intel_dp.c 55 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include "drmP.h"
  30. #include "drm.h"
  31. #include "drm_crtc.h"
  32. #include "drm_crtc_helper.h"
  33. #include "intel_drv.h"
  34. #include "i915_drm.h"
  35. #include "i915_drv.h"
  36. #include "drm_dp_helper.h"
  37. #define DP_LINK_STATUS_SIZE 6
  38. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  39. #define DP_LINK_CONFIGURATION_SIZE 9
  40. struct intel_dp {
  41. struct intel_encoder base;
  42. uint32_t output_reg;
  43. uint32_t DP;
  44. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
  45. bool has_audio;
  46. int force_audio;
  47. uint32_t color_range;
  48. int dpms_mode;
  49. uint8_t link_bw;
  50. uint8_t lane_count;
  51. uint8_t dpcd[8];
  52. struct i2c_adapter adapter;
  53. struct i2c_algo_dp_aux_data algo;
  54. bool is_pch_edp;
  55. uint8_t train_set[4];
  56. uint8_t link_status[DP_LINK_STATUS_SIZE];
  57. };
  58. /**
  59. * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  60. * @intel_dp: DP struct
  61. *
  62. * If a CPU or PCH DP output is attached to an eDP panel, this function
  63. * will return true, and false otherwise.
  64. */
  65. static bool is_edp(struct intel_dp *intel_dp)
  66. {
  67. return intel_dp->base.type == INTEL_OUTPUT_EDP;
  68. }
  69. /**
  70. * is_pch_edp - is the port on the PCH and attached to an eDP panel?
  71. * @intel_dp: DP struct
  72. *
  73. * Returns true if the given DP struct corresponds to a PCH DP port attached
  74. * to an eDP panel, false otherwise. Helpful for determining whether we
  75. * may need FDI resources for a given DP output or not.
  76. */
  77. static bool is_pch_edp(struct intel_dp *intel_dp)
  78. {
  79. return intel_dp->is_pch_edp;
  80. }
  81. static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
  82. {
  83. return container_of(encoder, struct intel_dp, base.base);
  84. }
  85. static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
  86. {
  87. return container_of(intel_attached_encoder(connector),
  88. struct intel_dp, base);
  89. }
  90. /**
  91. * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
  92. * @encoder: DRM encoder
  93. *
  94. * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
  95. * by intel_display.c.
  96. */
  97. bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
  98. {
  99. struct intel_dp *intel_dp;
  100. if (!encoder)
  101. return false;
  102. intel_dp = enc_to_intel_dp(encoder);
  103. return is_pch_edp(intel_dp);
  104. }
  105. static void intel_dp_start_link_train(struct intel_dp *intel_dp);
  106. static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
  107. static void intel_dp_link_down(struct intel_dp *intel_dp);
  108. void
  109. intel_edp_link_config (struct intel_encoder *intel_encoder,
  110. int *lane_num, int *link_bw)
  111. {
  112. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  113. *lane_num = intel_dp->lane_count;
  114. if (intel_dp->link_bw == DP_LINK_BW_1_62)
  115. *link_bw = 162000;
  116. else if (intel_dp->link_bw == DP_LINK_BW_2_7)
  117. *link_bw = 270000;
  118. }
  119. static int
  120. intel_dp_max_lane_count(struct intel_dp *intel_dp)
  121. {
  122. int max_lane_count = 4;
  123. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
  124. max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
  125. switch (max_lane_count) {
  126. case 1: case 2: case 4:
  127. break;
  128. default:
  129. max_lane_count = 4;
  130. }
  131. }
  132. return max_lane_count;
  133. }
  134. static int
  135. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  136. {
  137. int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
  138. switch (max_link_bw) {
  139. case DP_LINK_BW_1_62:
  140. case DP_LINK_BW_2_7:
  141. break;
  142. default:
  143. max_link_bw = DP_LINK_BW_1_62;
  144. break;
  145. }
  146. return max_link_bw;
  147. }
  148. static int
  149. intel_dp_link_clock(uint8_t link_bw)
  150. {
  151. if (link_bw == DP_LINK_BW_2_7)
  152. return 270000;
  153. else
  154. return 162000;
  155. }
  156. /* I think this is a fiction */
  157. static int
  158. intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
  159. {
  160. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  161. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  162. int bpp = 24;
  163. if (intel_crtc)
  164. bpp = intel_crtc->bpp;
  165. return (pixel_clock * bpp + 7) / 8;
  166. }
  167. static int
  168. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  169. {
  170. return (max_link_clock * max_lanes * 8) / 10;
  171. }
  172. static int
  173. intel_dp_mode_valid(struct drm_connector *connector,
  174. struct drm_display_mode *mode)
  175. {
  176. struct intel_dp *intel_dp = intel_attached_dp(connector);
  177. struct drm_device *dev = connector->dev;
  178. struct drm_i915_private *dev_priv = dev->dev_private;
  179. int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
  180. int max_lanes = intel_dp_max_lane_count(intel_dp);
  181. if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
  182. if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
  183. return MODE_PANEL;
  184. if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
  185. return MODE_PANEL;
  186. }
  187. /* only refuse the mode on non eDP since we have seen some weird eDP panels
  188. which are outside spec tolerances but somehow work by magic */
  189. if (!is_edp(intel_dp) &&
  190. (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
  191. > intel_dp_max_data_rate(max_link_clock, max_lanes)))
  192. return MODE_CLOCK_HIGH;
  193. if (mode->clock < 10000)
  194. return MODE_CLOCK_LOW;
  195. return MODE_OK;
  196. }
  197. static uint32_t
  198. pack_aux(uint8_t *src, int src_bytes)
  199. {
  200. int i;
  201. uint32_t v = 0;
  202. if (src_bytes > 4)
  203. src_bytes = 4;
  204. for (i = 0; i < src_bytes; i++)
  205. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  206. return v;
  207. }
  208. static void
  209. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  210. {
  211. int i;
  212. if (dst_bytes > 4)
  213. dst_bytes = 4;
  214. for (i = 0; i < dst_bytes; i++)
  215. dst[i] = src >> ((3-i) * 8);
  216. }
  217. /* hrawclock is 1/4 the FSB frequency */
  218. static int
  219. intel_hrawclk(struct drm_device *dev)
  220. {
  221. struct drm_i915_private *dev_priv = dev->dev_private;
  222. uint32_t clkcfg;
  223. clkcfg = I915_READ(CLKCFG);
  224. switch (clkcfg & CLKCFG_FSB_MASK) {
  225. case CLKCFG_FSB_400:
  226. return 100;
  227. case CLKCFG_FSB_533:
  228. return 133;
  229. case CLKCFG_FSB_667:
  230. return 166;
  231. case CLKCFG_FSB_800:
  232. return 200;
  233. case CLKCFG_FSB_1067:
  234. return 266;
  235. case CLKCFG_FSB_1333:
  236. return 333;
  237. /* these two are just a guess; one of them might be right */
  238. case CLKCFG_FSB_1600:
  239. case CLKCFG_FSB_1600_ALT:
  240. return 400;
  241. default:
  242. return 133;
  243. }
  244. }
  245. static void
  246. intel_dp_check_edp(struct intel_dp *intel_dp)
  247. {
  248. struct drm_device *dev = intel_dp->base.base.dev;
  249. struct drm_i915_private *dev_priv = dev->dev_private;
  250. u32 pp_status, pp_control;
  251. if (!is_edp(intel_dp))
  252. return;
  253. pp_status = I915_READ(PCH_PP_STATUS);
  254. pp_control = I915_READ(PCH_PP_CONTROL);
  255. if ((pp_status & PP_ON) == 0 && (pp_control & EDP_FORCE_VDD) == 0) {
  256. WARN(1, "eDP powered off while attempting aux channel communication.\n");
  257. DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
  258. pp_status,
  259. I915_READ(PCH_PP_CONTROL));
  260. }
  261. }
  262. static int
  263. intel_dp_aux_ch(struct intel_dp *intel_dp,
  264. uint8_t *send, int send_bytes,
  265. uint8_t *recv, int recv_size)
  266. {
  267. uint32_t output_reg = intel_dp->output_reg;
  268. struct drm_device *dev = intel_dp->base.base.dev;
  269. struct drm_i915_private *dev_priv = dev->dev_private;
  270. uint32_t ch_ctl = output_reg + 0x10;
  271. uint32_t ch_data = ch_ctl + 4;
  272. int i;
  273. int recv_bytes;
  274. uint32_t status;
  275. uint32_t aux_clock_divider;
  276. int try, precharge;
  277. intel_dp_check_edp(intel_dp);
  278. /* The clock divider is based off the hrawclk,
  279. * and would like to run at 2MHz. So, take the
  280. * hrawclk value and divide by 2 and use that
  281. *
  282. * Note that PCH attached eDP panels should use a 125MHz input
  283. * clock divider.
  284. */
  285. if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
  286. if (IS_GEN6(dev))
  287. aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
  288. else
  289. aux_clock_divider = 225; /* eDP input clock at 450Mhz */
  290. } else if (HAS_PCH_SPLIT(dev))
  291. aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
  292. else
  293. aux_clock_divider = intel_hrawclk(dev) / 2;
  294. if (IS_GEN6(dev))
  295. precharge = 3;
  296. else
  297. precharge = 5;
  298. /* Try to wait for any previous AUX channel activity */
  299. for (try = 0; try < 3; try++) {
  300. status = I915_READ(ch_ctl);
  301. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  302. break;
  303. msleep(1);
  304. }
  305. if (try == 3) {
  306. WARN(1, "dp_aux_ch not started status 0x%08x\n",
  307. I915_READ(ch_ctl));
  308. return -EBUSY;
  309. }
  310. /* Must try at least 3 times according to DP spec */
  311. for (try = 0; try < 5; try++) {
  312. /* Load the send data into the aux channel data registers */
  313. for (i = 0; i < send_bytes; i += 4)
  314. I915_WRITE(ch_data + i,
  315. pack_aux(send + i, send_bytes - i));
  316. /* Send the command and wait for it to complete */
  317. I915_WRITE(ch_ctl,
  318. DP_AUX_CH_CTL_SEND_BUSY |
  319. DP_AUX_CH_CTL_TIME_OUT_400us |
  320. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  321. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  322. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  323. DP_AUX_CH_CTL_DONE |
  324. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  325. DP_AUX_CH_CTL_RECEIVE_ERROR);
  326. for (;;) {
  327. status = I915_READ(ch_ctl);
  328. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  329. break;
  330. udelay(100);
  331. }
  332. /* Clear done status and any errors */
  333. I915_WRITE(ch_ctl,
  334. status |
  335. DP_AUX_CH_CTL_DONE |
  336. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  337. DP_AUX_CH_CTL_RECEIVE_ERROR);
  338. if (status & DP_AUX_CH_CTL_DONE)
  339. break;
  340. }
  341. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  342. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  343. return -EBUSY;
  344. }
  345. /* Check for timeout or receive error.
  346. * Timeouts occur when the sink is not connected
  347. */
  348. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  349. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  350. return -EIO;
  351. }
  352. /* Timeouts occur when the device isn't connected, so they're
  353. * "normal" -- don't fill the kernel log with these */
  354. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  355. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  356. return -ETIMEDOUT;
  357. }
  358. /* Unload any bytes sent back from the other side */
  359. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  360. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  361. if (recv_bytes > recv_size)
  362. recv_bytes = recv_size;
  363. for (i = 0; i < recv_bytes; i += 4)
  364. unpack_aux(I915_READ(ch_data + i),
  365. recv + i, recv_bytes - i);
  366. return recv_bytes;
  367. }
  368. /* Write data to the aux channel in native mode */
  369. static int
  370. intel_dp_aux_native_write(struct intel_dp *intel_dp,
  371. uint16_t address, uint8_t *send, int send_bytes)
  372. {
  373. int ret;
  374. uint8_t msg[20];
  375. int msg_bytes;
  376. uint8_t ack;
  377. intel_dp_check_edp(intel_dp);
  378. if (send_bytes > 16)
  379. return -1;
  380. msg[0] = AUX_NATIVE_WRITE << 4;
  381. msg[1] = address >> 8;
  382. msg[2] = address & 0xff;
  383. msg[3] = send_bytes - 1;
  384. memcpy(&msg[4], send, send_bytes);
  385. msg_bytes = send_bytes + 4;
  386. for (;;) {
  387. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
  388. if (ret < 0)
  389. return ret;
  390. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  391. break;
  392. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  393. udelay(100);
  394. else
  395. return -EIO;
  396. }
  397. return send_bytes;
  398. }
  399. /* Write a single byte to the aux channel in native mode */
  400. static int
  401. intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
  402. uint16_t address, uint8_t byte)
  403. {
  404. return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
  405. }
  406. /* read bytes from a native aux channel */
  407. static int
  408. intel_dp_aux_native_read(struct intel_dp *intel_dp,
  409. uint16_t address, uint8_t *recv, int recv_bytes)
  410. {
  411. uint8_t msg[4];
  412. int msg_bytes;
  413. uint8_t reply[20];
  414. int reply_bytes;
  415. uint8_t ack;
  416. int ret;
  417. intel_dp_check_edp(intel_dp);
  418. msg[0] = AUX_NATIVE_READ << 4;
  419. msg[1] = address >> 8;
  420. msg[2] = address & 0xff;
  421. msg[3] = recv_bytes - 1;
  422. msg_bytes = 4;
  423. reply_bytes = recv_bytes + 1;
  424. for (;;) {
  425. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
  426. reply, reply_bytes);
  427. if (ret == 0)
  428. return -EPROTO;
  429. if (ret < 0)
  430. return ret;
  431. ack = reply[0];
  432. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  433. memcpy(recv, reply + 1, ret - 1);
  434. return ret - 1;
  435. }
  436. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  437. udelay(100);
  438. else
  439. return -EIO;
  440. }
  441. }
  442. static int
  443. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  444. uint8_t write_byte, uint8_t *read_byte)
  445. {
  446. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  447. struct intel_dp *intel_dp = container_of(adapter,
  448. struct intel_dp,
  449. adapter);
  450. uint16_t address = algo_data->address;
  451. uint8_t msg[5];
  452. uint8_t reply[2];
  453. unsigned retry;
  454. int msg_bytes;
  455. int reply_bytes;
  456. int ret;
  457. intel_dp_check_edp(intel_dp);
  458. /* Set up the command byte */
  459. if (mode & MODE_I2C_READ)
  460. msg[0] = AUX_I2C_READ << 4;
  461. else
  462. msg[0] = AUX_I2C_WRITE << 4;
  463. if (!(mode & MODE_I2C_STOP))
  464. msg[0] |= AUX_I2C_MOT << 4;
  465. msg[1] = address >> 8;
  466. msg[2] = address;
  467. switch (mode) {
  468. case MODE_I2C_WRITE:
  469. msg[3] = 0;
  470. msg[4] = write_byte;
  471. msg_bytes = 5;
  472. reply_bytes = 1;
  473. break;
  474. case MODE_I2C_READ:
  475. msg[3] = 0;
  476. msg_bytes = 4;
  477. reply_bytes = 2;
  478. break;
  479. default:
  480. msg_bytes = 3;
  481. reply_bytes = 1;
  482. break;
  483. }
  484. for (retry = 0; retry < 5; retry++) {
  485. ret = intel_dp_aux_ch(intel_dp,
  486. msg, msg_bytes,
  487. reply, reply_bytes);
  488. if (ret < 0) {
  489. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  490. return ret;
  491. }
  492. switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
  493. case AUX_NATIVE_REPLY_ACK:
  494. /* I2C-over-AUX Reply field is only valid
  495. * when paired with AUX ACK.
  496. */
  497. break;
  498. case AUX_NATIVE_REPLY_NACK:
  499. DRM_DEBUG_KMS("aux_ch native nack\n");
  500. return -EREMOTEIO;
  501. case AUX_NATIVE_REPLY_DEFER:
  502. udelay(100);
  503. continue;
  504. default:
  505. DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
  506. reply[0]);
  507. return -EREMOTEIO;
  508. }
  509. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  510. case AUX_I2C_REPLY_ACK:
  511. if (mode == MODE_I2C_READ) {
  512. *read_byte = reply[1];
  513. }
  514. return reply_bytes - 1;
  515. case AUX_I2C_REPLY_NACK:
  516. DRM_DEBUG_KMS("aux_i2c nack\n");
  517. return -EREMOTEIO;
  518. case AUX_I2C_REPLY_DEFER:
  519. DRM_DEBUG_KMS("aux_i2c defer\n");
  520. udelay(100);
  521. break;
  522. default:
  523. DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
  524. return -EREMOTEIO;
  525. }
  526. }
  527. DRM_ERROR("too many retries, giving up\n");
  528. return -EREMOTEIO;
  529. }
  530. static int
  531. intel_dp_i2c_init(struct intel_dp *intel_dp,
  532. struct intel_connector *intel_connector, const char *name)
  533. {
  534. DRM_DEBUG_KMS("i2c_init %s\n", name);
  535. intel_dp->algo.running = false;
  536. intel_dp->algo.address = 0;
  537. intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
  538. memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
  539. intel_dp->adapter.owner = THIS_MODULE;
  540. intel_dp->adapter.class = I2C_CLASS_DDC;
  541. strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
  542. intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
  543. intel_dp->adapter.algo_data = &intel_dp->algo;
  544. intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
  545. return i2c_dp_aux_add_bus(&intel_dp->adapter);
  546. }
  547. static bool
  548. intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
  549. struct drm_display_mode *adjusted_mode)
  550. {
  551. struct drm_device *dev = encoder->dev;
  552. struct drm_i915_private *dev_priv = dev->dev_private;
  553. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  554. int lane_count, clock;
  555. int max_lane_count = intel_dp_max_lane_count(intel_dp);
  556. int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
  557. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  558. if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
  559. intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
  560. intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
  561. mode, adjusted_mode);
  562. /*
  563. * the mode->clock is used to calculate the Data&Link M/N
  564. * of the pipe. For the eDP the fixed clock should be used.
  565. */
  566. mode->clock = dev_priv->panel_fixed_mode->clock;
  567. }
  568. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  569. for (clock = 0; clock <= max_clock; clock++) {
  570. int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
  571. if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
  572. <= link_avail) {
  573. intel_dp->link_bw = bws[clock];
  574. intel_dp->lane_count = lane_count;
  575. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  576. DRM_DEBUG_KMS("Display port link bw %02x lane "
  577. "count %d clock %d\n",
  578. intel_dp->link_bw, intel_dp->lane_count,
  579. adjusted_mode->clock);
  580. return true;
  581. }
  582. }
  583. }
  584. if (is_edp(intel_dp)) {
  585. /* okay we failed just pick the highest */
  586. intel_dp->lane_count = max_lane_count;
  587. intel_dp->link_bw = bws[max_clock];
  588. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  589. DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
  590. "count %d clock %d\n",
  591. intel_dp->link_bw, intel_dp->lane_count,
  592. adjusted_mode->clock);
  593. return true;
  594. }
  595. return false;
  596. }
  597. struct intel_dp_m_n {
  598. uint32_t tu;
  599. uint32_t gmch_m;
  600. uint32_t gmch_n;
  601. uint32_t link_m;
  602. uint32_t link_n;
  603. };
  604. static void
  605. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  606. {
  607. while (*num > 0xffffff || *den > 0xffffff) {
  608. *num >>= 1;
  609. *den >>= 1;
  610. }
  611. }
  612. static void
  613. intel_dp_compute_m_n(int bpp,
  614. int nlanes,
  615. int pixel_clock,
  616. int link_clock,
  617. struct intel_dp_m_n *m_n)
  618. {
  619. m_n->tu = 64;
  620. m_n->gmch_m = (pixel_clock * bpp) >> 3;
  621. m_n->gmch_n = link_clock * nlanes;
  622. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  623. m_n->link_m = pixel_clock;
  624. m_n->link_n = link_clock;
  625. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  626. }
  627. void
  628. intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
  629. struct drm_display_mode *adjusted_mode)
  630. {
  631. struct drm_device *dev = crtc->dev;
  632. struct drm_mode_config *mode_config = &dev->mode_config;
  633. struct drm_encoder *encoder;
  634. struct drm_i915_private *dev_priv = dev->dev_private;
  635. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  636. int lane_count = 4;
  637. struct intel_dp_m_n m_n;
  638. int pipe = intel_crtc->pipe;
  639. /*
  640. * Find the lane count in the intel_encoder private
  641. */
  642. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  643. struct intel_dp *intel_dp;
  644. if (encoder->crtc != crtc)
  645. continue;
  646. intel_dp = enc_to_intel_dp(encoder);
  647. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
  648. lane_count = intel_dp->lane_count;
  649. break;
  650. } else if (is_edp(intel_dp)) {
  651. lane_count = dev_priv->edp.lanes;
  652. break;
  653. }
  654. }
  655. /*
  656. * Compute the GMCH and Link ratios. The '3' here is
  657. * the number of bytes_per_pixel post-LUT, which we always
  658. * set up for 8-bits of R/G/B, or 3 bytes total.
  659. */
  660. intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
  661. mode->clock, adjusted_mode->clock, &m_n);
  662. if (HAS_PCH_SPLIT(dev)) {
  663. I915_WRITE(TRANSDATA_M1(pipe),
  664. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  665. m_n.gmch_m);
  666. I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
  667. I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
  668. I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
  669. } else {
  670. I915_WRITE(PIPE_GMCH_DATA_M(pipe),
  671. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  672. m_n.gmch_m);
  673. I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
  674. I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
  675. I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
  676. }
  677. }
  678. static void
  679. intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  680. struct drm_display_mode *adjusted_mode)
  681. {
  682. struct drm_device *dev = encoder->dev;
  683. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  684. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  685. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  686. intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
  687. intel_dp->DP |= intel_dp->color_range;
  688. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  689. intel_dp->DP |= DP_SYNC_HS_HIGH;
  690. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  691. intel_dp->DP |= DP_SYNC_VS_HIGH;
  692. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  693. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  694. else
  695. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  696. switch (intel_dp->lane_count) {
  697. case 1:
  698. intel_dp->DP |= DP_PORT_WIDTH_1;
  699. break;
  700. case 2:
  701. intel_dp->DP |= DP_PORT_WIDTH_2;
  702. break;
  703. case 4:
  704. intel_dp->DP |= DP_PORT_WIDTH_4;
  705. break;
  706. }
  707. if (intel_dp->has_audio)
  708. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  709. memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  710. intel_dp->link_configuration[0] = intel_dp->link_bw;
  711. intel_dp->link_configuration[1] = intel_dp->lane_count;
  712. intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
  713. /*
  714. * Check for DPCD version > 1.1 and enhanced framing support
  715. */
  716. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  717. (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
  718. intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  719. intel_dp->DP |= DP_ENHANCED_FRAMING;
  720. }
  721. /* CPT DP's pipe select is decided in TRANS_DP_CTL */
  722. if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
  723. intel_dp->DP |= DP_PIPEB_SELECT;
  724. if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
  725. /* don't miss out required setting for eDP */
  726. intel_dp->DP |= DP_PLL_ENABLE;
  727. if (adjusted_mode->clock < 200000)
  728. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  729. else
  730. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  731. }
  732. }
  733. static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
  734. {
  735. struct drm_device *dev = intel_dp->base.base.dev;
  736. struct drm_i915_private *dev_priv = dev->dev_private;
  737. u32 pp;
  738. if (!is_edp(intel_dp))
  739. return;
  740. /*
  741. * If the panel wasn't on, make sure there's not a currently
  742. * active PP sequence before enabling AUX VDD.
  743. */
  744. if (!(I915_READ(PCH_PP_STATUS) & PP_ON))
  745. msleep(dev_priv->panel_t3);
  746. pp = I915_READ(PCH_PP_CONTROL);
  747. pp &= ~PANEL_UNLOCK_MASK;
  748. pp |= PANEL_UNLOCK_REGS;
  749. pp |= EDP_FORCE_VDD;
  750. I915_WRITE(PCH_PP_CONTROL, pp);
  751. POSTING_READ(PCH_PP_CONTROL);
  752. }
  753. static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp)
  754. {
  755. struct drm_device *dev = intel_dp->base.base.dev;
  756. struct drm_i915_private *dev_priv = dev->dev_private;
  757. u32 pp;
  758. if (!is_edp(intel_dp))
  759. return;
  760. pp = I915_READ(PCH_PP_CONTROL);
  761. pp &= ~PANEL_UNLOCK_MASK;
  762. pp |= PANEL_UNLOCK_REGS;
  763. pp &= ~EDP_FORCE_VDD;
  764. I915_WRITE(PCH_PP_CONTROL, pp);
  765. POSTING_READ(PCH_PP_CONTROL);
  766. /* Make sure sequencer is idle before allowing subsequent activity */
  767. msleep(dev_priv->panel_t12);
  768. }
  769. /* Returns true if the panel was already on when called */
  770. static bool ironlake_edp_panel_on (struct intel_dp *intel_dp)
  771. {
  772. struct drm_device *dev = intel_dp->base.base.dev;
  773. struct drm_i915_private *dev_priv = dev->dev_private;
  774. u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_STATE_ON_IDLE;
  775. if (!is_edp(intel_dp))
  776. return;
  777. if (I915_READ(PCH_PP_STATUS) & PP_ON)
  778. return true;
  779. pp = I915_READ(PCH_PP_CONTROL);
  780. pp &= ~PANEL_UNLOCK_MASK;
  781. pp |= PANEL_UNLOCK_REGS;
  782. /* ILK workaround: disable reset around power sequence */
  783. pp &= ~PANEL_POWER_RESET;
  784. I915_WRITE(PCH_PP_CONTROL, pp);
  785. POSTING_READ(PCH_PP_CONTROL);
  786. pp |= POWER_TARGET_ON;
  787. I915_WRITE(PCH_PP_CONTROL, pp);
  788. POSTING_READ(PCH_PP_CONTROL);
  789. if (wait_for((I915_READ(PCH_PP_STATUS) & idle_on_mask) == idle_on_mask,
  790. 5000))
  791. DRM_ERROR("panel on wait timed out: 0x%08x\n",
  792. I915_READ(PCH_PP_STATUS));
  793. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  794. I915_WRITE(PCH_PP_CONTROL, pp);
  795. POSTING_READ(PCH_PP_CONTROL);
  796. return false;
  797. }
  798. static void ironlake_edp_panel_off (struct drm_device *dev)
  799. {
  800. struct drm_i915_private *dev_priv = dev->dev_private;
  801. u32 pp, idle_off_mask = PP_ON | PP_SEQUENCE_MASK |
  802. PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK;
  803. if (!is_edp(intel_dp))
  804. return;
  805. pp = I915_READ(PCH_PP_CONTROL);
  806. pp &= ~PANEL_UNLOCK_MASK;
  807. pp |= PANEL_UNLOCK_REGS;
  808. /* ILK workaround: disable reset around power sequence */
  809. pp &= ~PANEL_POWER_RESET;
  810. I915_WRITE(PCH_PP_CONTROL, pp);
  811. POSTING_READ(PCH_PP_CONTROL);
  812. pp &= ~POWER_TARGET_ON;
  813. I915_WRITE(PCH_PP_CONTROL, pp);
  814. POSTING_READ(PCH_PP_CONTROL);
  815. if (wait_for((I915_READ(PCH_PP_STATUS) & idle_off_mask) == 0, 5000))
  816. DRM_ERROR("panel off wait timed out: 0x%08x\n",
  817. I915_READ(PCH_PP_STATUS));
  818. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  819. I915_WRITE(PCH_PP_CONTROL, pp);
  820. POSTING_READ(PCH_PP_CONTROL);
  821. }
  822. static void ironlake_edp_backlight_on (struct drm_device *dev)
  823. {
  824. struct drm_i915_private *dev_priv = dev->dev_private;
  825. u32 pp;
  826. DRM_DEBUG_KMS("\n");
  827. /*
  828. * If we enable the backlight right away following a panel power
  829. * on, we may see slight flicker as the panel syncs with the eDP
  830. * link. So delay a bit to make sure the image is solid before
  831. * allowing it to appear.
  832. */
  833. msleep(300);
  834. pp = I915_READ(PCH_PP_CONTROL);
  835. pp &= ~PANEL_UNLOCK_MASK;
  836. pp |= PANEL_UNLOCK_REGS;
  837. pp |= EDP_BLC_ENABLE;
  838. I915_WRITE(PCH_PP_CONTROL, pp);
  839. }
  840. static void ironlake_edp_backlight_off (struct drm_device *dev)
  841. {
  842. struct drm_i915_private *dev_priv = dev->dev_private;
  843. u32 pp;
  844. DRM_DEBUG_KMS("\n");
  845. pp = I915_READ(PCH_PP_CONTROL);
  846. pp &= ~PANEL_UNLOCK_MASK;
  847. pp |= PANEL_UNLOCK_REGS;
  848. pp &= ~EDP_BLC_ENABLE;
  849. I915_WRITE(PCH_PP_CONTROL, pp);
  850. }
  851. static void ironlake_edp_pll_on(struct drm_encoder *encoder)
  852. {
  853. struct drm_device *dev = encoder->dev;
  854. struct drm_i915_private *dev_priv = dev->dev_private;
  855. u32 dpa_ctl;
  856. DRM_DEBUG_KMS("\n");
  857. dpa_ctl = I915_READ(DP_A);
  858. dpa_ctl |= DP_PLL_ENABLE;
  859. I915_WRITE(DP_A, dpa_ctl);
  860. POSTING_READ(DP_A);
  861. udelay(200);
  862. }
  863. static void ironlake_edp_pll_off(struct drm_encoder *encoder)
  864. {
  865. struct drm_device *dev = encoder->dev;
  866. struct drm_i915_private *dev_priv = dev->dev_private;
  867. u32 dpa_ctl;
  868. dpa_ctl = I915_READ(DP_A);
  869. dpa_ctl &= ~DP_PLL_ENABLE;
  870. I915_WRITE(DP_A, dpa_ctl);
  871. POSTING_READ(DP_A);
  872. udelay(200);
  873. }
  874. /* If the sink supports it, try to set the power state appropriately */
  875. static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
  876. {
  877. int ret, i;
  878. /* Should have a valid DPCD by this point */
  879. if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
  880. return;
  881. if (mode != DRM_MODE_DPMS_ON) {
  882. ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
  883. DP_SET_POWER_D3);
  884. if (ret != 1)
  885. DRM_DEBUG_DRIVER("failed to write sink power state\n");
  886. } else {
  887. /*
  888. * When turning on, we need to retry for 1ms to give the sink
  889. * time to wake up.
  890. */
  891. for (i = 0; i < 3; i++) {
  892. ret = intel_dp_aux_native_write_1(intel_dp,
  893. DP_SET_POWER,
  894. DP_SET_POWER_D0);
  895. if (ret == 1)
  896. break;
  897. msleep(1);
  898. }
  899. }
  900. }
  901. static void intel_dp_prepare(struct drm_encoder *encoder)
  902. {
  903. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  904. struct drm_device *dev = encoder->dev;
  905. /* Wake up the sink first */
  906. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  907. if (is_edp(intel_dp)) {
  908. ironlake_edp_backlight_off(dev);
  909. ironlake_edp_panel_off(dev);
  910. if (!is_pch_edp(intel_dp))
  911. ironlake_edp_pll_on(encoder);
  912. else
  913. ironlake_edp_pll_off(encoder);
  914. }
  915. intel_dp_link_down(intel_dp);
  916. }
  917. static void intel_dp_commit(struct drm_encoder *encoder)
  918. {
  919. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  920. struct drm_device *dev = encoder->dev;
  921. ironlake_edp_panel_vdd_on(intel_dp);
  922. intel_dp_start_link_train(intel_dp);
  923. ironlake_edp_panel_on(intel_dp);
  924. ironlake_edp_panel_vdd_off(intel_dp);
  925. intel_dp_complete_link_train(intel_dp);
  926. if (is_edp(intel_dp))
  927. ironlake_edp_backlight_on(dev);
  928. intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
  929. }
  930. static void
  931. intel_dp_dpms(struct drm_encoder *encoder, int mode)
  932. {
  933. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  934. struct drm_device *dev = encoder->dev;
  935. struct drm_i915_private *dev_priv = dev->dev_private;
  936. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  937. if (mode != DRM_MODE_DPMS_ON) {
  938. if (is_edp(intel_dp))
  939. ironlake_edp_backlight_off(dev);
  940. intel_dp_sink_dpms(intel_dp, mode);
  941. intel_dp_link_down(intel_dp);
  942. ironlake_edp_panel_off(dev);
  943. if (is_edp(intel_dp) && !is_pch_edp(intel_dp))
  944. ironlake_edp_pll_off(encoder);
  945. } else {
  946. ironlake_edp_panel_vdd_on(intel_dp);
  947. intel_dp_sink_dpms(intel_dp, mode);
  948. if (!(dp_reg & DP_PORT_EN)) {
  949. intel_dp_start_link_train(intel_dp);
  950. ironlake_edp_panel_on(intel_dp);
  951. ironlake_edp_panel_vdd_off(intel_dp);
  952. intel_dp_complete_link_train(intel_dp);
  953. } else
  954. ironlake_edp_panel_vdd_off(intel_dp);
  955. if (is_edp(intel_dp))
  956. ironlake_edp_backlight_on(dev);
  957. }
  958. intel_dp->dpms_mode = mode;
  959. }
  960. /*
  961. * Native read with retry for link status and receiver capability reads for
  962. * cases where the sink may still be asleep.
  963. */
  964. static bool
  965. intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
  966. uint8_t *recv, int recv_bytes)
  967. {
  968. int ret, i;
  969. /*
  970. * Sinks are *supposed* to come up within 1ms from an off state,
  971. * but we're also supposed to retry 3 times per the spec.
  972. */
  973. for (i = 0; i < 3; i++) {
  974. ret = intel_dp_aux_native_read(intel_dp, address, recv,
  975. recv_bytes);
  976. if (ret == recv_bytes)
  977. return true;
  978. msleep(1);
  979. }
  980. return false;
  981. }
  982. /*
  983. * Fetch AUX CH registers 0x202 - 0x207 which contain
  984. * link status information
  985. */
  986. static bool
  987. intel_dp_get_link_status(struct intel_dp *intel_dp)
  988. {
  989. return intel_dp_aux_native_read_retry(intel_dp,
  990. DP_LANE0_1_STATUS,
  991. intel_dp->link_status,
  992. DP_LINK_STATUS_SIZE);
  993. }
  994. static uint8_t
  995. intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  996. int r)
  997. {
  998. return link_status[r - DP_LANE0_1_STATUS];
  999. }
  1000. static uint8_t
  1001. intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
  1002. int lane)
  1003. {
  1004. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  1005. int s = ((lane & 1) ?
  1006. DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
  1007. DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
  1008. uint8_t l = intel_dp_link_status(link_status, i);
  1009. return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
  1010. }
  1011. static uint8_t
  1012. intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
  1013. int lane)
  1014. {
  1015. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  1016. int s = ((lane & 1) ?
  1017. DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
  1018. DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
  1019. uint8_t l = intel_dp_link_status(link_status, i);
  1020. return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
  1021. }
  1022. #if 0
  1023. static char *voltage_names[] = {
  1024. "0.4V", "0.6V", "0.8V", "1.2V"
  1025. };
  1026. static char *pre_emph_names[] = {
  1027. "0dB", "3.5dB", "6dB", "9.5dB"
  1028. };
  1029. static char *link_train_names[] = {
  1030. "pattern 1", "pattern 2", "idle", "off"
  1031. };
  1032. #endif
  1033. /*
  1034. * These are source-specific values; current Intel hardware supports
  1035. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  1036. */
  1037. #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
  1038. static uint8_t
  1039. intel_dp_pre_emphasis_max(uint8_t voltage_swing)
  1040. {
  1041. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1042. case DP_TRAIN_VOLTAGE_SWING_400:
  1043. return DP_TRAIN_PRE_EMPHASIS_6;
  1044. case DP_TRAIN_VOLTAGE_SWING_600:
  1045. return DP_TRAIN_PRE_EMPHASIS_6;
  1046. case DP_TRAIN_VOLTAGE_SWING_800:
  1047. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1048. case DP_TRAIN_VOLTAGE_SWING_1200:
  1049. default:
  1050. return DP_TRAIN_PRE_EMPHASIS_0;
  1051. }
  1052. }
  1053. static void
  1054. intel_get_adjust_train(struct intel_dp *intel_dp)
  1055. {
  1056. uint8_t v = 0;
  1057. uint8_t p = 0;
  1058. int lane;
  1059. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1060. uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
  1061. uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
  1062. if (this_v > v)
  1063. v = this_v;
  1064. if (this_p > p)
  1065. p = this_p;
  1066. }
  1067. if (v >= I830_DP_VOLTAGE_MAX)
  1068. v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
  1069. if (p >= intel_dp_pre_emphasis_max(v))
  1070. p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  1071. for (lane = 0; lane < 4; lane++)
  1072. intel_dp->train_set[lane] = v | p;
  1073. }
  1074. static uint32_t
  1075. intel_dp_signal_levels(uint8_t train_set, int lane_count)
  1076. {
  1077. uint32_t signal_levels = 0;
  1078. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1079. case DP_TRAIN_VOLTAGE_SWING_400:
  1080. default:
  1081. signal_levels |= DP_VOLTAGE_0_4;
  1082. break;
  1083. case DP_TRAIN_VOLTAGE_SWING_600:
  1084. signal_levels |= DP_VOLTAGE_0_6;
  1085. break;
  1086. case DP_TRAIN_VOLTAGE_SWING_800:
  1087. signal_levels |= DP_VOLTAGE_0_8;
  1088. break;
  1089. case DP_TRAIN_VOLTAGE_SWING_1200:
  1090. signal_levels |= DP_VOLTAGE_1_2;
  1091. break;
  1092. }
  1093. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  1094. case DP_TRAIN_PRE_EMPHASIS_0:
  1095. default:
  1096. signal_levels |= DP_PRE_EMPHASIS_0;
  1097. break;
  1098. case DP_TRAIN_PRE_EMPHASIS_3_5:
  1099. signal_levels |= DP_PRE_EMPHASIS_3_5;
  1100. break;
  1101. case DP_TRAIN_PRE_EMPHASIS_6:
  1102. signal_levels |= DP_PRE_EMPHASIS_6;
  1103. break;
  1104. case DP_TRAIN_PRE_EMPHASIS_9_5:
  1105. signal_levels |= DP_PRE_EMPHASIS_9_5;
  1106. break;
  1107. }
  1108. return signal_levels;
  1109. }
  1110. /* Gen6's DP voltage swing and pre-emphasis control */
  1111. static uint32_t
  1112. intel_gen6_edp_signal_levels(uint8_t train_set)
  1113. {
  1114. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1115. DP_TRAIN_PRE_EMPHASIS_MASK);
  1116. switch (signal_levels) {
  1117. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1118. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1119. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1120. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1121. return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
  1122. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1123. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  1124. return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
  1125. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1126. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1127. return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
  1128. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1129. case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
  1130. return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
  1131. default:
  1132. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1133. "0x%x\n", signal_levels);
  1134. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1135. }
  1136. }
  1137. static uint8_t
  1138. intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  1139. int lane)
  1140. {
  1141. int i = DP_LANE0_1_STATUS + (lane >> 1);
  1142. int s = (lane & 1) * 4;
  1143. uint8_t l = intel_dp_link_status(link_status, i);
  1144. return (l >> s) & 0xf;
  1145. }
  1146. /* Check for clock recovery is done on all channels */
  1147. static bool
  1148. intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  1149. {
  1150. int lane;
  1151. uint8_t lane_status;
  1152. for (lane = 0; lane < lane_count; lane++) {
  1153. lane_status = intel_get_lane_status(link_status, lane);
  1154. if ((lane_status & DP_LANE_CR_DONE) == 0)
  1155. return false;
  1156. }
  1157. return true;
  1158. }
  1159. /* Check to see if channel eq is done on all channels */
  1160. #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
  1161. DP_LANE_CHANNEL_EQ_DONE|\
  1162. DP_LANE_SYMBOL_LOCKED)
  1163. static bool
  1164. intel_channel_eq_ok(struct intel_dp *intel_dp)
  1165. {
  1166. uint8_t lane_align;
  1167. uint8_t lane_status;
  1168. int lane;
  1169. lane_align = intel_dp_link_status(intel_dp->link_status,
  1170. DP_LANE_ALIGN_STATUS_UPDATED);
  1171. if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
  1172. return false;
  1173. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1174. lane_status = intel_get_lane_status(intel_dp->link_status, lane);
  1175. if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
  1176. return false;
  1177. }
  1178. return true;
  1179. }
  1180. static bool
  1181. intel_dp_set_link_train(struct intel_dp *intel_dp,
  1182. uint32_t dp_reg_value,
  1183. uint8_t dp_train_pat)
  1184. {
  1185. struct drm_device *dev = intel_dp->base.base.dev;
  1186. struct drm_i915_private *dev_priv = dev->dev_private;
  1187. int ret;
  1188. I915_WRITE(intel_dp->output_reg, dp_reg_value);
  1189. POSTING_READ(intel_dp->output_reg);
  1190. intel_dp_aux_native_write_1(intel_dp,
  1191. DP_TRAINING_PATTERN_SET,
  1192. dp_train_pat);
  1193. ret = intel_dp_aux_native_write(intel_dp,
  1194. DP_TRAINING_LANE0_SET,
  1195. intel_dp->train_set, 4);
  1196. if (ret != 4)
  1197. return false;
  1198. return true;
  1199. }
  1200. /* Enable corresponding port and start training pattern 1 */
  1201. static void
  1202. intel_dp_start_link_train(struct intel_dp *intel_dp)
  1203. {
  1204. struct drm_device *dev = intel_dp->base.base.dev;
  1205. struct drm_i915_private *dev_priv = dev->dev_private;
  1206. struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
  1207. int i;
  1208. uint8_t voltage;
  1209. bool clock_recovery = false;
  1210. int tries;
  1211. u32 reg;
  1212. uint32_t DP = intel_dp->DP;
  1213. /*
  1214. * On CPT we have to enable the port in training pattern 1, which
  1215. * will happen below in intel_dp_set_link_train. Otherwise, enable
  1216. * the port and wait for it to become active.
  1217. */
  1218. if (!HAS_PCH_CPT(dev)) {
  1219. I915_WRITE(intel_dp->output_reg, intel_dp->DP);
  1220. POSTING_READ(intel_dp->output_reg);
  1221. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1222. }
  1223. /* Write the link configuration data */
  1224. intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
  1225. intel_dp->link_configuration,
  1226. DP_LINK_CONFIGURATION_SIZE);
  1227. DP |= DP_PORT_EN;
  1228. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1229. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1230. else
  1231. DP &= ~DP_LINK_TRAIN_MASK;
  1232. memset(intel_dp->train_set, 0, 4);
  1233. voltage = 0xff;
  1234. tries = 0;
  1235. clock_recovery = false;
  1236. for (;;) {
  1237. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1238. uint32_t signal_levels;
  1239. if (IS_GEN6(dev) && is_edp(intel_dp)) {
  1240. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1241. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1242. } else {
  1243. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
  1244. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1245. }
  1246. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1247. reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
  1248. else
  1249. reg = DP | DP_LINK_TRAIN_PAT_1;
  1250. if (!intel_dp_set_link_train(intel_dp, reg,
  1251. DP_TRAINING_PATTERN_1 |
  1252. DP_LINK_SCRAMBLING_DISABLE))
  1253. break;
  1254. /* Set training pattern 1 */
  1255. udelay(100);
  1256. if (!intel_dp_get_link_status(intel_dp))
  1257. break;
  1258. if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
  1259. clock_recovery = true;
  1260. break;
  1261. }
  1262. /* Check to see if we've tried the max voltage */
  1263. for (i = 0; i < intel_dp->lane_count; i++)
  1264. if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  1265. break;
  1266. if (i == intel_dp->lane_count)
  1267. break;
  1268. /* Check to see if we've tried the same voltage 5 times */
  1269. if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  1270. ++tries;
  1271. if (tries == 5)
  1272. break;
  1273. } else
  1274. tries = 0;
  1275. voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  1276. /* Compute new intel_dp->train_set as requested by target */
  1277. intel_get_adjust_train(intel_dp);
  1278. }
  1279. intel_dp->DP = DP;
  1280. }
  1281. static void
  1282. intel_dp_complete_link_train(struct intel_dp *intel_dp)
  1283. {
  1284. struct drm_device *dev = intel_dp->base.base.dev;
  1285. struct drm_i915_private *dev_priv = dev->dev_private;
  1286. bool channel_eq = false;
  1287. int tries, cr_tries;
  1288. u32 reg;
  1289. uint32_t DP = intel_dp->DP;
  1290. /* channel equalization */
  1291. tries = 0;
  1292. cr_tries = 0;
  1293. channel_eq = false;
  1294. for (;;) {
  1295. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1296. uint32_t signal_levels;
  1297. if (cr_tries > 5) {
  1298. DRM_ERROR("failed to train DP, aborting\n");
  1299. intel_dp_link_down(intel_dp);
  1300. break;
  1301. }
  1302. if (IS_GEN6(dev) && is_edp(intel_dp)) {
  1303. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1304. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1305. } else {
  1306. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
  1307. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1308. }
  1309. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1310. reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
  1311. else
  1312. reg = DP | DP_LINK_TRAIN_PAT_2;
  1313. /* channel eq pattern */
  1314. if (!intel_dp_set_link_train(intel_dp, reg,
  1315. DP_TRAINING_PATTERN_2 |
  1316. DP_LINK_SCRAMBLING_DISABLE))
  1317. break;
  1318. udelay(400);
  1319. if (!intel_dp_get_link_status(intel_dp))
  1320. break;
  1321. /* Make sure clock is still ok */
  1322. if (!intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
  1323. intel_dp_start_link_train(intel_dp);
  1324. cr_tries++;
  1325. continue;
  1326. }
  1327. if (intel_channel_eq_ok(intel_dp)) {
  1328. channel_eq = true;
  1329. break;
  1330. }
  1331. /* Try 5 times, then try clock recovery if that fails */
  1332. if (tries > 5) {
  1333. intel_dp_link_down(intel_dp);
  1334. intel_dp_start_link_train(intel_dp);
  1335. tries = 0;
  1336. cr_tries++;
  1337. continue;
  1338. }
  1339. /* Compute new intel_dp->train_set as requested by target */
  1340. intel_get_adjust_train(intel_dp);
  1341. ++tries;
  1342. }
  1343. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1344. reg = DP | DP_LINK_TRAIN_OFF_CPT;
  1345. else
  1346. reg = DP | DP_LINK_TRAIN_OFF;
  1347. I915_WRITE(intel_dp->output_reg, reg);
  1348. POSTING_READ(intel_dp->output_reg);
  1349. intel_dp_aux_native_write_1(intel_dp,
  1350. DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
  1351. }
  1352. static void
  1353. intel_dp_link_down(struct intel_dp *intel_dp)
  1354. {
  1355. struct drm_device *dev = intel_dp->base.base.dev;
  1356. struct drm_i915_private *dev_priv = dev->dev_private;
  1357. uint32_t DP = intel_dp->DP;
  1358. if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
  1359. return;
  1360. DRM_DEBUG_KMS("\n");
  1361. if (is_edp(intel_dp)) {
  1362. DP &= ~DP_PLL_ENABLE;
  1363. I915_WRITE(intel_dp->output_reg, DP);
  1364. POSTING_READ(intel_dp->output_reg);
  1365. udelay(100);
  1366. }
  1367. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) {
  1368. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1369. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  1370. } else {
  1371. DP &= ~DP_LINK_TRAIN_MASK;
  1372. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  1373. }
  1374. POSTING_READ(intel_dp->output_reg);
  1375. msleep(17);
  1376. if (is_edp(intel_dp))
  1377. DP |= DP_LINK_TRAIN_OFF;
  1378. if (!HAS_PCH_CPT(dev) &&
  1379. I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
  1380. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  1381. /* Hardware workaround: leaving our transcoder select
  1382. * set to transcoder B while it's off will prevent the
  1383. * corresponding HDMI output on transcoder A.
  1384. *
  1385. * Combine this with another hardware workaround:
  1386. * transcoder select bit can only be cleared while the
  1387. * port is enabled.
  1388. */
  1389. DP &= ~DP_PIPEB_SELECT;
  1390. I915_WRITE(intel_dp->output_reg, DP);
  1391. /* Changes to enable or select take place the vblank
  1392. * after being written.
  1393. */
  1394. if (crtc == NULL) {
  1395. /* We can arrive here never having been attached
  1396. * to a CRTC, for instance, due to inheriting
  1397. * random state from the BIOS.
  1398. *
  1399. * If the pipe is not running, play safe and
  1400. * wait for the clocks to stabilise before
  1401. * continuing.
  1402. */
  1403. POSTING_READ(intel_dp->output_reg);
  1404. msleep(50);
  1405. } else
  1406. intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
  1407. }
  1408. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  1409. POSTING_READ(intel_dp->output_reg);
  1410. }
  1411. static bool
  1412. intel_dp_get_dpcd(struct intel_dp *intel_dp)
  1413. {
  1414. if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
  1415. sizeof (intel_dp->dpcd)) &&
  1416. (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
  1417. return true;
  1418. }
  1419. return false;
  1420. }
  1421. /*
  1422. * According to DP spec
  1423. * 5.1.2:
  1424. * 1. Read DPCD
  1425. * 2. Configure link according to Receiver Capabilities
  1426. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  1427. * 4. Check link status on receipt of hot-plug interrupt
  1428. */
  1429. static void
  1430. intel_dp_check_link_status(struct intel_dp *intel_dp)
  1431. {
  1432. if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
  1433. return;
  1434. if (!intel_dp->base.base.crtc)
  1435. return;
  1436. /* Try to read receiver status if the link appears to be up */
  1437. if (!intel_dp_get_link_status(intel_dp)) {
  1438. intel_dp_link_down(intel_dp);
  1439. return;
  1440. }
  1441. /* Now read the DPCD to see if it's actually running */
  1442. if (!intel_dp_get_dpcd(intel_dp)) {
  1443. intel_dp_link_down(intel_dp);
  1444. return;
  1445. }
  1446. if (!intel_channel_eq_ok(intel_dp)) {
  1447. DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
  1448. drm_get_encoder_name(&intel_dp->base.base));
  1449. intel_dp_start_link_train(intel_dp);
  1450. intel_dp_complete_link_train(intel_dp);
  1451. }
  1452. }
  1453. static enum drm_connector_status
  1454. intel_dp_detect_dpcd(struct intel_dp *intel_dp)
  1455. {
  1456. if (intel_dp_get_dpcd(intel_dp))
  1457. return connector_status_connected;
  1458. return connector_status_disconnected;
  1459. }
  1460. static enum drm_connector_status
  1461. ironlake_dp_detect(struct intel_dp *intel_dp)
  1462. {
  1463. enum drm_connector_status status;
  1464. /* Can't disconnect eDP, but you can close the lid... */
  1465. if (is_edp(intel_dp)) {
  1466. status = intel_panel_detect(intel_dp->base.base.dev);
  1467. if (status == connector_status_unknown)
  1468. status = connector_status_connected;
  1469. return status;
  1470. }
  1471. return intel_dp_detect_dpcd(intel_dp);
  1472. }
  1473. static enum drm_connector_status
  1474. g4x_dp_detect(struct intel_dp *intel_dp)
  1475. {
  1476. struct drm_device *dev = intel_dp->base.base.dev;
  1477. struct drm_i915_private *dev_priv = dev->dev_private;
  1478. uint32_t temp, bit;
  1479. switch (intel_dp->output_reg) {
  1480. case DP_B:
  1481. bit = DPB_HOTPLUG_INT_STATUS;
  1482. break;
  1483. case DP_C:
  1484. bit = DPC_HOTPLUG_INT_STATUS;
  1485. break;
  1486. case DP_D:
  1487. bit = DPD_HOTPLUG_INT_STATUS;
  1488. break;
  1489. default:
  1490. return connector_status_unknown;
  1491. }
  1492. temp = I915_READ(PORT_HOTPLUG_STAT);
  1493. if ((temp & bit) == 0)
  1494. return connector_status_disconnected;
  1495. return intel_dp_detect_dpcd(intel_dp);
  1496. }
  1497. /**
  1498. * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
  1499. *
  1500. * \return true if DP port is connected.
  1501. * \return false if DP port is disconnected.
  1502. */
  1503. static enum drm_connector_status
  1504. intel_dp_detect(struct drm_connector *connector, bool force)
  1505. {
  1506. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1507. struct drm_device *dev = intel_dp->base.base.dev;
  1508. enum drm_connector_status status;
  1509. struct edid *edid = NULL;
  1510. intel_dp->has_audio = false;
  1511. if (HAS_PCH_SPLIT(dev))
  1512. status = ironlake_dp_detect(intel_dp);
  1513. else
  1514. status = g4x_dp_detect(intel_dp);
  1515. DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
  1516. intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
  1517. intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
  1518. intel_dp->dpcd[6], intel_dp->dpcd[7]);
  1519. if (status != connector_status_connected)
  1520. return status;
  1521. if (intel_dp->force_audio) {
  1522. intel_dp->has_audio = intel_dp->force_audio > 0;
  1523. } else {
  1524. edid = drm_get_edid(connector, &intel_dp->adapter);
  1525. if (edid) {
  1526. intel_dp->has_audio = drm_detect_monitor_audio(edid);
  1527. connector->display_info.raw_edid = NULL;
  1528. kfree(edid);
  1529. }
  1530. }
  1531. return connector_status_connected;
  1532. }
  1533. static int intel_dp_get_modes(struct drm_connector *connector)
  1534. {
  1535. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1536. struct drm_device *dev = intel_dp->base.base.dev;
  1537. struct drm_i915_private *dev_priv = dev->dev_private;
  1538. int ret;
  1539. /* We should parse the EDID data and find out if it has an audio sink
  1540. */
  1541. ret = intel_ddc_get_modes(connector, &intel_dp->adapter);
  1542. if (ret) {
  1543. if (is_edp(intel_dp) && !dev_priv->panel_fixed_mode) {
  1544. struct drm_display_mode *newmode;
  1545. list_for_each_entry(newmode, &connector->probed_modes,
  1546. head) {
  1547. if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
  1548. dev_priv->panel_fixed_mode =
  1549. drm_mode_duplicate(dev, newmode);
  1550. break;
  1551. }
  1552. }
  1553. }
  1554. return ret;
  1555. }
  1556. /* if eDP has no EDID, try to use fixed panel mode from VBT */
  1557. if (is_edp(intel_dp)) {
  1558. /* initialize panel mode from VBT if available for eDP */
  1559. if (dev_priv->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
  1560. dev_priv->panel_fixed_mode =
  1561. drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
  1562. if (dev_priv->panel_fixed_mode) {
  1563. dev_priv->panel_fixed_mode->type |=
  1564. DRM_MODE_TYPE_PREFERRED;
  1565. }
  1566. }
  1567. if (dev_priv->panel_fixed_mode) {
  1568. struct drm_display_mode *mode;
  1569. mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
  1570. drm_mode_probed_add(connector, mode);
  1571. return 1;
  1572. }
  1573. }
  1574. return 0;
  1575. }
  1576. static bool
  1577. intel_dp_detect_audio(struct drm_connector *connector)
  1578. {
  1579. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1580. struct edid *edid;
  1581. bool has_audio = false;
  1582. edid = drm_get_edid(connector, &intel_dp->adapter);
  1583. if (edid) {
  1584. has_audio = drm_detect_monitor_audio(edid);
  1585. connector->display_info.raw_edid = NULL;
  1586. kfree(edid);
  1587. }
  1588. return has_audio;
  1589. }
  1590. static int
  1591. intel_dp_set_property(struct drm_connector *connector,
  1592. struct drm_property *property,
  1593. uint64_t val)
  1594. {
  1595. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  1596. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1597. int ret;
  1598. ret = drm_connector_property_set_value(connector, property, val);
  1599. if (ret)
  1600. return ret;
  1601. if (property == dev_priv->force_audio_property) {
  1602. int i = val;
  1603. bool has_audio;
  1604. if (i == intel_dp->force_audio)
  1605. return 0;
  1606. intel_dp->force_audio = i;
  1607. if (i == 0)
  1608. has_audio = intel_dp_detect_audio(connector);
  1609. else
  1610. has_audio = i > 0;
  1611. if (has_audio == intel_dp->has_audio)
  1612. return 0;
  1613. intel_dp->has_audio = has_audio;
  1614. goto done;
  1615. }
  1616. if (property == dev_priv->broadcast_rgb_property) {
  1617. if (val == !!intel_dp->color_range)
  1618. return 0;
  1619. intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
  1620. goto done;
  1621. }
  1622. return -EINVAL;
  1623. done:
  1624. if (intel_dp->base.base.crtc) {
  1625. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  1626. drm_crtc_helper_set_mode(crtc, &crtc->mode,
  1627. crtc->x, crtc->y,
  1628. crtc->fb);
  1629. }
  1630. return 0;
  1631. }
  1632. static void
  1633. intel_dp_destroy (struct drm_connector *connector)
  1634. {
  1635. struct drm_device *dev = connector->dev;
  1636. if (intel_dpd_is_edp(dev))
  1637. intel_panel_destroy_backlight(dev);
  1638. drm_sysfs_connector_remove(connector);
  1639. drm_connector_cleanup(connector);
  1640. kfree(connector);
  1641. }
  1642. static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
  1643. {
  1644. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1645. i2c_del_adapter(&intel_dp->adapter);
  1646. drm_encoder_cleanup(encoder);
  1647. kfree(intel_dp);
  1648. }
  1649. static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
  1650. .dpms = intel_dp_dpms,
  1651. .mode_fixup = intel_dp_mode_fixup,
  1652. .prepare = intel_dp_prepare,
  1653. .mode_set = intel_dp_mode_set,
  1654. .commit = intel_dp_commit,
  1655. };
  1656. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  1657. .dpms = drm_helper_connector_dpms,
  1658. .detect = intel_dp_detect,
  1659. .fill_modes = drm_helper_probe_single_connector_modes,
  1660. .set_property = intel_dp_set_property,
  1661. .destroy = intel_dp_destroy,
  1662. };
  1663. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  1664. .get_modes = intel_dp_get_modes,
  1665. .mode_valid = intel_dp_mode_valid,
  1666. .best_encoder = intel_best_encoder,
  1667. };
  1668. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  1669. .destroy = intel_dp_encoder_destroy,
  1670. };
  1671. static void
  1672. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  1673. {
  1674. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  1675. intel_dp_check_link_status(intel_dp);
  1676. }
  1677. /* Return which DP Port should be selected for Transcoder DP control */
  1678. int
  1679. intel_trans_dp_port_sel (struct drm_crtc *crtc)
  1680. {
  1681. struct drm_device *dev = crtc->dev;
  1682. struct drm_mode_config *mode_config = &dev->mode_config;
  1683. struct drm_encoder *encoder;
  1684. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  1685. struct intel_dp *intel_dp;
  1686. if (encoder->crtc != crtc)
  1687. continue;
  1688. intel_dp = enc_to_intel_dp(encoder);
  1689. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
  1690. return intel_dp->output_reg;
  1691. }
  1692. return -1;
  1693. }
  1694. /* check the VBT to see whether the eDP is on DP-D port */
  1695. bool intel_dpd_is_edp(struct drm_device *dev)
  1696. {
  1697. struct drm_i915_private *dev_priv = dev->dev_private;
  1698. struct child_device_config *p_child;
  1699. int i;
  1700. if (!dev_priv->child_dev_num)
  1701. return false;
  1702. for (i = 0; i < dev_priv->child_dev_num; i++) {
  1703. p_child = dev_priv->child_dev + i;
  1704. if (p_child->dvo_port == PORT_IDPD &&
  1705. p_child->device_type == DEVICE_TYPE_eDP)
  1706. return true;
  1707. }
  1708. return false;
  1709. }
  1710. static void
  1711. intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
  1712. {
  1713. intel_attach_force_audio_property(connector);
  1714. intel_attach_broadcast_rgb_property(connector);
  1715. }
  1716. void
  1717. intel_dp_init(struct drm_device *dev, int output_reg)
  1718. {
  1719. struct drm_i915_private *dev_priv = dev->dev_private;
  1720. struct drm_connector *connector;
  1721. struct intel_dp *intel_dp;
  1722. struct intel_encoder *intel_encoder;
  1723. struct intel_connector *intel_connector;
  1724. const char *name = NULL;
  1725. int type;
  1726. intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
  1727. if (!intel_dp)
  1728. return;
  1729. intel_dp->output_reg = output_reg;
  1730. intel_dp->dpms_mode = -1;
  1731. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  1732. if (!intel_connector) {
  1733. kfree(intel_dp);
  1734. return;
  1735. }
  1736. intel_encoder = &intel_dp->base;
  1737. if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
  1738. if (intel_dpd_is_edp(dev))
  1739. intel_dp->is_pch_edp = true;
  1740. if (output_reg == DP_A || is_pch_edp(intel_dp)) {
  1741. type = DRM_MODE_CONNECTOR_eDP;
  1742. intel_encoder->type = INTEL_OUTPUT_EDP;
  1743. } else {
  1744. type = DRM_MODE_CONNECTOR_DisplayPort;
  1745. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  1746. }
  1747. connector = &intel_connector->base;
  1748. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  1749. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  1750. connector->polled = DRM_CONNECTOR_POLL_HPD;
  1751. if (output_reg == DP_B || output_reg == PCH_DP_B)
  1752. intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
  1753. else if (output_reg == DP_C || output_reg == PCH_DP_C)
  1754. intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
  1755. else if (output_reg == DP_D || output_reg == PCH_DP_D)
  1756. intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
  1757. if (is_edp(intel_dp))
  1758. intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
  1759. intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
  1760. connector->interlace_allowed = true;
  1761. connector->doublescan_allowed = 0;
  1762. drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
  1763. DRM_MODE_ENCODER_TMDS);
  1764. drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
  1765. intel_connector_attach_encoder(intel_connector, intel_encoder);
  1766. drm_sysfs_connector_add(connector);
  1767. /* Set up the DDC bus. */
  1768. switch (output_reg) {
  1769. case DP_A:
  1770. name = "DPDDC-A";
  1771. break;
  1772. case DP_B:
  1773. case PCH_DP_B:
  1774. dev_priv->hotplug_supported_mask |=
  1775. HDMIB_HOTPLUG_INT_STATUS;
  1776. name = "DPDDC-B";
  1777. break;
  1778. case DP_C:
  1779. case PCH_DP_C:
  1780. dev_priv->hotplug_supported_mask |=
  1781. HDMIC_HOTPLUG_INT_STATUS;
  1782. name = "DPDDC-C";
  1783. break;
  1784. case DP_D:
  1785. case PCH_DP_D:
  1786. dev_priv->hotplug_supported_mask |=
  1787. HDMID_HOTPLUG_INT_STATUS;
  1788. name = "DPDDC-D";
  1789. break;
  1790. }
  1791. intel_dp_i2c_init(intel_dp, intel_connector, name);
  1792. /* Cache some DPCD data in the eDP case */
  1793. if (is_edp(intel_dp)) {
  1794. bool ret;
  1795. u32 pp_on, pp_div;
  1796. pp_on = I915_READ(PCH_PP_ON_DELAYS);
  1797. pp_div = I915_READ(PCH_PP_DIVISOR);
  1798. /* Get T3 & T12 values (note: VESA not bspec terminology) */
  1799. dev_priv->panel_t3 = (pp_on & 0x1fff0000) >> 16;
  1800. dev_priv->panel_t3 /= 10; /* t3 in 100us units */
  1801. dev_priv->panel_t12 = pp_div & 0xf;
  1802. dev_priv->panel_t12 *= 100; /* t12 in 100ms units */
  1803. ironlake_edp_panel_vdd_on(intel_dp);
  1804. ret = intel_dp_get_dpcd(intel_dp);
  1805. ironlake_edp_panel_vdd_off(intel_dp);
  1806. if (ret) {
  1807. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
  1808. dev_priv->no_aux_handshake =
  1809. intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
  1810. DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
  1811. } else {
  1812. /* if this fails, presume the device is a ghost */
  1813. DRM_INFO("failed to retrieve link info, disabling eDP\n");
  1814. intel_dp_encoder_destroy(&intel_dp->base.base);
  1815. intel_dp_destroy(&intel_connector->base);
  1816. return;
  1817. }
  1818. }
  1819. intel_encoder->hot_plug = intel_dp_hot_plug;
  1820. if (is_edp(intel_dp)) {
  1821. dev_priv->int_edp_connector = connector;
  1822. intel_panel_setup_backlight(dev);
  1823. }
  1824. intel_dp_add_properties(intel_dp, connector);
  1825. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  1826. * 0xd. Failure to do so will result in spurious interrupts being
  1827. * generated on the port when a cable is not attached.
  1828. */
  1829. if (IS_G4X(dev) && !IS_GM45(dev)) {
  1830. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  1831. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  1832. }
  1833. }