time.c 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310
  1. /*
  2. * linux/arch/parisc/kernel/time.c
  3. *
  4. * Copyright (C) 1991, 1992, 1995 Linus Torvalds
  5. * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
  6. * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
  7. *
  8. * 1994-07-02 Alan Modra
  9. * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
  10. * 1998-12-20 Updated NTP code according to technical memorandum Jan '96
  11. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  12. */
  13. #include <linux/errno.h>
  14. #include <linux/module.h>
  15. #include <linux/sched.h>
  16. #include <linux/kernel.h>
  17. #include <linux/param.h>
  18. #include <linux/string.h>
  19. #include <linux/mm.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/time.h>
  22. #include <linux/init.h>
  23. #include <linux/smp.h>
  24. #include <linux/profile.h>
  25. #include <asm/uaccess.h>
  26. #include <asm/io.h>
  27. #include <asm/irq.h>
  28. #include <asm/param.h>
  29. #include <asm/pdc.h>
  30. #include <asm/led.h>
  31. #include <linux/timex.h>
  32. static unsigned long clocktick __read_mostly; /* timer cycles per tick */
  33. static unsigned long halftick __read_mostly;
  34. #ifdef CONFIG_SMP
  35. extern void smp_do_timer(struct pt_regs *regs);
  36. #endif
  37. irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
  38. {
  39. unsigned long now;
  40. unsigned long next_tick;
  41. unsigned long cycles_elapsed;
  42. unsigned long cycles_remainder;
  43. unsigned long ticks_elapsed = 1; /* at least one elapsed */
  44. int cpu = smp_processor_id();
  45. profile_tick(CPU_PROFILING, regs);
  46. /* Initialize next_tick to the expected tick time. */
  47. next_tick = cpu_data[cpu].it_value;
  48. /* Get current interval timer.
  49. * CR16 reads as 64 bits in CPU wide mode.
  50. * CR16 reads as 32 bits in CPU narrow mode.
  51. */
  52. now = mfctl(16);
  53. cycles_elapsed = now - next_tick;
  54. /* Determine how much time elapsed. */
  55. if (now < next_tick) {
  56. /* Scenario 2: CR16 wrapped after clock tick.
  57. * 1's complement will give us the "elapse cycles".
  58. *
  59. * This "cr16 wrapped" cruft is primarily for 32-bit kernels.
  60. * So think "unsigned long is u32" when reading the code.
  61. * And yes, of course 64-bit will someday wrap, but only
  62. * every 198841 days on a 1GHz machine.
  63. */
  64. cycles_elapsed = ~cycles_elapsed; /* off by one cycle - don't care */
  65. }
  66. ticks_elapsed += cycles_elapsed / clocktick;
  67. cycles_remainder = cycles_elapsed % clocktick;
  68. /* Can we differentiate between "early CR16" (aka Scenario 1) and
  69. * "long delay" (aka Scenario 3)? I don't think so.
  70. *
  71. * We expected timer_interrupt to be delivered at least a few hundred
  72. * cycles after the IT fires. But it's arbitrary how much time passes
  73. * before we call it "late". I've picked one second.
  74. */
  75. if (ticks_elapsed > HZ) {
  76. /* Scenario 3: very long delay? bad in any case */
  77. printk (KERN_CRIT "timer_interrupt(CPU %d): delayed! run ntpdate"
  78. " ticks %ld cycles %lX rem %lX"
  79. " next/now %lX/%lX\n",
  80. cpu,
  81. ticks_elapsed, cycles_elapsed, cycles_remainder,
  82. next_tick, now );
  83. ticks_elapsed = 1; /* hack to limit damage in loop below */
  84. }
  85. /* Determine when (in CR16 cycles) next IT interrupt will fire.
  86. * We want IT to fire modulo clocktick even if we miss/skip some.
  87. * But those interrupts don't in fact get delivered that regularly.
  88. */
  89. next_tick = now + (clocktick - cycles_remainder);
  90. /* Program the IT when to deliver the next interrupt. */
  91. /* Only bottom 32-bits of next_tick are written to cr16. */
  92. mtctl(next_tick, 16);
  93. cpu_data[cpu].it_value = next_tick;
  94. /* Now that we are done mucking with unreliable delivery of interrupts,
  95. * go do system house keeping.
  96. */
  97. while (ticks_elapsed--) {
  98. #ifdef CONFIG_SMP
  99. smp_do_timer(regs);
  100. #else
  101. update_process_times(user_mode(regs));
  102. #endif
  103. if (cpu == 0) {
  104. write_seqlock(&xtime_lock);
  105. do_timer(1);
  106. write_sequnlock(&xtime_lock);
  107. }
  108. }
  109. /* check soft power switch status */
  110. if (cpu == 0 && !atomic_read(&power_tasklet.count))
  111. tasklet_schedule(&power_tasklet);
  112. return IRQ_HANDLED;
  113. }
  114. unsigned long profile_pc(struct pt_regs *regs)
  115. {
  116. unsigned long pc = instruction_pointer(regs);
  117. if (regs->gr[0] & PSW_N)
  118. pc -= 4;
  119. #ifdef CONFIG_SMP
  120. if (in_lock_functions(pc))
  121. pc = regs->gr[2];
  122. #endif
  123. return pc;
  124. }
  125. EXPORT_SYMBOL(profile_pc);
  126. /*** converted from ia64 ***/
  127. /*
  128. * Return the number of micro-seconds that elapsed since the last
  129. * update to wall time (aka xtime). The xtime_lock
  130. * must be at least read-locked when calling this routine.
  131. */
  132. static inline unsigned long
  133. gettimeoffset (void)
  134. {
  135. #ifndef CONFIG_SMP
  136. /*
  137. * FIXME: This won't work on smp because jiffies are updated by cpu 0.
  138. * Once parisc-linux learns the cr16 difference between processors,
  139. * this could be made to work.
  140. */
  141. unsigned long now;
  142. unsigned long prev_tick;
  143. unsigned long next_tick;
  144. unsigned long elapsed_cycles;
  145. unsigned long usec;
  146. next_tick = cpu_data[smp_processor_id()].it_value;
  147. now = mfctl(16); /* Read the hardware interval timer. */
  148. prev_tick = next_tick - clocktick;
  149. /* Assume Scenario 1: "now" is later than prev_tick. */
  150. elapsed_cycles = now - prev_tick;
  151. if (now < prev_tick) {
  152. /* Scenario 2: CR16 wrapped!
  153. * 1's complement is close enough.
  154. */
  155. elapsed_cycles = ~elapsed_cycles;
  156. }
  157. if (elapsed_cycles > (HZ * clocktick)) {
  158. /* Scenario 3: clock ticks are missing. */
  159. printk (KERN_CRIT "gettimeoffset(CPU %d): missing ticks!"
  160. "cycles %lX prev/now/next %lX/%lX/%lX clock %lX\n",
  161. cpuid,
  162. elapsed_cycles, prev_tick, now, next_tick, clocktick);
  163. }
  164. /* FIXME: Can we improve the precision? Not with PAGE0. */
  165. usec = (elapsed_cycles * 10000) / PAGE0->mem_10msec;
  166. /* add in "lost" jiffies */
  167. usec += clocktick * (jiffies - wall_jiffies);
  168. return usec;
  169. #else
  170. return 0;
  171. #endif
  172. }
  173. void
  174. do_gettimeofday (struct timeval *tv)
  175. {
  176. unsigned long flags, seq, usec, sec;
  177. /* Hold xtime_lock and adjust timeval. */
  178. do {
  179. seq = read_seqbegin_irqsave(&xtime_lock, flags);
  180. usec = gettimeoffset();
  181. sec = xtime.tv_sec;
  182. usec += (xtime.tv_nsec / 1000);
  183. } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
  184. /* Move adjusted usec's into sec's. */
  185. while (usec >= USEC_PER_SEC) {
  186. usec -= USEC_PER_SEC;
  187. ++sec;
  188. }
  189. /* Return adjusted result. */
  190. tv->tv_sec = sec;
  191. tv->tv_usec = usec;
  192. }
  193. EXPORT_SYMBOL(do_gettimeofday);
  194. int
  195. do_settimeofday (struct timespec *tv)
  196. {
  197. time_t wtm_sec, sec = tv->tv_sec;
  198. long wtm_nsec, nsec = tv->tv_nsec;
  199. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  200. return -EINVAL;
  201. write_seqlock_irq(&xtime_lock);
  202. {
  203. /*
  204. * This is revolting. We need to set "xtime"
  205. * correctly. However, the value in this location is
  206. * the value at the most recent update of wall time.
  207. * Discover what correction gettimeofday would have
  208. * done, and then undo it!
  209. */
  210. nsec -= gettimeoffset() * 1000;
  211. wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
  212. wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
  213. set_normalized_timespec(&xtime, sec, nsec);
  214. set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
  215. ntp_clear();
  216. }
  217. write_sequnlock_irq(&xtime_lock);
  218. clock_was_set();
  219. return 0;
  220. }
  221. EXPORT_SYMBOL(do_settimeofday);
  222. /*
  223. * XXX: We can do better than this.
  224. * Returns nanoseconds
  225. */
  226. unsigned long long sched_clock(void)
  227. {
  228. return (unsigned long long)jiffies * (1000000000 / HZ);
  229. }
  230. void __init start_cpu_itimer(void)
  231. {
  232. unsigned int cpu = smp_processor_id();
  233. unsigned long next_tick = mfctl(16) + clocktick;
  234. mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */
  235. cpu_data[cpu].it_value = next_tick;
  236. }
  237. void __init time_init(void)
  238. {
  239. static struct pdc_tod tod_data;
  240. clocktick = (100 * PAGE0->mem_10msec) / HZ;
  241. halftick = clocktick / 2;
  242. start_cpu_itimer(); /* get CPU 0 started */
  243. if(pdc_tod_read(&tod_data) == 0) {
  244. write_seqlock_irq(&xtime_lock);
  245. xtime.tv_sec = tod_data.tod_sec;
  246. xtime.tv_nsec = tod_data.tod_usec * 1000;
  247. set_normalized_timespec(&wall_to_monotonic,
  248. -xtime.tv_sec, -xtime.tv_nsec);
  249. write_sequnlock_irq(&xtime_lock);
  250. } else {
  251. printk(KERN_ERR "Error reading tod clock\n");
  252. xtime.tv_sec = 0;
  253. xtime.tv_nsec = 0;
  254. }
  255. }