page_alloc.c 169 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/module.h>
  28. #include <linux/suspend.h>
  29. #include <linux/pagevec.h>
  30. #include <linux/blkdev.h>
  31. #include <linux/slab.h>
  32. #include <linux/ratelimit.h>
  33. #include <linux/oom.h>
  34. #include <linux/notifier.h>
  35. #include <linux/topology.h>
  36. #include <linux/sysctl.h>
  37. #include <linux/cpu.h>
  38. #include <linux/cpuset.h>
  39. #include <linux/memory_hotplug.h>
  40. #include <linux/nodemask.h>
  41. #include <linux/vmalloc.h>
  42. #include <linux/vmstat.h>
  43. #include <linux/mempolicy.h>
  44. #include <linux/stop_machine.h>
  45. #include <linux/sort.h>
  46. #include <linux/pfn.h>
  47. #include <linux/backing-dev.h>
  48. #include <linux/fault-inject.h>
  49. #include <linux/page-isolation.h>
  50. #include <linux/page_cgroup.h>
  51. #include <linux/debugobjects.h>
  52. #include <linux/kmemleak.h>
  53. #include <linux/compaction.h>
  54. #include <trace/events/kmem.h>
  55. #include <linux/ftrace_event.h>
  56. #include <linux/memcontrol.h>
  57. #include <linux/prefetch.h>
  58. #include <linux/migrate.h>
  59. #include <linux/page-debug-flags.h>
  60. #include <asm/tlbflush.h>
  61. #include <asm/div64.h>
  62. #include "internal.h"
  63. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  64. DEFINE_PER_CPU(int, numa_node);
  65. EXPORT_PER_CPU_SYMBOL(numa_node);
  66. #endif
  67. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  68. /*
  69. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  70. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  71. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  72. * defined in <linux/topology.h>.
  73. */
  74. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  75. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  76. #endif
  77. /*
  78. * Array of node states.
  79. */
  80. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  81. [N_POSSIBLE] = NODE_MASK_ALL,
  82. [N_ONLINE] = { { [0] = 1UL } },
  83. #ifndef CONFIG_NUMA
  84. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  85. #ifdef CONFIG_HIGHMEM
  86. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  87. #endif
  88. [N_CPU] = { { [0] = 1UL } },
  89. #endif /* NUMA */
  90. };
  91. EXPORT_SYMBOL(node_states);
  92. unsigned long totalram_pages __read_mostly;
  93. unsigned long totalreserve_pages __read_mostly;
  94. /*
  95. * When calculating the number of globally allowed dirty pages, there
  96. * is a certain number of per-zone reserves that should not be
  97. * considered dirtyable memory. This is the sum of those reserves
  98. * over all existing zones that contribute dirtyable memory.
  99. */
  100. unsigned long dirty_balance_reserve __read_mostly;
  101. int percpu_pagelist_fraction;
  102. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  103. #ifdef CONFIG_PM_SLEEP
  104. /*
  105. * The following functions are used by the suspend/hibernate code to temporarily
  106. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  107. * while devices are suspended. To avoid races with the suspend/hibernate code,
  108. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  109. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  110. * guaranteed not to run in parallel with that modification).
  111. */
  112. static gfp_t saved_gfp_mask;
  113. void pm_restore_gfp_mask(void)
  114. {
  115. WARN_ON(!mutex_is_locked(&pm_mutex));
  116. if (saved_gfp_mask) {
  117. gfp_allowed_mask = saved_gfp_mask;
  118. saved_gfp_mask = 0;
  119. }
  120. }
  121. void pm_restrict_gfp_mask(void)
  122. {
  123. WARN_ON(!mutex_is_locked(&pm_mutex));
  124. WARN_ON(saved_gfp_mask);
  125. saved_gfp_mask = gfp_allowed_mask;
  126. gfp_allowed_mask &= ~GFP_IOFS;
  127. }
  128. bool pm_suspended_storage(void)
  129. {
  130. if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
  131. return false;
  132. return true;
  133. }
  134. #endif /* CONFIG_PM_SLEEP */
  135. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  136. int pageblock_order __read_mostly;
  137. #endif
  138. static void __free_pages_ok(struct page *page, unsigned int order);
  139. /*
  140. * results with 256, 32 in the lowmem_reserve sysctl:
  141. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  142. * 1G machine -> (16M dma, 784M normal, 224M high)
  143. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  144. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  145. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  146. *
  147. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  148. * don't need any ZONE_NORMAL reservation
  149. */
  150. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  151. #ifdef CONFIG_ZONE_DMA
  152. 256,
  153. #endif
  154. #ifdef CONFIG_ZONE_DMA32
  155. 256,
  156. #endif
  157. #ifdef CONFIG_HIGHMEM
  158. 32,
  159. #endif
  160. 32,
  161. };
  162. EXPORT_SYMBOL(totalram_pages);
  163. static char * const zone_names[MAX_NR_ZONES] = {
  164. #ifdef CONFIG_ZONE_DMA
  165. "DMA",
  166. #endif
  167. #ifdef CONFIG_ZONE_DMA32
  168. "DMA32",
  169. #endif
  170. "Normal",
  171. #ifdef CONFIG_HIGHMEM
  172. "HighMem",
  173. #endif
  174. "Movable",
  175. };
  176. int min_free_kbytes = 1024;
  177. static unsigned long __meminitdata nr_kernel_pages;
  178. static unsigned long __meminitdata nr_all_pages;
  179. static unsigned long __meminitdata dma_reserve;
  180. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  181. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  182. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  183. static unsigned long __initdata required_kernelcore;
  184. static unsigned long __initdata required_movablecore;
  185. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  186. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  187. int movable_zone;
  188. EXPORT_SYMBOL(movable_zone);
  189. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  190. #if MAX_NUMNODES > 1
  191. int nr_node_ids __read_mostly = MAX_NUMNODES;
  192. int nr_online_nodes __read_mostly = 1;
  193. EXPORT_SYMBOL(nr_node_ids);
  194. EXPORT_SYMBOL(nr_online_nodes);
  195. #endif
  196. int page_group_by_mobility_disabled __read_mostly;
  197. /*
  198. * NOTE:
  199. * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly.
  200. * Instead, use {un}set_pageblock_isolate.
  201. */
  202. void set_pageblock_migratetype(struct page *page, int migratetype)
  203. {
  204. if (unlikely(page_group_by_mobility_disabled))
  205. migratetype = MIGRATE_UNMOVABLE;
  206. set_pageblock_flags_group(page, (unsigned long)migratetype,
  207. PB_migrate, PB_migrate_end);
  208. }
  209. bool oom_killer_disabled __read_mostly;
  210. #ifdef CONFIG_DEBUG_VM
  211. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  212. {
  213. int ret = 0;
  214. unsigned seq;
  215. unsigned long pfn = page_to_pfn(page);
  216. do {
  217. seq = zone_span_seqbegin(zone);
  218. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  219. ret = 1;
  220. else if (pfn < zone->zone_start_pfn)
  221. ret = 1;
  222. } while (zone_span_seqretry(zone, seq));
  223. return ret;
  224. }
  225. static int page_is_consistent(struct zone *zone, struct page *page)
  226. {
  227. if (!pfn_valid_within(page_to_pfn(page)))
  228. return 0;
  229. if (zone != page_zone(page))
  230. return 0;
  231. return 1;
  232. }
  233. /*
  234. * Temporary debugging check for pages not lying within a given zone.
  235. */
  236. static int bad_range(struct zone *zone, struct page *page)
  237. {
  238. if (page_outside_zone_boundaries(zone, page))
  239. return 1;
  240. if (!page_is_consistent(zone, page))
  241. return 1;
  242. return 0;
  243. }
  244. #else
  245. static inline int bad_range(struct zone *zone, struct page *page)
  246. {
  247. return 0;
  248. }
  249. #endif
  250. static void bad_page(struct page *page)
  251. {
  252. static unsigned long resume;
  253. static unsigned long nr_shown;
  254. static unsigned long nr_unshown;
  255. /* Don't complain about poisoned pages */
  256. if (PageHWPoison(page)) {
  257. reset_page_mapcount(page); /* remove PageBuddy */
  258. return;
  259. }
  260. /*
  261. * Allow a burst of 60 reports, then keep quiet for that minute;
  262. * or allow a steady drip of one report per second.
  263. */
  264. if (nr_shown == 60) {
  265. if (time_before(jiffies, resume)) {
  266. nr_unshown++;
  267. goto out;
  268. }
  269. if (nr_unshown) {
  270. printk(KERN_ALERT
  271. "BUG: Bad page state: %lu messages suppressed\n",
  272. nr_unshown);
  273. nr_unshown = 0;
  274. }
  275. nr_shown = 0;
  276. }
  277. if (nr_shown++ == 0)
  278. resume = jiffies + 60 * HZ;
  279. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  280. current->comm, page_to_pfn(page));
  281. dump_page(page);
  282. print_modules();
  283. dump_stack();
  284. out:
  285. /* Leave bad fields for debug, except PageBuddy could make trouble */
  286. reset_page_mapcount(page); /* remove PageBuddy */
  287. add_taint(TAINT_BAD_PAGE);
  288. }
  289. /*
  290. * Higher-order pages are called "compound pages". They are structured thusly:
  291. *
  292. * The first PAGE_SIZE page is called the "head page".
  293. *
  294. * The remaining PAGE_SIZE pages are called "tail pages".
  295. *
  296. * All pages have PG_compound set. All tail pages have their ->first_page
  297. * pointing at the head page.
  298. *
  299. * The first tail page's ->lru.next holds the address of the compound page's
  300. * put_page() function. Its ->lru.prev holds the order of allocation.
  301. * This usage means that zero-order pages may not be compound.
  302. */
  303. static void free_compound_page(struct page *page)
  304. {
  305. __free_pages_ok(page, compound_order(page));
  306. }
  307. void prep_compound_page(struct page *page, unsigned long order)
  308. {
  309. int i;
  310. int nr_pages = 1 << order;
  311. set_compound_page_dtor(page, free_compound_page);
  312. set_compound_order(page, order);
  313. __SetPageHead(page);
  314. for (i = 1; i < nr_pages; i++) {
  315. struct page *p = page + i;
  316. __SetPageTail(p);
  317. set_page_count(p, 0);
  318. p->first_page = page;
  319. }
  320. }
  321. /* update __split_huge_page_refcount if you change this function */
  322. static int destroy_compound_page(struct page *page, unsigned long order)
  323. {
  324. int i;
  325. int nr_pages = 1 << order;
  326. int bad = 0;
  327. if (unlikely(compound_order(page) != order) ||
  328. unlikely(!PageHead(page))) {
  329. bad_page(page);
  330. bad++;
  331. }
  332. __ClearPageHead(page);
  333. for (i = 1; i < nr_pages; i++) {
  334. struct page *p = page + i;
  335. if (unlikely(!PageTail(p) || (p->first_page != page))) {
  336. bad_page(page);
  337. bad++;
  338. }
  339. __ClearPageTail(p);
  340. }
  341. return bad;
  342. }
  343. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  344. {
  345. int i;
  346. /*
  347. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  348. * and __GFP_HIGHMEM from hard or soft interrupt context.
  349. */
  350. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  351. for (i = 0; i < (1 << order); i++)
  352. clear_highpage(page + i);
  353. }
  354. #ifdef CONFIG_DEBUG_PAGEALLOC
  355. unsigned int _debug_guardpage_minorder;
  356. static int __init debug_guardpage_minorder_setup(char *buf)
  357. {
  358. unsigned long res;
  359. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  360. printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
  361. return 0;
  362. }
  363. _debug_guardpage_minorder = res;
  364. printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
  365. return 0;
  366. }
  367. __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
  368. static inline void set_page_guard_flag(struct page *page)
  369. {
  370. __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  371. }
  372. static inline void clear_page_guard_flag(struct page *page)
  373. {
  374. __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  375. }
  376. #else
  377. static inline void set_page_guard_flag(struct page *page) { }
  378. static inline void clear_page_guard_flag(struct page *page) { }
  379. #endif
  380. static inline void set_page_order(struct page *page, int order)
  381. {
  382. set_page_private(page, order);
  383. __SetPageBuddy(page);
  384. }
  385. static inline void rmv_page_order(struct page *page)
  386. {
  387. __ClearPageBuddy(page);
  388. set_page_private(page, 0);
  389. }
  390. /*
  391. * Locate the struct page for both the matching buddy in our
  392. * pair (buddy1) and the combined O(n+1) page they form (page).
  393. *
  394. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  395. * the following equation:
  396. * B2 = B1 ^ (1 << O)
  397. * For example, if the starting buddy (buddy2) is #8 its order
  398. * 1 buddy is #10:
  399. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  400. *
  401. * 2) Any buddy B will have an order O+1 parent P which
  402. * satisfies the following equation:
  403. * P = B & ~(1 << O)
  404. *
  405. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  406. */
  407. static inline unsigned long
  408. __find_buddy_index(unsigned long page_idx, unsigned int order)
  409. {
  410. return page_idx ^ (1 << order);
  411. }
  412. /*
  413. * This function checks whether a page is free && is the buddy
  414. * we can do coalesce a page and its buddy if
  415. * (a) the buddy is not in a hole &&
  416. * (b) the buddy is in the buddy system &&
  417. * (c) a page and its buddy have the same order &&
  418. * (d) a page and its buddy are in the same zone.
  419. *
  420. * For recording whether a page is in the buddy system, we set ->_mapcount -2.
  421. * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
  422. *
  423. * For recording page's order, we use page_private(page).
  424. */
  425. static inline int page_is_buddy(struct page *page, struct page *buddy,
  426. int order)
  427. {
  428. if (!pfn_valid_within(page_to_pfn(buddy)))
  429. return 0;
  430. if (page_zone_id(page) != page_zone_id(buddy))
  431. return 0;
  432. if (page_is_guard(buddy) && page_order(buddy) == order) {
  433. VM_BUG_ON(page_count(buddy) != 0);
  434. return 1;
  435. }
  436. if (PageBuddy(buddy) && page_order(buddy) == order) {
  437. VM_BUG_ON(page_count(buddy) != 0);
  438. return 1;
  439. }
  440. return 0;
  441. }
  442. /*
  443. * Freeing function for a buddy system allocator.
  444. *
  445. * The concept of a buddy system is to maintain direct-mapped table
  446. * (containing bit values) for memory blocks of various "orders".
  447. * The bottom level table contains the map for the smallest allocatable
  448. * units of memory (here, pages), and each level above it describes
  449. * pairs of units from the levels below, hence, "buddies".
  450. * At a high level, all that happens here is marking the table entry
  451. * at the bottom level available, and propagating the changes upward
  452. * as necessary, plus some accounting needed to play nicely with other
  453. * parts of the VM system.
  454. * At each level, we keep a list of pages, which are heads of continuous
  455. * free pages of length of (1 << order) and marked with _mapcount -2. Page's
  456. * order is recorded in page_private(page) field.
  457. * So when we are allocating or freeing one, we can derive the state of the
  458. * other. That is, if we allocate a small block, and both were
  459. * free, the remainder of the region must be split into blocks.
  460. * If a block is freed, and its buddy is also free, then this
  461. * triggers coalescing into a block of larger size.
  462. *
  463. * -- wli
  464. */
  465. static inline void __free_one_page(struct page *page,
  466. struct zone *zone, unsigned int order,
  467. int migratetype)
  468. {
  469. unsigned long page_idx;
  470. unsigned long combined_idx;
  471. unsigned long uninitialized_var(buddy_idx);
  472. struct page *buddy;
  473. if (unlikely(PageCompound(page)))
  474. if (unlikely(destroy_compound_page(page, order)))
  475. return;
  476. VM_BUG_ON(migratetype == -1);
  477. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  478. VM_BUG_ON(page_idx & ((1 << order) - 1));
  479. VM_BUG_ON(bad_range(zone, page));
  480. while (order < MAX_ORDER-1) {
  481. buddy_idx = __find_buddy_index(page_idx, order);
  482. buddy = page + (buddy_idx - page_idx);
  483. if (!page_is_buddy(page, buddy, order))
  484. break;
  485. /*
  486. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  487. * merge with it and move up one order.
  488. */
  489. if (page_is_guard(buddy)) {
  490. clear_page_guard_flag(buddy);
  491. set_page_private(page, 0);
  492. __mod_zone_freepage_state(zone, 1 << order,
  493. migratetype);
  494. } else {
  495. list_del(&buddy->lru);
  496. zone->free_area[order].nr_free--;
  497. rmv_page_order(buddy);
  498. }
  499. combined_idx = buddy_idx & page_idx;
  500. page = page + (combined_idx - page_idx);
  501. page_idx = combined_idx;
  502. order++;
  503. }
  504. set_page_order(page, order);
  505. /*
  506. * If this is not the largest possible page, check if the buddy
  507. * of the next-highest order is free. If it is, it's possible
  508. * that pages are being freed that will coalesce soon. In case,
  509. * that is happening, add the free page to the tail of the list
  510. * so it's less likely to be used soon and more likely to be merged
  511. * as a higher order page
  512. */
  513. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  514. struct page *higher_page, *higher_buddy;
  515. combined_idx = buddy_idx & page_idx;
  516. higher_page = page + (combined_idx - page_idx);
  517. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  518. higher_buddy = higher_page + (buddy_idx - combined_idx);
  519. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  520. list_add_tail(&page->lru,
  521. &zone->free_area[order].free_list[migratetype]);
  522. goto out;
  523. }
  524. }
  525. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  526. out:
  527. zone->free_area[order].nr_free++;
  528. }
  529. static inline int free_pages_check(struct page *page)
  530. {
  531. if (unlikely(page_mapcount(page) |
  532. (page->mapping != NULL) |
  533. (atomic_read(&page->_count) != 0) |
  534. (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
  535. (mem_cgroup_bad_page_check(page)))) {
  536. bad_page(page);
  537. return 1;
  538. }
  539. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  540. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  541. return 0;
  542. }
  543. /*
  544. * Frees a number of pages from the PCP lists
  545. * Assumes all pages on list are in same zone, and of same order.
  546. * count is the number of pages to free.
  547. *
  548. * If the zone was previously in an "all pages pinned" state then look to
  549. * see if this freeing clears that state.
  550. *
  551. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  552. * pinned" detection logic.
  553. */
  554. static void free_pcppages_bulk(struct zone *zone, int count,
  555. struct per_cpu_pages *pcp)
  556. {
  557. int migratetype = 0;
  558. int batch_free = 0;
  559. int to_free = count;
  560. spin_lock(&zone->lock);
  561. zone->all_unreclaimable = 0;
  562. zone->pages_scanned = 0;
  563. while (to_free) {
  564. struct page *page;
  565. struct list_head *list;
  566. /*
  567. * Remove pages from lists in a round-robin fashion. A
  568. * batch_free count is maintained that is incremented when an
  569. * empty list is encountered. This is so more pages are freed
  570. * off fuller lists instead of spinning excessively around empty
  571. * lists
  572. */
  573. do {
  574. batch_free++;
  575. if (++migratetype == MIGRATE_PCPTYPES)
  576. migratetype = 0;
  577. list = &pcp->lists[migratetype];
  578. } while (list_empty(list));
  579. /* This is the only non-empty list. Free them all. */
  580. if (batch_free == MIGRATE_PCPTYPES)
  581. batch_free = to_free;
  582. do {
  583. int mt; /* migratetype of the to-be-freed page */
  584. page = list_entry(list->prev, struct page, lru);
  585. /* must delete as __free_one_page list manipulates */
  586. list_del(&page->lru);
  587. mt = get_freepage_migratetype(page);
  588. /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
  589. __free_one_page(page, zone, 0, mt);
  590. trace_mm_page_pcpu_drain(page, 0, mt);
  591. if (is_migrate_cma(mt))
  592. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
  593. } while (--to_free && --batch_free && !list_empty(list));
  594. }
  595. __mod_zone_page_state(zone, NR_FREE_PAGES, count);
  596. spin_unlock(&zone->lock);
  597. }
  598. static void free_one_page(struct zone *zone, struct page *page, int order,
  599. int migratetype)
  600. {
  601. spin_lock(&zone->lock);
  602. zone->all_unreclaimable = 0;
  603. zone->pages_scanned = 0;
  604. __free_one_page(page, zone, order, migratetype);
  605. if (unlikely(migratetype != MIGRATE_ISOLATE))
  606. __mod_zone_freepage_state(zone, 1 << order, migratetype);
  607. spin_unlock(&zone->lock);
  608. }
  609. static bool free_pages_prepare(struct page *page, unsigned int order)
  610. {
  611. int i;
  612. int bad = 0;
  613. trace_mm_page_free(page, order);
  614. kmemcheck_free_shadow(page, order);
  615. if (PageAnon(page))
  616. page->mapping = NULL;
  617. for (i = 0; i < (1 << order); i++)
  618. bad += free_pages_check(page + i);
  619. if (bad)
  620. return false;
  621. if (!PageHighMem(page)) {
  622. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  623. debug_check_no_obj_freed(page_address(page),
  624. PAGE_SIZE << order);
  625. }
  626. arch_free_page(page, order);
  627. kernel_map_pages(page, 1 << order, 0);
  628. return true;
  629. }
  630. static void __free_pages_ok(struct page *page, unsigned int order)
  631. {
  632. unsigned long flags;
  633. int migratetype;
  634. if (!free_pages_prepare(page, order))
  635. return;
  636. local_irq_save(flags);
  637. __count_vm_events(PGFREE, 1 << order);
  638. migratetype = get_pageblock_migratetype(page);
  639. set_freepage_migratetype(page, migratetype);
  640. free_one_page(page_zone(page), page, order, migratetype);
  641. local_irq_restore(flags);
  642. }
  643. void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
  644. {
  645. unsigned int nr_pages = 1 << order;
  646. unsigned int loop;
  647. prefetchw(page);
  648. for (loop = 0; loop < nr_pages; loop++) {
  649. struct page *p = &page[loop];
  650. if (loop + 1 < nr_pages)
  651. prefetchw(p + 1);
  652. __ClearPageReserved(p);
  653. set_page_count(p, 0);
  654. }
  655. set_page_refcounted(page);
  656. __free_pages(page, order);
  657. }
  658. #ifdef CONFIG_CMA
  659. /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
  660. void __init init_cma_reserved_pageblock(struct page *page)
  661. {
  662. unsigned i = pageblock_nr_pages;
  663. struct page *p = page;
  664. do {
  665. __ClearPageReserved(p);
  666. set_page_count(p, 0);
  667. } while (++p, --i);
  668. set_page_refcounted(page);
  669. set_pageblock_migratetype(page, MIGRATE_CMA);
  670. __free_pages(page, pageblock_order);
  671. totalram_pages += pageblock_nr_pages;
  672. }
  673. #endif
  674. /*
  675. * The order of subdivision here is critical for the IO subsystem.
  676. * Please do not alter this order without good reasons and regression
  677. * testing. Specifically, as large blocks of memory are subdivided,
  678. * the order in which smaller blocks are delivered depends on the order
  679. * they're subdivided in this function. This is the primary factor
  680. * influencing the order in which pages are delivered to the IO
  681. * subsystem according to empirical testing, and this is also justified
  682. * by considering the behavior of a buddy system containing a single
  683. * large block of memory acted on by a series of small allocations.
  684. * This behavior is a critical factor in sglist merging's success.
  685. *
  686. * -- wli
  687. */
  688. static inline void expand(struct zone *zone, struct page *page,
  689. int low, int high, struct free_area *area,
  690. int migratetype)
  691. {
  692. unsigned long size = 1 << high;
  693. while (high > low) {
  694. area--;
  695. high--;
  696. size >>= 1;
  697. VM_BUG_ON(bad_range(zone, &page[size]));
  698. #ifdef CONFIG_DEBUG_PAGEALLOC
  699. if (high < debug_guardpage_minorder()) {
  700. /*
  701. * Mark as guard pages (or page), that will allow to
  702. * merge back to allocator when buddy will be freed.
  703. * Corresponding page table entries will not be touched,
  704. * pages will stay not present in virtual address space
  705. */
  706. INIT_LIST_HEAD(&page[size].lru);
  707. set_page_guard_flag(&page[size]);
  708. set_page_private(&page[size], high);
  709. /* Guard pages are not available for any usage */
  710. __mod_zone_freepage_state(zone, -(1 << high),
  711. migratetype);
  712. continue;
  713. }
  714. #endif
  715. list_add(&page[size].lru, &area->free_list[migratetype]);
  716. area->nr_free++;
  717. set_page_order(&page[size], high);
  718. }
  719. }
  720. /*
  721. * This page is about to be returned from the page allocator
  722. */
  723. static inline int check_new_page(struct page *page)
  724. {
  725. if (unlikely(page_mapcount(page) |
  726. (page->mapping != NULL) |
  727. (atomic_read(&page->_count) != 0) |
  728. (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
  729. (mem_cgroup_bad_page_check(page)))) {
  730. bad_page(page);
  731. return 1;
  732. }
  733. return 0;
  734. }
  735. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  736. {
  737. int i;
  738. for (i = 0; i < (1 << order); i++) {
  739. struct page *p = page + i;
  740. if (unlikely(check_new_page(p)))
  741. return 1;
  742. }
  743. set_page_private(page, 0);
  744. set_page_refcounted(page);
  745. arch_alloc_page(page, order);
  746. kernel_map_pages(page, 1 << order, 1);
  747. if (gfp_flags & __GFP_ZERO)
  748. prep_zero_page(page, order, gfp_flags);
  749. if (order && (gfp_flags & __GFP_COMP))
  750. prep_compound_page(page, order);
  751. return 0;
  752. }
  753. /*
  754. * Go through the free lists for the given migratetype and remove
  755. * the smallest available page from the freelists
  756. */
  757. static inline
  758. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  759. int migratetype)
  760. {
  761. unsigned int current_order;
  762. struct free_area * area;
  763. struct page *page;
  764. /* Find a page of the appropriate size in the preferred list */
  765. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  766. area = &(zone->free_area[current_order]);
  767. if (list_empty(&area->free_list[migratetype]))
  768. continue;
  769. page = list_entry(area->free_list[migratetype].next,
  770. struct page, lru);
  771. list_del(&page->lru);
  772. rmv_page_order(page);
  773. area->nr_free--;
  774. expand(zone, page, order, current_order, area, migratetype);
  775. return page;
  776. }
  777. return NULL;
  778. }
  779. /*
  780. * This array describes the order lists are fallen back to when
  781. * the free lists for the desirable migrate type are depleted
  782. */
  783. static int fallbacks[MIGRATE_TYPES][4] = {
  784. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  785. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  786. #ifdef CONFIG_CMA
  787. [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  788. [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
  789. #else
  790. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  791. #endif
  792. [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
  793. [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
  794. };
  795. /*
  796. * Move the free pages in a range to the free lists of the requested type.
  797. * Note that start_page and end_pages are not aligned on a pageblock
  798. * boundary. If alignment is required, use move_freepages_block()
  799. */
  800. int move_freepages(struct zone *zone,
  801. struct page *start_page, struct page *end_page,
  802. int migratetype)
  803. {
  804. struct page *page;
  805. unsigned long order;
  806. int pages_moved = 0;
  807. #ifndef CONFIG_HOLES_IN_ZONE
  808. /*
  809. * page_zone is not safe to call in this context when
  810. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  811. * anyway as we check zone boundaries in move_freepages_block().
  812. * Remove at a later date when no bug reports exist related to
  813. * grouping pages by mobility
  814. */
  815. BUG_ON(page_zone(start_page) != page_zone(end_page));
  816. #endif
  817. for (page = start_page; page <= end_page;) {
  818. /* Make sure we are not inadvertently changing nodes */
  819. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  820. if (!pfn_valid_within(page_to_pfn(page))) {
  821. page++;
  822. continue;
  823. }
  824. if (!PageBuddy(page)) {
  825. page++;
  826. continue;
  827. }
  828. order = page_order(page);
  829. list_move(&page->lru,
  830. &zone->free_area[order].free_list[migratetype]);
  831. set_freepage_migratetype(page, migratetype);
  832. page += 1 << order;
  833. pages_moved += 1 << order;
  834. }
  835. return pages_moved;
  836. }
  837. int move_freepages_block(struct zone *zone, struct page *page,
  838. int migratetype)
  839. {
  840. unsigned long start_pfn, end_pfn;
  841. struct page *start_page, *end_page;
  842. start_pfn = page_to_pfn(page);
  843. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  844. start_page = pfn_to_page(start_pfn);
  845. end_page = start_page + pageblock_nr_pages - 1;
  846. end_pfn = start_pfn + pageblock_nr_pages - 1;
  847. /* Do not cross zone boundaries */
  848. if (start_pfn < zone->zone_start_pfn)
  849. start_page = page;
  850. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  851. return 0;
  852. return move_freepages(zone, start_page, end_page, migratetype);
  853. }
  854. static void change_pageblock_range(struct page *pageblock_page,
  855. int start_order, int migratetype)
  856. {
  857. int nr_pageblocks = 1 << (start_order - pageblock_order);
  858. while (nr_pageblocks--) {
  859. set_pageblock_migratetype(pageblock_page, migratetype);
  860. pageblock_page += pageblock_nr_pages;
  861. }
  862. }
  863. /* Remove an element from the buddy allocator from the fallback list */
  864. static inline struct page *
  865. __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
  866. {
  867. struct free_area * area;
  868. int current_order;
  869. struct page *page;
  870. int migratetype, i;
  871. /* Find the largest possible block of pages in the other list */
  872. for (current_order = MAX_ORDER-1; current_order >= order;
  873. --current_order) {
  874. for (i = 0;; i++) {
  875. migratetype = fallbacks[start_migratetype][i];
  876. /* MIGRATE_RESERVE handled later if necessary */
  877. if (migratetype == MIGRATE_RESERVE)
  878. break;
  879. area = &(zone->free_area[current_order]);
  880. if (list_empty(&area->free_list[migratetype]))
  881. continue;
  882. page = list_entry(area->free_list[migratetype].next,
  883. struct page, lru);
  884. area->nr_free--;
  885. /*
  886. * If breaking a large block of pages, move all free
  887. * pages to the preferred allocation list. If falling
  888. * back for a reclaimable kernel allocation, be more
  889. * aggressive about taking ownership of free pages
  890. *
  891. * On the other hand, never change migration
  892. * type of MIGRATE_CMA pageblocks nor move CMA
  893. * pages on different free lists. We don't
  894. * want unmovable pages to be allocated from
  895. * MIGRATE_CMA areas.
  896. */
  897. if (!is_migrate_cma(migratetype) &&
  898. (unlikely(current_order >= pageblock_order / 2) ||
  899. start_migratetype == MIGRATE_RECLAIMABLE ||
  900. page_group_by_mobility_disabled)) {
  901. int pages;
  902. pages = move_freepages_block(zone, page,
  903. start_migratetype);
  904. /* Claim the whole block if over half of it is free */
  905. if (pages >= (1 << (pageblock_order-1)) ||
  906. page_group_by_mobility_disabled)
  907. set_pageblock_migratetype(page,
  908. start_migratetype);
  909. migratetype = start_migratetype;
  910. }
  911. /* Remove the page from the freelists */
  912. list_del(&page->lru);
  913. rmv_page_order(page);
  914. /* Take ownership for orders >= pageblock_order */
  915. if (current_order >= pageblock_order &&
  916. !is_migrate_cma(migratetype))
  917. change_pageblock_range(page, current_order,
  918. start_migratetype);
  919. expand(zone, page, order, current_order, area,
  920. is_migrate_cma(migratetype)
  921. ? migratetype : start_migratetype);
  922. trace_mm_page_alloc_extfrag(page, order, current_order,
  923. start_migratetype, migratetype);
  924. return page;
  925. }
  926. }
  927. return NULL;
  928. }
  929. /*
  930. * Do the hard work of removing an element from the buddy allocator.
  931. * Call me with the zone->lock already held.
  932. */
  933. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  934. int migratetype)
  935. {
  936. struct page *page;
  937. retry_reserve:
  938. page = __rmqueue_smallest(zone, order, migratetype);
  939. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  940. page = __rmqueue_fallback(zone, order, migratetype);
  941. /*
  942. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  943. * is used because __rmqueue_smallest is an inline function
  944. * and we want just one call site
  945. */
  946. if (!page) {
  947. migratetype = MIGRATE_RESERVE;
  948. goto retry_reserve;
  949. }
  950. }
  951. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  952. return page;
  953. }
  954. /*
  955. * Obtain a specified number of elements from the buddy allocator, all under
  956. * a single hold of the lock, for efficiency. Add them to the supplied list.
  957. * Returns the number of new pages which were placed at *list.
  958. */
  959. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  960. unsigned long count, struct list_head *list,
  961. int migratetype, int cold)
  962. {
  963. int mt = migratetype, i;
  964. spin_lock(&zone->lock);
  965. for (i = 0; i < count; ++i) {
  966. struct page *page = __rmqueue(zone, order, migratetype);
  967. if (unlikely(page == NULL))
  968. break;
  969. /*
  970. * Split buddy pages returned by expand() are received here
  971. * in physical page order. The page is added to the callers and
  972. * list and the list head then moves forward. From the callers
  973. * perspective, the linked list is ordered by page number in
  974. * some conditions. This is useful for IO devices that can
  975. * merge IO requests if the physical pages are ordered
  976. * properly.
  977. */
  978. if (likely(cold == 0))
  979. list_add(&page->lru, list);
  980. else
  981. list_add_tail(&page->lru, list);
  982. if (IS_ENABLED(CONFIG_CMA)) {
  983. mt = get_pageblock_migratetype(page);
  984. if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
  985. mt = migratetype;
  986. }
  987. set_freepage_migratetype(page, mt);
  988. list = &page->lru;
  989. if (is_migrate_cma(mt))
  990. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
  991. -(1 << order));
  992. }
  993. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  994. spin_unlock(&zone->lock);
  995. return i;
  996. }
  997. #ifdef CONFIG_NUMA
  998. /*
  999. * Called from the vmstat counter updater to drain pagesets of this
  1000. * currently executing processor on remote nodes after they have
  1001. * expired.
  1002. *
  1003. * Note that this function must be called with the thread pinned to
  1004. * a single processor.
  1005. */
  1006. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  1007. {
  1008. unsigned long flags;
  1009. int to_drain;
  1010. local_irq_save(flags);
  1011. if (pcp->count >= pcp->batch)
  1012. to_drain = pcp->batch;
  1013. else
  1014. to_drain = pcp->count;
  1015. if (to_drain > 0) {
  1016. free_pcppages_bulk(zone, to_drain, pcp);
  1017. pcp->count -= to_drain;
  1018. }
  1019. local_irq_restore(flags);
  1020. }
  1021. #endif
  1022. /*
  1023. * Drain pages of the indicated processor.
  1024. *
  1025. * The processor must either be the current processor and the
  1026. * thread pinned to the current processor or a processor that
  1027. * is not online.
  1028. */
  1029. static void drain_pages(unsigned int cpu)
  1030. {
  1031. unsigned long flags;
  1032. struct zone *zone;
  1033. for_each_populated_zone(zone) {
  1034. struct per_cpu_pageset *pset;
  1035. struct per_cpu_pages *pcp;
  1036. local_irq_save(flags);
  1037. pset = per_cpu_ptr(zone->pageset, cpu);
  1038. pcp = &pset->pcp;
  1039. if (pcp->count) {
  1040. free_pcppages_bulk(zone, pcp->count, pcp);
  1041. pcp->count = 0;
  1042. }
  1043. local_irq_restore(flags);
  1044. }
  1045. }
  1046. /*
  1047. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  1048. */
  1049. void drain_local_pages(void *arg)
  1050. {
  1051. drain_pages(smp_processor_id());
  1052. }
  1053. /*
  1054. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  1055. *
  1056. * Note that this code is protected against sending an IPI to an offline
  1057. * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
  1058. * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
  1059. * nothing keeps CPUs from showing up after we populated the cpumask and
  1060. * before the call to on_each_cpu_mask().
  1061. */
  1062. void drain_all_pages(void)
  1063. {
  1064. int cpu;
  1065. struct per_cpu_pageset *pcp;
  1066. struct zone *zone;
  1067. /*
  1068. * Allocate in the BSS so we wont require allocation in
  1069. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  1070. */
  1071. static cpumask_t cpus_with_pcps;
  1072. /*
  1073. * We don't care about racing with CPU hotplug event
  1074. * as offline notification will cause the notified
  1075. * cpu to drain that CPU pcps and on_each_cpu_mask
  1076. * disables preemption as part of its processing
  1077. */
  1078. for_each_online_cpu(cpu) {
  1079. bool has_pcps = false;
  1080. for_each_populated_zone(zone) {
  1081. pcp = per_cpu_ptr(zone->pageset, cpu);
  1082. if (pcp->pcp.count) {
  1083. has_pcps = true;
  1084. break;
  1085. }
  1086. }
  1087. if (has_pcps)
  1088. cpumask_set_cpu(cpu, &cpus_with_pcps);
  1089. else
  1090. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  1091. }
  1092. on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
  1093. }
  1094. #ifdef CONFIG_HIBERNATION
  1095. void mark_free_pages(struct zone *zone)
  1096. {
  1097. unsigned long pfn, max_zone_pfn;
  1098. unsigned long flags;
  1099. int order, t;
  1100. struct list_head *curr;
  1101. if (!zone->spanned_pages)
  1102. return;
  1103. spin_lock_irqsave(&zone->lock, flags);
  1104. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  1105. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  1106. if (pfn_valid(pfn)) {
  1107. struct page *page = pfn_to_page(pfn);
  1108. if (!swsusp_page_is_forbidden(page))
  1109. swsusp_unset_page_free(page);
  1110. }
  1111. for_each_migratetype_order(order, t) {
  1112. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  1113. unsigned long i;
  1114. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  1115. for (i = 0; i < (1UL << order); i++)
  1116. swsusp_set_page_free(pfn_to_page(pfn + i));
  1117. }
  1118. }
  1119. spin_unlock_irqrestore(&zone->lock, flags);
  1120. }
  1121. #endif /* CONFIG_PM */
  1122. /*
  1123. * Free a 0-order page
  1124. * cold == 1 ? free a cold page : free a hot page
  1125. */
  1126. void free_hot_cold_page(struct page *page, int cold)
  1127. {
  1128. struct zone *zone = page_zone(page);
  1129. struct per_cpu_pages *pcp;
  1130. unsigned long flags;
  1131. int migratetype;
  1132. if (!free_pages_prepare(page, 0))
  1133. return;
  1134. migratetype = get_pageblock_migratetype(page);
  1135. set_freepage_migratetype(page, migratetype);
  1136. local_irq_save(flags);
  1137. __count_vm_event(PGFREE);
  1138. /*
  1139. * We only track unmovable, reclaimable and movable on pcp lists.
  1140. * Free ISOLATE pages back to the allocator because they are being
  1141. * offlined but treat RESERVE as movable pages so we can get those
  1142. * areas back if necessary. Otherwise, we may have to free
  1143. * excessively into the page allocator
  1144. */
  1145. if (migratetype >= MIGRATE_PCPTYPES) {
  1146. if (unlikely(migratetype == MIGRATE_ISOLATE)) {
  1147. free_one_page(zone, page, 0, migratetype);
  1148. goto out;
  1149. }
  1150. migratetype = MIGRATE_MOVABLE;
  1151. }
  1152. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1153. if (cold)
  1154. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  1155. else
  1156. list_add(&page->lru, &pcp->lists[migratetype]);
  1157. pcp->count++;
  1158. if (pcp->count >= pcp->high) {
  1159. free_pcppages_bulk(zone, pcp->batch, pcp);
  1160. pcp->count -= pcp->batch;
  1161. }
  1162. out:
  1163. local_irq_restore(flags);
  1164. }
  1165. /*
  1166. * Free a list of 0-order pages
  1167. */
  1168. void free_hot_cold_page_list(struct list_head *list, int cold)
  1169. {
  1170. struct page *page, *next;
  1171. list_for_each_entry_safe(page, next, list, lru) {
  1172. trace_mm_page_free_batched(page, cold);
  1173. free_hot_cold_page(page, cold);
  1174. }
  1175. }
  1176. /*
  1177. * split_page takes a non-compound higher-order page, and splits it into
  1178. * n (1<<order) sub-pages: page[0..n]
  1179. * Each sub-page must be freed individually.
  1180. *
  1181. * Note: this is probably too low level an operation for use in drivers.
  1182. * Please consult with lkml before using this in your driver.
  1183. */
  1184. void split_page(struct page *page, unsigned int order)
  1185. {
  1186. int i;
  1187. VM_BUG_ON(PageCompound(page));
  1188. VM_BUG_ON(!page_count(page));
  1189. #ifdef CONFIG_KMEMCHECK
  1190. /*
  1191. * Split shadow pages too, because free(page[0]) would
  1192. * otherwise free the whole shadow.
  1193. */
  1194. if (kmemcheck_page_is_tracked(page))
  1195. split_page(virt_to_page(page[0].shadow), order);
  1196. #endif
  1197. for (i = 1; i < (1 << order); i++)
  1198. set_page_refcounted(page + i);
  1199. }
  1200. /*
  1201. * Similar to the split_page family of functions except that the page
  1202. * required at the given order and being isolated now to prevent races
  1203. * with parallel allocators
  1204. */
  1205. int capture_free_page(struct page *page, int alloc_order, int migratetype)
  1206. {
  1207. unsigned int order;
  1208. unsigned long watermark;
  1209. struct zone *zone;
  1210. int mt;
  1211. BUG_ON(!PageBuddy(page));
  1212. zone = page_zone(page);
  1213. order = page_order(page);
  1214. /* Obey watermarks as if the page was being allocated */
  1215. watermark = low_wmark_pages(zone) + (1 << order);
  1216. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  1217. return 0;
  1218. /* Remove page from free list */
  1219. list_del(&page->lru);
  1220. zone->free_area[order].nr_free--;
  1221. rmv_page_order(page);
  1222. mt = get_pageblock_migratetype(page);
  1223. if (unlikely(mt != MIGRATE_ISOLATE))
  1224. __mod_zone_freepage_state(zone, -(1UL << order), mt);
  1225. if (alloc_order != order)
  1226. expand(zone, page, alloc_order, order,
  1227. &zone->free_area[order], migratetype);
  1228. /* Set the pageblock if the captured page is at least a pageblock */
  1229. if (order >= pageblock_order - 1) {
  1230. struct page *endpage = page + (1 << order) - 1;
  1231. for (; page < endpage; page += pageblock_nr_pages) {
  1232. int mt = get_pageblock_migratetype(page);
  1233. if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
  1234. set_pageblock_migratetype(page,
  1235. MIGRATE_MOVABLE);
  1236. }
  1237. }
  1238. return 1UL << order;
  1239. }
  1240. /*
  1241. * Similar to split_page except the page is already free. As this is only
  1242. * being used for migration, the migratetype of the block also changes.
  1243. * As this is called with interrupts disabled, the caller is responsible
  1244. * for calling arch_alloc_page() and kernel_map_page() after interrupts
  1245. * are enabled.
  1246. *
  1247. * Note: this is probably too low level an operation for use in drivers.
  1248. * Please consult with lkml before using this in your driver.
  1249. */
  1250. int split_free_page(struct page *page)
  1251. {
  1252. unsigned int order;
  1253. int nr_pages;
  1254. BUG_ON(!PageBuddy(page));
  1255. order = page_order(page);
  1256. nr_pages = capture_free_page(page, order, 0);
  1257. if (!nr_pages)
  1258. return 0;
  1259. /* Split into individual pages */
  1260. set_page_refcounted(page);
  1261. split_page(page, order);
  1262. return nr_pages;
  1263. }
  1264. /*
  1265. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  1266. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  1267. * or two.
  1268. */
  1269. static inline
  1270. struct page *buffered_rmqueue(struct zone *preferred_zone,
  1271. struct zone *zone, int order, gfp_t gfp_flags,
  1272. int migratetype)
  1273. {
  1274. unsigned long flags;
  1275. struct page *page;
  1276. int cold = !!(gfp_flags & __GFP_COLD);
  1277. again:
  1278. if (likely(order == 0)) {
  1279. struct per_cpu_pages *pcp;
  1280. struct list_head *list;
  1281. local_irq_save(flags);
  1282. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1283. list = &pcp->lists[migratetype];
  1284. if (list_empty(list)) {
  1285. pcp->count += rmqueue_bulk(zone, 0,
  1286. pcp->batch, list,
  1287. migratetype, cold);
  1288. if (unlikely(list_empty(list)))
  1289. goto failed;
  1290. }
  1291. if (cold)
  1292. page = list_entry(list->prev, struct page, lru);
  1293. else
  1294. page = list_entry(list->next, struct page, lru);
  1295. list_del(&page->lru);
  1296. pcp->count--;
  1297. } else {
  1298. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  1299. /*
  1300. * __GFP_NOFAIL is not to be used in new code.
  1301. *
  1302. * All __GFP_NOFAIL callers should be fixed so that they
  1303. * properly detect and handle allocation failures.
  1304. *
  1305. * We most definitely don't want callers attempting to
  1306. * allocate greater than order-1 page units with
  1307. * __GFP_NOFAIL.
  1308. */
  1309. WARN_ON_ONCE(order > 1);
  1310. }
  1311. spin_lock_irqsave(&zone->lock, flags);
  1312. page = __rmqueue(zone, order, migratetype);
  1313. spin_unlock(&zone->lock);
  1314. if (!page)
  1315. goto failed;
  1316. __mod_zone_freepage_state(zone, -(1 << order),
  1317. get_pageblock_migratetype(page));
  1318. }
  1319. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1320. zone_statistics(preferred_zone, zone, gfp_flags);
  1321. local_irq_restore(flags);
  1322. VM_BUG_ON(bad_range(zone, page));
  1323. if (prep_new_page(page, order, gfp_flags))
  1324. goto again;
  1325. return page;
  1326. failed:
  1327. local_irq_restore(flags);
  1328. return NULL;
  1329. }
  1330. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1331. static struct {
  1332. struct fault_attr attr;
  1333. u32 ignore_gfp_highmem;
  1334. u32 ignore_gfp_wait;
  1335. u32 min_order;
  1336. } fail_page_alloc = {
  1337. .attr = FAULT_ATTR_INITIALIZER,
  1338. .ignore_gfp_wait = 1,
  1339. .ignore_gfp_highmem = 1,
  1340. .min_order = 1,
  1341. };
  1342. static int __init setup_fail_page_alloc(char *str)
  1343. {
  1344. return setup_fault_attr(&fail_page_alloc.attr, str);
  1345. }
  1346. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1347. static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1348. {
  1349. if (order < fail_page_alloc.min_order)
  1350. return false;
  1351. if (gfp_mask & __GFP_NOFAIL)
  1352. return false;
  1353. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1354. return false;
  1355. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1356. return false;
  1357. return should_fail(&fail_page_alloc.attr, 1 << order);
  1358. }
  1359. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1360. static int __init fail_page_alloc_debugfs(void)
  1361. {
  1362. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1363. struct dentry *dir;
  1364. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  1365. &fail_page_alloc.attr);
  1366. if (IS_ERR(dir))
  1367. return PTR_ERR(dir);
  1368. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1369. &fail_page_alloc.ignore_gfp_wait))
  1370. goto fail;
  1371. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1372. &fail_page_alloc.ignore_gfp_highmem))
  1373. goto fail;
  1374. if (!debugfs_create_u32("min-order", mode, dir,
  1375. &fail_page_alloc.min_order))
  1376. goto fail;
  1377. return 0;
  1378. fail:
  1379. debugfs_remove_recursive(dir);
  1380. return -ENOMEM;
  1381. }
  1382. late_initcall(fail_page_alloc_debugfs);
  1383. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1384. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1385. static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1386. {
  1387. return false;
  1388. }
  1389. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1390. /*
  1391. * Return true if free pages are above 'mark'. This takes into account the order
  1392. * of the allocation.
  1393. */
  1394. static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1395. int classzone_idx, int alloc_flags, long free_pages)
  1396. {
  1397. /* free_pages my go negative - that's OK */
  1398. long min = mark;
  1399. long lowmem_reserve = z->lowmem_reserve[classzone_idx];
  1400. int o;
  1401. free_pages -= (1 << order) - 1;
  1402. if (alloc_flags & ALLOC_HIGH)
  1403. min -= min / 2;
  1404. if (alloc_flags & ALLOC_HARDER)
  1405. min -= min / 4;
  1406. #ifdef CONFIG_CMA
  1407. /* If allocation can't use CMA areas don't use free CMA pages */
  1408. if (!(alloc_flags & ALLOC_CMA))
  1409. free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
  1410. #endif
  1411. if (free_pages <= min + lowmem_reserve)
  1412. return false;
  1413. for (o = 0; o < order; o++) {
  1414. /* At the next order, this order's pages become unavailable */
  1415. free_pages -= z->free_area[o].nr_free << o;
  1416. /* Require fewer higher order pages to be free */
  1417. min >>= 1;
  1418. if (free_pages <= min)
  1419. return false;
  1420. }
  1421. return true;
  1422. }
  1423. #ifdef CONFIG_MEMORY_ISOLATION
  1424. static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
  1425. {
  1426. if (unlikely(zone->nr_pageblock_isolate))
  1427. return zone->nr_pageblock_isolate * pageblock_nr_pages;
  1428. return 0;
  1429. }
  1430. #else
  1431. static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
  1432. {
  1433. return 0;
  1434. }
  1435. #endif
  1436. bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1437. int classzone_idx, int alloc_flags)
  1438. {
  1439. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1440. zone_page_state(z, NR_FREE_PAGES));
  1441. }
  1442. bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
  1443. int classzone_idx, int alloc_flags)
  1444. {
  1445. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  1446. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  1447. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  1448. /*
  1449. * If the zone has MIGRATE_ISOLATE type free pages, we should consider
  1450. * it. nr_zone_isolate_freepages is never accurate so kswapd might not
  1451. * sleep although it could do so. But this is more desirable for memory
  1452. * hotplug than sleeping which can cause a livelock in the direct
  1453. * reclaim path.
  1454. */
  1455. free_pages -= nr_zone_isolate_freepages(z);
  1456. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1457. free_pages);
  1458. }
  1459. #ifdef CONFIG_NUMA
  1460. /*
  1461. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1462. * skip over zones that are not allowed by the cpuset, or that have
  1463. * been recently (in last second) found to be nearly full. See further
  1464. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1465. * that have to skip over a lot of full or unallowed zones.
  1466. *
  1467. * If the zonelist cache is present in the passed in zonelist, then
  1468. * returns a pointer to the allowed node mask (either the current
  1469. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1470. *
  1471. * If the zonelist cache is not available for this zonelist, does
  1472. * nothing and returns NULL.
  1473. *
  1474. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1475. * a second since last zap'd) then we zap it out (clear its bits.)
  1476. *
  1477. * We hold off even calling zlc_setup, until after we've checked the
  1478. * first zone in the zonelist, on the theory that most allocations will
  1479. * be satisfied from that first zone, so best to examine that zone as
  1480. * quickly as we can.
  1481. */
  1482. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1483. {
  1484. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1485. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1486. zlc = zonelist->zlcache_ptr;
  1487. if (!zlc)
  1488. return NULL;
  1489. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1490. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1491. zlc->last_full_zap = jiffies;
  1492. }
  1493. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1494. &cpuset_current_mems_allowed :
  1495. &node_states[N_HIGH_MEMORY];
  1496. return allowednodes;
  1497. }
  1498. /*
  1499. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1500. * if it is worth looking at further for free memory:
  1501. * 1) Check that the zone isn't thought to be full (doesn't have its
  1502. * bit set in the zonelist_cache fullzones BITMAP).
  1503. * 2) Check that the zones node (obtained from the zonelist_cache
  1504. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1505. * Return true (non-zero) if zone is worth looking at further, or
  1506. * else return false (zero) if it is not.
  1507. *
  1508. * This check -ignores- the distinction between various watermarks,
  1509. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1510. * found to be full for any variation of these watermarks, it will
  1511. * be considered full for up to one second by all requests, unless
  1512. * we are so low on memory on all allowed nodes that we are forced
  1513. * into the second scan of the zonelist.
  1514. *
  1515. * In the second scan we ignore this zonelist cache and exactly
  1516. * apply the watermarks to all zones, even it is slower to do so.
  1517. * We are low on memory in the second scan, and should leave no stone
  1518. * unturned looking for a free page.
  1519. */
  1520. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1521. nodemask_t *allowednodes)
  1522. {
  1523. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1524. int i; /* index of *z in zonelist zones */
  1525. int n; /* node that zone *z is on */
  1526. zlc = zonelist->zlcache_ptr;
  1527. if (!zlc)
  1528. return 1;
  1529. i = z - zonelist->_zonerefs;
  1530. n = zlc->z_to_n[i];
  1531. /* This zone is worth trying if it is allowed but not full */
  1532. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1533. }
  1534. /*
  1535. * Given 'z' scanning a zonelist, set the corresponding bit in
  1536. * zlc->fullzones, so that subsequent attempts to allocate a page
  1537. * from that zone don't waste time re-examining it.
  1538. */
  1539. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1540. {
  1541. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1542. int i; /* index of *z in zonelist zones */
  1543. zlc = zonelist->zlcache_ptr;
  1544. if (!zlc)
  1545. return;
  1546. i = z - zonelist->_zonerefs;
  1547. set_bit(i, zlc->fullzones);
  1548. }
  1549. /*
  1550. * clear all zones full, called after direct reclaim makes progress so that
  1551. * a zone that was recently full is not skipped over for up to a second
  1552. */
  1553. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1554. {
  1555. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1556. zlc = zonelist->zlcache_ptr;
  1557. if (!zlc)
  1558. return;
  1559. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1560. }
  1561. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  1562. {
  1563. return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
  1564. }
  1565. static void __paginginit init_zone_allows_reclaim(int nid)
  1566. {
  1567. int i;
  1568. for_each_online_node(i)
  1569. if (node_distance(nid, i) <= RECLAIM_DISTANCE) {
  1570. node_set(i, NODE_DATA(nid)->reclaim_nodes);
  1571. zone_reclaim_mode = 1;
  1572. }
  1573. }
  1574. #else /* CONFIG_NUMA */
  1575. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1576. {
  1577. return NULL;
  1578. }
  1579. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1580. nodemask_t *allowednodes)
  1581. {
  1582. return 1;
  1583. }
  1584. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1585. {
  1586. }
  1587. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1588. {
  1589. }
  1590. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  1591. {
  1592. return true;
  1593. }
  1594. static inline void init_zone_allows_reclaim(int nid)
  1595. {
  1596. }
  1597. #endif /* CONFIG_NUMA */
  1598. /*
  1599. * get_page_from_freelist goes through the zonelist trying to allocate
  1600. * a page.
  1601. */
  1602. static struct page *
  1603. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1604. struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
  1605. struct zone *preferred_zone, int migratetype)
  1606. {
  1607. struct zoneref *z;
  1608. struct page *page = NULL;
  1609. int classzone_idx;
  1610. struct zone *zone;
  1611. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1612. int zlc_active = 0; /* set if using zonelist_cache */
  1613. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1614. classzone_idx = zone_idx(preferred_zone);
  1615. zonelist_scan:
  1616. /*
  1617. * Scan zonelist, looking for a zone with enough free.
  1618. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1619. */
  1620. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1621. high_zoneidx, nodemask) {
  1622. if (NUMA_BUILD && zlc_active &&
  1623. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1624. continue;
  1625. if ((alloc_flags & ALLOC_CPUSET) &&
  1626. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1627. continue;
  1628. /*
  1629. * When allocating a page cache page for writing, we
  1630. * want to get it from a zone that is within its dirty
  1631. * limit, such that no single zone holds more than its
  1632. * proportional share of globally allowed dirty pages.
  1633. * The dirty limits take into account the zone's
  1634. * lowmem reserves and high watermark so that kswapd
  1635. * should be able to balance it without having to
  1636. * write pages from its LRU list.
  1637. *
  1638. * This may look like it could increase pressure on
  1639. * lower zones by failing allocations in higher zones
  1640. * before they are full. But the pages that do spill
  1641. * over are limited as the lower zones are protected
  1642. * by this very same mechanism. It should not become
  1643. * a practical burden to them.
  1644. *
  1645. * XXX: For now, allow allocations to potentially
  1646. * exceed the per-zone dirty limit in the slowpath
  1647. * (ALLOC_WMARK_LOW unset) before going into reclaim,
  1648. * which is important when on a NUMA setup the allowed
  1649. * zones are together not big enough to reach the
  1650. * global limit. The proper fix for these situations
  1651. * will require awareness of zones in the
  1652. * dirty-throttling and the flusher threads.
  1653. */
  1654. if ((alloc_flags & ALLOC_WMARK_LOW) &&
  1655. (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
  1656. goto this_zone_full;
  1657. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1658. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1659. unsigned long mark;
  1660. int ret;
  1661. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1662. if (zone_watermark_ok(zone, order, mark,
  1663. classzone_idx, alloc_flags))
  1664. goto try_this_zone;
  1665. if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
  1666. /*
  1667. * we do zlc_setup if there are multiple nodes
  1668. * and before considering the first zone allowed
  1669. * by the cpuset.
  1670. */
  1671. allowednodes = zlc_setup(zonelist, alloc_flags);
  1672. zlc_active = 1;
  1673. did_zlc_setup = 1;
  1674. }
  1675. if (zone_reclaim_mode == 0 ||
  1676. !zone_allows_reclaim(preferred_zone, zone))
  1677. goto this_zone_full;
  1678. /*
  1679. * As we may have just activated ZLC, check if the first
  1680. * eligible zone has failed zone_reclaim recently.
  1681. */
  1682. if (NUMA_BUILD && zlc_active &&
  1683. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1684. continue;
  1685. ret = zone_reclaim(zone, gfp_mask, order);
  1686. switch (ret) {
  1687. case ZONE_RECLAIM_NOSCAN:
  1688. /* did not scan */
  1689. continue;
  1690. case ZONE_RECLAIM_FULL:
  1691. /* scanned but unreclaimable */
  1692. continue;
  1693. default:
  1694. /* did we reclaim enough */
  1695. if (!zone_watermark_ok(zone, order, mark,
  1696. classzone_idx, alloc_flags))
  1697. goto this_zone_full;
  1698. }
  1699. }
  1700. try_this_zone:
  1701. page = buffered_rmqueue(preferred_zone, zone, order,
  1702. gfp_mask, migratetype);
  1703. if (page)
  1704. break;
  1705. this_zone_full:
  1706. if (NUMA_BUILD)
  1707. zlc_mark_zone_full(zonelist, z);
  1708. }
  1709. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1710. /* Disable zlc cache for second zonelist scan */
  1711. zlc_active = 0;
  1712. goto zonelist_scan;
  1713. }
  1714. if (page)
  1715. /*
  1716. * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
  1717. * necessary to allocate the page. The expectation is
  1718. * that the caller is taking steps that will free more
  1719. * memory. The caller should avoid the page being used
  1720. * for !PFMEMALLOC purposes.
  1721. */
  1722. page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
  1723. return page;
  1724. }
  1725. /*
  1726. * Large machines with many possible nodes should not always dump per-node
  1727. * meminfo in irq context.
  1728. */
  1729. static inline bool should_suppress_show_mem(void)
  1730. {
  1731. bool ret = false;
  1732. #if NODES_SHIFT > 8
  1733. ret = in_interrupt();
  1734. #endif
  1735. return ret;
  1736. }
  1737. static DEFINE_RATELIMIT_STATE(nopage_rs,
  1738. DEFAULT_RATELIMIT_INTERVAL,
  1739. DEFAULT_RATELIMIT_BURST);
  1740. void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
  1741. {
  1742. unsigned int filter = SHOW_MEM_FILTER_NODES;
  1743. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
  1744. debug_guardpage_minorder() > 0)
  1745. return;
  1746. /*
  1747. * This documents exceptions given to allocations in certain
  1748. * contexts that are allowed to allocate outside current's set
  1749. * of allowed nodes.
  1750. */
  1751. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1752. if (test_thread_flag(TIF_MEMDIE) ||
  1753. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  1754. filter &= ~SHOW_MEM_FILTER_NODES;
  1755. if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
  1756. filter &= ~SHOW_MEM_FILTER_NODES;
  1757. if (fmt) {
  1758. struct va_format vaf;
  1759. va_list args;
  1760. va_start(args, fmt);
  1761. vaf.fmt = fmt;
  1762. vaf.va = &args;
  1763. pr_warn("%pV", &vaf);
  1764. va_end(args);
  1765. }
  1766. pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
  1767. current->comm, order, gfp_mask);
  1768. dump_stack();
  1769. if (!should_suppress_show_mem())
  1770. show_mem(filter);
  1771. }
  1772. static inline int
  1773. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1774. unsigned long did_some_progress,
  1775. unsigned long pages_reclaimed)
  1776. {
  1777. /* Do not loop if specifically requested */
  1778. if (gfp_mask & __GFP_NORETRY)
  1779. return 0;
  1780. /* Always retry if specifically requested */
  1781. if (gfp_mask & __GFP_NOFAIL)
  1782. return 1;
  1783. /*
  1784. * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
  1785. * making forward progress without invoking OOM. Suspend also disables
  1786. * storage devices so kswapd will not help. Bail if we are suspending.
  1787. */
  1788. if (!did_some_progress && pm_suspended_storage())
  1789. return 0;
  1790. /*
  1791. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1792. * means __GFP_NOFAIL, but that may not be true in other
  1793. * implementations.
  1794. */
  1795. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1796. return 1;
  1797. /*
  1798. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1799. * specified, then we retry until we no longer reclaim any pages
  1800. * (above), or we've reclaimed an order of pages at least as
  1801. * large as the allocation's order. In both cases, if the
  1802. * allocation still fails, we stop retrying.
  1803. */
  1804. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1805. return 1;
  1806. return 0;
  1807. }
  1808. static inline struct page *
  1809. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  1810. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1811. nodemask_t *nodemask, struct zone *preferred_zone,
  1812. int migratetype)
  1813. {
  1814. struct page *page;
  1815. /* Acquire the OOM killer lock for the zones in zonelist */
  1816. if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
  1817. schedule_timeout_uninterruptible(1);
  1818. return NULL;
  1819. }
  1820. /*
  1821. * Go through the zonelist yet one more time, keep very high watermark
  1822. * here, this is only to catch a parallel oom killing, we must fail if
  1823. * we're still under heavy pressure.
  1824. */
  1825. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1826. order, zonelist, high_zoneidx,
  1827. ALLOC_WMARK_HIGH|ALLOC_CPUSET,
  1828. preferred_zone, migratetype);
  1829. if (page)
  1830. goto out;
  1831. if (!(gfp_mask & __GFP_NOFAIL)) {
  1832. /* The OOM killer will not help higher order allocs */
  1833. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1834. goto out;
  1835. /* The OOM killer does not needlessly kill tasks for lowmem */
  1836. if (high_zoneidx < ZONE_NORMAL)
  1837. goto out;
  1838. /*
  1839. * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
  1840. * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
  1841. * The caller should handle page allocation failure by itself if
  1842. * it specifies __GFP_THISNODE.
  1843. * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
  1844. */
  1845. if (gfp_mask & __GFP_THISNODE)
  1846. goto out;
  1847. }
  1848. /* Exhausted what can be done so it's blamo time */
  1849. out_of_memory(zonelist, gfp_mask, order, nodemask, false);
  1850. out:
  1851. clear_zonelist_oom(zonelist, gfp_mask);
  1852. return page;
  1853. }
  1854. #ifdef CONFIG_COMPACTION
  1855. /* Try memory compaction for high-order allocations before reclaim */
  1856. static struct page *
  1857. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1858. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1859. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1860. int migratetype, bool sync_migration,
  1861. bool *contended_compaction, bool *deferred_compaction,
  1862. unsigned long *did_some_progress)
  1863. {
  1864. struct page *page = NULL;
  1865. if (!order)
  1866. return NULL;
  1867. if (compaction_deferred(preferred_zone, order)) {
  1868. *deferred_compaction = true;
  1869. return NULL;
  1870. }
  1871. current->flags |= PF_MEMALLOC;
  1872. *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
  1873. nodemask, sync_migration,
  1874. contended_compaction, &page);
  1875. current->flags &= ~PF_MEMALLOC;
  1876. /* If compaction captured a page, prep and use it */
  1877. if (page) {
  1878. prep_new_page(page, order, gfp_mask);
  1879. goto got_page;
  1880. }
  1881. if (*did_some_progress != COMPACT_SKIPPED) {
  1882. /* Page migration frees to the PCP lists but we want merging */
  1883. drain_pages(get_cpu());
  1884. put_cpu();
  1885. page = get_page_from_freelist(gfp_mask, nodemask,
  1886. order, zonelist, high_zoneidx,
  1887. alloc_flags & ~ALLOC_NO_WATERMARKS,
  1888. preferred_zone, migratetype);
  1889. if (page) {
  1890. got_page:
  1891. preferred_zone->compact_blockskip_flush = false;
  1892. preferred_zone->compact_considered = 0;
  1893. preferred_zone->compact_defer_shift = 0;
  1894. if (order >= preferred_zone->compact_order_failed)
  1895. preferred_zone->compact_order_failed = order + 1;
  1896. count_vm_event(COMPACTSUCCESS);
  1897. return page;
  1898. }
  1899. /*
  1900. * It's bad if compaction run occurs and fails.
  1901. * The most likely reason is that pages exist,
  1902. * but not enough to satisfy watermarks.
  1903. */
  1904. count_vm_event(COMPACTFAIL);
  1905. /*
  1906. * As async compaction considers a subset of pageblocks, only
  1907. * defer if the failure was a sync compaction failure.
  1908. */
  1909. if (sync_migration)
  1910. defer_compaction(preferred_zone, order);
  1911. cond_resched();
  1912. }
  1913. return NULL;
  1914. }
  1915. #else
  1916. static inline struct page *
  1917. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1918. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1919. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1920. int migratetype, bool sync_migration,
  1921. bool *contended_compaction, bool *deferred_compaction,
  1922. unsigned long *did_some_progress)
  1923. {
  1924. return NULL;
  1925. }
  1926. #endif /* CONFIG_COMPACTION */
  1927. /* Perform direct synchronous page reclaim */
  1928. static int
  1929. __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
  1930. nodemask_t *nodemask)
  1931. {
  1932. struct reclaim_state reclaim_state;
  1933. int progress;
  1934. cond_resched();
  1935. /* We now go into synchronous reclaim */
  1936. cpuset_memory_pressure_bump();
  1937. current->flags |= PF_MEMALLOC;
  1938. lockdep_set_current_reclaim_state(gfp_mask);
  1939. reclaim_state.reclaimed_slab = 0;
  1940. current->reclaim_state = &reclaim_state;
  1941. progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
  1942. current->reclaim_state = NULL;
  1943. lockdep_clear_current_reclaim_state();
  1944. current->flags &= ~PF_MEMALLOC;
  1945. cond_resched();
  1946. return progress;
  1947. }
  1948. /* The really slow allocator path where we enter direct reclaim */
  1949. static inline struct page *
  1950. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  1951. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1952. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1953. int migratetype, unsigned long *did_some_progress)
  1954. {
  1955. struct page *page = NULL;
  1956. bool drained = false;
  1957. *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
  1958. nodemask);
  1959. if (unlikely(!(*did_some_progress)))
  1960. return NULL;
  1961. /* After successful reclaim, reconsider all zones for allocation */
  1962. if (NUMA_BUILD)
  1963. zlc_clear_zones_full(zonelist);
  1964. retry:
  1965. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1966. zonelist, high_zoneidx,
  1967. alloc_flags & ~ALLOC_NO_WATERMARKS,
  1968. preferred_zone, migratetype);
  1969. /*
  1970. * If an allocation failed after direct reclaim, it could be because
  1971. * pages are pinned on the per-cpu lists. Drain them and try again
  1972. */
  1973. if (!page && !drained) {
  1974. drain_all_pages();
  1975. drained = true;
  1976. goto retry;
  1977. }
  1978. return page;
  1979. }
  1980. /*
  1981. * This is called in the allocator slow-path if the allocation request is of
  1982. * sufficient urgency to ignore watermarks and take other desperate measures
  1983. */
  1984. static inline struct page *
  1985. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  1986. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1987. nodemask_t *nodemask, struct zone *preferred_zone,
  1988. int migratetype)
  1989. {
  1990. struct page *page;
  1991. do {
  1992. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1993. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
  1994. preferred_zone, migratetype);
  1995. if (!page && gfp_mask & __GFP_NOFAIL)
  1996. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  1997. } while (!page && (gfp_mask & __GFP_NOFAIL));
  1998. return page;
  1999. }
  2000. static inline
  2001. void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
  2002. enum zone_type high_zoneidx,
  2003. enum zone_type classzone_idx)
  2004. {
  2005. struct zoneref *z;
  2006. struct zone *zone;
  2007. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  2008. wakeup_kswapd(zone, order, classzone_idx);
  2009. }
  2010. static inline int
  2011. gfp_to_alloc_flags(gfp_t gfp_mask)
  2012. {
  2013. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  2014. const gfp_t wait = gfp_mask & __GFP_WAIT;
  2015. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  2016. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  2017. /*
  2018. * The caller may dip into page reserves a bit more if the caller
  2019. * cannot run direct reclaim, or if the caller has realtime scheduling
  2020. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  2021. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  2022. */
  2023. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  2024. if (!wait) {
  2025. /*
  2026. * Not worth trying to allocate harder for
  2027. * __GFP_NOMEMALLOC even if it can't schedule.
  2028. */
  2029. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2030. alloc_flags |= ALLOC_HARDER;
  2031. /*
  2032. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  2033. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  2034. */
  2035. alloc_flags &= ~ALLOC_CPUSET;
  2036. } else if (unlikely(rt_task(current)) && !in_interrupt())
  2037. alloc_flags |= ALLOC_HARDER;
  2038. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  2039. if (gfp_mask & __GFP_MEMALLOC)
  2040. alloc_flags |= ALLOC_NO_WATERMARKS;
  2041. else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
  2042. alloc_flags |= ALLOC_NO_WATERMARKS;
  2043. else if (!in_interrupt() &&
  2044. ((current->flags & PF_MEMALLOC) ||
  2045. unlikely(test_thread_flag(TIF_MEMDIE))))
  2046. alloc_flags |= ALLOC_NO_WATERMARKS;
  2047. }
  2048. #ifdef CONFIG_CMA
  2049. if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2050. alloc_flags |= ALLOC_CMA;
  2051. #endif
  2052. return alloc_flags;
  2053. }
  2054. bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
  2055. {
  2056. return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
  2057. }
  2058. static inline struct page *
  2059. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  2060. struct zonelist *zonelist, enum zone_type high_zoneidx,
  2061. nodemask_t *nodemask, struct zone *preferred_zone,
  2062. int migratetype)
  2063. {
  2064. const gfp_t wait = gfp_mask & __GFP_WAIT;
  2065. struct page *page = NULL;
  2066. int alloc_flags;
  2067. unsigned long pages_reclaimed = 0;
  2068. unsigned long did_some_progress;
  2069. bool sync_migration = false;
  2070. bool deferred_compaction = false;
  2071. bool contended_compaction = false;
  2072. /*
  2073. * In the slowpath, we sanity check order to avoid ever trying to
  2074. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  2075. * be using allocators in order of preference for an area that is
  2076. * too large.
  2077. */
  2078. if (order >= MAX_ORDER) {
  2079. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  2080. return NULL;
  2081. }
  2082. /*
  2083. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  2084. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  2085. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  2086. * using a larger set of nodes after it has established that the
  2087. * allowed per node queues are empty and that nodes are
  2088. * over allocated.
  2089. */
  2090. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  2091. goto nopage;
  2092. restart:
  2093. wake_all_kswapd(order, zonelist, high_zoneidx,
  2094. zone_idx(preferred_zone));
  2095. /*
  2096. * OK, we're below the kswapd watermark and have kicked background
  2097. * reclaim. Now things get more complex, so set up alloc_flags according
  2098. * to how we want to proceed.
  2099. */
  2100. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  2101. /*
  2102. * Find the true preferred zone if the allocation is unconstrained by
  2103. * cpusets.
  2104. */
  2105. if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
  2106. first_zones_zonelist(zonelist, high_zoneidx, NULL,
  2107. &preferred_zone);
  2108. rebalance:
  2109. /* This is the last chance, in general, before the goto nopage. */
  2110. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  2111. high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
  2112. preferred_zone, migratetype);
  2113. if (page)
  2114. goto got_pg;
  2115. /* Allocate without watermarks if the context allows */
  2116. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  2117. /*
  2118. * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
  2119. * the allocation is high priority and these type of
  2120. * allocations are system rather than user orientated
  2121. */
  2122. zonelist = node_zonelist(numa_node_id(), gfp_mask);
  2123. page = __alloc_pages_high_priority(gfp_mask, order,
  2124. zonelist, high_zoneidx, nodemask,
  2125. preferred_zone, migratetype);
  2126. if (page) {
  2127. goto got_pg;
  2128. }
  2129. }
  2130. /* Atomic allocations - we can't balance anything */
  2131. if (!wait)
  2132. goto nopage;
  2133. /* Avoid recursion of direct reclaim */
  2134. if (current->flags & PF_MEMALLOC)
  2135. goto nopage;
  2136. /* Avoid allocations with no watermarks from looping endlessly */
  2137. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  2138. goto nopage;
  2139. /*
  2140. * Try direct compaction. The first pass is asynchronous. Subsequent
  2141. * attempts after direct reclaim are synchronous
  2142. */
  2143. page = __alloc_pages_direct_compact(gfp_mask, order,
  2144. zonelist, high_zoneidx,
  2145. nodemask,
  2146. alloc_flags, preferred_zone,
  2147. migratetype, sync_migration,
  2148. &contended_compaction,
  2149. &deferred_compaction,
  2150. &did_some_progress);
  2151. if (page)
  2152. goto got_pg;
  2153. sync_migration = true;
  2154. /*
  2155. * If compaction is deferred for high-order allocations, it is because
  2156. * sync compaction recently failed. In this is the case and the caller
  2157. * requested a movable allocation that does not heavily disrupt the
  2158. * system then fail the allocation instead of entering direct reclaim.
  2159. */
  2160. if ((deferred_compaction || contended_compaction) &&
  2161. (gfp_mask & (__GFP_MOVABLE|__GFP_REPEAT)) == __GFP_MOVABLE)
  2162. goto nopage;
  2163. /* Try direct reclaim and then allocating */
  2164. page = __alloc_pages_direct_reclaim(gfp_mask, order,
  2165. zonelist, high_zoneidx,
  2166. nodemask,
  2167. alloc_flags, preferred_zone,
  2168. migratetype, &did_some_progress);
  2169. if (page)
  2170. goto got_pg;
  2171. /*
  2172. * If we failed to make any progress reclaiming, then we are
  2173. * running out of options and have to consider going OOM
  2174. */
  2175. if (!did_some_progress) {
  2176. if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  2177. if (oom_killer_disabled)
  2178. goto nopage;
  2179. /* Coredumps can quickly deplete all memory reserves */
  2180. if ((current->flags & PF_DUMPCORE) &&
  2181. !(gfp_mask & __GFP_NOFAIL))
  2182. goto nopage;
  2183. page = __alloc_pages_may_oom(gfp_mask, order,
  2184. zonelist, high_zoneidx,
  2185. nodemask, preferred_zone,
  2186. migratetype);
  2187. if (page)
  2188. goto got_pg;
  2189. if (!(gfp_mask & __GFP_NOFAIL)) {
  2190. /*
  2191. * The oom killer is not called for high-order
  2192. * allocations that may fail, so if no progress
  2193. * is being made, there are no other options and
  2194. * retrying is unlikely to help.
  2195. */
  2196. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2197. goto nopage;
  2198. /*
  2199. * The oom killer is not called for lowmem
  2200. * allocations to prevent needlessly killing
  2201. * innocent tasks.
  2202. */
  2203. if (high_zoneidx < ZONE_NORMAL)
  2204. goto nopage;
  2205. }
  2206. goto restart;
  2207. }
  2208. }
  2209. /* Check if we should retry the allocation */
  2210. pages_reclaimed += did_some_progress;
  2211. if (should_alloc_retry(gfp_mask, order, did_some_progress,
  2212. pages_reclaimed)) {
  2213. /* Wait for some write requests to complete then retry */
  2214. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  2215. goto rebalance;
  2216. } else {
  2217. /*
  2218. * High-order allocations do not necessarily loop after
  2219. * direct reclaim and reclaim/compaction depends on compaction
  2220. * being called after reclaim so call directly if necessary
  2221. */
  2222. page = __alloc_pages_direct_compact(gfp_mask, order,
  2223. zonelist, high_zoneidx,
  2224. nodemask,
  2225. alloc_flags, preferred_zone,
  2226. migratetype, sync_migration,
  2227. &contended_compaction,
  2228. &deferred_compaction,
  2229. &did_some_progress);
  2230. if (page)
  2231. goto got_pg;
  2232. }
  2233. nopage:
  2234. warn_alloc_failed(gfp_mask, order, NULL);
  2235. return page;
  2236. got_pg:
  2237. if (kmemcheck_enabled)
  2238. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  2239. return page;
  2240. }
  2241. /*
  2242. * This is the 'heart' of the zoned buddy allocator.
  2243. */
  2244. struct page *
  2245. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  2246. struct zonelist *zonelist, nodemask_t *nodemask)
  2247. {
  2248. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  2249. struct zone *preferred_zone;
  2250. struct page *page = NULL;
  2251. int migratetype = allocflags_to_migratetype(gfp_mask);
  2252. unsigned int cpuset_mems_cookie;
  2253. int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
  2254. gfp_mask &= gfp_allowed_mask;
  2255. lockdep_trace_alloc(gfp_mask);
  2256. might_sleep_if(gfp_mask & __GFP_WAIT);
  2257. if (should_fail_alloc_page(gfp_mask, order))
  2258. return NULL;
  2259. /*
  2260. * Check the zones suitable for the gfp_mask contain at least one
  2261. * valid zone. It's possible to have an empty zonelist as a result
  2262. * of GFP_THISNODE and a memoryless node
  2263. */
  2264. if (unlikely(!zonelist->_zonerefs->zone))
  2265. return NULL;
  2266. retry_cpuset:
  2267. cpuset_mems_cookie = get_mems_allowed();
  2268. /* The preferred zone is used for statistics later */
  2269. first_zones_zonelist(zonelist, high_zoneidx,
  2270. nodemask ? : &cpuset_current_mems_allowed,
  2271. &preferred_zone);
  2272. if (!preferred_zone)
  2273. goto out;
  2274. #ifdef CONFIG_CMA
  2275. if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2276. alloc_flags |= ALLOC_CMA;
  2277. #endif
  2278. /* First allocation attempt */
  2279. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  2280. zonelist, high_zoneidx, alloc_flags,
  2281. preferred_zone, migratetype);
  2282. if (unlikely(!page))
  2283. page = __alloc_pages_slowpath(gfp_mask, order,
  2284. zonelist, high_zoneidx, nodemask,
  2285. preferred_zone, migratetype);
  2286. trace_mm_page_alloc(page, order, gfp_mask, migratetype);
  2287. out:
  2288. /*
  2289. * When updating a task's mems_allowed, it is possible to race with
  2290. * parallel threads in such a way that an allocation can fail while
  2291. * the mask is being updated. If a page allocation is about to fail,
  2292. * check if the cpuset changed during allocation and if so, retry.
  2293. */
  2294. if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
  2295. goto retry_cpuset;
  2296. return page;
  2297. }
  2298. EXPORT_SYMBOL(__alloc_pages_nodemask);
  2299. /*
  2300. * Common helper functions.
  2301. */
  2302. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  2303. {
  2304. struct page *page;
  2305. /*
  2306. * __get_free_pages() returns a 32-bit address, which cannot represent
  2307. * a highmem page
  2308. */
  2309. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  2310. page = alloc_pages(gfp_mask, order);
  2311. if (!page)
  2312. return 0;
  2313. return (unsigned long) page_address(page);
  2314. }
  2315. EXPORT_SYMBOL(__get_free_pages);
  2316. unsigned long get_zeroed_page(gfp_t gfp_mask)
  2317. {
  2318. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  2319. }
  2320. EXPORT_SYMBOL(get_zeroed_page);
  2321. void __free_pages(struct page *page, unsigned int order)
  2322. {
  2323. if (put_page_testzero(page)) {
  2324. if (order == 0)
  2325. free_hot_cold_page(page, 0);
  2326. else
  2327. __free_pages_ok(page, order);
  2328. }
  2329. }
  2330. EXPORT_SYMBOL(__free_pages);
  2331. void free_pages(unsigned long addr, unsigned int order)
  2332. {
  2333. if (addr != 0) {
  2334. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2335. __free_pages(virt_to_page((void *)addr), order);
  2336. }
  2337. }
  2338. EXPORT_SYMBOL(free_pages);
  2339. static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
  2340. {
  2341. if (addr) {
  2342. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  2343. unsigned long used = addr + PAGE_ALIGN(size);
  2344. split_page(virt_to_page((void *)addr), order);
  2345. while (used < alloc_end) {
  2346. free_page(used);
  2347. used += PAGE_SIZE;
  2348. }
  2349. }
  2350. return (void *)addr;
  2351. }
  2352. /**
  2353. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  2354. * @size: the number of bytes to allocate
  2355. * @gfp_mask: GFP flags for the allocation
  2356. *
  2357. * This function is similar to alloc_pages(), except that it allocates the
  2358. * minimum number of pages to satisfy the request. alloc_pages() can only
  2359. * allocate memory in power-of-two pages.
  2360. *
  2361. * This function is also limited by MAX_ORDER.
  2362. *
  2363. * Memory allocated by this function must be released by free_pages_exact().
  2364. */
  2365. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  2366. {
  2367. unsigned int order = get_order(size);
  2368. unsigned long addr;
  2369. addr = __get_free_pages(gfp_mask, order);
  2370. return make_alloc_exact(addr, order, size);
  2371. }
  2372. EXPORT_SYMBOL(alloc_pages_exact);
  2373. /**
  2374. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  2375. * pages on a node.
  2376. * @nid: the preferred node ID where memory should be allocated
  2377. * @size: the number of bytes to allocate
  2378. * @gfp_mask: GFP flags for the allocation
  2379. *
  2380. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  2381. * back.
  2382. * Note this is not alloc_pages_exact_node() which allocates on a specific node,
  2383. * but is not exact.
  2384. */
  2385. void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  2386. {
  2387. unsigned order = get_order(size);
  2388. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  2389. if (!p)
  2390. return NULL;
  2391. return make_alloc_exact((unsigned long)page_address(p), order, size);
  2392. }
  2393. EXPORT_SYMBOL(alloc_pages_exact_nid);
  2394. /**
  2395. * free_pages_exact - release memory allocated via alloc_pages_exact()
  2396. * @virt: the value returned by alloc_pages_exact.
  2397. * @size: size of allocation, same value as passed to alloc_pages_exact().
  2398. *
  2399. * Release the memory allocated by a previous call to alloc_pages_exact.
  2400. */
  2401. void free_pages_exact(void *virt, size_t size)
  2402. {
  2403. unsigned long addr = (unsigned long)virt;
  2404. unsigned long end = addr + PAGE_ALIGN(size);
  2405. while (addr < end) {
  2406. free_page(addr);
  2407. addr += PAGE_SIZE;
  2408. }
  2409. }
  2410. EXPORT_SYMBOL(free_pages_exact);
  2411. static unsigned int nr_free_zone_pages(int offset)
  2412. {
  2413. struct zoneref *z;
  2414. struct zone *zone;
  2415. /* Just pick one node, since fallback list is circular */
  2416. unsigned int sum = 0;
  2417. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  2418. for_each_zone_zonelist(zone, z, zonelist, offset) {
  2419. unsigned long size = zone->present_pages;
  2420. unsigned long high = high_wmark_pages(zone);
  2421. if (size > high)
  2422. sum += size - high;
  2423. }
  2424. return sum;
  2425. }
  2426. /*
  2427. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  2428. */
  2429. unsigned int nr_free_buffer_pages(void)
  2430. {
  2431. return nr_free_zone_pages(gfp_zone(GFP_USER));
  2432. }
  2433. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  2434. /*
  2435. * Amount of free RAM allocatable within all zones
  2436. */
  2437. unsigned int nr_free_pagecache_pages(void)
  2438. {
  2439. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  2440. }
  2441. static inline void show_node(struct zone *zone)
  2442. {
  2443. if (NUMA_BUILD)
  2444. printk("Node %d ", zone_to_nid(zone));
  2445. }
  2446. void si_meminfo(struct sysinfo *val)
  2447. {
  2448. val->totalram = totalram_pages;
  2449. val->sharedram = 0;
  2450. val->freeram = global_page_state(NR_FREE_PAGES);
  2451. val->bufferram = nr_blockdev_pages();
  2452. val->totalhigh = totalhigh_pages;
  2453. val->freehigh = nr_free_highpages();
  2454. val->mem_unit = PAGE_SIZE;
  2455. }
  2456. EXPORT_SYMBOL(si_meminfo);
  2457. #ifdef CONFIG_NUMA
  2458. void si_meminfo_node(struct sysinfo *val, int nid)
  2459. {
  2460. pg_data_t *pgdat = NODE_DATA(nid);
  2461. val->totalram = pgdat->node_present_pages;
  2462. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  2463. #ifdef CONFIG_HIGHMEM
  2464. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  2465. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  2466. NR_FREE_PAGES);
  2467. #else
  2468. val->totalhigh = 0;
  2469. val->freehigh = 0;
  2470. #endif
  2471. val->mem_unit = PAGE_SIZE;
  2472. }
  2473. #endif
  2474. /*
  2475. * Determine whether the node should be displayed or not, depending on whether
  2476. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  2477. */
  2478. bool skip_free_areas_node(unsigned int flags, int nid)
  2479. {
  2480. bool ret = false;
  2481. unsigned int cpuset_mems_cookie;
  2482. if (!(flags & SHOW_MEM_FILTER_NODES))
  2483. goto out;
  2484. do {
  2485. cpuset_mems_cookie = get_mems_allowed();
  2486. ret = !node_isset(nid, cpuset_current_mems_allowed);
  2487. } while (!put_mems_allowed(cpuset_mems_cookie));
  2488. out:
  2489. return ret;
  2490. }
  2491. #define K(x) ((x) << (PAGE_SHIFT-10))
  2492. /*
  2493. * Show free area list (used inside shift_scroll-lock stuff)
  2494. * We also calculate the percentage fragmentation. We do this by counting the
  2495. * memory on each free list with the exception of the first item on the list.
  2496. * Suppresses nodes that are not allowed by current's cpuset if
  2497. * SHOW_MEM_FILTER_NODES is passed.
  2498. */
  2499. void show_free_areas(unsigned int filter)
  2500. {
  2501. int cpu;
  2502. struct zone *zone;
  2503. for_each_populated_zone(zone) {
  2504. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2505. continue;
  2506. show_node(zone);
  2507. printk("%s per-cpu:\n", zone->name);
  2508. for_each_online_cpu(cpu) {
  2509. struct per_cpu_pageset *pageset;
  2510. pageset = per_cpu_ptr(zone->pageset, cpu);
  2511. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  2512. cpu, pageset->pcp.high,
  2513. pageset->pcp.batch, pageset->pcp.count);
  2514. }
  2515. }
  2516. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  2517. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  2518. " unevictable:%lu"
  2519. " dirty:%lu writeback:%lu unstable:%lu\n"
  2520. " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  2521. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
  2522. " free_cma:%lu\n",
  2523. global_page_state(NR_ACTIVE_ANON),
  2524. global_page_state(NR_INACTIVE_ANON),
  2525. global_page_state(NR_ISOLATED_ANON),
  2526. global_page_state(NR_ACTIVE_FILE),
  2527. global_page_state(NR_INACTIVE_FILE),
  2528. global_page_state(NR_ISOLATED_FILE),
  2529. global_page_state(NR_UNEVICTABLE),
  2530. global_page_state(NR_FILE_DIRTY),
  2531. global_page_state(NR_WRITEBACK),
  2532. global_page_state(NR_UNSTABLE_NFS),
  2533. global_page_state(NR_FREE_PAGES),
  2534. global_page_state(NR_SLAB_RECLAIMABLE),
  2535. global_page_state(NR_SLAB_UNRECLAIMABLE),
  2536. global_page_state(NR_FILE_MAPPED),
  2537. global_page_state(NR_SHMEM),
  2538. global_page_state(NR_PAGETABLE),
  2539. global_page_state(NR_BOUNCE),
  2540. global_page_state(NR_FREE_CMA_PAGES));
  2541. for_each_populated_zone(zone) {
  2542. int i;
  2543. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2544. continue;
  2545. show_node(zone);
  2546. printk("%s"
  2547. " free:%lukB"
  2548. " min:%lukB"
  2549. " low:%lukB"
  2550. " high:%lukB"
  2551. " active_anon:%lukB"
  2552. " inactive_anon:%lukB"
  2553. " active_file:%lukB"
  2554. " inactive_file:%lukB"
  2555. " unevictable:%lukB"
  2556. " isolated(anon):%lukB"
  2557. " isolated(file):%lukB"
  2558. " present:%lukB"
  2559. " mlocked:%lukB"
  2560. " dirty:%lukB"
  2561. " writeback:%lukB"
  2562. " mapped:%lukB"
  2563. " shmem:%lukB"
  2564. " slab_reclaimable:%lukB"
  2565. " slab_unreclaimable:%lukB"
  2566. " kernel_stack:%lukB"
  2567. " pagetables:%lukB"
  2568. " unstable:%lukB"
  2569. " bounce:%lukB"
  2570. " free_cma:%lukB"
  2571. " writeback_tmp:%lukB"
  2572. " pages_scanned:%lu"
  2573. " all_unreclaimable? %s"
  2574. "\n",
  2575. zone->name,
  2576. K(zone_page_state(zone, NR_FREE_PAGES)),
  2577. K(min_wmark_pages(zone)),
  2578. K(low_wmark_pages(zone)),
  2579. K(high_wmark_pages(zone)),
  2580. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  2581. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  2582. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  2583. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  2584. K(zone_page_state(zone, NR_UNEVICTABLE)),
  2585. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  2586. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  2587. K(zone->present_pages),
  2588. K(zone_page_state(zone, NR_MLOCK)),
  2589. K(zone_page_state(zone, NR_FILE_DIRTY)),
  2590. K(zone_page_state(zone, NR_WRITEBACK)),
  2591. K(zone_page_state(zone, NR_FILE_MAPPED)),
  2592. K(zone_page_state(zone, NR_SHMEM)),
  2593. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  2594. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  2595. zone_page_state(zone, NR_KERNEL_STACK) *
  2596. THREAD_SIZE / 1024,
  2597. K(zone_page_state(zone, NR_PAGETABLE)),
  2598. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  2599. K(zone_page_state(zone, NR_BOUNCE)),
  2600. K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
  2601. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  2602. zone->pages_scanned,
  2603. (zone->all_unreclaimable ? "yes" : "no")
  2604. );
  2605. printk("lowmem_reserve[]:");
  2606. for (i = 0; i < MAX_NR_ZONES; i++)
  2607. printk(" %lu", zone->lowmem_reserve[i]);
  2608. printk("\n");
  2609. }
  2610. for_each_populated_zone(zone) {
  2611. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  2612. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2613. continue;
  2614. show_node(zone);
  2615. printk("%s: ", zone->name);
  2616. spin_lock_irqsave(&zone->lock, flags);
  2617. for (order = 0; order < MAX_ORDER; order++) {
  2618. nr[order] = zone->free_area[order].nr_free;
  2619. total += nr[order] << order;
  2620. }
  2621. spin_unlock_irqrestore(&zone->lock, flags);
  2622. for (order = 0; order < MAX_ORDER; order++)
  2623. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  2624. printk("= %lukB\n", K(total));
  2625. }
  2626. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  2627. show_swap_cache_info();
  2628. }
  2629. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  2630. {
  2631. zoneref->zone = zone;
  2632. zoneref->zone_idx = zone_idx(zone);
  2633. }
  2634. /*
  2635. * Builds allocation fallback zone lists.
  2636. *
  2637. * Add all populated zones of a node to the zonelist.
  2638. */
  2639. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  2640. int nr_zones, enum zone_type zone_type)
  2641. {
  2642. struct zone *zone;
  2643. BUG_ON(zone_type >= MAX_NR_ZONES);
  2644. zone_type++;
  2645. do {
  2646. zone_type--;
  2647. zone = pgdat->node_zones + zone_type;
  2648. if (populated_zone(zone)) {
  2649. zoneref_set_zone(zone,
  2650. &zonelist->_zonerefs[nr_zones++]);
  2651. check_highest_zone(zone_type);
  2652. }
  2653. } while (zone_type);
  2654. return nr_zones;
  2655. }
  2656. /*
  2657. * zonelist_order:
  2658. * 0 = automatic detection of better ordering.
  2659. * 1 = order by ([node] distance, -zonetype)
  2660. * 2 = order by (-zonetype, [node] distance)
  2661. *
  2662. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  2663. * the same zonelist. So only NUMA can configure this param.
  2664. */
  2665. #define ZONELIST_ORDER_DEFAULT 0
  2666. #define ZONELIST_ORDER_NODE 1
  2667. #define ZONELIST_ORDER_ZONE 2
  2668. /* zonelist order in the kernel.
  2669. * set_zonelist_order() will set this to NODE or ZONE.
  2670. */
  2671. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2672. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  2673. #ifdef CONFIG_NUMA
  2674. /* The value user specified ....changed by config */
  2675. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2676. /* string for sysctl */
  2677. #define NUMA_ZONELIST_ORDER_LEN 16
  2678. char numa_zonelist_order[16] = "default";
  2679. /*
  2680. * interface for configure zonelist ordering.
  2681. * command line option "numa_zonelist_order"
  2682. * = "[dD]efault - default, automatic configuration.
  2683. * = "[nN]ode - order by node locality, then by zone within node
  2684. * = "[zZ]one - order by zone, then by locality within zone
  2685. */
  2686. static int __parse_numa_zonelist_order(char *s)
  2687. {
  2688. if (*s == 'd' || *s == 'D') {
  2689. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2690. } else if (*s == 'n' || *s == 'N') {
  2691. user_zonelist_order = ZONELIST_ORDER_NODE;
  2692. } else if (*s == 'z' || *s == 'Z') {
  2693. user_zonelist_order = ZONELIST_ORDER_ZONE;
  2694. } else {
  2695. printk(KERN_WARNING
  2696. "Ignoring invalid numa_zonelist_order value: "
  2697. "%s\n", s);
  2698. return -EINVAL;
  2699. }
  2700. return 0;
  2701. }
  2702. static __init int setup_numa_zonelist_order(char *s)
  2703. {
  2704. int ret;
  2705. if (!s)
  2706. return 0;
  2707. ret = __parse_numa_zonelist_order(s);
  2708. if (ret == 0)
  2709. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  2710. return ret;
  2711. }
  2712. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  2713. /*
  2714. * sysctl handler for numa_zonelist_order
  2715. */
  2716. int numa_zonelist_order_handler(ctl_table *table, int write,
  2717. void __user *buffer, size_t *length,
  2718. loff_t *ppos)
  2719. {
  2720. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  2721. int ret;
  2722. static DEFINE_MUTEX(zl_order_mutex);
  2723. mutex_lock(&zl_order_mutex);
  2724. if (write)
  2725. strcpy(saved_string, (char*)table->data);
  2726. ret = proc_dostring(table, write, buffer, length, ppos);
  2727. if (ret)
  2728. goto out;
  2729. if (write) {
  2730. int oldval = user_zonelist_order;
  2731. if (__parse_numa_zonelist_order((char*)table->data)) {
  2732. /*
  2733. * bogus value. restore saved string
  2734. */
  2735. strncpy((char*)table->data, saved_string,
  2736. NUMA_ZONELIST_ORDER_LEN);
  2737. user_zonelist_order = oldval;
  2738. } else if (oldval != user_zonelist_order) {
  2739. mutex_lock(&zonelists_mutex);
  2740. build_all_zonelists(NULL, NULL);
  2741. mutex_unlock(&zonelists_mutex);
  2742. }
  2743. }
  2744. out:
  2745. mutex_unlock(&zl_order_mutex);
  2746. return ret;
  2747. }
  2748. #define MAX_NODE_LOAD (nr_online_nodes)
  2749. static int node_load[MAX_NUMNODES];
  2750. /**
  2751. * find_next_best_node - find the next node that should appear in a given node's fallback list
  2752. * @node: node whose fallback list we're appending
  2753. * @used_node_mask: nodemask_t of already used nodes
  2754. *
  2755. * We use a number of factors to determine which is the next node that should
  2756. * appear on a given node's fallback list. The node should not have appeared
  2757. * already in @node's fallback list, and it should be the next closest node
  2758. * according to the distance array (which contains arbitrary distance values
  2759. * from each node to each node in the system), and should also prefer nodes
  2760. * with no CPUs, since presumably they'll have very little allocation pressure
  2761. * on them otherwise.
  2762. * It returns -1 if no node is found.
  2763. */
  2764. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  2765. {
  2766. int n, val;
  2767. int min_val = INT_MAX;
  2768. int best_node = -1;
  2769. const struct cpumask *tmp = cpumask_of_node(0);
  2770. /* Use the local node if we haven't already */
  2771. if (!node_isset(node, *used_node_mask)) {
  2772. node_set(node, *used_node_mask);
  2773. return node;
  2774. }
  2775. for_each_node_state(n, N_HIGH_MEMORY) {
  2776. /* Don't want a node to appear more than once */
  2777. if (node_isset(n, *used_node_mask))
  2778. continue;
  2779. /* Use the distance array to find the distance */
  2780. val = node_distance(node, n);
  2781. /* Penalize nodes under us ("prefer the next node") */
  2782. val += (n < node);
  2783. /* Give preference to headless and unused nodes */
  2784. tmp = cpumask_of_node(n);
  2785. if (!cpumask_empty(tmp))
  2786. val += PENALTY_FOR_NODE_WITH_CPUS;
  2787. /* Slight preference for less loaded node */
  2788. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  2789. val += node_load[n];
  2790. if (val < min_val) {
  2791. min_val = val;
  2792. best_node = n;
  2793. }
  2794. }
  2795. if (best_node >= 0)
  2796. node_set(best_node, *used_node_mask);
  2797. return best_node;
  2798. }
  2799. /*
  2800. * Build zonelists ordered by node and zones within node.
  2801. * This results in maximum locality--normal zone overflows into local
  2802. * DMA zone, if any--but risks exhausting DMA zone.
  2803. */
  2804. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  2805. {
  2806. int j;
  2807. struct zonelist *zonelist;
  2808. zonelist = &pgdat->node_zonelists[0];
  2809. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  2810. ;
  2811. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2812. MAX_NR_ZONES - 1);
  2813. zonelist->_zonerefs[j].zone = NULL;
  2814. zonelist->_zonerefs[j].zone_idx = 0;
  2815. }
  2816. /*
  2817. * Build gfp_thisnode zonelists
  2818. */
  2819. static void build_thisnode_zonelists(pg_data_t *pgdat)
  2820. {
  2821. int j;
  2822. struct zonelist *zonelist;
  2823. zonelist = &pgdat->node_zonelists[1];
  2824. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2825. zonelist->_zonerefs[j].zone = NULL;
  2826. zonelist->_zonerefs[j].zone_idx = 0;
  2827. }
  2828. /*
  2829. * Build zonelists ordered by zone and nodes within zones.
  2830. * This results in conserving DMA zone[s] until all Normal memory is
  2831. * exhausted, but results in overflowing to remote node while memory
  2832. * may still exist in local DMA zone.
  2833. */
  2834. static int node_order[MAX_NUMNODES];
  2835. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  2836. {
  2837. int pos, j, node;
  2838. int zone_type; /* needs to be signed */
  2839. struct zone *z;
  2840. struct zonelist *zonelist;
  2841. zonelist = &pgdat->node_zonelists[0];
  2842. pos = 0;
  2843. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  2844. for (j = 0; j < nr_nodes; j++) {
  2845. node = node_order[j];
  2846. z = &NODE_DATA(node)->node_zones[zone_type];
  2847. if (populated_zone(z)) {
  2848. zoneref_set_zone(z,
  2849. &zonelist->_zonerefs[pos++]);
  2850. check_highest_zone(zone_type);
  2851. }
  2852. }
  2853. }
  2854. zonelist->_zonerefs[pos].zone = NULL;
  2855. zonelist->_zonerefs[pos].zone_idx = 0;
  2856. }
  2857. static int default_zonelist_order(void)
  2858. {
  2859. int nid, zone_type;
  2860. unsigned long low_kmem_size,total_size;
  2861. struct zone *z;
  2862. int average_size;
  2863. /*
  2864. * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
  2865. * If they are really small and used heavily, the system can fall
  2866. * into OOM very easily.
  2867. * This function detect ZONE_DMA/DMA32 size and configures zone order.
  2868. */
  2869. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  2870. low_kmem_size = 0;
  2871. total_size = 0;
  2872. for_each_online_node(nid) {
  2873. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2874. z = &NODE_DATA(nid)->node_zones[zone_type];
  2875. if (populated_zone(z)) {
  2876. if (zone_type < ZONE_NORMAL)
  2877. low_kmem_size += z->present_pages;
  2878. total_size += z->present_pages;
  2879. } else if (zone_type == ZONE_NORMAL) {
  2880. /*
  2881. * If any node has only lowmem, then node order
  2882. * is preferred to allow kernel allocations
  2883. * locally; otherwise, they can easily infringe
  2884. * on other nodes when there is an abundance of
  2885. * lowmem available to allocate from.
  2886. */
  2887. return ZONELIST_ORDER_NODE;
  2888. }
  2889. }
  2890. }
  2891. if (!low_kmem_size || /* there are no DMA area. */
  2892. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  2893. return ZONELIST_ORDER_NODE;
  2894. /*
  2895. * look into each node's config.
  2896. * If there is a node whose DMA/DMA32 memory is very big area on
  2897. * local memory, NODE_ORDER may be suitable.
  2898. */
  2899. average_size = total_size /
  2900. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  2901. for_each_online_node(nid) {
  2902. low_kmem_size = 0;
  2903. total_size = 0;
  2904. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2905. z = &NODE_DATA(nid)->node_zones[zone_type];
  2906. if (populated_zone(z)) {
  2907. if (zone_type < ZONE_NORMAL)
  2908. low_kmem_size += z->present_pages;
  2909. total_size += z->present_pages;
  2910. }
  2911. }
  2912. if (low_kmem_size &&
  2913. total_size > average_size && /* ignore small node */
  2914. low_kmem_size > total_size * 70/100)
  2915. return ZONELIST_ORDER_NODE;
  2916. }
  2917. return ZONELIST_ORDER_ZONE;
  2918. }
  2919. static void set_zonelist_order(void)
  2920. {
  2921. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  2922. current_zonelist_order = default_zonelist_order();
  2923. else
  2924. current_zonelist_order = user_zonelist_order;
  2925. }
  2926. static void build_zonelists(pg_data_t *pgdat)
  2927. {
  2928. int j, node, load;
  2929. enum zone_type i;
  2930. nodemask_t used_mask;
  2931. int local_node, prev_node;
  2932. struct zonelist *zonelist;
  2933. int order = current_zonelist_order;
  2934. /* initialize zonelists */
  2935. for (i = 0; i < MAX_ZONELISTS; i++) {
  2936. zonelist = pgdat->node_zonelists + i;
  2937. zonelist->_zonerefs[0].zone = NULL;
  2938. zonelist->_zonerefs[0].zone_idx = 0;
  2939. }
  2940. /* NUMA-aware ordering of nodes */
  2941. local_node = pgdat->node_id;
  2942. load = nr_online_nodes;
  2943. prev_node = local_node;
  2944. nodes_clear(used_mask);
  2945. memset(node_order, 0, sizeof(node_order));
  2946. j = 0;
  2947. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  2948. /*
  2949. * We don't want to pressure a particular node.
  2950. * So adding penalty to the first node in same
  2951. * distance group to make it round-robin.
  2952. */
  2953. if (node_distance(local_node, node) !=
  2954. node_distance(local_node, prev_node))
  2955. node_load[node] = load;
  2956. prev_node = node;
  2957. load--;
  2958. if (order == ZONELIST_ORDER_NODE)
  2959. build_zonelists_in_node_order(pgdat, node);
  2960. else
  2961. node_order[j++] = node; /* remember order */
  2962. }
  2963. if (order == ZONELIST_ORDER_ZONE) {
  2964. /* calculate node order -- i.e., DMA last! */
  2965. build_zonelists_in_zone_order(pgdat, j);
  2966. }
  2967. build_thisnode_zonelists(pgdat);
  2968. }
  2969. /* Construct the zonelist performance cache - see further mmzone.h */
  2970. static void build_zonelist_cache(pg_data_t *pgdat)
  2971. {
  2972. struct zonelist *zonelist;
  2973. struct zonelist_cache *zlc;
  2974. struct zoneref *z;
  2975. zonelist = &pgdat->node_zonelists[0];
  2976. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  2977. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  2978. for (z = zonelist->_zonerefs; z->zone; z++)
  2979. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  2980. }
  2981. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  2982. /*
  2983. * Return node id of node used for "local" allocations.
  2984. * I.e., first node id of first zone in arg node's generic zonelist.
  2985. * Used for initializing percpu 'numa_mem', which is used primarily
  2986. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  2987. */
  2988. int local_memory_node(int node)
  2989. {
  2990. struct zone *zone;
  2991. (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  2992. gfp_zone(GFP_KERNEL),
  2993. NULL,
  2994. &zone);
  2995. return zone->node;
  2996. }
  2997. #endif
  2998. #else /* CONFIG_NUMA */
  2999. static void set_zonelist_order(void)
  3000. {
  3001. current_zonelist_order = ZONELIST_ORDER_ZONE;
  3002. }
  3003. static void build_zonelists(pg_data_t *pgdat)
  3004. {
  3005. int node, local_node;
  3006. enum zone_type j;
  3007. struct zonelist *zonelist;
  3008. local_node = pgdat->node_id;
  3009. zonelist = &pgdat->node_zonelists[0];
  3010. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  3011. /*
  3012. * Now we build the zonelist so that it contains the zones
  3013. * of all the other nodes.
  3014. * We don't want to pressure a particular node, so when
  3015. * building the zones for node N, we make sure that the
  3016. * zones coming right after the local ones are those from
  3017. * node N+1 (modulo N)
  3018. */
  3019. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  3020. if (!node_online(node))
  3021. continue;
  3022. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  3023. MAX_NR_ZONES - 1);
  3024. }
  3025. for (node = 0; node < local_node; node++) {
  3026. if (!node_online(node))
  3027. continue;
  3028. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  3029. MAX_NR_ZONES - 1);
  3030. }
  3031. zonelist->_zonerefs[j].zone = NULL;
  3032. zonelist->_zonerefs[j].zone_idx = 0;
  3033. }
  3034. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  3035. static void build_zonelist_cache(pg_data_t *pgdat)
  3036. {
  3037. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  3038. }
  3039. #endif /* CONFIG_NUMA */
  3040. /*
  3041. * Boot pageset table. One per cpu which is going to be used for all
  3042. * zones and all nodes. The parameters will be set in such a way
  3043. * that an item put on a list will immediately be handed over to
  3044. * the buddy list. This is safe since pageset manipulation is done
  3045. * with interrupts disabled.
  3046. *
  3047. * The boot_pagesets must be kept even after bootup is complete for
  3048. * unused processors and/or zones. They do play a role for bootstrapping
  3049. * hotplugged processors.
  3050. *
  3051. * zoneinfo_show() and maybe other functions do
  3052. * not check if the processor is online before following the pageset pointer.
  3053. * Other parts of the kernel may not check if the zone is available.
  3054. */
  3055. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  3056. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  3057. static void setup_zone_pageset(struct zone *zone);
  3058. /*
  3059. * Global mutex to protect against size modification of zonelists
  3060. * as well as to serialize pageset setup for the new populated zone.
  3061. */
  3062. DEFINE_MUTEX(zonelists_mutex);
  3063. /* return values int ....just for stop_machine() */
  3064. static int __build_all_zonelists(void *data)
  3065. {
  3066. int nid;
  3067. int cpu;
  3068. pg_data_t *self = data;
  3069. #ifdef CONFIG_NUMA
  3070. memset(node_load, 0, sizeof(node_load));
  3071. #endif
  3072. if (self && !node_online(self->node_id)) {
  3073. build_zonelists(self);
  3074. build_zonelist_cache(self);
  3075. }
  3076. for_each_online_node(nid) {
  3077. pg_data_t *pgdat = NODE_DATA(nid);
  3078. build_zonelists(pgdat);
  3079. build_zonelist_cache(pgdat);
  3080. }
  3081. /*
  3082. * Initialize the boot_pagesets that are going to be used
  3083. * for bootstrapping processors. The real pagesets for
  3084. * each zone will be allocated later when the per cpu
  3085. * allocator is available.
  3086. *
  3087. * boot_pagesets are used also for bootstrapping offline
  3088. * cpus if the system is already booted because the pagesets
  3089. * are needed to initialize allocators on a specific cpu too.
  3090. * F.e. the percpu allocator needs the page allocator which
  3091. * needs the percpu allocator in order to allocate its pagesets
  3092. * (a chicken-egg dilemma).
  3093. */
  3094. for_each_possible_cpu(cpu) {
  3095. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  3096. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3097. /*
  3098. * We now know the "local memory node" for each node--
  3099. * i.e., the node of the first zone in the generic zonelist.
  3100. * Set up numa_mem percpu variable for on-line cpus. During
  3101. * boot, only the boot cpu should be on-line; we'll init the
  3102. * secondary cpus' numa_mem as they come on-line. During
  3103. * node/memory hotplug, we'll fixup all on-line cpus.
  3104. */
  3105. if (cpu_online(cpu))
  3106. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  3107. #endif
  3108. }
  3109. return 0;
  3110. }
  3111. /*
  3112. * Called with zonelists_mutex held always
  3113. * unless system_state == SYSTEM_BOOTING.
  3114. */
  3115. void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
  3116. {
  3117. set_zonelist_order();
  3118. if (system_state == SYSTEM_BOOTING) {
  3119. __build_all_zonelists(NULL);
  3120. mminit_verify_zonelist();
  3121. cpuset_init_current_mems_allowed();
  3122. } else {
  3123. /* we have to stop all cpus to guarantee there is no user
  3124. of zonelist */
  3125. #ifdef CONFIG_MEMORY_HOTPLUG
  3126. if (zone)
  3127. setup_zone_pageset(zone);
  3128. #endif
  3129. stop_machine(__build_all_zonelists, pgdat, NULL);
  3130. /* cpuset refresh routine should be here */
  3131. }
  3132. vm_total_pages = nr_free_pagecache_pages();
  3133. /*
  3134. * Disable grouping by mobility if the number of pages in the
  3135. * system is too low to allow the mechanism to work. It would be
  3136. * more accurate, but expensive to check per-zone. This check is
  3137. * made on memory-hotadd so a system can start with mobility
  3138. * disabled and enable it later
  3139. */
  3140. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  3141. page_group_by_mobility_disabled = 1;
  3142. else
  3143. page_group_by_mobility_disabled = 0;
  3144. printk("Built %i zonelists in %s order, mobility grouping %s. "
  3145. "Total pages: %ld\n",
  3146. nr_online_nodes,
  3147. zonelist_order_name[current_zonelist_order],
  3148. page_group_by_mobility_disabled ? "off" : "on",
  3149. vm_total_pages);
  3150. #ifdef CONFIG_NUMA
  3151. printk("Policy zone: %s\n", zone_names[policy_zone]);
  3152. #endif
  3153. }
  3154. /*
  3155. * Helper functions to size the waitqueue hash table.
  3156. * Essentially these want to choose hash table sizes sufficiently
  3157. * large so that collisions trying to wait on pages are rare.
  3158. * But in fact, the number of active page waitqueues on typical
  3159. * systems is ridiculously low, less than 200. So this is even
  3160. * conservative, even though it seems large.
  3161. *
  3162. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  3163. * waitqueues, i.e. the size of the waitq table given the number of pages.
  3164. */
  3165. #define PAGES_PER_WAITQUEUE 256
  3166. #ifndef CONFIG_MEMORY_HOTPLUG
  3167. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3168. {
  3169. unsigned long size = 1;
  3170. pages /= PAGES_PER_WAITQUEUE;
  3171. while (size < pages)
  3172. size <<= 1;
  3173. /*
  3174. * Once we have dozens or even hundreds of threads sleeping
  3175. * on IO we've got bigger problems than wait queue collision.
  3176. * Limit the size of the wait table to a reasonable size.
  3177. */
  3178. size = min(size, 4096UL);
  3179. return max(size, 4UL);
  3180. }
  3181. #else
  3182. /*
  3183. * A zone's size might be changed by hot-add, so it is not possible to determine
  3184. * a suitable size for its wait_table. So we use the maximum size now.
  3185. *
  3186. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  3187. *
  3188. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  3189. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  3190. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  3191. *
  3192. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  3193. * or more by the traditional way. (See above). It equals:
  3194. *
  3195. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  3196. * ia64(16K page size) : = ( 8G + 4M)byte.
  3197. * powerpc (64K page size) : = (32G +16M)byte.
  3198. */
  3199. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3200. {
  3201. return 4096UL;
  3202. }
  3203. #endif
  3204. /*
  3205. * This is an integer logarithm so that shifts can be used later
  3206. * to extract the more random high bits from the multiplicative
  3207. * hash function before the remainder is taken.
  3208. */
  3209. static inline unsigned long wait_table_bits(unsigned long size)
  3210. {
  3211. return ffz(~size);
  3212. }
  3213. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  3214. /*
  3215. * Check if a pageblock contains reserved pages
  3216. */
  3217. static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
  3218. {
  3219. unsigned long pfn;
  3220. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3221. if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
  3222. return 1;
  3223. }
  3224. return 0;
  3225. }
  3226. /*
  3227. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  3228. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  3229. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  3230. * higher will lead to a bigger reserve which will get freed as contiguous
  3231. * blocks as reclaim kicks in
  3232. */
  3233. static void setup_zone_migrate_reserve(struct zone *zone)
  3234. {
  3235. unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
  3236. struct page *page;
  3237. unsigned long block_migratetype;
  3238. int reserve;
  3239. /*
  3240. * Get the start pfn, end pfn and the number of blocks to reserve
  3241. * We have to be careful to be aligned to pageblock_nr_pages to
  3242. * make sure that we always check pfn_valid for the first page in
  3243. * the block.
  3244. */
  3245. start_pfn = zone->zone_start_pfn;
  3246. end_pfn = start_pfn + zone->spanned_pages;
  3247. start_pfn = roundup(start_pfn, pageblock_nr_pages);
  3248. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  3249. pageblock_order;
  3250. /*
  3251. * Reserve blocks are generally in place to help high-order atomic
  3252. * allocations that are short-lived. A min_free_kbytes value that
  3253. * would result in more than 2 reserve blocks for atomic allocations
  3254. * is assumed to be in place to help anti-fragmentation for the
  3255. * future allocation of hugepages at runtime.
  3256. */
  3257. reserve = min(2, reserve);
  3258. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  3259. if (!pfn_valid(pfn))
  3260. continue;
  3261. page = pfn_to_page(pfn);
  3262. /* Watch out for overlapping nodes */
  3263. if (page_to_nid(page) != zone_to_nid(zone))
  3264. continue;
  3265. block_migratetype = get_pageblock_migratetype(page);
  3266. /* Only test what is necessary when the reserves are not met */
  3267. if (reserve > 0) {
  3268. /*
  3269. * Blocks with reserved pages will never free, skip
  3270. * them.
  3271. */
  3272. block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
  3273. if (pageblock_is_reserved(pfn, block_end_pfn))
  3274. continue;
  3275. /* If this block is reserved, account for it */
  3276. if (block_migratetype == MIGRATE_RESERVE) {
  3277. reserve--;
  3278. continue;
  3279. }
  3280. /* Suitable for reserving if this block is movable */
  3281. if (block_migratetype == MIGRATE_MOVABLE) {
  3282. set_pageblock_migratetype(page,
  3283. MIGRATE_RESERVE);
  3284. move_freepages_block(zone, page,
  3285. MIGRATE_RESERVE);
  3286. reserve--;
  3287. continue;
  3288. }
  3289. }
  3290. /*
  3291. * If the reserve is met and this is a previous reserved block,
  3292. * take it back
  3293. */
  3294. if (block_migratetype == MIGRATE_RESERVE) {
  3295. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3296. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  3297. }
  3298. }
  3299. }
  3300. /*
  3301. * Initially all pages are reserved - free ones are freed
  3302. * up by free_all_bootmem() once the early boot process is
  3303. * done. Non-atomic initialization, single-pass.
  3304. */
  3305. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  3306. unsigned long start_pfn, enum memmap_context context)
  3307. {
  3308. struct page *page;
  3309. unsigned long end_pfn = start_pfn + size;
  3310. unsigned long pfn;
  3311. struct zone *z;
  3312. if (highest_memmap_pfn < end_pfn - 1)
  3313. highest_memmap_pfn = end_pfn - 1;
  3314. z = &NODE_DATA(nid)->node_zones[zone];
  3315. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3316. /*
  3317. * There can be holes in boot-time mem_map[]s
  3318. * handed to this function. They do not
  3319. * exist on hotplugged memory.
  3320. */
  3321. if (context == MEMMAP_EARLY) {
  3322. if (!early_pfn_valid(pfn))
  3323. continue;
  3324. if (!early_pfn_in_nid(pfn, nid))
  3325. continue;
  3326. }
  3327. page = pfn_to_page(pfn);
  3328. set_page_links(page, zone, nid, pfn);
  3329. mminit_verify_page_links(page, zone, nid, pfn);
  3330. init_page_count(page);
  3331. reset_page_mapcount(page);
  3332. SetPageReserved(page);
  3333. /*
  3334. * Mark the block movable so that blocks are reserved for
  3335. * movable at startup. This will force kernel allocations
  3336. * to reserve their blocks rather than leaking throughout
  3337. * the address space during boot when many long-lived
  3338. * kernel allocations are made. Later some blocks near
  3339. * the start are marked MIGRATE_RESERVE by
  3340. * setup_zone_migrate_reserve()
  3341. *
  3342. * bitmap is created for zone's valid pfn range. but memmap
  3343. * can be created for invalid pages (for alignment)
  3344. * check here not to call set_pageblock_migratetype() against
  3345. * pfn out of zone.
  3346. */
  3347. if ((z->zone_start_pfn <= pfn)
  3348. && (pfn < z->zone_start_pfn + z->spanned_pages)
  3349. && !(pfn & (pageblock_nr_pages - 1)))
  3350. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3351. INIT_LIST_HEAD(&page->lru);
  3352. #ifdef WANT_PAGE_VIRTUAL
  3353. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  3354. if (!is_highmem_idx(zone))
  3355. set_page_address(page, __va(pfn << PAGE_SHIFT));
  3356. #endif
  3357. }
  3358. }
  3359. static void __meminit zone_init_free_lists(struct zone *zone)
  3360. {
  3361. int order, t;
  3362. for_each_migratetype_order(order, t) {
  3363. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  3364. zone->free_area[order].nr_free = 0;
  3365. }
  3366. }
  3367. #ifndef __HAVE_ARCH_MEMMAP_INIT
  3368. #define memmap_init(size, nid, zone, start_pfn) \
  3369. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  3370. #endif
  3371. static int __meminit zone_batchsize(struct zone *zone)
  3372. {
  3373. #ifdef CONFIG_MMU
  3374. int batch;
  3375. /*
  3376. * The per-cpu-pages pools are set to around 1000th of the
  3377. * size of the zone. But no more than 1/2 of a meg.
  3378. *
  3379. * OK, so we don't know how big the cache is. So guess.
  3380. */
  3381. batch = zone->present_pages / 1024;
  3382. if (batch * PAGE_SIZE > 512 * 1024)
  3383. batch = (512 * 1024) / PAGE_SIZE;
  3384. batch /= 4; /* We effectively *= 4 below */
  3385. if (batch < 1)
  3386. batch = 1;
  3387. /*
  3388. * Clamp the batch to a 2^n - 1 value. Having a power
  3389. * of 2 value was found to be more likely to have
  3390. * suboptimal cache aliasing properties in some cases.
  3391. *
  3392. * For example if 2 tasks are alternately allocating
  3393. * batches of pages, one task can end up with a lot
  3394. * of pages of one half of the possible page colors
  3395. * and the other with pages of the other colors.
  3396. */
  3397. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  3398. return batch;
  3399. #else
  3400. /* The deferral and batching of frees should be suppressed under NOMMU
  3401. * conditions.
  3402. *
  3403. * The problem is that NOMMU needs to be able to allocate large chunks
  3404. * of contiguous memory as there's no hardware page translation to
  3405. * assemble apparent contiguous memory from discontiguous pages.
  3406. *
  3407. * Queueing large contiguous runs of pages for batching, however,
  3408. * causes the pages to actually be freed in smaller chunks. As there
  3409. * can be a significant delay between the individual batches being
  3410. * recycled, this leads to the once large chunks of space being
  3411. * fragmented and becoming unavailable for high-order allocations.
  3412. */
  3413. return 0;
  3414. #endif
  3415. }
  3416. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  3417. {
  3418. struct per_cpu_pages *pcp;
  3419. int migratetype;
  3420. memset(p, 0, sizeof(*p));
  3421. pcp = &p->pcp;
  3422. pcp->count = 0;
  3423. pcp->high = 6 * batch;
  3424. pcp->batch = max(1UL, 1 * batch);
  3425. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  3426. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  3427. }
  3428. /*
  3429. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  3430. * to the value high for the pageset p.
  3431. */
  3432. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  3433. unsigned long high)
  3434. {
  3435. struct per_cpu_pages *pcp;
  3436. pcp = &p->pcp;
  3437. pcp->high = high;
  3438. pcp->batch = max(1UL, high/4);
  3439. if ((high/4) > (PAGE_SHIFT * 8))
  3440. pcp->batch = PAGE_SHIFT * 8;
  3441. }
  3442. static void __meminit setup_zone_pageset(struct zone *zone)
  3443. {
  3444. int cpu;
  3445. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  3446. for_each_possible_cpu(cpu) {
  3447. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  3448. setup_pageset(pcp, zone_batchsize(zone));
  3449. if (percpu_pagelist_fraction)
  3450. setup_pagelist_highmark(pcp,
  3451. (zone->present_pages /
  3452. percpu_pagelist_fraction));
  3453. }
  3454. }
  3455. /*
  3456. * Allocate per cpu pagesets and initialize them.
  3457. * Before this call only boot pagesets were available.
  3458. */
  3459. void __init setup_per_cpu_pageset(void)
  3460. {
  3461. struct zone *zone;
  3462. for_each_populated_zone(zone)
  3463. setup_zone_pageset(zone);
  3464. }
  3465. static noinline __init_refok
  3466. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  3467. {
  3468. int i;
  3469. struct pglist_data *pgdat = zone->zone_pgdat;
  3470. size_t alloc_size;
  3471. /*
  3472. * The per-page waitqueue mechanism uses hashed waitqueues
  3473. * per zone.
  3474. */
  3475. zone->wait_table_hash_nr_entries =
  3476. wait_table_hash_nr_entries(zone_size_pages);
  3477. zone->wait_table_bits =
  3478. wait_table_bits(zone->wait_table_hash_nr_entries);
  3479. alloc_size = zone->wait_table_hash_nr_entries
  3480. * sizeof(wait_queue_head_t);
  3481. if (!slab_is_available()) {
  3482. zone->wait_table = (wait_queue_head_t *)
  3483. alloc_bootmem_node_nopanic(pgdat, alloc_size);
  3484. } else {
  3485. /*
  3486. * This case means that a zone whose size was 0 gets new memory
  3487. * via memory hot-add.
  3488. * But it may be the case that a new node was hot-added. In
  3489. * this case vmalloc() will not be able to use this new node's
  3490. * memory - this wait_table must be initialized to use this new
  3491. * node itself as well.
  3492. * To use this new node's memory, further consideration will be
  3493. * necessary.
  3494. */
  3495. zone->wait_table = vmalloc(alloc_size);
  3496. }
  3497. if (!zone->wait_table)
  3498. return -ENOMEM;
  3499. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  3500. init_waitqueue_head(zone->wait_table + i);
  3501. return 0;
  3502. }
  3503. static __meminit void zone_pcp_init(struct zone *zone)
  3504. {
  3505. /*
  3506. * per cpu subsystem is not up at this point. The following code
  3507. * relies on the ability of the linker to provide the
  3508. * offset of a (static) per cpu variable into the per cpu area.
  3509. */
  3510. zone->pageset = &boot_pageset;
  3511. if (zone->present_pages)
  3512. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  3513. zone->name, zone->present_pages,
  3514. zone_batchsize(zone));
  3515. }
  3516. int __meminit init_currently_empty_zone(struct zone *zone,
  3517. unsigned long zone_start_pfn,
  3518. unsigned long size,
  3519. enum memmap_context context)
  3520. {
  3521. struct pglist_data *pgdat = zone->zone_pgdat;
  3522. int ret;
  3523. ret = zone_wait_table_init(zone, size);
  3524. if (ret)
  3525. return ret;
  3526. pgdat->nr_zones = zone_idx(zone) + 1;
  3527. zone->zone_start_pfn = zone_start_pfn;
  3528. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  3529. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  3530. pgdat->node_id,
  3531. (unsigned long)zone_idx(zone),
  3532. zone_start_pfn, (zone_start_pfn + size));
  3533. zone_init_free_lists(zone);
  3534. return 0;
  3535. }
  3536. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  3537. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  3538. /*
  3539. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  3540. * Architectures may implement their own version but if add_active_range()
  3541. * was used and there are no special requirements, this is a convenient
  3542. * alternative
  3543. */
  3544. int __meminit __early_pfn_to_nid(unsigned long pfn)
  3545. {
  3546. unsigned long start_pfn, end_pfn;
  3547. int i, nid;
  3548. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  3549. if (start_pfn <= pfn && pfn < end_pfn)
  3550. return nid;
  3551. /* This is a memory hole */
  3552. return -1;
  3553. }
  3554. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  3555. int __meminit early_pfn_to_nid(unsigned long pfn)
  3556. {
  3557. int nid;
  3558. nid = __early_pfn_to_nid(pfn);
  3559. if (nid >= 0)
  3560. return nid;
  3561. /* just returns 0 */
  3562. return 0;
  3563. }
  3564. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  3565. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  3566. {
  3567. int nid;
  3568. nid = __early_pfn_to_nid(pfn);
  3569. if (nid >= 0 && nid != node)
  3570. return false;
  3571. return true;
  3572. }
  3573. #endif
  3574. /**
  3575. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  3576. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  3577. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  3578. *
  3579. * If an architecture guarantees that all ranges registered with
  3580. * add_active_ranges() contain no holes and may be freed, this
  3581. * this function may be used instead of calling free_bootmem() manually.
  3582. */
  3583. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  3584. {
  3585. unsigned long start_pfn, end_pfn;
  3586. int i, this_nid;
  3587. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  3588. start_pfn = min(start_pfn, max_low_pfn);
  3589. end_pfn = min(end_pfn, max_low_pfn);
  3590. if (start_pfn < end_pfn)
  3591. free_bootmem_node(NODE_DATA(this_nid),
  3592. PFN_PHYS(start_pfn),
  3593. (end_pfn - start_pfn) << PAGE_SHIFT);
  3594. }
  3595. }
  3596. /**
  3597. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  3598. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  3599. *
  3600. * If an architecture guarantees that all ranges registered with
  3601. * add_active_ranges() contain no holes and may be freed, this
  3602. * function may be used instead of calling memory_present() manually.
  3603. */
  3604. void __init sparse_memory_present_with_active_regions(int nid)
  3605. {
  3606. unsigned long start_pfn, end_pfn;
  3607. int i, this_nid;
  3608. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  3609. memory_present(this_nid, start_pfn, end_pfn);
  3610. }
  3611. /**
  3612. * get_pfn_range_for_nid - Return the start and end page frames for a node
  3613. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  3614. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  3615. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  3616. *
  3617. * It returns the start and end page frame of a node based on information
  3618. * provided by an arch calling add_active_range(). If called for a node
  3619. * with no available memory, a warning is printed and the start and end
  3620. * PFNs will be 0.
  3621. */
  3622. void __meminit get_pfn_range_for_nid(unsigned int nid,
  3623. unsigned long *start_pfn, unsigned long *end_pfn)
  3624. {
  3625. unsigned long this_start_pfn, this_end_pfn;
  3626. int i;
  3627. *start_pfn = -1UL;
  3628. *end_pfn = 0;
  3629. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  3630. *start_pfn = min(*start_pfn, this_start_pfn);
  3631. *end_pfn = max(*end_pfn, this_end_pfn);
  3632. }
  3633. if (*start_pfn == -1UL)
  3634. *start_pfn = 0;
  3635. }
  3636. /*
  3637. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  3638. * assumption is made that zones within a node are ordered in monotonic
  3639. * increasing memory addresses so that the "highest" populated zone is used
  3640. */
  3641. static void __init find_usable_zone_for_movable(void)
  3642. {
  3643. int zone_index;
  3644. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  3645. if (zone_index == ZONE_MOVABLE)
  3646. continue;
  3647. if (arch_zone_highest_possible_pfn[zone_index] >
  3648. arch_zone_lowest_possible_pfn[zone_index])
  3649. break;
  3650. }
  3651. VM_BUG_ON(zone_index == -1);
  3652. movable_zone = zone_index;
  3653. }
  3654. /*
  3655. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  3656. * because it is sized independent of architecture. Unlike the other zones,
  3657. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  3658. * in each node depending on the size of each node and how evenly kernelcore
  3659. * is distributed. This helper function adjusts the zone ranges
  3660. * provided by the architecture for a given node by using the end of the
  3661. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  3662. * zones within a node are in order of monotonic increases memory addresses
  3663. */
  3664. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  3665. unsigned long zone_type,
  3666. unsigned long node_start_pfn,
  3667. unsigned long node_end_pfn,
  3668. unsigned long *zone_start_pfn,
  3669. unsigned long *zone_end_pfn)
  3670. {
  3671. /* Only adjust if ZONE_MOVABLE is on this node */
  3672. if (zone_movable_pfn[nid]) {
  3673. /* Size ZONE_MOVABLE */
  3674. if (zone_type == ZONE_MOVABLE) {
  3675. *zone_start_pfn = zone_movable_pfn[nid];
  3676. *zone_end_pfn = min(node_end_pfn,
  3677. arch_zone_highest_possible_pfn[movable_zone]);
  3678. /* Adjust for ZONE_MOVABLE starting within this range */
  3679. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  3680. *zone_end_pfn > zone_movable_pfn[nid]) {
  3681. *zone_end_pfn = zone_movable_pfn[nid];
  3682. /* Check if this whole range is within ZONE_MOVABLE */
  3683. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  3684. *zone_start_pfn = *zone_end_pfn;
  3685. }
  3686. }
  3687. /*
  3688. * Return the number of pages a zone spans in a node, including holes
  3689. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  3690. */
  3691. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3692. unsigned long zone_type,
  3693. unsigned long *ignored)
  3694. {
  3695. unsigned long node_start_pfn, node_end_pfn;
  3696. unsigned long zone_start_pfn, zone_end_pfn;
  3697. /* Get the start and end of the node and zone */
  3698. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3699. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  3700. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  3701. adjust_zone_range_for_zone_movable(nid, zone_type,
  3702. node_start_pfn, node_end_pfn,
  3703. &zone_start_pfn, &zone_end_pfn);
  3704. /* Check that this node has pages within the zone's required range */
  3705. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  3706. return 0;
  3707. /* Move the zone boundaries inside the node if necessary */
  3708. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  3709. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  3710. /* Return the spanned pages */
  3711. return zone_end_pfn - zone_start_pfn;
  3712. }
  3713. /*
  3714. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  3715. * then all holes in the requested range will be accounted for.
  3716. */
  3717. unsigned long __meminit __absent_pages_in_range(int nid,
  3718. unsigned long range_start_pfn,
  3719. unsigned long range_end_pfn)
  3720. {
  3721. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  3722. unsigned long start_pfn, end_pfn;
  3723. int i;
  3724. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  3725. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  3726. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  3727. nr_absent -= end_pfn - start_pfn;
  3728. }
  3729. return nr_absent;
  3730. }
  3731. /**
  3732. * absent_pages_in_range - Return number of page frames in holes within a range
  3733. * @start_pfn: The start PFN to start searching for holes
  3734. * @end_pfn: The end PFN to stop searching for holes
  3735. *
  3736. * It returns the number of pages frames in memory holes within a range.
  3737. */
  3738. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  3739. unsigned long end_pfn)
  3740. {
  3741. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  3742. }
  3743. /* Return the number of page frames in holes in a zone on a node */
  3744. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  3745. unsigned long zone_type,
  3746. unsigned long *ignored)
  3747. {
  3748. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  3749. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  3750. unsigned long node_start_pfn, node_end_pfn;
  3751. unsigned long zone_start_pfn, zone_end_pfn;
  3752. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3753. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  3754. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  3755. adjust_zone_range_for_zone_movable(nid, zone_type,
  3756. node_start_pfn, node_end_pfn,
  3757. &zone_start_pfn, &zone_end_pfn);
  3758. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  3759. }
  3760. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  3761. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3762. unsigned long zone_type,
  3763. unsigned long *zones_size)
  3764. {
  3765. return zones_size[zone_type];
  3766. }
  3767. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  3768. unsigned long zone_type,
  3769. unsigned long *zholes_size)
  3770. {
  3771. if (!zholes_size)
  3772. return 0;
  3773. return zholes_size[zone_type];
  3774. }
  3775. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  3776. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  3777. unsigned long *zones_size, unsigned long *zholes_size)
  3778. {
  3779. unsigned long realtotalpages, totalpages = 0;
  3780. enum zone_type i;
  3781. for (i = 0; i < MAX_NR_ZONES; i++)
  3782. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  3783. zones_size);
  3784. pgdat->node_spanned_pages = totalpages;
  3785. realtotalpages = totalpages;
  3786. for (i = 0; i < MAX_NR_ZONES; i++)
  3787. realtotalpages -=
  3788. zone_absent_pages_in_node(pgdat->node_id, i,
  3789. zholes_size);
  3790. pgdat->node_present_pages = realtotalpages;
  3791. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  3792. realtotalpages);
  3793. }
  3794. #ifndef CONFIG_SPARSEMEM
  3795. /*
  3796. * Calculate the size of the zone->blockflags rounded to an unsigned long
  3797. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  3798. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  3799. * round what is now in bits to nearest long in bits, then return it in
  3800. * bytes.
  3801. */
  3802. static unsigned long __init usemap_size(unsigned long zonesize)
  3803. {
  3804. unsigned long usemapsize;
  3805. usemapsize = roundup(zonesize, pageblock_nr_pages);
  3806. usemapsize = usemapsize >> pageblock_order;
  3807. usemapsize *= NR_PAGEBLOCK_BITS;
  3808. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  3809. return usemapsize / 8;
  3810. }
  3811. static void __init setup_usemap(struct pglist_data *pgdat,
  3812. struct zone *zone, unsigned long zonesize)
  3813. {
  3814. unsigned long usemapsize = usemap_size(zonesize);
  3815. zone->pageblock_flags = NULL;
  3816. if (usemapsize)
  3817. zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
  3818. usemapsize);
  3819. }
  3820. #else
  3821. static inline void setup_usemap(struct pglist_data *pgdat,
  3822. struct zone *zone, unsigned long zonesize) {}
  3823. #endif /* CONFIG_SPARSEMEM */
  3824. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  3825. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  3826. void __init set_pageblock_order(void)
  3827. {
  3828. unsigned int order;
  3829. /* Check that pageblock_nr_pages has not already been setup */
  3830. if (pageblock_order)
  3831. return;
  3832. if (HPAGE_SHIFT > PAGE_SHIFT)
  3833. order = HUGETLB_PAGE_ORDER;
  3834. else
  3835. order = MAX_ORDER - 1;
  3836. /*
  3837. * Assume the largest contiguous order of interest is a huge page.
  3838. * This value may be variable depending on boot parameters on IA64 and
  3839. * powerpc.
  3840. */
  3841. pageblock_order = order;
  3842. }
  3843. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3844. /*
  3845. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  3846. * is unused as pageblock_order is set at compile-time. See
  3847. * include/linux/pageblock-flags.h for the values of pageblock_order based on
  3848. * the kernel config
  3849. */
  3850. void __init set_pageblock_order(void)
  3851. {
  3852. }
  3853. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3854. /*
  3855. * Set up the zone data structures:
  3856. * - mark all pages reserved
  3857. * - mark all memory queues empty
  3858. * - clear the memory bitmaps
  3859. *
  3860. * NOTE: pgdat should get zeroed by caller.
  3861. */
  3862. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  3863. unsigned long *zones_size, unsigned long *zholes_size)
  3864. {
  3865. enum zone_type j;
  3866. int nid = pgdat->node_id;
  3867. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  3868. int ret;
  3869. pgdat_resize_init(pgdat);
  3870. init_waitqueue_head(&pgdat->kswapd_wait);
  3871. init_waitqueue_head(&pgdat->pfmemalloc_wait);
  3872. pgdat_page_cgroup_init(pgdat);
  3873. for (j = 0; j < MAX_NR_ZONES; j++) {
  3874. struct zone *zone = pgdat->node_zones + j;
  3875. unsigned long size, realsize, memmap_pages;
  3876. size = zone_spanned_pages_in_node(nid, j, zones_size);
  3877. realsize = size - zone_absent_pages_in_node(nid, j,
  3878. zholes_size);
  3879. /*
  3880. * Adjust realsize so that it accounts for how much memory
  3881. * is used by this zone for memmap. This affects the watermark
  3882. * and per-cpu initialisations
  3883. */
  3884. memmap_pages =
  3885. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  3886. if (realsize >= memmap_pages) {
  3887. realsize -= memmap_pages;
  3888. if (memmap_pages)
  3889. printk(KERN_DEBUG
  3890. " %s zone: %lu pages used for memmap\n",
  3891. zone_names[j], memmap_pages);
  3892. } else
  3893. printk(KERN_WARNING
  3894. " %s zone: %lu pages exceeds realsize %lu\n",
  3895. zone_names[j], memmap_pages, realsize);
  3896. /* Account for reserved pages */
  3897. if (j == 0 && realsize > dma_reserve) {
  3898. realsize -= dma_reserve;
  3899. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  3900. zone_names[0], dma_reserve);
  3901. }
  3902. if (!is_highmem_idx(j))
  3903. nr_kernel_pages += realsize;
  3904. nr_all_pages += realsize;
  3905. zone->spanned_pages = size;
  3906. zone->present_pages = realsize;
  3907. #ifdef CONFIG_NUMA
  3908. zone->node = nid;
  3909. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  3910. / 100;
  3911. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  3912. #endif
  3913. zone->name = zone_names[j];
  3914. spin_lock_init(&zone->lock);
  3915. spin_lock_init(&zone->lru_lock);
  3916. zone_seqlock_init(zone);
  3917. zone->zone_pgdat = pgdat;
  3918. zone_pcp_init(zone);
  3919. lruvec_init(&zone->lruvec, zone);
  3920. if (!size)
  3921. continue;
  3922. set_pageblock_order();
  3923. setup_usemap(pgdat, zone, size);
  3924. ret = init_currently_empty_zone(zone, zone_start_pfn,
  3925. size, MEMMAP_EARLY);
  3926. BUG_ON(ret);
  3927. memmap_init(size, nid, j, zone_start_pfn);
  3928. zone_start_pfn += size;
  3929. }
  3930. }
  3931. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  3932. {
  3933. /* Skip empty nodes */
  3934. if (!pgdat->node_spanned_pages)
  3935. return;
  3936. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3937. /* ia64 gets its own node_mem_map, before this, without bootmem */
  3938. if (!pgdat->node_mem_map) {
  3939. unsigned long size, start, end;
  3940. struct page *map;
  3941. /*
  3942. * The zone's endpoints aren't required to be MAX_ORDER
  3943. * aligned but the node_mem_map endpoints must be in order
  3944. * for the buddy allocator to function correctly.
  3945. */
  3946. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  3947. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  3948. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  3949. size = (end - start) * sizeof(struct page);
  3950. map = alloc_remap(pgdat->node_id, size);
  3951. if (!map)
  3952. map = alloc_bootmem_node_nopanic(pgdat, size);
  3953. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  3954. }
  3955. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3956. /*
  3957. * With no DISCONTIG, the global mem_map is just set as node 0's
  3958. */
  3959. if (pgdat == NODE_DATA(0)) {
  3960. mem_map = NODE_DATA(0)->node_mem_map;
  3961. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  3962. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  3963. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  3964. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  3965. }
  3966. #endif
  3967. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  3968. }
  3969. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  3970. unsigned long node_start_pfn, unsigned long *zholes_size)
  3971. {
  3972. pg_data_t *pgdat = NODE_DATA(nid);
  3973. /* pg_data_t should be reset to zero when it's allocated */
  3974. WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
  3975. pgdat->node_id = nid;
  3976. pgdat->node_start_pfn = node_start_pfn;
  3977. init_zone_allows_reclaim(nid);
  3978. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  3979. alloc_node_mem_map(pgdat);
  3980. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3981. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  3982. nid, (unsigned long)pgdat,
  3983. (unsigned long)pgdat->node_mem_map);
  3984. #endif
  3985. free_area_init_core(pgdat, zones_size, zholes_size);
  3986. }
  3987. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  3988. #if MAX_NUMNODES > 1
  3989. /*
  3990. * Figure out the number of possible node ids.
  3991. */
  3992. static void __init setup_nr_node_ids(void)
  3993. {
  3994. unsigned int node;
  3995. unsigned int highest = 0;
  3996. for_each_node_mask(node, node_possible_map)
  3997. highest = node;
  3998. nr_node_ids = highest + 1;
  3999. }
  4000. #else
  4001. static inline void setup_nr_node_ids(void)
  4002. {
  4003. }
  4004. #endif
  4005. /**
  4006. * node_map_pfn_alignment - determine the maximum internode alignment
  4007. *
  4008. * This function should be called after node map is populated and sorted.
  4009. * It calculates the maximum power of two alignment which can distinguish
  4010. * all the nodes.
  4011. *
  4012. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  4013. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  4014. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  4015. * shifted, 1GiB is enough and this function will indicate so.
  4016. *
  4017. * This is used to test whether pfn -> nid mapping of the chosen memory
  4018. * model has fine enough granularity to avoid incorrect mapping for the
  4019. * populated node map.
  4020. *
  4021. * Returns the determined alignment in pfn's. 0 if there is no alignment
  4022. * requirement (single node).
  4023. */
  4024. unsigned long __init node_map_pfn_alignment(void)
  4025. {
  4026. unsigned long accl_mask = 0, last_end = 0;
  4027. unsigned long start, end, mask;
  4028. int last_nid = -1;
  4029. int i, nid;
  4030. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  4031. if (!start || last_nid < 0 || last_nid == nid) {
  4032. last_nid = nid;
  4033. last_end = end;
  4034. continue;
  4035. }
  4036. /*
  4037. * Start with a mask granular enough to pin-point to the
  4038. * start pfn and tick off bits one-by-one until it becomes
  4039. * too coarse to separate the current node from the last.
  4040. */
  4041. mask = ~((1 << __ffs(start)) - 1);
  4042. while (mask && last_end <= (start & (mask << 1)))
  4043. mask <<= 1;
  4044. /* accumulate all internode masks */
  4045. accl_mask |= mask;
  4046. }
  4047. /* convert mask to number of pages */
  4048. return ~accl_mask + 1;
  4049. }
  4050. /* Find the lowest pfn for a node */
  4051. static unsigned long __init find_min_pfn_for_node(int nid)
  4052. {
  4053. unsigned long min_pfn = ULONG_MAX;
  4054. unsigned long start_pfn;
  4055. int i;
  4056. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  4057. min_pfn = min(min_pfn, start_pfn);
  4058. if (min_pfn == ULONG_MAX) {
  4059. printk(KERN_WARNING
  4060. "Could not find start_pfn for node %d\n", nid);
  4061. return 0;
  4062. }
  4063. return min_pfn;
  4064. }
  4065. /**
  4066. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  4067. *
  4068. * It returns the minimum PFN based on information provided via
  4069. * add_active_range().
  4070. */
  4071. unsigned long __init find_min_pfn_with_active_regions(void)
  4072. {
  4073. return find_min_pfn_for_node(MAX_NUMNODES);
  4074. }
  4075. /*
  4076. * early_calculate_totalpages()
  4077. * Sum pages in active regions for movable zone.
  4078. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  4079. */
  4080. static unsigned long __init early_calculate_totalpages(void)
  4081. {
  4082. unsigned long totalpages = 0;
  4083. unsigned long start_pfn, end_pfn;
  4084. int i, nid;
  4085. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  4086. unsigned long pages = end_pfn - start_pfn;
  4087. totalpages += pages;
  4088. if (pages)
  4089. node_set_state(nid, N_HIGH_MEMORY);
  4090. }
  4091. return totalpages;
  4092. }
  4093. /*
  4094. * Find the PFN the Movable zone begins in each node. Kernel memory
  4095. * is spread evenly between nodes as long as the nodes have enough
  4096. * memory. When they don't, some nodes will have more kernelcore than
  4097. * others
  4098. */
  4099. static void __init find_zone_movable_pfns_for_nodes(void)
  4100. {
  4101. int i, nid;
  4102. unsigned long usable_startpfn;
  4103. unsigned long kernelcore_node, kernelcore_remaining;
  4104. /* save the state before borrow the nodemask */
  4105. nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
  4106. unsigned long totalpages = early_calculate_totalpages();
  4107. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  4108. /*
  4109. * If movablecore was specified, calculate what size of
  4110. * kernelcore that corresponds so that memory usable for
  4111. * any allocation type is evenly spread. If both kernelcore
  4112. * and movablecore are specified, then the value of kernelcore
  4113. * will be used for required_kernelcore if it's greater than
  4114. * what movablecore would have allowed.
  4115. */
  4116. if (required_movablecore) {
  4117. unsigned long corepages;
  4118. /*
  4119. * Round-up so that ZONE_MOVABLE is at least as large as what
  4120. * was requested by the user
  4121. */
  4122. required_movablecore =
  4123. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  4124. corepages = totalpages - required_movablecore;
  4125. required_kernelcore = max(required_kernelcore, corepages);
  4126. }
  4127. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  4128. if (!required_kernelcore)
  4129. goto out;
  4130. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  4131. find_usable_zone_for_movable();
  4132. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  4133. restart:
  4134. /* Spread kernelcore memory as evenly as possible throughout nodes */
  4135. kernelcore_node = required_kernelcore / usable_nodes;
  4136. for_each_node_state(nid, N_HIGH_MEMORY) {
  4137. unsigned long start_pfn, end_pfn;
  4138. /*
  4139. * Recalculate kernelcore_node if the division per node
  4140. * now exceeds what is necessary to satisfy the requested
  4141. * amount of memory for the kernel
  4142. */
  4143. if (required_kernelcore < kernelcore_node)
  4144. kernelcore_node = required_kernelcore / usable_nodes;
  4145. /*
  4146. * As the map is walked, we track how much memory is usable
  4147. * by the kernel using kernelcore_remaining. When it is
  4148. * 0, the rest of the node is usable by ZONE_MOVABLE
  4149. */
  4150. kernelcore_remaining = kernelcore_node;
  4151. /* Go through each range of PFNs within this node */
  4152. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4153. unsigned long size_pages;
  4154. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  4155. if (start_pfn >= end_pfn)
  4156. continue;
  4157. /* Account for what is only usable for kernelcore */
  4158. if (start_pfn < usable_startpfn) {
  4159. unsigned long kernel_pages;
  4160. kernel_pages = min(end_pfn, usable_startpfn)
  4161. - start_pfn;
  4162. kernelcore_remaining -= min(kernel_pages,
  4163. kernelcore_remaining);
  4164. required_kernelcore -= min(kernel_pages,
  4165. required_kernelcore);
  4166. /* Continue if range is now fully accounted */
  4167. if (end_pfn <= usable_startpfn) {
  4168. /*
  4169. * Push zone_movable_pfn to the end so
  4170. * that if we have to rebalance
  4171. * kernelcore across nodes, we will
  4172. * not double account here
  4173. */
  4174. zone_movable_pfn[nid] = end_pfn;
  4175. continue;
  4176. }
  4177. start_pfn = usable_startpfn;
  4178. }
  4179. /*
  4180. * The usable PFN range for ZONE_MOVABLE is from
  4181. * start_pfn->end_pfn. Calculate size_pages as the
  4182. * number of pages used as kernelcore
  4183. */
  4184. size_pages = end_pfn - start_pfn;
  4185. if (size_pages > kernelcore_remaining)
  4186. size_pages = kernelcore_remaining;
  4187. zone_movable_pfn[nid] = start_pfn + size_pages;
  4188. /*
  4189. * Some kernelcore has been met, update counts and
  4190. * break if the kernelcore for this node has been
  4191. * satisified
  4192. */
  4193. required_kernelcore -= min(required_kernelcore,
  4194. size_pages);
  4195. kernelcore_remaining -= size_pages;
  4196. if (!kernelcore_remaining)
  4197. break;
  4198. }
  4199. }
  4200. /*
  4201. * If there is still required_kernelcore, we do another pass with one
  4202. * less node in the count. This will push zone_movable_pfn[nid] further
  4203. * along on the nodes that still have memory until kernelcore is
  4204. * satisified
  4205. */
  4206. usable_nodes--;
  4207. if (usable_nodes && required_kernelcore > usable_nodes)
  4208. goto restart;
  4209. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  4210. for (nid = 0; nid < MAX_NUMNODES; nid++)
  4211. zone_movable_pfn[nid] =
  4212. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  4213. out:
  4214. /* restore the node_state */
  4215. node_states[N_HIGH_MEMORY] = saved_node_state;
  4216. }
  4217. /* Any regular memory on that node ? */
  4218. static void __init check_for_regular_memory(pg_data_t *pgdat)
  4219. {
  4220. #ifdef CONFIG_HIGHMEM
  4221. enum zone_type zone_type;
  4222. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  4223. struct zone *zone = &pgdat->node_zones[zone_type];
  4224. if (zone->present_pages) {
  4225. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  4226. break;
  4227. }
  4228. }
  4229. #endif
  4230. }
  4231. /**
  4232. * free_area_init_nodes - Initialise all pg_data_t and zone data
  4233. * @max_zone_pfn: an array of max PFNs for each zone
  4234. *
  4235. * This will call free_area_init_node() for each active node in the system.
  4236. * Using the page ranges provided by add_active_range(), the size of each
  4237. * zone in each node and their holes is calculated. If the maximum PFN
  4238. * between two adjacent zones match, it is assumed that the zone is empty.
  4239. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  4240. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  4241. * starts where the previous one ended. For example, ZONE_DMA32 starts
  4242. * at arch_max_dma_pfn.
  4243. */
  4244. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  4245. {
  4246. unsigned long start_pfn, end_pfn;
  4247. int i, nid;
  4248. /* Record where the zone boundaries are */
  4249. memset(arch_zone_lowest_possible_pfn, 0,
  4250. sizeof(arch_zone_lowest_possible_pfn));
  4251. memset(arch_zone_highest_possible_pfn, 0,
  4252. sizeof(arch_zone_highest_possible_pfn));
  4253. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  4254. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  4255. for (i = 1; i < MAX_NR_ZONES; i++) {
  4256. if (i == ZONE_MOVABLE)
  4257. continue;
  4258. arch_zone_lowest_possible_pfn[i] =
  4259. arch_zone_highest_possible_pfn[i-1];
  4260. arch_zone_highest_possible_pfn[i] =
  4261. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  4262. }
  4263. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  4264. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  4265. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  4266. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  4267. find_zone_movable_pfns_for_nodes();
  4268. /* Print out the zone ranges */
  4269. printk("Zone ranges:\n");
  4270. for (i = 0; i < MAX_NR_ZONES; i++) {
  4271. if (i == ZONE_MOVABLE)
  4272. continue;
  4273. printk(KERN_CONT " %-8s ", zone_names[i]);
  4274. if (arch_zone_lowest_possible_pfn[i] ==
  4275. arch_zone_highest_possible_pfn[i])
  4276. printk(KERN_CONT "empty\n");
  4277. else
  4278. printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
  4279. arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
  4280. (arch_zone_highest_possible_pfn[i]
  4281. << PAGE_SHIFT) - 1);
  4282. }
  4283. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  4284. printk("Movable zone start for each node\n");
  4285. for (i = 0; i < MAX_NUMNODES; i++) {
  4286. if (zone_movable_pfn[i])
  4287. printk(" Node %d: %#010lx\n", i,
  4288. zone_movable_pfn[i] << PAGE_SHIFT);
  4289. }
  4290. /* Print out the early node map */
  4291. printk("Early memory node ranges\n");
  4292. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  4293. printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
  4294. start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
  4295. /* Initialise every node */
  4296. mminit_verify_pageflags_layout();
  4297. setup_nr_node_ids();
  4298. for_each_online_node(nid) {
  4299. pg_data_t *pgdat = NODE_DATA(nid);
  4300. free_area_init_node(nid, NULL,
  4301. find_min_pfn_for_node(nid), NULL);
  4302. /* Any memory on that node */
  4303. if (pgdat->node_present_pages)
  4304. node_set_state(nid, N_HIGH_MEMORY);
  4305. check_for_regular_memory(pgdat);
  4306. }
  4307. }
  4308. static int __init cmdline_parse_core(char *p, unsigned long *core)
  4309. {
  4310. unsigned long long coremem;
  4311. if (!p)
  4312. return -EINVAL;
  4313. coremem = memparse(p, &p);
  4314. *core = coremem >> PAGE_SHIFT;
  4315. /* Paranoid check that UL is enough for the coremem value */
  4316. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  4317. return 0;
  4318. }
  4319. /*
  4320. * kernelcore=size sets the amount of memory for use for allocations that
  4321. * cannot be reclaimed or migrated.
  4322. */
  4323. static int __init cmdline_parse_kernelcore(char *p)
  4324. {
  4325. return cmdline_parse_core(p, &required_kernelcore);
  4326. }
  4327. /*
  4328. * movablecore=size sets the amount of memory for use for allocations that
  4329. * can be reclaimed or migrated.
  4330. */
  4331. static int __init cmdline_parse_movablecore(char *p)
  4332. {
  4333. return cmdline_parse_core(p, &required_movablecore);
  4334. }
  4335. early_param("kernelcore", cmdline_parse_kernelcore);
  4336. early_param("movablecore", cmdline_parse_movablecore);
  4337. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4338. /**
  4339. * set_dma_reserve - set the specified number of pages reserved in the first zone
  4340. * @new_dma_reserve: The number of pages to mark reserved
  4341. *
  4342. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  4343. * In the DMA zone, a significant percentage may be consumed by kernel image
  4344. * and other unfreeable allocations which can skew the watermarks badly. This
  4345. * function may optionally be used to account for unfreeable pages in the
  4346. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  4347. * smaller per-cpu batchsize.
  4348. */
  4349. void __init set_dma_reserve(unsigned long new_dma_reserve)
  4350. {
  4351. dma_reserve = new_dma_reserve;
  4352. }
  4353. void __init free_area_init(unsigned long *zones_size)
  4354. {
  4355. free_area_init_node(0, zones_size,
  4356. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  4357. }
  4358. static int page_alloc_cpu_notify(struct notifier_block *self,
  4359. unsigned long action, void *hcpu)
  4360. {
  4361. int cpu = (unsigned long)hcpu;
  4362. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  4363. lru_add_drain_cpu(cpu);
  4364. drain_pages(cpu);
  4365. /*
  4366. * Spill the event counters of the dead processor
  4367. * into the current processors event counters.
  4368. * This artificially elevates the count of the current
  4369. * processor.
  4370. */
  4371. vm_events_fold_cpu(cpu);
  4372. /*
  4373. * Zero the differential counters of the dead processor
  4374. * so that the vm statistics are consistent.
  4375. *
  4376. * This is only okay since the processor is dead and cannot
  4377. * race with what we are doing.
  4378. */
  4379. refresh_cpu_vm_stats(cpu);
  4380. }
  4381. return NOTIFY_OK;
  4382. }
  4383. void __init page_alloc_init(void)
  4384. {
  4385. hotcpu_notifier(page_alloc_cpu_notify, 0);
  4386. }
  4387. /*
  4388. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  4389. * or min_free_kbytes changes.
  4390. */
  4391. static void calculate_totalreserve_pages(void)
  4392. {
  4393. struct pglist_data *pgdat;
  4394. unsigned long reserve_pages = 0;
  4395. enum zone_type i, j;
  4396. for_each_online_pgdat(pgdat) {
  4397. for (i = 0; i < MAX_NR_ZONES; i++) {
  4398. struct zone *zone = pgdat->node_zones + i;
  4399. unsigned long max = 0;
  4400. /* Find valid and maximum lowmem_reserve in the zone */
  4401. for (j = i; j < MAX_NR_ZONES; j++) {
  4402. if (zone->lowmem_reserve[j] > max)
  4403. max = zone->lowmem_reserve[j];
  4404. }
  4405. /* we treat the high watermark as reserved pages. */
  4406. max += high_wmark_pages(zone);
  4407. if (max > zone->present_pages)
  4408. max = zone->present_pages;
  4409. reserve_pages += max;
  4410. /*
  4411. * Lowmem reserves are not available to
  4412. * GFP_HIGHUSER page cache allocations and
  4413. * kswapd tries to balance zones to their high
  4414. * watermark. As a result, neither should be
  4415. * regarded as dirtyable memory, to prevent a
  4416. * situation where reclaim has to clean pages
  4417. * in order to balance the zones.
  4418. */
  4419. zone->dirty_balance_reserve = max;
  4420. }
  4421. }
  4422. dirty_balance_reserve = reserve_pages;
  4423. totalreserve_pages = reserve_pages;
  4424. }
  4425. /*
  4426. * setup_per_zone_lowmem_reserve - called whenever
  4427. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  4428. * has a correct pages reserved value, so an adequate number of
  4429. * pages are left in the zone after a successful __alloc_pages().
  4430. */
  4431. static void setup_per_zone_lowmem_reserve(void)
  4432. {
  4433. struct pglist_data *pgdat;
  4434. enum zone_type j, idx;
  4435. for_each_online_pgdat(pgdat) {
  4436. for (j = 0; j < MAX_NR_ZONES; j++) {
  4437. struct zone *zone = pgdat->node_zones + j;
  4438. unsigned long present_pages = zone->present_pages;
  4439. zone->lowmem_reserve[j] = 0;
  4440. idx = j;
  4441. while (idx) {
  4442. struct zone *lower_zone;
  4443. idx--;
  4444. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  4445. sysctl_lowmem_reserve_ratio[idx] = 1;
  4446. lower_zone = pgdat->node_zones + idx;
  4447. lower_zone->lowmem_reserve[j] = present_pages /
  4448. sysctl_lowmem_reserve_ratio[idx];
  4449. present_pages += lower_zone->present_pages;
  4450. }
  4451. }
  4452. }
  4453. /* update totalreserve_pages */
  4454. calculate_totalreserve_pages();
  4455. }
  4456. static void __setup_per_zone_wmarks(void)
  4457. {
  4458. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  4459. unsigned long lowmem_pages = 0;
  4460. struct zone *zone;
  4461. unsigned long flags;
  4462. /* Calculate total number of !ZONE_HIGHMEM pages */
  4463. for_each_zone(zone) {
  4464. if (!is_highmem(zone))
  4465. lowmem_pages += zone->present_pages;
  4466. }
  4467. for_each_zone(zone) {
  4468. u64 tmp;
  4469. spin_lock_irqsave(&zone->lock, flags);
  4470. tmp = (u64)pages_min * zone->present_pages;
  4471. do_div(tmp, lowmem_pages);
  4472. if (is_highmem(zone)) {
  4473. /*
  4474. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  4475. * need highmem pages, so cap pages_min to a small
  4476. * value here.
  4477. *
  4478. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  4479. * deltas controls asynch page reclaim, and so should
  4480. * not be capped for highmem.
  4481. */
  4482. int min_pages;
  4483. min_pages = zone->present_pages / 1024;
  4484. if (min_pages < SWAP_CLUSTER_MAX)
  4485. min_pages = SWAP_CLUSTER_MAX;
  4486. if (min_pages > 128)
  4487. min_pages = 128;
  4488. zone->watermark[WMARK_MIN] = min_pages;
  4489. } else {
  4490. /*
  4491. * If it's a lowmem zone, reserve a number of pages
  4492. * proportionate to the zone's size.
  4493. */
  4494. zone->watermark[WMARK_MIN] = tmp;
  4495. }
  4496. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  4497. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  4498. zone->watermark[WMARK_MIN] += cma_wmark_pages(zone);
  4499. zone->watermark[WMARK_LOW] += cma_wmark_pages(zone);
  4500. zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone);
  4501. setup_zone_migrate_reserve(zone);
  4502. spin_unlock_irqrestore(&zone->lock, flags);
  4503. }
  4504. /* update totalreserve_pages */
  4505. calculate_totalreserve_pages();
  4506. }
  4507. /**
  4508. * setup_per_zone_wmarks - called when min_free_kbytes changes
  4509. * or when memory is hot-{added|removed}
  4510. *
  4511. * Ensures that the watermark[min,low,high] values for each zone are set
  4512. * correctly with respect to min_free_kbytes.
  4513. */
  4514. void setup_per_zone_wmarks(void)
  4515. {
  4516. mutex_lock(&zonelists_mutex);
  4517. __setup_per_zone_wmarks();
  4518. mutex_unlock(&zonelists_mutex);
  4519. }
  4520. /*
  4521. * The inactive anon list should be small enough that the VM never has to
  4522. * do too much work, but large enough that each inactive page has a chance
  4523. * to be referenced again before it is swapped out.
  4524. *
  4525. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  4526. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  4527. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  4528. * the anonymous pages are kept on the inactive list.
  4529. *
  4530. * total target max
  4531. * memory ratio inactive anon
  4532. * -------------------------------------
  4533. * 10MB 1 5MB
  4534. * 100MB 1 50MB
  4535. * 1GB 3 250MB
  4536. * 10GB 10 0.9GB
  4537. * 100GB 31 3GB
  4538. * 1TB 101 10GB
  4539. * 10TB 320 32GB
  4540. */
  4541. static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
  4542. {
  4543. unsigned int gb, ratio;
  4544. /* Zone size in gigabytes */
  4545. gb = zone->present_pages >> (30 - PAGE_SHIFT);
  4546. if (gb)
  4547. ratio = int_sqrt(10 * gb);
  4548. else
  4549. ratio = 1;
  4550. zone->inactive_ratio = ratio;
  4551. }
  4552. static void __meminit setup_per_zone_inactive_ratio(void)
  4553. {
  4554. struct zone *zone;
  4555. for_each_zone(zone)
  4556. calculate_zone_inactive_ratio(zone);
  4557. }
  4558. /*
  4559. * Initialise min_free_kbytes.
  4560. *
  4561. * For small machines we want it small (128k min). For large machines
  4562. * we want it large (64MB max). But it is not linear, because network
  4563. * bandwidth does not increase linearly with machine size. We use
  4564. *
  4565. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  4566. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  4567. *
  4568. * which yields
  4569. *
  4570. * 16MB: 512k
  4571. * 32MB: 724k
  4572. * 64MB: 1024k
  4573. * 128MB: 1448k
  4574. * 256MB: 2048k
  4575. * 512MB: 2896k
  4576. * 1024MB: 4096k
  4577. * 2048MB: 5792k
  4578. * 4096MB: 8192k
  4579. * 8192MB: 11584k
  4580. * 16384MB: 16384k
  4581. */
  4582. int __meminit init_per_zone_wmark_min(void)
  4583. {
  4584. unsigned long lowmem_kbytes;
  4585. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  4586. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  4587. if (min_free_kbytes < 128)
  4588. min_free_kbytes = 128;
  4589. if (min_free_kbytes > 65536)
  4590. min_free_kbytes = 65536;
  4591. setup_per_zone_wmarks();
  4592. refresh_zone_stat_thresholds();
  4593. setup_per_zone_lowmem_reserve();
  4594. setup_per_zone_inactive_ratio();
  4595. return 0;
  4596. }
  4597. module_init(init_per_zone_wmark_min)
  4598. /*
  4599. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  4600. * that we can call two helper functions whenever min_free_kbytes
  4601. * changes.
  4602. */
  4603. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  4604. void __user *buffer, size_t *length, loff_t *ppos)
  4605. {
  4606. proc_dointvec(table, write, buffer, length, ppos);
  4607. if (write)
  4608. setup_per_zone_wmarks();
  4609. return 0;
  4610. }
  4611. #ifdef CONFIG_NUMA
  4612. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  4613. void __user *buffer, size_t *length, loff_t *ppos)
  4614. {
  4615. struct zone *zone;
  4616. int rc;
  4617. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4618. if (rc)
  4619. return rc;
  4620. for_each_zone(zone)
  4621. zone->min_unmapped_pages = (zone->present_pages *
  4622. sysctl_min_unmapped_ratio) / 100;
  4623. return 0;
  4624. }
  4625. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  4626. void __user *buffer, size_t *length, loff_t *ppos)
  4627. {
  4628. struct zone *zone;
  4629. int rc;
  4630. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4631. if (rc)
  4632. return rc;
  4633. for_each_zone(zone)
  4634. zone->min_slab_pages = (zone->present_pages *
  4635. sysctl_min_slab_ratio) / 100;
  4636. return 0;
  4637. }
  4638. #endif
  4639. /*
  4640. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  4641. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  4642. * whenever sysctl_lowmem_reserve_ratio changes.
  4643. *
  4644. * The reserve ratio obviously has absolutely no relation with the
  4645. * minimum watermarks. The lowmem reserve ratio can only make sense
  4646. * if in function of the boot time zone sizes.
  4647. */
  4648. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  4649. void __user *buffer, size_t *length, loff_t *ppos)
  4650. {
  4651. proc_dointvec_minmax(table, write, buffer, length, ppos);
  4652. setup_per_zone_lowmem_reserve();
  4653. return 0;
  4654. }
  4655. /*
  4656. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  4657. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  4658. * can have before it gets flushed back to buddy allocator.
  4659. */
  4660. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  4661. void __user *buffer, size_t *length, loff_t *ppos)
  4662. {
  4663. struct zone *zone;
  4664. unsigned int cpu;
  4665. int ret;
  4666. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4667. if (!write || (ret < 0))
  4668. return ret;
  4669. for_each_populated_zone(zone) {
  4670. for_each_possible_cpu(cpu) {
  4671. unsigned long high;
  4672. high = zone->present_pages / percpu_pagelist_fraction;
  4673. setup_pagelist_highmark(
  4674. per_cpu_ptr(zone->pageset, cpu), high);
  4675. }
  4676. }
  4677. return 0;
  4678. }
  4679. int hashdist = HASHDIST_DEFAULT;
  4680. #ifdef CONFIG_NUMA
  4681. static int __init set_hashdist(char *str)
  4682. {
  4683. if (!str)
  4684. return 0;
  4685. hashdist = simple_strtoul(str, &str, 0);
  4686. return 1;
  4687. }
  4688. __setup("hashdist=", set_hashdist);
  4689. #endif
  4690. /*
  4691. * allocate a large system hash table from bootmem
  4692. * - it is assumed that the hash table must contain an exact power-of-2
  4693. * quantity of entries
  4694. * - limit is the number of hash buckets, not the total allocation size
  4695. */
  4696. void *__init alloc_large_system_hash(const char *tablename,
  4697. unsigned long bucketsize,
  4698. unsigned long numentries,
  4699. int scale,
  4700. int flags,
  4701. unsigned int *_hash_shift,
  4702. unsigned int *_hash_mask,
  4703. unsigned long low_limit,
  4704. unsigned long high_limit)
  4705. {
  4706. unsigned long long max = high_limit;
  4707. unsigned long log2qty, size;
  4708. void *table = NULL;
  4709. /* allow the kernel cmdline to have a say */
  4710. if (!numentries) {
  4711. /* round applicable memory size up to nearest megabyte */
  4712. numentries = nr_kernel_pages;
  4713. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  4714. numentries >>= 20 - PAGE_SHIFT;
  4715. numentries <<= 20 - PAGE_SHIFT;
  4716. /* limit to 1 bucket per 2^scale bytes of low memory */
  4717. if (scale > PAGE_SHIFT)
  4718. numentries >>= (scale - PAGE_SHIFT);
  4719. else
  4720. numentries <<= (PAGE_SHIFT - scale);
  4721. /* Make sure we've got at least a 0-order allocation.. */
  4722. if (unlikely(flags & HASH_SMALL)) {
  4723. /* Makes no sense without HASH_EARLY */
  4724. WARN_ON(!(flags & HASH_EARLY));
  4725. if (!(numentries >> *_hash_shift)) {
  4726. numentries = 1UL << *_hash_shift;
  4727. BUG_ON(!numentries);
  4728. }
  4729. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  4730. numentries = PAGE_SIZE / bucketsize;
  4731. }
  4732. numentries = roundup_pow_of_two(numentries);
  4733. /* limit allocation size to 1/16 total memory by default */
  4734. if (max == 0) {
  4735. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  4736. do_div(max, bucketsize);
  4737. }
  4738. max = min(max, 0x80000000ULL);
  4739. if (numentries < low_limit)
  4740. numentries = low_limit;
  4741. if (numentries > max)
  4742. numentries = max;
  4743. log2qty = ilog2(numentries);
  4744. do {
  4745. size = bucketsize << log2qty;
  4746. if (flags & HASH_EARLY)
  4747. table = alloc_bootmem_nopanic(size);
  4748. else if (hashdist)
  4749. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  4750. else {
  4751. /*
  4752. * If bucketsize is not a power-of-two, we may free
  4753. * some pages at the end of hash table which
  4754. * alloc_pages_exact() automatically does
  4755. */
  4756. if (get_order(size) < MAX_ORDER) {
  4757. table = alloc_pages_exact(size, GFP_ATOMIC);
  4758. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  4759. }
  4760. }
  4761. } while (!table && size > PAGE_SIZE && --log2qty);
  4762. if (!table)
  4763. panic("Failed to allocate %s hash table\n", tablename);
  4764. printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
  4765. tablename,
  4766. (1UL << log2qty),
  4767. ilog2(size) - PAGE_SHIFT,
  4768. size);
  4769. if (_hash_shift)
  4770. *_hash_shift = log2qty;
  4771. if (_hash_mask)
  4772. *_hash_mask = (1 << log2qty) - 1;
  4773. return table;
  4774. }
  4775. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  4776. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  4777. unsigned long pfn)
  4778. {
  4779. #ifdef CONFIG_SPARSEMEM
  4780. return __pfn_to_section(pfn)->pageblock_flags;
  4781. #else
  4782. return zone->pageblock_flags;
  4783. #endif /* CONFIG_SPARSEMEM */
  4784. }
  4785. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  4786. {
  4787. #ifdef CONFIG_SPARSEMEM
  4788. pfn &= (PAGES_PER_SECTION-1);
  4789. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4790. #else
  4791. pfn = pfn - zone->zone_start_pfn;
  4792. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4793. #endif /* CONFIG_SPARSEMEM */
  4794. }
  4795. /**
  4796. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  4797. * @page: The page within the block of interest
  4798. * @start_bitidx: The first bit of interest to retrieve
  4799. * @end_bitidx: The last bit of interest
  4800. * returns pageblock_bits flags
  4801. */
  4802. unsigned long get_pageblock_flags_group(struct page *page,
  4803. int start_bitidx, int end_bitidx)
  4804. {
  4805. struct zone *zone;
  4806. unsigned long *bitmap;
  4807. unsigned long pfn, bitidx;
  4808. unsigned long flags = 0;
  4809. unsigned long value = 1;
  4810. zone = page_zone(page);
  4811. pfn = page_to_pfn(page);
  4812. bitmap = get_pageblock_bitmap(zone, pfn);
  4813. bitidx = pfn_to_bitidx(zone, pfn);
  4814. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4815. if (test_bit(bitidx + start_bitidx, bitmap))
  4816. flags |= value;
  4817. return flags;
  4818. }
  4819. /**
  4820. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  4821. * @page: The page within the block of interest
  4822. * @start_bitidx: The first bit of interest
  4823. * @end_bitidx: The last bit of interest
  4824. * @flags: The flags to set
  4825. */
  4826. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  4827. int start_bitidx, int end_bitidx)
  4828. {
  4829. struct zone *zone;
  4830. unsigned long *bitmap;
  4831. unsigned long pfn, bitidx;
  4832. unsigned long value = 1;
  4833. zone = page_zone(page);
  4834. pfn = page_to_pfn(page);
  4835. bitmap = get_pageblock_bitmap(zone, pfn);
  4836. bitidx = pfn_to_bitidx(zone, pfn);
  4837. VM_BUG_ON(pfn < zone->zone_start_pfn);
  4838. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  4839. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4840. if (flags & value)
  4841. __set_bit(bitidx + start_bitidx, bitmap);
  4842. else
  4843. __clear_bit(bitidx + start_bitidx, bitmap);
  4844. }
  4845. /*
  4846. * This function checks whether pageblock includes unmovable pages or not.
  4847. * If @count is not zero, it is okay to include less @count unmovable pages
  4848. *
  4849. * PageLRU check wihtout isolation or lru_lock could race so that
  4850. * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
  4851. * expect this function should be exact.
  4852. */
  4853. bool has_unmovable_pages(struct zone *zone, struct page *page, int count)
  4854. {
  4855. unsigned long pfn, iter, found;
  4856. int mt;
  4857. /*
  4858. * For avoiding noise data, lru_add_drain_all() should be called
  4859. * If ZONE_MOVABLE, the zone never contains unmovable pages
  4860. */
  4861. if (zone_idx(zone) == ZONE_MOVABLE)
  4862. return false;
  4863. mt = get_pageblock_migratetype(page);
  4864. if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
  4865. return false;
  4866. pfn = page_to_pfn(page);
  4867. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  4868. unsigned long check = pfn + iter;
  4869. if (!pfn_valid_within(check))
  4870. continue;
  4871. page = pfn_to_page(check);
  4872. /*
  4873. * We can't use page_count without pin a page
  4874. * because another CPU can free compound page.
  4875. * This check already skips compound tails of THP
  4876. * because their page->_count is zero at all time.
  4877. */
  4878. if (!atomic_read(&page->_count)) {
  4879. if (PageBuddy(page))
  4880. iter += (1 << page_order(page)) - 1;
  4881. continue;
  4882. }
  4883. if (!PageLRU(page))
  4884. found++;
  4885. /*
  4886. * If there are RECLAIMABLE pages, we need to check it.
  4887. * But now, memory offline itself doesn't call shrink_slab()
  4888. * and it still to be fixed.
  4889. */
  4890. /*
  4891. * If the page is not RAM, page_count()should be 0.
  4892. * we don't need more check. This is an _used_ not-movable page.
  4893. *
  4894. * The problematic thing here is PG_reserved pages. PG_reserved
  4895. * is set to both of a memory hole page and a _used_ kernel
  4896. * page at boot.
  4897. */
  4898. if (found > count)
  4899. return true;
  4900. }
  4901. return false;
  4902. }
  4903. bool is_pageblock_removable_nolock(struct page *page)
  4904. {
  4905. struct zone *zone;
  4906. unsigned long pfn;
  4907. /*
  4908. * We have to be careful here because we are iterating over memory
  4909. * sections which are not zone aware so we might end up outside of
  4910. * the zone but still within the section.
  4911. * We have to take care about the node as well. If the node is offline
  4912. * its NODE_DATA will be NULL - see page_zone.
  4913. */
  4914. if (!node_online(page_to_nid(page)))
  4915. return false;
  4916. zone = page_zone(page);
  4917. pfn = page_to_pfn(page);
  4918. if (zone->zone_start_pfn > pfn ||
  4919. zone->zone_start_pfn + zone->spanned_pages <= pfn)
  4920. return false;
  4921. return !has_unmovable_pages(zone, page, 0);
  4922. }
  4923. #ifdef CONFIG_CMA
  4924. static unsigned long pfn_max_align_down(unsigned long pfn)
  4925. {
  4926. return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
  4927. pageblock_nr_pages) - 1);
  4928. }
  4929. static unsigned long pfn_max_align_up(unsigned long pfn)
  4930. {
  4931. return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
  4932. pageblock_nr_pages));
  4933. }
  4934. /* [start, end) must belong to a single zone. */
  4935. static int __alloc_contig_migrate_range(struct compact_control *cc,
  4936. unsigned long start, unsigned long end)
  4937. {
  4938. /* This function is based on compact_zone() from compaction.c. */
  4939. unsigned long nr_reclaimed;
  4940. unsigned long pfn = start;
  4941. unsigned int tries = 0;
  4942. int ret = 0;
  4943. migrate_prep_local();
  4944. while (pfn < end || !list_empty(&cc->migratepages)) {
  4945. if (fatal_signal_pending(current)) {
  4946. ret = -EINTR;
  4947. break;
  4948. }
  4949. if (list_empty(&cc->migratepages)) {
  4950. cc->nr_migratepages = 0;
  4951. pfn = isolate_migratepages_range(cc->zone, cc,
  4952. pfn, end, true);
  4953. if (!pfn) {
  4954. ret = -EINTR;
  4955. break;
  4956. }
  4957. tries = 0;
  4958. } else if (++tries == 5) {
  4959. ret = ret < 0 ? ret : -EBUSY;
  4960. break;
  4961. }
  4962. nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
  4963. &cc->migratepages);
  4964. cc->nr_migratepages -= nr_reclaimed;
  4965. ret = migrate_pages(&cc->migratepages,
  4966. alloc_migrate_target,
  4967. 0, false, MIGRATE_SYNC);
  4968. }
  4969. putback_lru_pages(&cc->migratepages);
  4970. return ret > 0 ? 0 : ret;
  4971. }
  4972. /*
  4973. * Update zone's cma pages counter used for watermark level calculation.
  4974. */
  4975. static inline void __update_cma_watermarks(struct zone *zone, int count)
  4976. {
  4977. unsigned long flags;
  4978. spin_lock_irqsave(&zone->lock, flags);
  4979. zone->min_cma_pages += count;
  4980. spin_unlock_irqrestore(&zone->lock, flags);
  4981. setup_per_zone_wmarks();
  4982. }
  4983. /*
  4984. * Trigger memory pressure bump to reclaim some pages in order to be able to
  4985. * allocate 'count' pages in single page units. Does similar work as
  4986. *__alloc_pages_slowpath() function.
  4987. */
  4988. static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count)
  4989. {
  4990. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  4991. struct zonelist *zonelist = node_zonelist(0, gfp_mask);
  4992. int did_some_progress = 0;
  4993. int order = 1;
  4994. /*
  4995. * Increase level of watermarks to force kswapd do his job
  4996. * to stabilise at new watermark level.
  4997. */
  4998. __update_cma_watermarks(zone, count);
  4999. /* Obey watermarks as if the page was being allocated */
  5000. while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) {
  5001. wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone));
  5002. did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
  5003. NULL);
  5004. if (!did_some_progress) {
  5005. /* Exhausted what can be done so it's blamo time */
  5006. out_of_memory(zonelist, gfp_mask, order, NULL, false);
  5007. }
  5008. }
  5009. /* Restore original watermark levels. */
  5010. __update_cma_watermarks(zone, -count);
  5011. return count;
  5012. }
  5013. /**
  5014. * alloc_contig_range() -- tries to allocate given range of pages
  5015. * @start: start PFN to allocate
  5016. * @end: one-past-the-last PFN to allocate
  5017. * @migratetype: migratetype of the underlaying pageblocks (either
  5018. * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
  5019. * in range must have the same migratetype and it must
  5020. * be either of the two.
  5021. *
  5022. * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
  5023. * aligned, however it's the caller's responsibility to guarantee that
  5024. * we are the only thread that changes migrate type of pageblocks the
  5025. * pages fall in.
  5026. *
  5027. * The PFN range must belong to a single zone.
  5028. *
  5029. * Returns zero on success or negative error code. On success all
  5030. * pages which PFN is in [start, end) are allocated for the caller and
  5031. * need to be freed with free_contig_range().
  5032. */
  5033. int alloc_contig_range(unsigned long start, unsigned long end,
  5034. unsigned migratetype)
  5035. {
  5036. struct zone *zone = page_zone(pfn_to_page(start));
  5037. unsigned long outer_start, outer_end;
  5038. int ret = 0, order;
  5039. struct compact_control cc = {
  5040. .nr_migratepages = 0,
  5041. .order = -1,
  5042. .zone = page_zone(pfn_to_page(start)),
  5043. .sync = true,
  5044. .ignore_skip_hint = true,
  5045. };
  5046. INIT_LIST_HEAD(&cc.migratepages);
  5047. /*
  5048. * What we do here is we mark all pageblocks in range as
  5049. * MIGRATE_ISOLATE. Because pageblock and max order pages may
  5050. * have different sizes, and due to the way page allocator
  5051. * work, we align the range to biggest of the two pages so
  5052. * that page allocator won't try to merge buddies from
  5053. * different pageblocks and change MIGRATE_ISOLATE to some
  5054. * other migration type.
  5055. *
  5056. * Once the pageblocks are marked as MIGRATE_ISOLATE, we
  5057. * migrate the pages from an unaligned range (ie. pages that
  5058. * we are interested in). This will put all the pages in
  5059. * range back to page allocator as MIGRATE_ISOLATE.
  5060. *
  5061. * When this is done, we take the pages in range from page
  5062. * allocator removing them from the buddy system. This way
  5063. * page allocator will never consider using them.
  5064. *
  5065. * This lets us mark the pageblocks back as
  5066. * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
  5067. * aligned range but not in the unaligned, original range are
  5068. * put back to page allocator so that buddy can use them.
  5069. */
  5070. ret = start_isolate_page_range(pfn_max_align_down(start),
  5071. pfn_max_align_up(end), migratetype);
  5072. if (ret)
  5073. goto done;
  5074. ret = __alloc_contig_migrate_range(&cc, start, end);
  5075. if (ret)
  5076. goto done;
  5077. /*
  5078. * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
  5079. * aligned blocks that are marked as MIGRATE_ISOLATE. What's
  5080. * more, all pages in [start, end) are free in page allocator.
  5081. * What we are going to do is to allocate all pages from
  5082. * [start, end) (that is remove them from page allocator).
  5083. *
  5084. * The only problem is that pages at the beginning and at the
  5085. * end of interesting range may be not aligned with pages that
  5086. * page allocator holds, ie. they can be part of higher order
  5087. * pages. Because of this, we reserve the bigger range and
  5088. * once this is done free the pages we are not interested in.
  5089. *
  5090. * We don't have to hold zone->lock here because the pages are
  5091. * isolated thus they won't get removed from buddy.
  5092. */
  5093. lru_add_drain_all();
  5094. drain_all_pages();
  5095. order = 0;
  5096. outer_start = start;
  5097. while (!PageBuddy(pfn_to_page(outer_start))) {
  5098. if (++order >= MAX_ORDER) {
  5099. ret = -EBUSY;
  5100. goto done;
  5101. }
  5102. outer_start &= ~0UL << order;
  5103. }
  5104. /* Make sure the range is really isolated. */
  5105. if (test_pages_isolated(outer_start, end)) {
  5106. pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
  5107. outer_start, end);
  5108. ret = -EBUSY;
  5109. goto done;
  5110. }
  5111. /*
  5112. * Reclaim enough pages to make sure that contiguous allocation
  5113. * will not starve the system.
  5114. */
  5115. __reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start);
  5116. /* Grab isolated pages from freelists. */
  5117. outer_end = isolate_freepages_range(&cc, outer_start, end);
  5118. if (!outer_end) {
  5119. ret = -EBUSY;
  5120. goto done;
  5121. }
  5122. /* Free head and tail (if any) */
  5123. if (start != outer_start)
  5124. free_contig_range(outer_start, start - outer_start);
  5125. if (end != outer_end)
  5126. free_contig_range(end, outer_end - end);
  5127. done:
  5128. undo_isolate_page_range(pfn_max_align_down(start),
  5129. pfn_max_align_up(end), migratetype);
  5130. return ret;
  5131. }
  5132. void free_contig_range(unsigned long pfn, unsigned nr_pages)
  5133. {
  5134. for (; nr_pages--; ++pfn)
  5135. __free_page(pfn_to_page(pfn));
  5136. }
  5137. #endif
  5138. #ifdef CONFIG_MEMORY_HOTPLUG
  5139. static int __meminit __zone_pcp_update(void *data)
  5140. {
  5141. struct zone *zone = data;
  5142. int cpu;
  5143. unsigned long batch = zone_batchsize(zone), flags;
  5144. for_each_possible_cpu(cpu) {
  5145. struct per_cpu_pageset *pset;
  5146. struct per_cpu_pages *pcp;
  5147. pset = per_cpu_ptr(zone->pageset, cpu);
  5148. pcp = &pset->pcp;
  5149. local_irq_save(flags);
  5150. if (pcp->count > 0)
  5151. free_pcppages_bulk(zone, pcp->count, pcp);
  5152. drain_zonestat(zone, pset);
  5153. setup_pageset(pset, batch);
  5154. local_irq_restore(flags);
  5155. }
  5156. return 0;
  5157. }
  5158. void __meminit zone_pcp_update(struct zone *zone)
  5159. {
  5160. stop_machine(__zone_pcp_update, zone, NULL);
  5161. }
  5162. #endif
  5163. #ifdef CONFIG_MEMORY_HOTREMOVE
  5164. void zone_pcp_reset(struct zone *zone)
  5165. {
  5166. unsigned long flags;
  5167. int cpu;
  5168. struct per_cpu_pageset *pset;
  5169. /* avoid races with drain_pages() */
  5170. local_irq_save(flags);
  5171. if (zone->pageset != &boot_pageset) {
  5172. for_each_online_cpu(cpu) {
  5173. pset = per_cpu_ptr(zone->pageset, cpu);
  5174. drain_zonestat(zone, pset);
  5175. }
  5176. free_percpu(zone->pageset);
  5177. zone->pageset = &boot_pageset;
  5178. }
  5179. local_irq_restore(flags);
  5180. }
  5181. /*
  5182. * All pages in the range must be isolated before calling this.
  5183. */
  5184. void
  5185. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  5186. {
  5187. struct page *page;
  5188. struct zone *zone;
  5189. int order, i;
  5190. unsigned long pfn;
  5191. unsigned long flags;
  5192. /* find the first valid pfn */
  5193. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  5194. if (pfn_valid(pfn))
  5195. break;
  5196. if (pfn == end_pfn)
  5197. return;
  5198. zone = page_zone(pfn_to_page(pfn));
  5199. spin_lock_irqsave(&zone->lock, flags);
  5200. pfn = start_pfn;
  5201. while (pfn < end_pfn) {
  5202. if (!pfn_valid(pfn)) {
  5203. pfn++;
  5204. continue;
  5205. }
  5206. page = pfn_to_page(pfn);
  5207. BUG_ON(page_count(page));
  5208. BUG_ON(!PageBuddy(page));
  5209. order = page_order(page);
  5210. #ifdef CONFIG_DEBUG_VM
  5211. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  5212. pfn, 1 << order, end_pfn);
  5213. #endif
  5214. list_del(&page->lru);
  5215. rmv_page_order(page);
  5216. zone->free_area[order].nr_free--;
  5217. __mod_zone_page_state(zone, NR_FREE_PAGES,
  5218. - (1UL << order));
  5219. for (i = 0; i < (1 << order); i++)
  5220. SetPageReserved((page+i));
  5221. pfn += (1 << order);
  5222. }
  5223. spin_unlock_irqrestore(&zone->lock, flags);
  5224. }
  5225. #endif
  5226. #ifdef CONFIG_MEMORY_FAILURE
  5227. bool is_free_buddy_page(struct page *page)
  5228. {
  5229. struct zone *zone = page_zone(page);
  5230. unsigned long pfn = page_to_pfn(page);
  5231. unsigned long flags;
  5232. int order;
  5233. spin_lock_irqsave(&zone->lock, flags);
  5234. for (order = 0; order < MAX_ORDER; order++) {
  5235. struct page *page_head = page - (pfn & ((1 << order) - 1));
  5236. if (PageBuddy(page_head) && page_order(page_head) >= order)
  5237. break;
  5238. }
  5239. spin_unlock_irqrestore(&zone->lock, flags);
  5240. return order < MAX_ORDER;
  5241. }
  5242. #endif
  5243. static const struct trace_print_flags pageflag_names[] = {
  5244. {1UL << PG_locked, "locked" },
  5245. {1UL << PG_error, "error" },
  5246. {1UL << PG_referenced, "referenced" },
  5247. {1UL << PG_uptodate, "uptodate" },
  5248. {1UL << PG_dirty, "dirty" },
  5249. {1UL << PG_lru, "lru" },
  5250. {1UL << PG_active, "active" },
  5251. {1UL << PG_slab, "slab" },
  5252. {1UL << PG_owner_priv_1, "owner_priv_1" },
  5253. {1UL << PG_arch_1, "arch_1" },
  5254. {1UL << PG_reserved, "reserved" },
  5255. {1UL << PG_private, "private" },
  5256. {1UL << PG_private_2, "private_2" },
  5257. {1UL << PG_writeback, "writeback" },
  5258. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  5259. {1UL << PG_head, "head" },
  5260. {1UL << PG_tail, "tail" },
  5261. #else
  5262. {1UL << PG_compound, "compound" },
  5263. #endif
  5264. {1UL << PG_swapcache, "swapcache" },
  5265. {1UL << PG_mappedtodisk, "mappedtodisk" },
  5266. {1UL << PG_reclaim, "reclaim" },
  5267. {1UL << PG_swapbacked, "swapbacked" },
  5268. {1UL << PG_unevictable, "unevictable" },
  5269. #ifdef CONFIG_MMU
  5270. {1UL << PG_mlocked, "mlocked" },
  5271. #endif
  5272. #ifdef CONFIG_ARCH_USES_PG_UNCACHED
  5273. {1UL << PG_uncached, "uncached" },
  5274. #endif
  5275. #ifdef CONFIG_MEMORY_FAILURE
  5276. {1UL << PG_hwpoison, "hwpoison" },
  5277. #endif
  5278. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  5279. {1UL << PG_compound_lock, "compound_lock" },
  5280. #endif
  5281. };
  5282. static void dump_page_flags(unsigned long flags)
  5283. {
  5284. const char *delim = "";
  5285. unsigned long mask;
  5286. int i;
  5287. BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
  5288. printk(KERN_ALERT "page flags: %#lx(", flags);
  5289. /* remove zone id */
  5290. flags &= (1UL << NR_PAGEFLAGS) - 1;
  5291. for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
  5292. mask = pageflag_names[i].mask;
  5293. if ((flags & mask) != mask)
  5294. continue;
  5295. flags &= ~mask;
  5296. printk("%s%s", delim, pageflag_names[i].name);
  5297. delim = "|";
  5298. }
  5299. /* check for left over flags */
  5300. if (flags)
  5301. printk("%s%#lx", delim, flags);
  5302. printk(")\n");
  5303. }
  5304. void dump_page(struct page *page)
  5305. {
  5306. printk(KERN_ALERT
  5307. "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
  5308. page, atomic_read(&page->_count), page_mapcount(page),
  5309. page->mapping, page->index);
  5310. dump_page_flags(page->flags);
  5311. mem_cgroup_print_bad_page(page);
  5312. }
  5313. /* reset zone->present_pages */
  5314. void reset_zone_present_pages(void)
  5315. {
  5316. struct zone *z;
  5317. int i, nid;
  5318. for_each_node_state(nid, N_HIGH_MEMORY) {
  5319. for (i = 0; i < MAX_NR_ZONES; i++) {
  5320. z = NODE_DATA(nid)->node_zones + i;
  5321. z->present_pages = 0;
  5322. }
  5323. }
  5324. }
  5325. /* calculate zone's present pages in buddy system */
  5326. void fixup_zone_present_pages(int nid, unsigned long start_pfn,
  5327. unsigned long end_pfn)
  5328. {
  5329. struct zone *z;
  5330. unsigned long zone_start_pfn, zone_end_pfn;
  5331. int i;
  5332. for (i = 0; i < MAX_NR_ZONES; i++) {
  5333. z = NODE_DATA(nid)->node_zones + i;
  5334. zone_start_pfn = z->zone_start_pfn;
  5335. zone_end_pfn = zone_start_pfn + z->spanned_pages;
  5336. /* if the two regions intersect */
  5337. if (!(zone_start_pfn >= end_pfn || zone_end_pfn <= start_pfn))
  5338. z->present_pages += min(end_pfn, zone_end_pfn) -
  5339. max(start_pfn, zone_start_pfn);
  5340. }
  5341. }