2939. mutex_unlock(&dev->struct_mutex);
  2940. return ret;
  2941. }
  2942. int
  2943. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2944. struct drm_file *file_priv)
  2945. {
  2946. return i915_gem_ring_throttle(dev, file_priv);
  2947. }
  2948. int
  2949. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2950. struct drm_file *file_priv)
  2951. {
  2952. struct drm_i915_gem_madvise *args = data;
  2953. struct drm_i915_gem_object *obj;
  2954. int ret;
  2955. switch (args->madv) {
  2956. case I915_MADV_DONTNEED:
  2957. case I915_MADV_WILLNEED:
  2958. break;
  2959. default:
  2960. return -EINVAL;
  2961. }
  2962. ret = i915_mutex_lock_interruptible(dev);
  2963. if (ret)
  2964. return ret;
  2965. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  2966. if (&obj->base == NULL) {
  2967. ret = -ENOENT;
  2968. goto unlock;
  2969. }
  2970. if (obj->pin_count) {
  2971. ret = -EINVAL;
  2972. goto out;
  2973. }
  2974. if (obj->madv != __I915_MADV_PURGED)
  2975. obj->madv = args->madv;
  2976. /* if the object is no longer bound, discard its backing storage */
  2977. if (i915_gem_object_is_purgeable(obj) &&
  2978. obj->gtt_space == NULL)
  2979. i915_gem_object_truncate(obj);
  2980. args->retained = obj->madv != __I915_MADV_PURGED;
  2981. out:
  2982. drm_gem_object_unreference(&obj->base);
  2983. unlock:
  2984. mutex_unlock(&dev->struct_mutex);
  2985. return ret;
  2986. }
  2987. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  2988. size_t size)
  2989. {
  2990. struct drm_i915_private *dev_priv = dev->dev_private;
  2991. struct drm_i915_gem_object *obj;
  2992. struct address_space *mapping;
  2993. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  2994. if (obj == NULL)
  2995. return NULL;
  2996. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  2997. kfree(obj);
  2998. return NULL;
  2999. }
  3000. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3001. mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
  3002. i915_gem_info_add_obj(dev_priv, size);
  3003. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3004. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3005. if (IS_GEN6(dev) || IS_GEN7(dev)) {
  3006. /* On Gen6, we can have the GPU use the LLC (the CPU
  3007. * cache) for about a 10% performance improvement
  3008. * compared to uncached. Graphics requests other than
  3009. * display scanout are coherent with the CPU in
  3010. * accessing this cache. This means in this mode we
  3011. * don't need to clflush on the CPU side, and on the
  3012. * GPU side we only need to flush internal caches to
  3013. * get data visible to the CPU.
  3014. *
  3015. * However, we maintain the display planes as UC, and so
  3016. * need to rebind when first used as such.
  3017. */
  3018. obj->cache_level = I915_CACHE_LLC;
  3019. } else
  3020. obj->cache_level = I915_CACHE_NONE;
  3021. obj->base.driver_private = NULL;
  3022. obj->fence_reg = I915_FENCE_REG_NONE;
  3023. INIT_LIST_HEAD(&obj->mm_list);
  3024. INIT_LIST_HEAD(&obj->gtt_list);
  3025. INIT_LIST_HEAD(&obj->ring_list);
  3026. INIT_LIST_HEAD(&obj->exec_list);
  3027. INIT_LIST_HEAD(&obj->gpu_write_list);
  3028. obj->madv = I915_MADV_WILLNEED;
  3029. /* Avoid an unnecessary call to unbind on the first bind. */
  3030. obj->map_and_fenceable = true;
  3031. return obj;
  3032. }
  3033. int i915_gem_init_object(struct drm_gem_object *obj)
  3034. {
  3035. BUG();
  3036. return 0;
  3037. }
  3038. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
  3039. {
  3040. struct drm_device *dev = obj->base.dev;
  3041. drm_i915_private_t *dev_priv = dev->dev_private;
  3042. int ret;
  3043. ret = i915_gem_object_unbind(obj);
  3044. if (ret == -ERESTARTSYS) {
  3045. list_move(&obj->mm_list,
  3046. &dev_priv->mm.deferred_free_list);
  3047. return;
  3048. }
  3049. trace_i915_gem_object_destroy(obj);
  3050. if (obj->base.map_list.map)
  3051. drm_gem_free_mmap_offset(&obj->base);
  3052. drm_gem_object_release(&obj->base);
  3053. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  3054. kfree(obj->page_cpu_valid);
  3055. kfree(obj->bit_17);
  3056. kfree(obj);
  3057. }
  3058. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  3059. {
  3060. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  3061. struct drm_device *dev = obj->base.dev;
  3062. while (obj->pin_count > 0)
  3063. i915_gem_object_unpin(obj);
  3064. if (obj->phys_obj)
  3065. i915_gem_detach_phys_object(dev, obj);
  3066. i915_gem_free_object_tail(obj);
  3067. }
  3068. int
  3069. i915_gem_idle(struct drm_device *dev)
  3070. {
  3071. drm_i915_private_t *dev_priv = dev->dev_private;
  3072. int ret;
  3073. mutex_lock(&dev->struct_mutex);
  3074. if (dev_priv->mm.suspended) {
  3075. mutex_unlock(&dev->struct_mutex);
  3076. return 0;
  3077. }
  3078. ret = i915_gpu_idle(dev);
  3079. if (ret) {
  3080. mutex_unlock(&dev->struct_mutex);
  3081. return ret;
  3082. }
  3083. /* Under UMS, be paranoid and evict. */
  3084. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3085. ret = i915_gem_evict_inactive(dev, false);
  3086. if (ret) {
  3087. mutex_unlock(&dev->struct_mutex);
  3088. return ret;
  3089. }
  3090. }
  3091. i915_gem_reset_fences(dev);
  3092. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3093. * We need to replace this with a semaphore, or something.
  3094. * And not confound mm.suspended!
  3095. */
  3096. dev_priv->mm.suspended = 1;
  3097. del_timer_sync(&dev_priv->hangcheck_timer);
  3098. i915_kernel_lost_context(dev);
  3099. i915_gem_cleanup_ringbuffer(dev);
  3100. mutex_unlock(&dev->struct_mutex);
  3101. /* Cancel the retire work handler, which should be idle now. */
  3102. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3103. return 0;
  3104. }
  3105. int
  3106. i915_gem_init_ringbuffer(struct drm_device *dev)
  3107. {
  3108. drm_i915_private_t *dev_priv = dev->dev_private;
  3109. int ret;
  3110. ret = intel_init_render_ring_buffer(dev);
  3111. if (ret)
  3112. return ret;
  3113. if (HAS_BSD(dev)) {
  3114. ret = intel_init_bsd_ring_buffer(dev);
  3115. if (ret)
  3116. goto cleanup_render_ring;
  3117. }
  3118. if (HAS_BLT(dev)) {
  3119. ret = intel_init_blt_ring_buffer(dev);
  3120. if (ret)
  3121. goto cleanup_bsd_ring;
  3122. }
  3123. dev_priv->next_seqno = 1;
  3124. return 0;
  3125. cleanup_bsd_ring:
  3126. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3127. cleanup_render_ring:
  3128. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3129. return ret;
  3130. }
  3131. void
  3132. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3133. {
  3134. drm_i915_private_t *dev_priv = dev->dev_private;
  3135. int i;
  3136. for (i = 0; i < I915_NUM_RINGS; i++)
  3137. intel_cleanup_ring_buffer(&dev_priv->ring[i]);
  3138. }
  3139. int
  3140. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3141. struct drm_file *file_priv)
  3142. {
  3143. drm_i915_private_t *dev_priv = dev->dev_private;
  3144. int ret, i;
  3145. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3146. return 0;
  3147. if (atomic_read(&dev_priv->mm.wedged)) {
  3148. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3149. atomic_set(&dev_priv->mm.wedged, 0);
  3150. }
  3151. mutex_lock(&dev->struct_mutex);
  3152. dev_priv->mm.suspended = 0;
  3153. ret = i915_gem_init_ringbuffer(dev);
  3154. if (ret != 0) {
  3155. mutex_unlock(&dev->struct_mutex);
  3156. return ret;
  3157. }
  3158. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3159. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3160. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3161. for (i = 0; i < I915_NUM_RINGS; i++) {
  3162. BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
  3163. BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
  3164. }
  3165. mutex_unlock(&dev->struct_mutex);
  3166. ret = drm_irq_install(dev);
  3167. if (ret)
  3168. goto cleanup_ringbuffer;
  3169. return 0;
  3170. cleanup_ringbuffer:
  3171. mutex_lock(&dev->struct_mutex);
  3172. i915_gem_cleanup_ringbuffer(dev);
  3173. dev_priv->mm.suspended = 1;
  3174. mutex_unlock(&dev->struct_mutex);
  3175. return ret;
  3176. }
  3177. int
  3178. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3179. struct drm_file *file_priv)
  3180. {
  3181. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3182. return 0;
  3183. drm_irq_uninstall(dev);
  3184. return i915_gem_idle(dev);
  3185. }
  3186. void
  3187. i915_gem_lastclose(struct drm_device *dev)
  3188. {
  3189. int ret;
  3190. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3191. return;
  3192. ret = i915_gem_idle(dev);
  3193. if (ret)
  3194. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3195. }
  3196. static void
  3197. init_ring_lists(struct intel_ring_buffer *ring)
  3198. {
  3199. INIT_LIST_HEAD(&ring->active_list);
  3200. INIT_LIST_HEAD(&ring->request_list);
  3201. INIT_LIST_HEAD(&ring->gpu_write_list);
  3202. }
  3203. void
  3204. i915_gem_load(struct drm_device *dev)
  3205. {
  3206. int i;
  3207. drm_i915_private_t *dev_priv = dev->dev_private;
  3208. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3209. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3210. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3211. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  3212. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3213. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3214. INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
  3215. for (i = 0; i < I915_NUM_RINGS; i++)
  3216. init_ring_lists(&dev_priv->ring[i]);
  3217. for (i = 0; i < I915_MAX_NUM_FENCES; i++)
  3218. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3219. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3220. i915_gem_retire_work_handler);
  3221. init_completion(&dev_priv->error_completion);
  3222. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3223. if (IS_GEN3(dev)) {
  3224. u32 tmp = I915_READ(MI_ARB_STATE);
  3225. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3226. /* arb state is a masked write, so set bit + bit in mask */
  3227. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3228. I915_WRITE(MI_ARB_STATE, tmp);
  3229. }
  3230. }
  3231. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3232. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3233. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3234. dev_priv->fence_reg_start = 3;
  3235. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3236. dev_priv->num_fence_regs = 16;
  3237. else
  3238. dev_priv->num_fence_regs = 8;
  3239. /* Initialize fence registers to zero */
  3240. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  3241. i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
  3242. }
  3243. i915_gem_detect_bit_6_swizzle(dev);
  3244. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3245. dev_priv->mm.interruptible = true;
  3246. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3247. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3248. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3249. }
  3250. /*
  3251. * Create a physically contiguous memory object for this object
  3252. * e.g. for cursor + overlay regs
  3253. */
  3254. static int i915_gem_init_phys_object(struct drm_device *dev,
  3255. int id, int size, int align)
  3256. {
  3257. drm_i915_private_t *dev_priv = dev->dev_private;
  3258. struct drm_i915_gem_phys_object *phys_obj;
  3259. int ret;
  3260. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3261. return 0;
  3262. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3263. if (!phys_obj)
  3264. return -ENOMEM;
  3265. phys_obj->id = id;
  3266. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3267. if (!phys_obj->handle) {
  3268. ret = -ENOMEM;
  3269. goto kfree_obj;
  3270. }
  3271. #ifdef CONFIG_X86
  3272. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3273. #endif
  3274. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3275. return 0;
  3276. kfree_obj:
  3277. kfree(phys_obj);
  3278. return ret;
  3279. }
  3280. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3281. {
  3282. drm_i915_private_t *dev_priv = dev->dev_private;
  3283. struct drm_i915_gem_phys_object *phys_obj;
  3284. if (!dev_priv->mm.phys_objs[id - 1])
  3285. return;
  3286. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3287. if (phys_obj->cur_obj) {
  3288. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3289. }
  3290. #ifdef CONFIG_X86
  3291. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3292. #endif
  3293. drm_pci_free(dev, phys_obj->handle);
  3294. kfree(phys_obj);
  3295. dev_priv->mm.phys_objs[id - 1] = NULL;
  3296. }
  3297. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3298. {
  3299. int i;
  3300. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3301. i915_gem_free_phys_object(dev, i);
  3302. }
  3303. void i915_gem_detach_phys_object(struct drm_device *dev,
  3304. struct drm_i915_gem_object *obj)
  3305. {
  3306. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3307. char *vaddr;
  3308. int i;
  3309. int page_count;
  3310. if (!obj->phys_obj)
  3311. return;
  3312. vaddr = obj->phys_obj->handle->vaddr;
  3313. page_count = obj->base.size / PAGE_SIZE;
  3314. for (i = 0; i < page_count; i++) {
  3315. struct page *page = shmem_read_mapping_page(mapping, i);
  3316. if (!IS_ERR(page)) {
  3317. char *dst = kmap_atomic(page);
  3318. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3319. kunmap_atomic(dst);
  3320. drm_clflush_pages(&page, 1);
  3321. set_page_dirty(page);
  3322. mark_page_accessed(page);
  3323. page_cache_release(page);
  3324. }
  3325. }
  3326. intel_gtt_chipset_flush();
  3327. obj->phys_obj->cur_obj = NULL;
  3328. obj->phys_obj = NULL;
  3329. }
  3330. int
  3331. i915_gem_attach_phys_object(struct drm_device *dev,
  3332. struct drm_i915_gem_object *obj,
  3333. int id,
  3334. int align)
  3335. {
  3336. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3337. drm_i915_private_t *dev_priv = dev->dev_private;
  3338. int ret = 0;
  3339. int page_count;
  3340. int i;
  3341. if (id > I915_MAX_PHYS_OBJECT)
  3342. return -EINVAL;
  3343. if (obj->phys_obj) {
  3344. if (obj->phys_obj->id == id)
  3345. return 0;
  3346. i915_gem_detach_phys_object(dev, obj);
  3347. }
  3348. /* create a new object */
  3349. if (!dev_priv->mm.phys_objs[id - 1]) {
  3350. ret = i915_gem_init_phys_object(dev, id,
  3351. obj->base.size, align);
  3352. if (ret) {
  3353. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3354. id, obj->base.size);
  3355. return ret;
  3356. }
  3357. }
  3358. /* bind to the object */
  3359. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3360. obj->phys_obj->cur_obj = obj;
  3361. page_count = obj->base.size / PAGE_SIZE;
  3362. for (i = 0; i < page_count; i++) {
  3363. struct page *page;
  3364. char *dst, *src;
  3365. page = shmem_read_mapping_page(mapping, i);
  3366. if (IS_ERR(page))
  3367. return PTR_ERR(page);
  3368. src = kmap_atomic(page);
  3369. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3370. memcpy(dst, src, PAGE_SIZE);
  3371. kunmap_atomic(src);
  3372. mark_page_accessed(page);
  3373. page_cache_release(page);
  3374. }
  3375. return 0;
  3376. }
  3377. static int
  3378. i915_gem_phys_pwrite(struct drm_device *dev,
  3379. struct drm_i915_gem_object *obj,
  3380. struct drm_i915_gem_pwrite *args,
  3381. struct drm_file *file_priv)
  3382. {
  3383. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3384. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3385. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3386. unsigned long unwritten;
  3387. /* The physical object once assigned is fixed for the lifetime
  3388. * of the obj, so we can safely drop the lock and continue
  3389. * to access vaddr.
  3390. */
  3391. mutex_unlock(&dev->struct_mutex);
  3392. unwritten = copy_from_user(vaddr, user_data, args->size);
  3393. mutex_lock(&dev->struct_mutex);
  3394. if (unwritten)
  3395. return -EFAULT;
  3396. }
  3397. intel_gtt_chipset_flush();
  3398. return 0;
  3399. }
  3400. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3401. {
  3402. struct drm_i915_file_private *file_priv = file->driver_priv;
  3403. /* Clean up our request list when the client is going away, so that
  3404. * later retire_requests won't dereference our soon-to-be-gone
  3405. * file_priv.
  3406. */
  3407. spin_lock(&file_priv->mm.lock);
  3408. while (!list_empty(&file_priv->mm.request_list)) {
  3409. struct drm_i915_gem_request *request;
  3410. request = list_first_entry(&file_priv->mm.request_list,
  3411. struct drm_i915_gem_request,
  3412. client_list);
  3413. list_del(&request->client_list);
  3414. request->file_priv = NULL;
  3415. }
  3416. spin_unlock(&file_priv->mm.lock);
  3417. }
  3418. static int
  3419. i915_gpu_is_active(struct drm_device *dev)
  3420. {
  3421. drm_i915_private_t *dev_priv = dev->dev_private;
  3422. int lists_empty;
  3423. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  3424. list_empty(&dev_priv->mm.active_list);
  3425. return !lists_empty;
  3426. }
  3427. static int
  3428. i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
  3429. {
  3430. struct drm_i915_private *dev_priv =
  3431. container_of(shrinker,
  3432. struct drm_i915_private,
  3433. mm.inactive_shrinker);
  3434. struct drm_device *dev = dev_priv->dev;
  3435. struct drm_i915_gem_object *obj, *next;
  3436. int nr_to_scan = sc->nr_to_scan;
  3437. int cnt;
  3438. if (!mutex_trylock(&dev->struct_mutex))
  3439. return 0;
  3440. /* "fast-path" to count number of available objects */
  3441. if (nr_to_scan == 0) {
  3442. cnt = 0;
  3443. list_for_each_entry(obj,
  3444. &dev_priv->mm.inactive_list,
  3445. mm_list)
  3446. cnt++;
  3447. mutex_unlock(&dev->struct_mutex);
  3448. return cnt / 100 * sysctl_vfs_cache_pressure;
  3449. }
  3450. rescan:
  3451. /* first scan for clean buffers */
  3452. i915_gem_retire_requests(dev);
  3453. list_for_each_entry_safe(obj, next,
  3454. &dev_priv->mm.inactive_list,
  3455. mm_list) {
  3456. if (i915_gem_object_is_purgeable(obj)) {
  3457. if (i915_gem_object_unbind(obj) == 0 &&
  3458. --nr_to_scan == 0)
  3459. break;
  3460. }
  3461. }
  3462. /* second pass, evict/count anything still on the inactive list */
  3463. cnt = 0;
  3464. list_for_each_entry_safe(obj, next,
  3465. &dev_priv->mm.inactive_list,
  3466. mm_list) {
  3467. if (nr_to_scan &&
  3468. i915_gem_object_unbind(obj) == 0)
  3469. nr_to_scan--;
  3470. else
  3471. cnt++;
  3472. }
  3473. if (nr_to_scan && i915_gpu_is_active(dev)) {
  3474. /*
  3475. * We are desperate for pages, so as a last resort, wait
  3476. * for the GPU to finish and discard whatever we can.
  3477. * This has a dramatic impact to reduce the number of
  3478. * OOM-killer events whilst running the GPU aggressively.
  3479. */
  3480. if (i915_gpu_idle(dev) == 0)
  3481. goto rescan;
  3482. }
  3483. mutex_unlock(&dev->struct_mutex);
  3484. return cnt / 100 * sysctl_vfs_cache_pressure;
  3485. }