bnx2.c 206 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555
  1. /* bnx2.c: Broadcom NX2 network driver.
  2. *
  3. * Copyright (c) 2004-2009 Broadcom Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation.
  8. *
  9. * Written by: Michael Chan (mchan@broadcom.com)
  10. */
  11. #include <linux/module.h>
  12. #include <linux/moduleparam.h>
  13. #include <linux/kernel.h>
  14. #include <linux/timer.h>
  15. #include <linux/errno.h>
  16. #include <linux/ioport.h>
  17. #include <linux/slab.h>
  18. #include <linux/vmalloc.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pci.h>
  21. #include <linux/init.h>
  22. #include <linux/netdevice.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/skbuff.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/bitops.h>
  27. #include <asm/io.h>
  28. #include <asm/irq.h>
  29. #include <linux/delay.h>
  30. #include <asm/byteorder.h>
  31. #include <asm/page.h>
  32. #include <linux/time.h>
  33. #include <linux/ethtool.h>
  34. #include <linux/mii.h>
  35. #include <linux/if_vlan.h>
  36. #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  37. #define BCM_VLAN 1
  38. #endif
  39. #include <net/ip.h>
  40. #include <net/tcp.h>
  41. #include <net/checksum.h>
  42. #include <linux/workqueue.h>
  43. #include <linux/crc32.h>
  44. #include <linux/prefetch.h>
  45. #include <linux/cache.h>
  46. #include <linux/firmware.h>
  47. #include <linux/log2.h>
  48. #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
  49. #define BCM_CNIC 1
  50. #include "cnic_if.h"
  51. #endif
  52. #include "bnx2.h"
  53. #include "bnx2_fw.h"
  54. #define DRV_MODULE_NAME "bnx2"
  55. #define PFX DRV_MODULE_NAME ": "
  56. #define DRV_MODULE_VERSION "2.0.3"
  57. #define DRV_MODULE_RELDATE "Dec 03, 2009"
  58. #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-5.0.0.j3.fw"
  59. #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-5.0.0.j3.fw"
  60. #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-5.0.0.j3.fw"
  61. #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-5.0.0.j3.fw"
  62. #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-5.0.0.j3.fw"
  63. #define RUN_AT(x) (jiffies + (x))
  64. /* Time in jiffies before concluding the transmitter is hung. */
  65. #define TX_TIMEOUT (5*HZ)
  66. static char version[] __devinitdata =
  67. "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  68. MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
  69. MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
  70. MODULE_LICENSE("GPL");
  71. MODULE_VERSION(DRV_MODULE_VERSION);
  72. MODULE_FIRMWARE(FW_MIPS_FILE_06);
  73. MODULE_FIRMWARE(FW_RV2P_FILE_06);
  74. MODULE_FIRMWARE(FW_MIPS_FILE_09);
  75. MODULE_FIRMWARE(FW_RV2P_FILE_09);
  76. MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax);
  77. static int disable_msi = 0;
  78. module_param(disable_msi, int, 0);
  79. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  80. typedef enum {
  81. BCM5706 = 0,
  82. NC370T,
  83. NC370I,
  84. BCM5706S,
  85. NC370F,
  86. BCM5708,
  87. BCM5708S,
  88. BCM5709,
  89. BCM5709S,
  90. BCM5716,
  91. BCM5716S,
  92. } board_t;
  93. /* indexed by board_t, above */
  94. static struct {
  95. char *name;
  96. } board_info[] __devinitdata = {
  97. { "Broadcom NetXtreme II BCM5706 1000Base-T" },
  98. { "HP NC370T Multifunction Gigabit Server Adapter" },
  99. { "HP NC370i Multifunction Gigabit Server Adapter" },
  100. { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
  101. { "HP NC370F Multifunction Gigabit Server Adapter" },
  102. { "Broadcom NetXtreme II BCM5708 1000Base-T" },
  103. { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
  104. { "Broadcom NetXtreme II BCM5709 1000Base-T" },
  105. { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
  106. { "Broadcom NetXtreme II BCM5716 1000Base-T" },
  107. { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
  108. };
  109. static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
  110. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  111. PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
  112. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  113. PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
  114. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  115. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
  116. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
  117. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
  118. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  119. PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
  120. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  121. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
  122. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
  123. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
  124. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
  125. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
  126. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
  127. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
  128. { PCI_VENDOR_ID_BROADCOM, 0x163b,
  129. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
  130. { PCI_VENDOR_ID_BROADCOM, 0x163c,
  131. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
  132. { 0, }
  133. };
  134. static const struct flash_spec flash_table[] =
  135. {
  136. #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
  137. #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
  138. /* Slow EEPROM */
  139. {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
  140. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  141. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  142. "EEPROM - slow"},
  143. /* Expansion entry 0001 */
  144. {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
  145. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  146. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  147. "Entry 0001"},
  148. /* Saifun SA25F010 (non-buffered flash) */
  149. /* strap, cfg1, & write1 need updates */
  150. {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
  151. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  152. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
  153. "Non-buffered flash (128kB)"},
  154. /* Saifun SA25F020 (non-buffered flash) */
  155. /* strap, cfg1, & write1 need updates */
  156. {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
  157. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  158. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
  159. "Non-buffered flash (256kB)"},
  160. /* Expansion entry 0100 */
  161. {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
  162. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  163. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  164. "Entry 0100"},
  165. /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
  166. {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
  167. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  168. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
  169. "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
  170. /* Entry 0110: ST M45PE20 (non-buffered flash)*/
  171. {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
  172. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  173. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
  174. "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
  175. /* Saifun SA25F005 (non-buffered flash) */
  176. /* strap, cfg1, & write1 need updates */
  177. {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
  178. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  179. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
  180. "Non-buffered flash (64kB)"},
  181. /* Fast EEPROM */
  182. {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
  183. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  184. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  185. "EEPROM - fast"},
  186. /* Expansion entry 1001 */
  187. {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
  188. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  189. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  190. "Entry 1001"},
  191. /* Expansion entry 1010 */
  192. {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
  193. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  194. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  195. "Entry 1010"},
  196. /* ATMEL AT45DB011B (buffered flash) */
  197. {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
  198. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  199. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
  200. "Buffered flash (128kB)"},
  201. /* Expansion entry 1100 */
  202. {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
  203. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  204. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  205. "Entry 1100"},
  206. /* Expansion entry 1101 */
  207. {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
  208. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  209. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  210. "Entry 1101"},
  211. /* Ateml Expansion entry 1110 */
  212. {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
  213. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  214. BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
  215. "Entry 1110 (Atmel)"},
  216. /* ATMEL AT45DB021B (buffered flash) */
  217. {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
  218. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  219. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
  220. "Buffered flash (256kB)"},
  221. };
  222. static const struct flash_spec flash_5709 = {
  223. .flags = BNX2_NV_BUFFERED,
  224. .page_bits = BCM5709_FLASH_PAGE_BITS,
  225. .page_size = BCM5709_FLASH_PAGE_SIZE,
  226. .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
  227. .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
  228. .name = "5709 Buffered flash (256kB)",
  229. };
  230. MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
  231. static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
  232. {
  233. u32 diff;
  234. smp_mb();
  235. /* The ring uses 256 indices for 255 entries, one of them
  236. * needs to be skipped.
  237. */
  238. diff = txr->tx_prod - txr->tx_cons;
  239. if (unlikely(diff >= TX_DESC_CNT)) {
  240. diff &= 0xffff;
  241. if (diff == TX_DESC_CNT)
  242. diff = MAX_TX_DESC_CNT;
  243. }
  244. return (bp->tx_ring_size - diff);
  245. }
  246. static u32
  247. bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
  248. {
  249. u32 val;
  250. spin_lock_bh(&bp->indirect_lock);
  251. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  252. val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
  253. spin_unlock_bh(&bp->indirect_lock);
  254. return val;
  255. }
  256. static void
  257. bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
  258. {
  259. spin_lock_bh(&bp->indirect_lock);
  260. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  261. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
  262. spin_unlock_bh(&bp->indirect_lock);
  263. }
  264. static void
  265. bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
  266. {
  267. bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
  268. }
  269. static u32
  270. bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
  271. {
  272. return (bnx2_reg_rd_ind(bp, bp->shmem_base + offset));
  273. }
  274. static void
  275. bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
  276. {
  277. offset += cid_addr;
  278. spin_lock_bh(&bp->indirect_lock);
  279. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  280. int i;
  281. REG_WR(bp, BNX2_CTX_CTX_DATA, val);
  282. REG_WR(bp, BNX2_CTX_CTX_CTRL,
  283. offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
  284. for (i = 0; i < 5; i++) {
  285. val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
  286. if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
  287. break;
  288. udelay(5);
  289. }
  290. } else {
  291. REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
  292. REG_WR(bp, BNX2_CTX_DATA, val);
  293. }
  294. spin_unlock_bh(&bp->indirect_lock);
  295. }
  296. #ifdef BCM_CNIC
  297. static int
  298. bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
  299. {
  300. struct bnx2 *bp = netdev_priv(dev);
  301. struct drv_ctl_io *io = &info->data.io;
  302. switch (info->cmd) {
  303. case DRV_CTL_IO_WR_CMD:
  304. bnx2_reg_wr_ind(bp, io->offset, io->data);
  305. break;
  306. case DRV_CTL_IO_RD_CMD:
  307. io->data = bnx2_reg_rd_ind(bp, io->offset);
  308. break;
  309. case DRV_CTL_CTX_WR_CMD:
  310. bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
  311. break;
  312. default:
  313. return -EINVAL;
  314. }
  315. return 0;
  316. }
  317. static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
  318. {
  319. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  320. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  321. int sb_id;
  322. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  323. cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
  324. bnapi->cnic_present = 0;
  325. sb_id = bp->irq_nvecs;
  326. cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
  327. } else {
  328. cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
  329. bnapi->cnic_tag = bnapi->last_status_idx;
  330. bnapi->cnic_present = 1;
  331. sb_id = 0;
  332. cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
  333. }
  334. cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
  335. cp->irq_arr[0].status_blk = (void *)
  336. ((unsigned long) bnapi->status_blk.msi +
  337. (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
  338. cp->irq_arr[0].status_blk_num = sb_id;
  339. cp->num_irq = 1;
  340. }
  341. static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
  342. void *data)
  343. {
  344. struct bnx2 *bp = netdev_priv(dev);
  345. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  346. if (ops == NULL)
  347. return -EINVAL;
  348. if (cp->drv_state & CNIC_DRV_STATE_REGD)
  349. return -EBUSY;
  350. bp->cnic_data = data;
  351. rcu_assign_pointer(bp->cnic_ops, ops);
  352. cp->num_irq = 0;
  353. cp->drv_state = CNIC_DRV_STATE_REGD;
  354. bnx2_setup_cnic_irq_info(bp);
  355. return 0;
  356. }
  357. static int bnx2_unregister_cnic(struct net_device *dev)
  358. {
  359. struct bnx2 *bp = netdev_priv(dev);
  360. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  361. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  362. mutex_lock(&bp->cnic_lock);
  363. cp->drv_state = 0;
  364. bnapi->cnic_present = 0;
  365. rcu_assign_pointer(bp->cnic_ops, NULL);
  366. mutex_unlock(&bp->cnic_lock);
  367. synchronize_rcu();
  368. return 0;
  369. }
  370. struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
  371. {
  372. struct bnx2 *bp = netdev_priv(dev);
  373. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  374. cp->drv_owner = THIS_MODULE;
  375. cp->chip_id = bp->chip_id;
  376. cp->pdev = bp->pdev;
  377. cp->io_base = bp->regview;
  378. cp->drv_ctl = bnx2_drv_ctl;
  379. cp->drv_register_cnic = bnx2_register_cnic;
  380. cp->drv_unregister_cnic = bnx2_unregister_cnic;
  381. return cp;
  382. }
  383. EXPORT_SYMBOL(bnx2_cnic_probe);
  384. static void
  385. bnx2_cnic_stop(struct bnx2 *bp)
  386. {
  387. struct cnic_ops *c_ops;
  388. struct cnic_ctl_info info;
  389. mutex_lock(&bp->cnic_lock);
  390. c_ops = bp->cnic_ops;
  391. if (c_ops) {
  392. info.cmd = CNIC_CTL_STOP_CMD;
  393. c_ops->cnic_ctl(bp->cnic_data, &info);
  394. }
  395. mutex_unlock(&bp->cnic_lock);
  396. }
  397. static void
  398. bnx2_cnic_start(struct bnx2 *bp)
  399. {
  400. struct cnic_ops *c_ops;
  401. struct cnic_ctl_info info;
  402. mutex_lock(&bp->cnic_lock);
  403. c_ops = bp->cnic_ops;
  404. if (c_ops) {
  405. if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
  406. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  407. bnapi->cnic_tag = bnapi->last_status_idx;
  408. }
  409. info.cmd = CNIC_CTL_START_CMD;
  410. c_ops->cnic_ctl(bp->cnic_data, &info);
  411. }
  412. mutex_unlock(&bp->cnic_lock);
  413. }
  414. #else
  415. static void
  416. bnx2_cnic_stop(struct bnx2 *bp)
  417. {
  418. }
  419. static void
  420. bnx2_cnic_start(struct bnx2 *bp)
  421. {
  422. }
  423. #endif
  424. static int
  425. bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
  426. {
  427. u32 val1;
  428. int i, ret;
  429. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  430. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  431. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  432. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  433. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  434. udelay(40);
  435. }
  436. val1 = (bp->phy_addr << 21) | (reg << 16) |
  437. BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
  438. BNX2_EMAC_MDIO_COMM_START_BUSY;
  439. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  440. for (i = 0; i < 50; i++) {
  441. udelay(10);
  442. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  443. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  444. udelay(5);
  445. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  446. val1 &= BNX2_EMAC_MDIO_COMM_DATA;
  447. break;
  448. }
  449. }
  450. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
  451. *val = 0x0;
  452. ret = -EBUSY;
  453. }
  454. else {
  455. *val = val1;
  456. ret = 0;
  457. }
  458. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  459. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  460. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  461. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  462. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  463. udelay(40);
  464. }
  465. return ret;
  466. }
  467. static int
  468. bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
  469. {
  470. u32 val1;
  471. int i, ret;
  472. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  473. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  474. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  475. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  476. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  477. udelay(40);
  478. }
  479. val1 = (bp->phy_addr << 21) | (reg << 16) | val |
  480. BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
  481. BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
  482. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  483. for (i = 0; i < 50; i++) {
  484. udelay(10);
  485. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  486. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  487. udelay(5);
  488. break;
  489. }
  490. }
  491. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
  492. ret = -EBUSY;
  493. else
  494. ret = 0;
  495. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  496. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  497. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  498. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  499. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  500. udelay(40);
  501. }
  502. return ret;
  503. }
  504. static void
  505. bnx2_disable_int(struct bnx2 *bp)
  506. {
  507. int i;
  508. struct bnx2_napi *bnapi;
  509. for (i = 0; i < bp->irq_nvecs; i++) {
  510. bnapi = &bp->bnx2_napi[i];
  511. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  512. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  513. }
  514. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  515. }
  516. static void
  517. bnx2_enable_int(struct bnx2 *bp)
  518. {
  519. int i;
  520. struct bnx2_napi *bnapi;
  521. for (i = 0; i < bp->irq_nvecs; i++) {
  522. bnapi = &bp->bnx2_napi[i];
  523. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  524. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  525. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  526. bnapi->last_status_idx);
  527. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  528. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  529. bnapi->last_status_idx);
  530. }
  531. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  532. }
  533. static void
  534. bnx2_disable_int_sync(struct bnx2 *bp)
  535. {
  536. int i;
  537. atomic_inc(&bp->intr_sem);
  538. if (!netif_running(bp->dev))
  539. return;
  540. bnx2_disable_int(bp);
  541. for (i = 0; i < bp->irq_nvecs; i++)
  542. synchronize_irq(bp->irq_tbl[i].vector);
  543. }
  544. static void
  545. bnx2_napi_disable(struct bnx2 *bp)
  546. {
  547. int i;
  548. for (i = 0; i < bp->irq_nvecs; i++)
  549. napi_disable(&bp->bnx2_napi[i].napi);
  550. }
  551. static void
  552. bnx2_napi_enable(struct bnx2 *bp)
  553. {
  554. int i;
  555. for (i = 0; i < bp->irq_nvecs; i++)
  556. napi_enable(&bp->bnx2_napi[i].napi);
  557. }
  558. static void
  559. bnx2_netif_stop(struct bnx2 *bp)
  560. {
  561. bnx2_cnic_stop(bp);
  562. if (netif_running(bp->dev)) {
  563. int i;
  564. bnx2_napi_disable(bp);
  565. netif_tx_disable(bp->dev);
  566. /* prevent tx timeout */
  567. for (i = 0; i < bp->dev->num_tx_queues; i++) {
  568. struct netdev_queue *txq;
  569. txq = netdev_get_tx_queue(bp->dev, i);
  570. txq->trans_start = jiffies;
  571. }
  572. }
  573. bnx2_disable_int_sync(bp);
  574. }
  575. static void
  576. bnx2_netif_start(struct bnx2 *bp)
  577. {
  578. if (atomic_dec_and_test(&bp->intr_sem)) {
  579. if (netif_running(bp->dev)) {
  580. netif_tx_wake_all_queues(bp->dev);
  581. bnx2_napi_enable(bp);
  582. bnx2_enable_int(bp);
  583. bnx2_cnic_start(bp);
  584. }
  585. }
  586. }
  587. static void
  588. bnx2_free_tx_mem(struct bnx2 *bp)
  589. {
  590. int i;
  591. for (i = 0; i < bp->num_tx_rings; i++) {
  592. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  593. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  594. if (txr->tx_desc_ring) {
  595. pci_free_consistent(bp->pdev, TXBD_RING_SIZE,
  596. txr->tx_desc_ring,
  597. txr->tx_desc_mapping);
  598. txr->tx_desc_ring = NULL;
  599. }
  600. kfree(txr->tx_buf_ring);
  601. txr->tx_buf_ring = NULL;
  602. }
  603. }
  604. static void
  605. bnx2_free_rx_mem(struct bnx2 *bp)
  606. {
  607. int i;
  608. for (i = 0; i < bp->num_rx_rings; i++) {
  609. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  610. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  611. int j;
  612. for (j = 0; j < bp->rx_max_ring; j++) {
  613. if (rxr->rx_desc_ring[j])
  614. pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
  615. rxr->rx_desc_ring[j],
  616. rxr->rx_desc_mapping[j]);
  617. rxr->rx_desc_ring[j] = NULL;
  618. }
  619. vfree(rxr->rx_buf_ring);
  620. rxr->rx_buf_ring = NULL;
  621. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  622. if (rxr->rx_pg_desc_ring[j])
  623. pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
  624. rxr->rx_pg_desc_ring[j],
  625. rxr->rx_pg_desc_mapping[j]);
  626. rxr->rx_pg_desc_ring[j] = NULL;
  627. }
  628. vfree(rxr->rx_pg_ring);
  629. rxr->rx_pg_ring = NULL;
  630. }
  631. }
  632. static int
  633. bnx2_alloc_tx_mem(struct bnx2 *bp)
  634. {
  635. int i;
  636. for (i = 0; i < bp->num_tx_rings; i++) {
  637. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  638. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  639. txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
  640. if (txr->tx_buf_ring == NULL)
  641. return -ENOMEM;
  642. txr->tx_desc_ring =
  643. pci_alloc_consistent(bp->pdev, TXBD_RING_SIZE,
  644. &txr->tx_desc_mapping);
  645. if (txr->tx_desc_ring == NULL)
  646. return -ENOMEM;
  647. }
  648. return 0;
  649. }
  650. static int
  651. bnx2_alloc_rx_mem(struct bnx2 *bp)
  652. {
  653. int i;
  654. for (i = 0; i < bp->num_rx_rings; i++) {
  655. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  656. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  657. int j;
  658. rxr->rx_buf_ring =
  659. vmalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
  660. if (rxr->rx_buf_ring == NULL)
  661. return -ENOMEM;
  662. memset(rxr->rx_buf_ring, 0,
  663. SW_RXBD_RING_SIZE * bp->rx_max_ring);
  664. for (j = 0; j < bp->rx_max_ring; j++) {
  665. rxr->rx_desc_ring[j] =
  666. pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
  667. &rxr->rx_desc_mapping[j]);
  668. if (rxr->rx_desc_ring[j] == NULL)
  669. return -ENOMEM;
  670. }
  671. if (bp->rx_pg_ring_size) {
  672. rxr->rx_pg_ring = vmalloc(SW_RXPG_RING_SIZE *
  673. bp->rx_max_pg_ring);
  674. if (rxr->rx_pg_ring == NULL)
  675. return -ENOMEM;
  676. memset(rxr->rx_pg_ring, 0, SW_RXPG_RING_SIZE *
  677. bp->rx_max_pg_ring);
  678. }
  679. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  680. rxr->rx_pg_desc_ring[j] =
  681. pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
  682. &rxr->rx_pg_desc_mapping[j]);
  683. if (rxr->rx_pg_desc_ring[j] == NULL)
  684. return -ENOMEM;
  685. }
  686. }
  687. return 0;
  688. }
  689. static void
  690. bnx2_free_mem(struct bnx2 *bp)
  691. {
  692. int i;
  693. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  694. bnx2_free_tx_mem(bp);
  695. bnx2_free_rx_mem(bp);
  696. for (i = 0; i < bp->ctx_pages; i++) {
  697. if (bp->ctx_blk[i]) {
  698. pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
  699. bp->ctx_blk[i],
  700. bp->ctx_blk_mapping[i]);
  701. bp->ctx_blk[i] = NULL;
  702. }
  703. }
  704. if (bnapi->status_blk.msi) {
  705. pci_free_consistent(bp->pdev, bp->status_stats_size,
  706. bnapi->status_blk.msi,
  707. bp->status_blk_mapping);
  708. bnapi->status_blk.msi = NULL;
  709. bp->stats_blk = NULL;
  710. }
  711. }
  712. static int
  713. bnx2_alloc_mem(struct bnx2 *bp)
  714. {
  715. int i, status_blk_size, err;
  716. struct bnx2_napi *bnapi;
  717. void *status_blk;
  718. /* Combine status and statistics blocks into one allocation. */
  719. status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
  720. if (bp->flags & BNX2_FLAG_MSIX_CAP)
  721. status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
  722. BNX2_SBLK_MSIX_ALIGN_SIZE);
  723. bp->status_stats_size = status_blk_size +
  724. sizeof(struct statistics_block);
  725. status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
  726. &bp->status_blk_mapping);
  727. if (status_blk == NULL)
  728. goto alloc_mem_err;
  729. memset(status_blk, 0, bp->status_stats_size);
  730. bnapi = &bp->bnx2_napi[0];
  731. bnapi->status_blk.msi = status_blk;
  732. bnapi->hw_tx_cons_ptr =
  733. &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
  734. bnapi->hw_rx_cons_ptr =
  735. &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
  736. if (bp->flags & BNX2_FLAG_MSIX_CAP) {
  737. for (i = 1; i < BNX2_MAX_MSIX_VEC; i++) {
  738. struct status_block_msix *sblk;
  739. bnapi = &bp->bnx2_napi[i];
  740. sblk = (void *) (status_blk +
  741. BNX2_SBLK_MSIX_ALIGN_SIZE * i);
  742. bnapi->status_blk.msix = sblk;
  743. bnapi->hw_tx_cons_ptr =
  744. &sblk->status_tx_quick_consumer_index;
  745. bnapi->hw_rx_cons_ptr =
  746. &sblk->status_rx_quick_consumer_index;
  747. bnapi->int_num = i << 24;
  748. }
  749. }
  750. bp->stats_blk = status_blk + status_blk_size;
  751. bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
  752. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  753. bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
  754. if (bp->ctx_pages == 0)
  755. bp->ctx_pages = 1;
  756. for (i = 0; i < bp->ctx_pages; i++) {
  757. bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
  758. BCM_PAGE_SIZE,
  759. &bp->ctx_blk_mapping[i]);
  760. if (bp->ctx_blk[i] == NULL)
  761. goto alloc_mem_err;
  762. }
  763. }
  764. err = bnx2_alloc_rx_mem(bp);
  765. if (err)
  766. goto alloc_mem_err;
  767. err = bnx2_alloc_tx_mem(bp);
  768. if (err)
  769. goto alloc_mem_err;
  770. return 0;
  771. alloc_mem_err:
  772. bnx2_free_mem(bp);
  773. return -ENOMEM;
  774. }
  775. static void
  776. bnx2_report_fw_link(struct bnx2 *bp)
  777. {
  778. u32 fw_link_status = 0;
  779. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  780. return;
  781. if (bp->link_up) {
  782. u32 bmsr;
  783. switch (bp->line_speed) {
  784. case SPEED_10:
  785. if (bp->duplex == DUPLEX_HALF)
  786. fw_link_status = BNX2_LINK_STATUS_10HALF;
  787. else
  788. fw_link_status = BNX2_LINK_STATUS_10FULL;
  789. break;
  790. case SPEED_100:
  791. if (bp->duplex == DUPLEX_HALF)
  792. fw_link_status = BNX2_LINK_STATUS_100HALF;
  793. else
  794. fw_link_status = BNX2_LINK_STATUS_100FULL;
  795. break;
  796. case SPEED_1000:
  797. if (bp->duplex == DUPLEX_HALF)
  798. fw_link_status = BNX2_LINK_STATUS_1000HALF;
  799. else
  800. fw_link_status = BNX2_LINK_STATUS_1000FULL;
  801. break;
  802. case SPEED_2500:
  803. if (bp->duplex == DUPLEX_HALF)
  804. fw_link_status = BNX2_LINK_STATUS_2500HALF;
  805. else
  806. fw_link_status = BNX2_LINK_STATUS_2500FULL;
  807. break;
  808. }
  809. fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
  810. if (bp->autoneg) {
  811. fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
  812. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  813. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  814. if (!(bmsr & BMSR_ANEGCOMPLETE) ||
  815. bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
  816. fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
  817. else
  818. fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
  819. }
  820. }
  821. else
  822. fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
  823. bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
  824. }
  825. static char *
  826. bnx2_xceiver_str(struct bnx2 *bp)
  827. {
  828. return ((bp->phy_port == PORT_FIBRE) ? "SerDes" :
  829. ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
  830. "Copper"));
  831. }
  832. static void
  833. bnx2_report_link(struct bnx2 *bp)
  834. {
  835. if (bp->link_up) {
  836. netif_carrier_on(bp->dev);
  837. printk(KERN_INFO PFX "%s NIC %s Link is Up, ", bp->dev->name,
  838. bnx2_xceiver_str(bp));
  839. printk("%d Mbps ", bp->line_speed);
  840. if (bp->duplex == DUPLEX_FULL)
  841. printk("full duplex");
  842. else
  843. printk("half duplex");
  844. if (bp->flow_ctrl) {
  845. if (bp->flow_ctrl & FLOW_CTRL_RX) {
  846. printk(", receive ");
  847. if (bp->flow_ctrl & FLOW_CTRL_TX)
  848. printk("& transmit ");
  849. }
  850. else {
  851. printk(", transmit ");
  852. }
  853. printk("flow control ON");
  854. }
  855. printk("\n");
  856. }
  857. else {
  858. netif_carrier_off(bp->dev);
  859. printk(KERN_ERR PFX "%s NIC %s Link is Down\n", bp->dev->name,
  860. bnx2_xceiver_str(bp));
  861. }
  862. bnx2_report_fw_link(bp);
  863. }
  864. static void
  865. bnx2_resolve_flow_ctrl(struct bnx2 *bp)
  866. {
  867. u32 local_adv, remote_adv;
  868. bp->flow_ctrl = 0;
  869. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  870. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  871. if (bp->duplex == DUPLEX_FULL) {
  872. bp->flow_ctrl = bp->req_flow_ctrl;
  873. }
  874. return;
  875. }
  876. if (bp->duplex != DUPLEX_FULL) {
  877. return;
  878. }
  879. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  880. (CHIP_NUM(bp) == CHIP_NUM_5708)) {
  881. u32 val;
  882. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  883. if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
  884. bp->flow_ctrl |= FLOW_CTRL_TX;
  885. if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
  886. bp->flow_ctrl |= FLOW_CTRL_RX;
  887. return;
  888. }
  889. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  890. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  891. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  892. u32 new_local_adv = 0;
  893. u32 new_remote_adv = 0;
  894. if (local_adv & ADVERTISE_1000XPAUSE)
  895. new_local_adv |= ADVERTISE_PAUSE_CAP;
  896. if (local_adv & ADVERTISE_1000XPSE_ASYM)
  897. new_local_adv |= ADVERTISE_PAUSE_ASYM;
  898. if (remote_adv & ADVERTISE_1000XPAUSE)
  899. new_remote_adv |= ADVERTISE_PAUSE_CAP;
  900. if (remote_adv & ADVERTISE_1000XPSE_ASYM)
  901. new_remote_adv |= ADVERTISE_PAUSE_ASYM;
  902. local_adv = new_local_adv;
  903. remote_adv = new_remote_adv;
  904. }
  905. /* See Table 28B-3 of 802.3ab-1999 spec. */
  906. if (local_adv & ADVERTISE_PAUSE_CAP) {
  907. if(local_adv & ADVERTISE_PAUSE_ASYM) {
  908. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  909. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  910. }
  911. else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
  912. bp->flow_ctrl = FLOW_CTRL_RX;
  913. }
  914. }
  915. else {
  916. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  917. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  918. }
  919. }
  920. }
  921. else if (local_adv & ADVERTISE_PAUSE_ASYM) {
  922. if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
  923. (remote_adv & ADVERTISE_PAUSE_ASYM)) {
  924. bp->flow_ctrl = FLOW_CTRL_TX;
  925. }
  926. }
  927. }
  928. static int
  929. bnx2_5709s_linkup(struct bnx2 *bp)
  930. {
  931. u32 val, speed;
  932. bp->link_up = 1;
  933. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
  934. bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
  935. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  936. if ((bp->autoneg & AUTONEG_SPEED) == 0) {
  937. bp->line_speed = bp->req_line_speed;
  938. bp->duplex = bp->req_duplex;
  939. return 0;
  940. }
  941. speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
  942. switch (speed) {
  943. case MII_BNX2_GP_TOP_AN_SPEED_10:
  944. bp->line_speed = SPEED_10;
  945. break;
  946. case MII_BNX2_GP_TOP_AN_SPEED_100:
  947. bp->line_speed = SPEED_100;
  948. break;
  949. case MII_BNX2_GP_TOP_AN_SPEED_1G:
  950. case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
  951. bp->line_speed = SPEED_1000;
  952. break;
  953. case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
  954. bp->line_speed = SPEED_2500;
  955. break;
  956. }
  957. if (val & MII_BNX2_GP_TOP_AN_FD)
  958. bp->duplex = DUPLEX_FULL;
  959. else
  960. bp->duplex = DUPLEX_HALF;
  961. return 0;
  962. }
  963. static int
  964. bnx2_5708s_linkup(struct bnx2 *bp)
  965. {
  966. u32 val;
  967. bp->link_up = 1;
  968. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  969. switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
  970. case BCM5708S_1000X_STAT1_SPEED_10:
  971. bp->line_speed = SPEED_10;
  972. break;
  973. case BCM5708S_1000X_STAT1_SPEED_100:
  974. bp->line_speed = SPEED_100;
  975. break;
  976. case BCM5708S_1000X_STAT1_SPEED_1G:
  977. bp->line_speed = SPEED_1000;
  978. break;
  979. case BCM5708S_1000X_STAT1_SPEED_2G5:
  980. bp->line_speed = SPEED_2500;
  981. break;
  982. }
  983. if (val & BCM5708S_1000X_STAT1_FD)
  984. bp->duplex = DUPLEX_FULL;
  985. else
  986. bp->duplex = DUPLEX_HALF;
  987. return 0;
  988. }
  989. static int
  990. bnx2_5706s_linkup(struct bnx2 *bp)
  991. {
  992. u32 bmcr, local_adv, remote_adv, common;
  993. bp->link_up = 1;
  994. bp->line_speed = SPEED_1000;
  995. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  996. if (bmcr & BMCR_FULLDPLX) {
  997. bp->duplex = DUPLEX_FULL;
  998. }
  999. else {
  1000. bp->duplex = DUPLEX_HALF;
  1001. }
  1002. if (!(bmcr & BMCR_ANENABLE)) {
  1003. return 0;
  1004. }
  1005. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1006. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1007. common = local_adv & remote_adv;
  1008. if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
  1009. if (common & ADVERTISE_1000XFULL) {
  1010. bp->duplex = DUPLEX_FULL;
  1011. }
  1012. else {
  1013. bp->duplex = DUPLEX_HALF;
  1014. }
  1015. }
  1016. return 0;
  1017. }
  1018. static int
  1019. bnx2_copper_linkup(struct bnx2 *bp)
  1020. {
  1021. u32 bmcr;
  1022. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1023. if (bmcr & BMCR_ANENABLE) {
  1024. u32 local_adv, remote_adv, common;
  1025. bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
  1026. bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
  1027. common = local_adv & (remote_adv >> 2);
  1028. if (common & ADVERTISE_1000FULL) {
  1029. bp->line_speed = SPEED_1000;
  1030. bp->duplex = DUPLEX_FULL;
  1031. }
  1032. else if (common & ADVERTISE_1000HALF) {
  1033. bp->line_speed = SPEED_1000;
  1034. bp->duplex = DUPLEX_HALF;
  1035. }
  1036. else {
  1037. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1038. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1039. common = local_adv & remote_adv;
  1040. if (common & ADVERTISE_100FULL) {
  1041. bp->line_speed = SPEED_100;
  1042. bp->duplex = DUPLEX_FULL;
  1043. }
  1044. else if (common & ADVERTISE_100HALF) {
  1045. bp->line_speed = SPEED_100;
  1046. bp->duplex = DUPLEX_HALF;
  1047. }
  1048. else if (common & ADVERTISE_10FULL) {
  1049. bp->line_speed = SPEED_10;
  1050. bp->duplex = DUPLEX_FULL;
  1051. }
  1052. else if (common & ADVERTISE_10HALF) {
  1053. bp->line_speed = SPEED_10;
  1054. bp->duplex = DUPLEX_HALF;
  1055. }
  1056. else {
  1057. bp->line_speed = 0;
  1058. bp->link_up = 0;
  1059. }
  1060. }
  1061. }
  1062. else {
  1063. if (bmcr & BMCR_SPEED100) {
  1064. bp->line_speed = SPEED_100;
  1065. }
  1066. else {
  1067. bp->line_speed = SPEED_10;
  1068. }
  1069. if (bmcr & BMCR_FULLDPLX) {
  1070. bp->duplex = DUPLEX_FULL;
  1071. }
  1072. else {
  1073. bp->duplex = DUPLEX_HALF;
  1074. }
  1075. }
  1076. return 0;
  1077. }
  1078. static void
  1079. bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
  1080. {
  1081. u32 val, rx_cid_addr = GET_CID_ADDR(cid);
  1082. val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
  1083. val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
  1084. val |= 0x02 << 8;
  1085. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1086. u32 lo_water, hi_water;
  1087. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1088. lo_water = BNX2_L2CTX_LO_WATER_MARK_DEFAULT;
  1089. else
  1090. lo_water = BNX2_L2CTX_LO_WATER_MARK_DIS;
  1091. if (lo_water >= bp->rx_ring_size)
  1092. lo_water = 0;
  1093. hi_water = min_t(int, bp->rx_ring_size / 4, lo_water + 16);
  1094. if (hi_water <= lo_water)
  1095. lo_water = 0;
  1096. hi_water /= BNX2_L2CTX_HI_WATER_MARK_SCALE;
  1097. lo_water /= BNX2_L2CTX_LO_WATER_MARK_SCALE;
  1098. if (hi_water > 0xf)
  1099. hi_water = 0xf;
  1100. else if (hi_water == 0)
  1101. lo_water = 0;
  1102. val |= lo_water | (hi_water << BNX2_L2CTX_HI_WATER_MARK_SHIFT);
  1103. }
  1104. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
  1105. }
  1106. static void
  1107. bnx2_init_all_rx_contexts(struct bnx2 *bp)
  1108. {
  1109. int i;
  1110. u32 cid;
  1111. for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
  1112. if (i == 1)
  1113. cid = RX_RSS_CID;
  1114. bnx2_init_rx_context(bp, cid);
  1115. }
  1116. }
  1117. static void
  1118. bnx2_set_mac_link(struct bnx2 *bp)
  1119. {
  1120. u32 val;
  1121. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
  1122. if (bp->link_up && (bp->line_speed == SPEED_1000) &&
  1123. (bp->duplex == DUPLEX_HALF)) {
  1124. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
  1125. }
  1126. /* Configure the EMAC mode register. */
  1127. val = REG_RD(bp, BNX2_EMAC_MODE);
  1128. val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  1129. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  1130. BNX2_EMAC_MODE_25G_MODE);
  1131. if (bp->link_up) {
  1132. switch (bp->line_speed) {
  1133. case SPEED_10:
  1134. if (CHIP_NUM(bp) != CHIP_NUM_5706) {
  1135. val |= BNX2_EMAC_MODE_PORT_MII_10M;
  1136. break;
  1137. }
  1138. /* fall through */
  1139. case SPEED_100:
  1140. val |= BNX2_EMAC_MODE_PORT_MII;
  1141. break;
  1142. case SPEED_2500:
  1143. val |= BNX2_EMAC_MODE_25G_MODE;
  1144. /* fall through */
  1145. case SPEED_1000:
  1146. val |= BNX2_EMAC_MODE_PORT_GMII;
  1147. break;
  1148. }
  1149. }
  1150. else {
  1151. val |= BNX2_EMAC_MODE_PORT_GMII;
  1152. }
  1153. /* Set the MAC to operate in the appropriate duplex mode. */
  1154. if (bp->duplex == DUPLEX_HALF)
  1155. val |= BNX2_EMAC_MODE_HALF_DUPLEX;
  1156. REG_WR(bp, BNX2_EMAC_MODE, val);
  1157. /* Enable/disable rx PAUSE. */
  1158. bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
  1159. if (bp->flow_ctrl & FLOW_CTRL_RX)
  1160. bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
  1161. REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
  1162. /* Enable/disable tx PAUSE. */
  1163. val = REG_RD(bp, BNX2_EMAC_TX_MODE);
  1164. val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
  1165. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1166. val |= BNX2_EMAC_TX_MODE_FLOW_EN;
  1167. REG_WR(bp, BNX2_EMAC_TX_MODE, val);
  1168. /* Acknowledge the interrupt. */
  1169. REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
  1170. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1171. bnx2_init_all_rx_contexts(bp);
  1172. }
  1173. static void
  1174. bnx2_enable_bmsr1(struct bnx2 *bp)
  1175. {
  1176. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1177. (CHIP_NUM(bp) == CHIP_NUM_5709))
  1178. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1179. MII_BNX2_BLK_ADDR_GP_STATUS);
  1180. }
  1181. static void
  1182. bnx2_disable_bmsr1(struct bnx2 *bp)
  1183. {
  1184. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1185. (CHIP_NUM(bp) == CHIP_NUM_5709))
  1186. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1187. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1188. }
  1189. static int
  1190. bnx2_test_and_enable_2g5(struct bnx2 *bp)
  1191. {
  1192. u32 up1;
  1193. int ret = 1;
  1194. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1195. return 0;
  1196. if (bp->autoneg & AUTONEG_SPEED)
  1197. bp->advertising |= ADVERTISED_2500baseX_Full;
  1198. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1199. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1200. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1201. if (!(up1 & BCM5708S_UP1_2G5)) {
  1202. up1 |= BCM5708S_UP1_2G5;
  1203. bnx2_write_phy(bp, bp->mii_up1, up1);
  1204. ret = 0;
  1205. }
  1206. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1207. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1208. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1209. return ret;
  1210. }
  1211. static int
  1212. bnx2_test_and_disable_2g5(struct bnx2 *bp)
  1213. {
  1214. u32 up1;
  1215. int ret = 0;
  1216. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1217. return 0;
  1218. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1219. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1220. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1221. if (up1 & BCM5708S_UP1_2G5) {
  1222. up1 &= ~BCM5708S_UP1_2G5;
  1223. bnx2_write_phy(bp, bp->mii_up1, up1);
  1224. ret = 1;
  1225. }
  1226. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1227. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1228. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1229. return ret;
  1230. }
  1231. static void
  1232. bnx2_enable_forced_2g5(struct bnx2 *bp)
  1233. {
  1234. u32 bmcr;
  1235. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1236. return;
  1237. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1238. u32 val;
  1239. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1240. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1241. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
  1242. val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
  1243. val |= MII_BNX2_SD_MISC1_FORCE | MII_BNX2_SD_MISC1_FORCE_2_5G;
  1244. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1245. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1246. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1247. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1248. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1249. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1250. bmcr |= BCM5708S_BMCR_FORCE_2500;
  1251. } else {
  1252. return;
  1253. }
  1254. if (bp->autoneg & AUTONEG_SPEED) {
  1255. bmcr &= ~BMCR_ANENABLE;
  1256. if (bp->req_duplex == DUPLEX_FULL)
  1257. bmcr |= BMCR_FULLDPLX;
  1258. }
  1259. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1260. }
  1261. static void
  1262. bnx2_disable_forced_2g5(struct bnx2 *bp)
  1263. {
  1264. u32 bmcr;
  1265. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1266. return;
  1267. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1268. u32 val;
  1269. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1270. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1271. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
  1272. val &= ~MII_BNX2_SD_MISC1_FORCE;
  1273. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1274. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1275. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1276. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1277. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1278. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1279. bmcr &= ~BCM5708S_BMCR_FORCE_2500;
  1280. } else {
  1281. return;
  1282. }
  1283. if (bp->autoneg & AUTONEG_SPEED)
  1284. bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
  1285. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1286. }
  1287. static void
  1288. bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
  1289. {
  1290. u32 val;
  1291. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
  1292. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1293. if (start)
  1294. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
  1295. else
  1296. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
  1297. }
  1298. static int
  1299. bnx2_set_link(struct bnx2 *bp)
  1300. {
  1301. u32 bmsr;
  1302. u8 link_up;
  1303. if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
  1304. bp->link_up = 1;
  1305. return 0;
  1306. }
  1307. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1308. return 0;
  1309. link_up = bp->link_up;
  1310. bnx2_enable_bmsr1(bp);
  1311. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1312. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1313. bnx2_disable_bmsr1(bp);
  1314. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1315. (CHIP_NUM(bp) == CHIP_NUM_5706)) {
  1316. u32 val, an_dbg;
  1317. if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
  1318. bnx2_5706s_force_link_dn(bp, 0);
  1319. bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
  1320. }
  1321. val = REG_RD(bp, BNX2_EMAC_STATUS);
  1322. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  1323. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1324. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1325. if ((val & BNX2_EMAC_STATUS_LINK) &&
  1326. !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
  1327. bmsr |= BMSR_LSTATUS;
  1328. else
  1329. bmsr &= ~BMSR_LSTATUS;
  1330. }
  1331. if (bmsr & BMSR_LSTATUS) {
  1332. bp->link_up = 1;
  1333. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1334. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1335. bnx2_5706s_linkup(bp);
  1336. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  1337. bnx2_5708s_linkup(bp);
  1338. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1339. bnx2_5709s_linkup(bp);
  1340. }
  1341. else {
  1342. bnx2_copper_linkup(bp);
  1343. }
  1344. bnx2_resolve_flow_ctrl(bp);
  1345. }
  1346. else {
  1347. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1348. (bp->autoneg & AUTONEG_SPEED))
  1349. bnx2_disable_forced_2g5(bp);
  1350. if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
  1351. u32 bmcr;
  1352. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1353. bmcr |= BMCR_ANENABLE;
  1354. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1355. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1356. }
  1357. bp->link_up = 0;
  1358. }
  1359. if (bp->link_up != link_up) {
  1360. bnx2_report_link(bp);
  1361. }
  1362. bnx2_set_mac_link(bp);
  1363. return 0;
  1364. }
  1365. static int
  1366. bnx2_reset_phy(struct bnx2 *bp)
  1367. {
  1368. int i;
  1369. u32 reg;
  1370. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
  1371. #define PHY_RESET_MAX_WAIT 100
  1372. for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
  1373. udelay(10);
  1374. bnx2_read_phy(bp, bp->mii_bmcr, &reg);
  1375. if (!(reg & BMCR_RESET)) {
  1376. udelay(20);
  1377. break;
  1378. }
  1379. }
  1380. if (i == PHY_RESET_MAX_WAIT) {
  1381. return -EBUSY;
  1382. }
  1383. return 0;
  1384. }
  1385. static u32
  1386. bnx2_phy_get_pause_adv(struct bnx2 *bp)
  1387. {
  1388. u32 adv = 0;
  1389. if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
  1390. (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
  1391. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1392. adv = ADVERTISE_1000XPAUSE;
  1393. }
  1394. else {
  1395. adv = ADVERTISE_PAUSE_CAP;
  1396. }
  1397. }
  1398. else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
  1399. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1400. adv = ADVERTISE_1000XPSE_ASYM;
  1401. }
  1402. else {
  1403. adv = ADVERTISE_PAUSE_ASYM;
  1404. }
  1405. }
  1406. else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
  1407. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1408. adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
  1409. }
  1410. else {
  1411. adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  1412. }
  1413. }
  1414. return adv;
  1415. }
  1416. static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
  1417. static int
  1418. bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
  1419. __releases(&bp->phy_lock)
  1420. __acquires(&bp->phy_lock)
  1421. {
  1422. u32 speed_arg = 0, pause_adv;
  1423. pause_adv = bnx2_phy_get_pause_adv(bp);
  1424. if (bp->autoneg & AUTONEG_SPEED) {
  1425. speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
  1426. if (bp->advertising & ADVERTISED_10baseT_Half)
  1427. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1428. if (bp->advertising & ADVERTISED_10baseT_Full)
  1429. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1430. if (bp->advertising & ADVERTISED_100baseT_Half)
  1431. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1432. if (bp->advertising & ADVERTISED_100baseT_Full)
  1433. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1434. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1435. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1436. if (bp->advertising & ADVERTISED_2500baseX_Full)
  1437. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1438. } else {
  1439. if (bp->req_line_speed == SPEED_2500)
  1440. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1441. else if (bp->req_line_speed == SPEED_1000)
  1442. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1443. else if (bp->req_line_speed == SPEED_100) {
  1444. if (bp->req_duplex == DUPLEX_FULL)
  1445. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1446. else
  1447. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1448. } else if (bp->req_line_speed == SPEED_10) {
  1449. if (bp->req_duplex == DUPLEX_FULL)
  1450. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1451. else
  1452. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1453. }
  1454. }
  1455. if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
  1456. speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
  1457. if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
  1458. speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
  1459. if (port == PORT_TP)
  1460. speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
  1461. BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
  1462. bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
  1463. spin_unlock_bh(&bp->phy_lock);
  1464. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
  1465. spin_lock_bh(&bp->phy_lock);
  1466. return 0;
  1467. }
  1468. static int
  1469. bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
  1470. __releases(&bp->phy_lock)
  1471. __acquires(&bp->phy_lock)
  1472. {
  1473. u32 adv, bmcr;
  1474. u32 new_adv = 0;
  1475. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1476. return (bnx2_setup_remote_phy(bp, port));
  1477. if (!(bp->autoneg & AUTONEG_SPEED)) {
  1478. u32 new_bmcr;
  1479. int force_link_down = 0;
  1480. if (bp->req_line_speed == SPEED_2500) {
  1481. if (!bnx2_test_and_enable_2g5(bp))
  1482. force_link_down = 1;
  1483. } else if (bp->req_line_speed == SPEED_1000) {
  1484. if (bnx2_test_and_disable_2g5(bp))
  1485. force_link_down = 1;
  1486. }
  1487. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1488. adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
  1489. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1490. new_bmcr = bmcr & ~BMCR_ANENABLE;
  1491. new_bmcr |= BMCR_SPEED1000;
  1492. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1493. if (bp->req_line_speed == SPEED_2500)
  1494. bnx2_enable_forced_2g5(bp);
  1495. else if (bp->req_line_speed == SPEED_1000) {
  1496. bnx2_disable_forced_2g5(bp);
  1497. new_bmcr &= ~0x2000;
  1498. }
  1499. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1500. if (bp->req_line_speed == SPEED_2500)
  1501. new_bmcr |= BCM5708S_BMCR_FORCE_2500;
  1502. else
  1503. new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
  1504. }
  1505. if (bp->req_duplex == DUPLEX_FULL) {
  1506. adv |= ADVERTISE_1000XFULL;
  1507. new_bmcr |= BMCR_FULLDPLX;
  1508. }
  1509. else {
  1510. adv |= ADVERTISE_1000XHALF;
  1511. new_bmcr &= ~BMCR_FULLDPLX;
  1512. }
  1513. if ((new_bmcr != bmcr) || (force_link_down)) {
  1514. /* Force a link down visible on the other side */
  1515. if (bp->link_up) {
  1516. bnx2_write_phy(bp, bp->mii_adv, adv &
  1517. ~(ADVERTISE_1000XFULL |
  1518. ADVERTISE_1000XHALF));
  1519. bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
  1520. BMCR_ANRESTART | BMCR_ANENABLE);
  1521. bp->link_up = 0;
  1522. netif_carrier_off(bp->dev);
  1523. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1524. bnx2_report_link(bp);
  1525. }
  1526. bnx2_write_phy(bp, bp->mii_adv, adv);
  1527. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1528. } else {
  1529. bnx2_resolve_flow_ctrl(bp);
  1530. bnx2_set_mac_link(bp);
  1531. }
  1532. return 0;
  1533. }
  1534. bnx2_test_and_enable_2g5(bp);
  1535. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1536. new_adv |= ADVERTISE_1000XFULL;
  1537. new_adv |= bnx2_phy_get_pause_adv(bp);
  1538. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1539. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1540. bp->serdes_an_pending = 0;
  1541. if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
  1542. /* Force a link down visible on the other side */
  1543. if (bp->link_up) {
  1544. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1545. spin_unlock_bh(&bp->phy_lock);
  1546. msleep(20);
  1547. spin_lock_bh(&bp->phy_lock);
  1548. }
  1549. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1550. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
  1551. BMCR_ANENABLE);
  1552. /* Speed up link-up time when the link partner
  1553. * does not autonegotiate which is very common
  1554. * in blade servers. Some blade servers use
  1555. * IPMI for kerboard input and it's important
  1556. * to minimize link disruptions. Autoneg. involves
  1557. * exchanging base pages plus 3 next pages and
  1558. * normally completes in about 120 msec.
  1559. */
  1560. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  1561. bp->serdes_an_pending = 1;
  1562. mod_timer(&bp->timer, jiffies + bp->current_interval);
  1563. } else {
  1564. bnx2_resolve_flow_ctrl(bp);
  1565. bnx2_set_mac_link(bp);
  1566. }
  1567. return 0;
  1568. }
  1569. #define ETHTOOL_ALL_FIBRE_SPEED \
  1570. (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
  1571. (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
  1572. (ADVERTISED_1000baseT_Full)
  1573. #define ETHTOOL_ALL_COPPER_SPEED \
  1574. (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
  1575. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
  1576. ADVERTISED_1000baseT_Full)
  1577. #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
  1578. ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
  1579. #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
  1580. static void
  1581. bnx2_set_default_remote_link(struct bnx2 *bp)
  1582. {
  1583. u32 link;
  1584. if (bp->phy_port == PORT_TP)
  1585. link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
  1586. else
  1587. link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
  1588. if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
  1589. bp->req_line_speed = 0;
  1590. bp->autoneg |= AUTONEG_SPEED;
  1591. bp->advertising = ADVERTISED_Autoneg;
  1592. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1593. bp->advertising |= ADVERTISED_10baseT_Half;
  1594. if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
  1595. bp->advertising |= ADVERTISED_10baseT_Full;
  1596. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1597. bp->advertising |= ADVERTISED_100baseT_Half;
  1598. if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
  1599. bp->advertising |= ADVERTISED_100baseT_Full;
  1600. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1601. bp->advertising |= ADVERTISED_1000baseT_Full;
  1602. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1603. bp->advertising |= ADVERTISED_2500baseX_Full;
  1604. } else {
  1605. bp->autoneg = 0;
  1606. bp->advertising = 0;
  1607. bp->req_duplex = DUPLEX_FULL;
  1608. if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
  1609. bp->req_line_speed = SPEED_10;
  1610. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1611. bp->req_duplex = DUPLEX_HALF;
  1612. }
  1613. if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
  1614. bp->req_line_speed = SPEED_100;
  1615. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1616. bp->req_duplex = DUPLEX_HALF;
  1617. }
  1618. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1619. bp->req_line_speed = SPEED_1000;
  1620. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1621. bp->req_line_speed = SPEED_2500;
  1622. }
  1623. }
  1624. static void
  1625. bnx2_set_default_link(struct bnx2 *bp)
  1626. {
  1627. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  1628. bnx2_set_default_remote_link(bp);
  1629. return;
  1630. }
  1631. bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
  1632. bp->req_line_speed = 0;
  1633. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1634. u32 reg;
  1635. bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
  1636. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
  1637. reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
  1638. if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
  1639. bp->autoneg = 0;
  1640. bp->req_line_speed = bp->line_speed = SPEED_1000;
  1641. bp->req_duplex = DUPLEX_FULL;
  1642. }
  1643. } else
  1644. bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
  1645. }
  1646. static void
  1647. bnx2_send_heart_beat(struct bnx2 *bp)
  1648. {
  1649. u32 msg;
  1650. u32 addr;
  1651. spin_lock(&bp->indirect_lock);
  1652. msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
  1653. addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
  1654. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
  1655. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
  1656. spin_unlock(&bp->indirect_lock);
  1657. }
  1658. static void
  1659. bnx2_remote_phy_event(struct bnx2 *bp)
  1660. {
  1661. u32 msg;
  1662. u8 link_up = bp->link_up;
  1663. u8 old_port;
  1664. msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  1665. if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
  1666. bnx2_send_heart_beat(bp);
  1667. msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
  1668. if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
  1669. bp->link_up = 0;
  1670. else {
  1671. u32 speed;
  1672. bp->link_up = 1;
  1673. speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
  1674. bp->duplex = DUPLEX_FULL;
  1675. switch (speed) {
  1676. case BNX2_LINK_STATUS_10HALF:
  1677. bp->duplex = DUPLEX_HALF;
  1678. case BNX2_LINK_STATUS_10FULL:
  1679. bp->line_speed = SPEED_10;
  1680. break;
  1681. case BNX2_LINK_STATUS_100HALF:
  1682. bp->duplex = DUPLEX_HALF;
  1683. case BNX2_LINK_STATUS_100BASE_T4:
  1684. case BNX2_LINK_STATUS_100FULL:
  1685. bp->line_speed = SPEED_100;
  1686. break;
  1687. case BNX2_LINK_STATUS_1000HALF:
  1688. bp->duplex = DUPLEX_HALF;
  1689. case BNX2_LINK_STATUS_1000FULL:
  1690. bp->line_speed = SPEED_1000;
  1691. break;
  1692. case BNX2_LINK_STATUS_2500HALF:
  1693. bp->duplex = DUPLEX_HALF;
  1694. case BNX2_LINK_STATUS_2500FULL:
  1695. bp->line_speed = SPEED_2500;
  1696. break;
  1697. default:
  1698. bp->line_speed = 0;
  1699. break;
  1700. }
  1701. bp->flow_ctrl = 0;
  1702. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  1703. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  1704. if (bp->duplex == DUPLEX_FULL)
  1705. bp->flow_ctrl = bp->req_flow_ctrl;
  1706. } else {
  1707. if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
  1708. bp->flow_ctrl |= FLOW_CTRL_TX;
  1709. if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
  1710. bp->flow_ctrl |= FLOW_CTRL_RX;
  1711. }
  1712. old_port = bp->phy_port;
  1713. if (msg & BNX2_LINK_STATUS_SERDES_LINK)
  1714. bp->phy_port = PORT_FIBRE;
  1715. else
  1716. bp->phy_port = PORT_TP;
  1717. if (old_port != bp->phy_port)
  1718. bnx2_set_default_link(bp);
  1719. }
  1720. if (bp->link_up != link_up)
  1721. bnx2_report_link(bp);
  1722. bnx2_set_mac_link(bp);
  1723. }
  1724. static int
  1725. bnx2_set_remote_link(struct bnx2 *bp)
  1726. {
  1727. u32 evt_code;
  1728. evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
  1729. switch (evt_code) {
  1730. case BNX2_FW_EVT_CODE_LINK_EVENT:
  1731. bnx2_remote_phy_event(bp);
  1732. break;
  1733. case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
  1734. default:
  1735. bnx2_send_heart_beat(bp);
  1736. break;
  1737. }
  1738. return 0;
  1739. }
  1740. static int
  1741. bnx2_setup_copper_phy(struct bnx2 *bp)
  1742. __releases(&bp->phy_lock)
  1743. __acquires(&bp->phy_lock)
  1744. {
  1745. u32 bmcr;
  1746. u32 new_bmcr;
  1747. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1748. if (bp->autoneg & AUTONEG_SPEED) {
  1749. u32 adv_reg, adv1000_reg;
  1750. u32 new_adv_reg = 0;
  1751. u32 new_adv1000_reg = 0;
  1752. bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
  1753. adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
  1754. ADVERTISE_PAUSE_ASYM);
  1755. bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
  1756. adv1000_reg &= PHY_ALL_1000_SPEED;
  1757. if (bp->advertising & ADVERTISED_10baseT_Half)
  1758. new_adv_reg |= ADVERTISE_10HALF;
  1759. if (bp->advertising & ADVERTISED_10baseT_Full)
  1760. new_adv_reg |= ADVERTISE_10FULL;
  1761. if (bp->advertising & ADVERTISED_100baseT_Half)
  1762. new_adv_reg |= ADVERTISE_100HALF;
  1763. if (bp->advertising & ADVERTISED_100baseT_Full)
  1764. new_adv_reg |= ADVERTISE_100FULL;
  1765. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1766. new_adv1000_reg |= ADVERTISE_1000FULL;
  1767. new_adv_reg |= ADVERTISE_CSMA;
  1768. new_adv_reg |= bnx2_phy_get_pause_adv(bp);
  1769. if ((adv1000_reg != new_adv1000_reg) ||
  1770. (adv_reg != new_adv_reg) ||
  1771. ((bmcr & BMCR_ANENABLE) == 0)) {
  1772. bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
  1773. bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
  1774. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
  1775. BMCR_ANENABLE);
  1776. }
  1777. else if (bp->link_up) {
  1778. /* Flow ctrl may have changed from auto to forced */
  1779. /* or vice-versa. */
  1780. bnx2_resolve_flow_ctrl(bp);
  1781. bnx2_set_mac_link(bp);
  1782. }
  1783. return 0;
  1784. }
  1785. new_bmcr = 0;
  1786. if (bp->req_line_speed == SPEED_100) {
  1787. new_bmcr |= BMCR_SPEED100;
  1788. }
  1789. if (bp->req_duplex == DUPLEX_FULL) {
  1790. new_bmcr |= BMCR_FULLDPLX;
  1791. }
  1792. if (new_bmcr != bmcr) {
  1793. u32 bmsr;
  1794. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1795. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1796. if (bmsr & BMSR_LSTATUS) {
  1797. /* Force link down */
  1798. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1799. spin_unlock_bh(&bp->phy_lock);
  1800. msleep(50);
  1801. spin_lock_bh(&bp->phy_lock);
  1802. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1803. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1804. }
  1805. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1806. /* Normally, the new speed is setup after the link has
  1807. * gone down and up again. In some cases, link will not go
  1808. * down so we need to set up the new speed here.
  1809. */
  1810. if (bmsr & BMSR_LSTATUS) {
  1811. bp->line_speed = bp->req_line_speed;
  1812. bp->duplex = bp->req_duplex;
  1813. bnx2_resolve_flow_ctrl(bp);
  1814. bnx2_set_mac_link(bp);
  1815. }
  1816. } else {
  1817. bnx2_resolve_flow_ctrl(bp);
  1818. bnx2_set_mac_link(bp);
  1819. }
  1820. return 0;
  1821. }
  1822. static int
  1823. bnx2_setup_phy(struct bnx2 *bp, u8 port)
  1824. __releases(&bp->phy_lock)
  1825. __acquires(&bp->phy_lock)
  1826. {
  1827. if (bp->loopback == MAC_LOOPBACK)
  1828. return 0;
  1829. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1830. return (bnx2_setup_serdes_phy(bp, port));
  1831. }
  1832. else {
  1833. return (bnx2_setup_copper_phy(bp));
  1834. }
  1835. }
  1836. static int
  1837. bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
  1838. {
  1839. u32 val;
  1840. bp->mii_bmcr = MII_BMCR + 0x10;
  1841. bp->mii_bmsr = MII_BMSR + 0x10;
  1842. bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
  1843. bp->mii_adv = MII_ADVERTISE + 0x10;
  1844. bp->mii_lpa = MII_LPA + 0x10;
  1845. bp->mii_up1 = MII_BNX2_OVER1G_UP1;
  1846. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
  1847. bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
  1848. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1849. if (reset_phy)
  1850. bnx2_reset_phy(bp);
  1851. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
  1852. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
  1853. val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
  1854. val |= MII_BNX2_SD_1000XCTL1_FIBER;
  1855. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
  1856. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1857. bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
  1858. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  1859. val |= BCM5708S_UP1_2G5;
  1860. else
  1861. val &= ~BCM5708S_UP1_2G5;
  1862. bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
  1863. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
  1864. bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
  1865. val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
  1866. bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
  1867. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
  1868. val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
  1869. MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
  1870. bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
  1871. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1872. return 0;
  1873. }
  1874. static int
  1875. bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
  1876. {
  1877. u32 val;
  1878. if (reset_phy)
  1879. bnx2_reset_phy(bp);
  1880. bp->mii_up1 = BCM5708S_UP1;
  1881. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
  1882. bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
  1883. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1884. bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
  1885. val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
  1886. bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
  1887. bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
  1888. val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
  1889. bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
  1890. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
  1891. bnx2_read_phy(bp, BCM5708S_UP1, &val);
  1892. val |= BCM5708S_UP1_2G5;
  1893. bnx2_write_phy(bp, BCM5708S_UP1, val);
  1894. }
  1895. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  1896. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  1897. (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
  1898. /* increase tx signal amplitude */
  1899. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1900. BCM5708S_BLK_ADDR_TX_MISC);
  1901. bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
  1902. val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
  1903. bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
  1904. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1905. }
  1906. val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
  1907. BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
  1908. if (val) {
  1909. u32 is_backplane;
  1910. is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  1911. if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
  1912. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1913. BCM5708S_BLK_ADDR_TX_MISC);
  1914. bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
  1915. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1916. BCM5708S_BLK_ADDR_DIG);
  1917. }
  1918. }
  1919. return 0;
  1920. }
  1921. static int
  1922. bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
  1923. {
  1924. if (reset_phy)
  1925. bnx2_reset_phy(bp);
  1926. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1927. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1928. REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
  1929. if (bp->dev->mtu > 1500) {
  1930. u32 val;
  1931. /* Set extended packet length bit */
  1932. bnx2_write_phy(bp, 0x18, 0x7);
  1933. bnx2_read_phy(bp, 0x18, &val);
  1934. bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
  1935. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1936. bnx2_read_phy(bp, 0x1c, &val);
  1937. bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
  1938. }
  1939. else {
  1940. u32 val;
  1941. bnx2_write_phy(bp, 0x18, 0x7);
  1942. bnx2_read_phy(bp, 0x18, &val);
  1943. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1944. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1945. bnx2_read_phy(bp, 0x1c, &val);
  1946. bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
  1947. }
  1948. return 0;
  1949. }
  1950. static int
  1951. bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
  1952. {
  1953. u32 val;
  1954. if (reset_phy)
  1955. bnx2_reset_phy(bp);
  1956. if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
  1957. bnx2_write_phy(bp, 0x18, 0x0c00);
  1958. bnx2_write_phy(bp, 0x17, 0x000a);
  1959. bnx2_write_phy(bp, 0x15, 0x310b);
  1960. bnx2_write_phy(bp, 0x17, 0x201f);
  1961. bnx2_write_phy(bp, 0x15, 0x9506);
  1962. bnx2_write_phy(bp, 0x17, 0x401f);
  1963. bnx2_write_phy(bp, 0x15, 0x14e2);
  1964. bnx2_write_phy(bp, 0x18, 0x0400);
  1965. }
  1966. if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
  1967. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
  1968. MII_BNX2_DSP_EXPAND_REG | 0x8);
  1969. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1970. val &= ~(1 << 8);
  1971. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
  1972. }
  1973. if (bp->dev->mtu > 1500) {
  1974. /* Set extended packet length bit */
  1975. bnx2_write_phy(bp, 0x18, 0x7);
  1976. bnx2_read_phy(bp, 0x18, &val);
  1977. bnx2_write_phy(bp, 0x18, val | 0x4000);
  1978. bnx2_read_phy(bp, 0x10, &val);
  1979. bnx2_write_phy(bp, 0x10, val | 0x1);
  1980. }
  1981. else {
  1982. bnx2_write_phy(bp, 0x18, 0x7);
  1983. bnx2_read_phy(bp, 0x18, &val);
  1984. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1985. bnx2_read_phy(bp, 0x10, &val);
  1986. bnx2_write_phy(bp, 0x10, val & ~0x1);
  1987. }
  1988. /* ethernet@wirespeed */
  1989. bnx2_write_phy(bp, 0x18, 0x7007);
  1990. bnx2_read_phy(bp, 0x18, &val);
  1991. bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
  1992. return 0;
  1993. }
  1994. static int
  1995. bnx2_init_phy(struct bnx2 *bp, int reset_phy)
  1996. __releases(&bp->phy_lock)
  1997. __acquires(&bp->phy_lock)
  1998. {
  1999. u32 val;
  2000. int rc = 0;
  2001. bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
  2002. bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
  2003. bp->mii_bmcr = MII_BMCR;
  2004. bp->mii_bmsr = MII_BMSR;
  2005. bp->mii_bmsr1 = MII_BMSR;
  2006. bp->mii_adv = MII_ADVERTISE;
  2007. bp->mii_lpa = MII_LPA;
  2008. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  2009. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  2010. goto setup_phy;
  2011. bnx2_read_phy(bp, MII_PHYSID1, &val);
  2012. bp->phy_id = val << 16;
  2013. bnx2_read_phy(bp, MII_PHYSID2, &val);
  2014. bp->phy_id |= val & 0xffff;
  2015. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  2016. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  2017. rc = bnx2_init_5706s_phy(bp, reset_phy);
  2018. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  2019. rc = bnx2_init_5708s_phy(bp, reset_phy);
  2020. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2021. rc = bnx2_init_5709s_phy(bp, reset_phy);
  2022. }
  2023. else {
  2024. rc = bnx2_init_copper_phy(bp, reset_phy);
  2025. }
  2026. setup_phy:
  2027. if (!rc)
  2028. rc = bnx2_setup_phy(bp, bp->phy_port);
  2029. return rc;
  2030. }
  2031. static int
  2032. bnx2_set_mac_loopback(struct bnx2 *bp)
  2033. {
  2034. u32 mac_mode;
  2035. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  2036. mac_mode &= ~BNX2_EMAC_MODE_PORT;
  2037. mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
  2038. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2039. bp->link_up = 1;
  2040. return 0;
  2041. }
  2042. static int bnx2_test_link(struct bnx2 *);
  2043. static int
  2044. bnx2_set_phy_loopback(struct bnx2 *bp)
  2045. {
  2046. u32 mac_mode;
  2047. int rc, i;
  2048. spin_lock_bh(&bp->phy_lock);
  2049. rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
  2050. BMCR_SPEED1000);
  2051. spin_unlock_bh(&bp->phy_lock);
  2052. if (rc)
  2053. return rc;
  2054. for (i = 0; i < 10; i++) {
  2055. if (bnx2_test_link(bp) == 0)
  2056. break;
  2057. msleep(100);
  2058. }
  2059. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  2060. mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  2061. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  2062. BNX2_EMAC_MODE_25G_MODE);
  2063. mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
  2064. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2065. bp->link_up = 1;
  2066. return 0;
  2067. }
  2068. static int
  2069. bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
  2070. {
  2071. int i;
  2072. u32 val;
  2073. bp->fw_wr_seq++;
  2074. msg_data |= bp->fw_wr_seq;
  2075. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2076. if (!ack)
  2077. return 0;
  2078. /* wait for an acknowledgement. */
  2079. for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
  2080. msleep(10);
  2081. val = bnx2_shmem_rd(bp, BNX2_FW_MB);
  2082. if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
  2083. break;
  2084. }
  2085. if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
  2086. return 0;
  2087. /* If we timed out, inform the firmware that this is the case. */
  2088. if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
  2089. if (!silent)
  2090. printk(KERN_ERR PFX "fw sync timeout, reset code = "
  2091. "%x\n", msg_data);
  2092. msg_data &= ~BNX2_DRV_MSG_CODE;
  2093. msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
  2094. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2095. return -EBUSY;
  2096. }
  2097. if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
  2098. return -EIO;
  2099. return 0;
  2100. }
  2101. static int
  2102. bnx2_init_5709_context(struct bnx2 *bp)
  2103. {
  2104. int i, ret = 0;
  2105. u32 val;
  2106. val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
  2107. val |= (BCM_PAGE_BITS - 8) << 16;
  2108. REG_WR(bp, BNX2_CTX_COMMAND, val);
  2109. for (i = 0; i < 10; i++) {
  2110. val = REG_RD(bp, BNX2_CTX_COMMAND);
  2111. if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
  2112. break;
  2113. udelay(2);
  2114. }
  2115. if (val & BNX2_CTX_COMMAND_MEM_INIT)
  2116. return -EBUSY;
  2117. for (i = 0; i < bp->ctx_pages; i++) {
  2118. int j;
  2119. if (bp->ctx_blk[i])
  2120. memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
  2121. else
  2122. return -ENOMEM;
  2123. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
  2124. (bp->ctx_blk_mapping[i] & 0xffffffff) |
  2125. BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
  2126. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
  2127. (u64) bp->ctx_blk_mapping[i] >> 32);
  2128. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
  2129. BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
  2130. for (j = 0; j < 10; j++) {
  2131. val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
  2132. if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
  2133. break;
  2134. udelay(5);
  2135. }
  2136. if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
  2137. ret = -EBUSY;
  2138. break;
  2139. }
  2140. }
  2141. return ret;
  2142. }
  2143. static void
  2144. bnx2_init_context(struct bnx2 *bp)
  2145. {
  2146. u32 vcid;
  2147. vcid = 96;
  2148. while (vcid) {
  2149. u32 vcid_addr, pcid_addr, offset;
  2150. int i;
  2151. vcid--;
  2152. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  2153. u32 new_vcid;
  2154. vcid_addr = GET_PCID_ADDR(vcid);
  2155. if (vcid & 0x8) {
  2156. new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
  2157. }
  2158. else {
  2159. new_vcid = vcid;
  2160. }
  2161. pcid_addr = GET_PCID_ADDR(new_vcid);
  2162. }
  2163. else {
  2164. vcid_addr = GET_CID_ADDR(vcid);
  2165. pcid_addr = vcid_addr;
  2166. }
  2167. for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
  2168. vcid_addr += (i << PHY_CTX_SHIFT);
  2169. pcid_addr += (i << PHY_CTX_SHIFT);
  2170. REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
  2171. REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  2172. /* Zero out the context. */
  2173. for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
  2174. bnx2_ctx_wr(bp, vcid_addr, offset, 0);
  2175. }
  2176. }
  2177. }
  2178. static int
  2179. bnx2_alloc_bad_rbuf(struct bnx2 *bp)
  2180. {
  2181. u16 *good_mbuf;
  2182. u32 good_mbuf_cnt;
  2183. u32 val;
  2184. good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
  2185. if (good_mbuf == NULL) {
  2186. printk(KERN_ERR PFX "Failed to allocate memory in "
  2187. "bnx2_alloc_bad_rbuf\n");
  2188. return -ENOMEM;
  2189. }
  2190. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  2191. BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
  2192. good_mbuf_cnt = 0;
  2193. /* Allocate a bunch of mbufs and save the good ones in an array. */
  2194. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2195. while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
  2196. bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
  2197. BNX2_RBUF_COMMAND_ALLOC_REQ);
  2198. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
  2199. val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
  2200. /* The addresses with Bit 9 set are bad memory blocks. */
  2201. if (!(val & (1 << 9))) {
  2202. good_mbuf[good_mbuf_cnt] = (u16) val;
  2203. good_mbuf_cnt++;
  2204. }
  2205. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2206. }
  2207. /* Free the good ones back to the mbuf pool thus discarding
  2208. * all the bad ones. */
  2209. while (good_mbuf_cnt) {
  2210. good_mbuf_cnt--;
  2211. val = good_mbuf[good_mbuf_cnt];
  2212. val = (val << 9) | val | 1;
  2213. bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
  2214. }
  2215. kfree(good_mbuf);
  2216. return 0;
  2217. }
  2218. static void
  2219. bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
  2220. {
  2221. u32 val;
  2222. val = (mac_addr[0] << 8) | mac_addr[1];
  2223. REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
  2224. val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
  2225. (mac_addr[4] << 8) | mac_addr[5];
  2226. REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
  2227. }
  2228. static inline int
  2229. bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2230. {
  2231. dma_addr_t mapping;
  2232. struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2233. struct rx_bd *rxbd =
  2234. &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
  2235. struct page *page = alloc_page(GFP_ATOMIC);
  2236. if (!page)
  2237. return -ENOMEM;
  2238. mapping = pci_map_page(bp->pdev, page, 0, PAGE_SIZE,
  2239. PCI_DMA_FROMDEVICE);
  2240. if (pci_dma_mapping_error(bp->pdev, mapping)) {
  2241. __free_page(page);
  2242. return -EIO;
  2243. }
  2244. rx_pg->page = page;
  2245. pci_unmap_addr_set(rx_pg, mapping, mapping);
  2246. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2247. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2248. return 0;
  2249. }
  2250. static void
  2251. bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2252. {
  2253. struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2254. struct page *page = rx_pg->page;
  2255. if (!page)
  2256. return;
  2257. pci_unmap_page(bp->pdev, pci_unmap_addr(rx_pg, mapping), PAGE_SIZE,
  2258. PCI_DMA_FROMDEVICE);
  2259. __free_page(page);
  2260. rx_pg->page = NULL;
  2261. }
  2262. static inline int
  2263. bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2264. {
  2265. struct sk_buff *skb;
  2266. struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
  2267. dma_addr_t mapping;
  2268. struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
  2269. unsigned long align;
  2270. skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
  2271. if (skb == NULL) {
  2272. return -ENOMEM;
  2273. }
  2274. if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
  2275. skb_reserve(skb, BNX2_RX_ALIGN - align);
  2276. mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
  2277. PCI_DMA_FROMDEVICE);
  2278. if (pci_dma_mapping_error(bp->pdev, mapping)) {
  2279. dev_kfree_skb(skb);
  2280. return -EIO;
  2281. }
  2282. rx_buf->skb = skb;
  2283. pci_unmap_addr_set(rx_buf, mapping, mapping);
  2284. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2285. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2286. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2287. return 0;
  2288. }
  2289. static int
  2290. bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
  2291. {
  2292. struct status_block *sblk = bnapi->status_blk.msi;
  2293. u32 new_link_state, old_link_state;
  2294. int is_set = 1;
  2295. new_link_state = sblk->status_attn_bits & event;
  2296. old_link_state = sblk->status_attn_bits_ack & event;
  2297. if (new_link_state != old_link_state) {
  2298. if (new_link_state)
  2299. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
  2300. else
  2301. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
  2302. } else
  2303. is_set = 0;
  2304. return is_set;
  2305. }
  2306. static void
  2307. bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2308. {
  2309. spin_lock(&bp->phy_lock);
  2310. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
  2311. bnx2_set_link(bp);
  2312. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
  2313. bnx2_set_remote_link(bp);
  2314. spin_unlock(&bp->phy_lock);
  2315. }
  2316. static inline u16
  2317. bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
  2318. {
  2319. u16 cons;
  2320. /* Tell compiler that status block fields can change. */
  2321. barrier();
  2322. cons = *bnapi->hw_tx_cons_ptr;
  2323. barrier();
  2324. if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
  2325. cons++;
  2326. return cons;
  2327. }
  2328. static int
  2329. bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2330. {
  2331. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2332. u16 hw_cons, sw_cons, sw_ring_cons;
  2333. int tx_pkt = 0, index;
  2334. struct netdev_queue *txq;
  2335. index = (bnapi - bp->bnx2_napi);
  2336. txq = netdev_get_tx_queue(bp->dev, index);
  2337. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2338. sw_cons = txr->tx_cons;
  2339. while (sw_cons != hw_cons) {
  2340. struct sw_tx_bd *tx_buf;
  2341. struct sk_buff *skb;
  2342. int i, last;
  2343. sw_ring_cons = TX_RING_IDX(sw_cons);
  2344. tx_buf = &txr->tx_buf_ring[sw_ring_cons];
  2345. skb = tx_buf->skb;
  2346. /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
  2347. prefetch(&skb->end);
  2348. /* partial BD completions possible with TSO packets */
  2349. if (tx_buf->is_gso) {
  2350. u16 last_idx, last_ring_idx;
  2351. last_idx = sw_cons + tx_buf->nr_frags + 1;
  2352. last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
  2353. if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
  2354. last_idx++;
  2355. }
  2356. if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
  2357. break;
  2358. }
  2359. }
  2360. pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
  2361. skb_headlen(skb), PCI_DMA_TODEVICE);
  2362. tx_buf->skb = NULL;
  2363. last = tx_buf->nr_frags;
  2364. for (i = 0; i < last; i++) {
  2365. sw_cons = NEXT_TX_BD(sw_cons);
  2366. pci_unmap_page(bp->pdev,
  2367. pci_unmap_addr(
  2368. &txr->tx_buf_ring[TX_RING_IDX(sw_cons)],
  2369. mapping),
  2370. skb_shinfo(skb)->frags[i].size,
  2371. PCI_DMA_TODEVICE);
  2372. }
  2373. sw_cons = NEXT_TX_BD(sw_cons);
  2374. dev_kfree_skb(skb);
  2375. tx_pkt++;
  2376. if (tx_pkt == budget)
  2377. break;
  2378. if (hw_cons == sw_cons)
  2379. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2380. }
  2381. txr->hw_tx_cons = hw_cons;
  2382. txr->tx_cons = sw_cons;
  2383. /* Need to make the tx_cons update visible to bnx2_start_xmit()
  2384. * before checking for netif_tx_queue_stopped(). Without the
  2385. * memory barrier, there is a small possibility that bnx2_start_xmit()
  2386. * will miss it and cause the queue to be stopped forever.
  2387. */
  2388. smp_mb();
  2389. if (unlikely(netif_tx_queue_stopped(txq)) &&
  2390. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
  2391. __netif_tx_lock(txq, smp_processor_id());
  2392. if ((netif_tx_queue_stopped(txq)) &&
  2393. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
  2394. netif_tx_wake_queue(txq);
  2395. __netif_tx_unlock(txq);
  2396. }
  2397. return tx_pkt;
  2398. }
  2399. static void
  2400. bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2401. struct sk_buff *skb, int count)
  2402. {
  2403. struct sw_pg *cons_rx_pg, *prod_rx_pg;
  2404. struct rx_bd *cons_bd, *prod_bd;
  2405. int i;
  2406. u16 hw_prod, prod;
  2407. u16 cons = rxr->rx_pg_cons;
  2408. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2409. /* The caller was unable to allocate a new page to replace the
  2410. * last one in the frags array, so we need to recycle that page
  2411. * and then free the skb.
  2412. */
  2413. if (skb) {
  2414. struct page *page;
  2415. struct skb_shared_info *shinfo;
  2416. shinfo = skb_shinfo(skb);
  2417. shinfo->nr_frags--;
  2418. page = shinfo->frags[shinfo->nr_frags].page;
  2419. shinfo->frags[shinfo->nr_frags].page = NULL;
  2420. cons_rx_pg->page = page;
  2421. dev_kfree_skb(skb);
  2422. }
  2423. hw_prod = rxr->rx_pg_prod;
  2424. for (i = 0; i < count; i++) {
  2425. prod = RX_PG_RING_IDX(hw_prod);
  2426. prod_rx_pg = &rxr->rx_pg_ring[prod];
  2427. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2428. cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2429. prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2430. if (prod != cons) {
  2431. prod_rx_pg->page = cons_rx_pg->page;
  2432. cons_rx_pg->page = NULL;
  2433. pci_unmap_addr_set(prod_rx_pg, mapping,
  2434. pci_unmap_addr(cons_rx_pg, mapping));
  2435. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2436. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2437. }
  2438. cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
  2439. hw_prod = NEXT_RX_BD(hw_prod);
  2440. }
  2441. rxr->rx_pg_prod = hw_prod;
  2442. rxr->rx_pg_cons = cons;
  2443. }
  2444. static inline void
  2445. bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2446. struct sk_buff *skb, u16 cons, u16 prod)
  2447. {
  2448. struct sw_bd *cons_rx_buf, *prod_rx_buf;
  2449. struct rx_bd *cons_bd, *prod_bd;
  2450. cons_rx_buf = &rxr->rx_buf_ring[cons];
  2451. prod_rx_buf = &rxr->rx_buf_ring[prod];
  2452. pci_dma_sync_single_for_device(bp->pdev,
  2453. pci_unmap_addr(cons_rx_buf, mapping),
  2454. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  2455. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2456. prod_rx_buf->skb = skb;
  2457. if (cons == prod)
  2458. return;
  2459. pci_unmap_addr_set(prod_rx_buf, mapping,
  2460. pci_unmap_addr(cons_rx_buf, mapping));
  2461. cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2462. prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2463. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2464. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2465. }
  2466. static int
  2467. bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
  2468. unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
  2469. u32 ring_idx)
  2470. {
  2471. int err;
  2472. u16 prod = ring_idx & 0xffff;
  2473. err = bnx2_alloc_rx_skb(bp, rxr, prod);
  2474. if (unlikely(err)) {
  2475. bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
  2476. if (hdr_len) {
  2477. unsigned int raw_len = len + 4;
  2478. int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
  2479. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2480. }
  2481. return err;
  2482. }
  2483. skb_reserve(skb, BNX2_RX_OFFSET);
  2484. pci_unmap_single(bp->pdev, dma_addr, bp->rx_buf_use_size,
  2485. PCI_DMA_FROMDEVICE);
  2486. if (hdr_len == 0) {
  2487. skb_put(skb, len);
  2488. return 0;
  2489. } else {
  2490. unsigned int i, frag_len, frag_size, pages;
  2491. struct sw_pg *rx_pg;
  2492. u16 pg_cons = rxr->rx_pg_cons;
  2493. u16 pg_prod = rxr->rx_pg_prod;
  2494. frag_size = len + 4 - hdr_len;
  2495. pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
  2496. skb_put(skb, hdr_len);
  2497. for (i = 0; i < pages; i++) {
  2498. dma_addr_t mapping_old;
  2499. frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
  2500. if (unlikely(frag_len <= 4)) {
  2501. unsigned int tail = 4 - frag_len;
  2502. rxr->rx_pg_cons = pg_cons;
  2503. rxr->rx_pg_prod = pg_prod;
  2504. bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
  2505. pages - i);
  2506. skb->len -= tail;
  2507. if (i == 0) {
  2508. skb->tail -= tail;
  2509. } else {
  2510. skb_frag_t *frag =
  2511. &skb_shinfo(skb)->frags[i - 1];
  2512. frag->size -= tail;
  2513. skb->data_len -= tail;
  2514. skb->truesize -= tail;
  2515. }
  2516. return 0;
  2517. }
  2518. rx_pg = &rxr->rx_pg_ring[pg_cons];
  2519. /* Don't unmap yet. If we're unable to allocate a new
  2520. * page, we need to recycle the page and the DMA addr.
  2521. */
  2522. mapping_old = pci_unmap_addr(rx_pg, mapping);
  2523. if (i == pages - 1)
  2524. frag_len -= 4;
  2525. skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
  2526. rx_pg->page = NULL;
  2527. err = bnx2_alloc_rx_page(bp, rxr,
  2528. RX_PG_RING_IDX(pg_prod));
  2529. if (unlikely(err)) {
  2530. rxr->rx_pg_cons = pg_cons;
  2531. rxr->rx_pg_prod = pg_prod;
  2532. bnx2_reuse_rx_skb_pages(bp, rxr, skb,
  2533. pages - i);
  2534. return err;
  2535. }
  2536. pci_unmap_page(bp->pdev, mapping_old,
  2537. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2538. frag_size -= frag_len;
  2539. skb->data_len += frag_len;
  2540. skb->truesize += frag_len;
  2541. skb->len += frag_len;
  2542. pg_prod = NEXT_RX_BD(pg_prod);
  2543. pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
  2544. }
  2545. rxr->rx_pg_prod = pg_prod;
  2546. rxr->rx_pg_cons = pg_cons;
  2547. }
  2548. return 0;
  2549. }
  2550. static inline u16
  2551. bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
  2552. {
  2553. u16 cons;
  2554. /* Tell compiler that status block fields can change. */
  2555. barrier();
  2556. cons = *bnapi->hw_rx_cons_ptr;
  2557. barrier();
  2558. if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
  2559. cons++;
  2560. return cons;
  2561. }
  2562. static int
  2563. bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2564. {
  2565. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2566. u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
  2567. struct l2_fhdr *rx_hdr;
  2568. int rx_pkt = 0, pg_ring_used = 0;
  2569. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2570. sw_cons = rxr->rx_cons;
  2571. sw_prod = rxr->rx_prod;
  2572. /* Memory barrier necessary as speculative reads of the rx
  2573. * buffer can be ahead of the index in the status block
  2574. */
  2575. rmb();
  2576. while (sw_cons != hw_cons) {
  2577. unsigned int len, hdr_len;
  2578. u32 status;
  2579. struct sw_bd *rx_buf;
  2580. struct sk_buff *skb;
  2581. dma_addr_t dma_addr;
  2582. u16 vtag = 0;
  2583. int hw_vlan __maybe_unused = 0;
  2584. sw_ring_cons = RX_RING_IDX(sw_cons);
  2585. sw_ring_prod = RX_RING_IDX(sw_prod);
  2586. rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
  2587. skb = rx_buf->skb;
  2588. rx_buf->skb = NULL;
  2589. dma_addr = pci_unmap_addr(rx_buf, mapping);
  2590. pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
  2591. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
  2592. PCI_DMA_FROMDEVICE);
  2593. rx_hdr = (struct l2_fhdr *) skb->data;
  2594. len = rx_hdr->l2_fhdr_pkt_len;
  2595. status = rx_hdr->l2_fhdr_status;
  2596. hdr_len = 0;
  2597. if (status & L2_FHDR_STATUS_SPLIT) {
  2598. hdr_len = rx_hdr->l2_fhdr_ip_xsum;
  2599. pg_ring_used = 1;
  2600. } else if (len > bp->rx_jumbo_thresh) {
  2601. hdr_len = bp->rx_jumbo_thresh;
  2602. pg_ring_used = 1;
  2603. }
  2604. if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
  2605. L2_FHDR_ERRORS_PHY_DECODE |
  2606. L2_FHDR_ERRORS_ALIGNMENT |
  2607. L2_FHDR_ERRORS_TOO_SHORT |
  2608. L2_FHDR_ERRORS_GIANT_FRAME))) {
  2609. bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
  2610. sw_ring_prod);
  2611. if (pg_ring_used) {
  2612. int pages;
  2613. pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
  2614. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2615. }
  2616. goto next_rx;
  2617. }
  2618. len -= 4;
  2619. if (len <= bp->rx_copy_thresh) {
  2620. struct sk_buff *new_skb;
  2621. new_skb = netdev_alloc_skb(bp->dev, len + 6);
  2622. if (new_skb == NULL) {
  2623. bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
  2624. sw_ring_prod);
  2625. goto next_rx;
  2626. }
  2627. /* aligned copy */
  2628. skb_copy_from_linear_data_offset(skb,
  2629. BNX2_RX_OFFSET - 6,
  2630. new_skb->data, len + 6);
  2631. skb_reserve(new_skb, 6);
  2632. skb_put(new_skb, len);
  2633. bnx2_reuse_rx_skb(bp, rxr, skb,
  2634. sw_ring_cons, sw_ring_prod);
  2635. skb = new_skb;
  2636. } else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
  2637. dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
  2638. goto next_rx;
  2639. if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
  2640. !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
  2641. vtag = rx_hdr->l2_fhdr_vlan_tag;
  2642. #ifdef BCM_VLAN
  2643. if (bp->vlgrp)
  2644. hw_vlan = 1;
  2645. else
  2646. #endif
  2647. {
  2648. struct vlan_ethhdr *ve = (struct vlan_ethhdr *)
  2649. __skb_push(skb, 4);
  2650. memmove(ve, skb->data + 4, ETH_ALEN * 2);
  2651. ve->h_vlan_proto = htons(ETH_P_8021Q);
  2652. ve->h_vlan_TCI = htons(vtag);
  2653. len += 4;
  2654. }
  2655. }
  2656. skb->protocol = eth_type_trans(skb, bp->dev);
  2657. if ((len > (bp->dev->mtu + ETH_HLEN)) &&
  2658. (ntohs(skb->protocol) != 0x8100)) {
  2659. dev_kfree_skb(skb);
  2660. goto next_rx;
  2661. }
  2662. skb->ip_summed = CHECKSUM_NONE;
  2663. if (bp->rx_csum &&
  2664. (status & (L2_FHDR_STATUS_TCP_SEGMENT |
  2665. L2_FHDR_STATUS_UDP_DATAGRAM))) {
  2666. if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
  2667. L2_FHDR_ERRORS_UDP_XSUM)) == 0))
  2668. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2669. }
  2670. skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
  2671. #ifdef BCM_VLAN
  2672. if (hw_vlan)
  2673. vlan_hwaccel_receive_skb(skb, bp->vlgrp, vtag);
  2674. else
  2675. #endif
  2676. netif_receive_skb(skb);
  2677. rx_pkt++;
  2678. next_rx:
  2679. sw_cons = NEXT_RX_BD(sw_cons);
  2680. sw_prod = NEXT_RX_BD(sw_prod);
  2681. if ((rx_pkt == budget))
  2682. break;
  2683. /* Refresh hw_cons to see if there is new work */
  2684. if (sw_cons == hw_cons) {
  2685. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2686. rmb();
  2687. }
  2688. }
  2689. rxr->rx_cons = sw_cons;
  2690. rxr->rx_prod = sw_prod;
  2691. if (pg_ring_used)
  2692. REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  2693. REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
  2694. REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  2695. mmiowb();
  2696. return rx_pkt;
  2697. }
  2698. /* MSI ISR - The only difference between this and the INTx ISR
  2699. * is that the MSI interrupt is always serviced.
  2700. */
  2701. static irqreturn_t
  2702. bnx2_msi(int irq, void *dev_instance)
  2703. {
  2704. struct bnx2_napi *bnapi = dev_instance;
  2705. struct bnx2 *bp = bnapi->bp;
  2706. prefetch(bnapi->status_blk.msi);
  2707. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2708. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2709. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2710. /* Return here if interrupt is disabled. */
  2711. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2712. return IRQ_HANDLED;
  2713. napi_schedule(&bnapi->napi);
  2714. return IRQ_HANDLED;
  2715. }
  2716. static irqreturn_t
  2717. bnx2_msi_1shot(int irq, void *dev_instance)
  2718. {
  2719. struct bnx2_napi *bnapi = dev_instance;
  2720. struct bnx2 *bp = bnapi->bp;
  2721. prefetch(bnapi->status_blk.msi);
  2722. /* Return here if interrupt is disabled. */
  2723. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2724. return IRQ_HANDLED;
  2725. napi_schedule(&bnapi->napi);
  2726. return IRQ_HANDLED;
  2727. }
  2728. static irqreturn_t
  2729. bnx2_interrupt(int irq, void *dev_instance)
  2730. {
  2731. struct bnx2_napi *bnapi = dev_instance;
  2732. struct bnx2 *bp = bnapi->bp;
  2733. struct status_block *sblk = bnapi->status_blk.msi;
  2734. /* When using INTx, it is possible for the interrupt to arrive
  2735. * at the CPU before the status block posted prior to the
  2736. * interrupt. Reading a register will flush the status block.
  2737. * When using MSI, the MSI message will always complete after
  2738. * the status block write.
  2739. */
  2740. if ((sblk->status_idx == bnapi->last_status_idx) &&
  2741. (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
  2742. BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
  2743. return IRQ_NONE;
  2744. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2745. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2746. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2747. /* Read back to deassert IRQ immediately to avoid too many
  2748. * spurious interrupts.
  2749. */
  2750. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  2751. /* Return here if interrupt is shared and is disabled. */
  2752. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2753. return IRQ_HANDLED;
  2754. if (napi_schedule_prep(&bnapi->napi)) {
  2755. bnapi->last_status_idx = sblk->status_idx;
  2756. __napi_schedule(&bnapi->napi);
  2757. }
  2758. return IRQ_HANDLED;
  2759. }
  2760. static inline int
  2761. bnx2_has_fast_work(struct bnx2_napi *bnapi)
  2762. {
  2763. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2764. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2765. if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
  2766. (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
  2767. return 1;
  2768. return 0;
  2769. }
  2770. #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
  2771. STATUS_ATTN_BITS_TIMER_ABORT)
  2772. static inline int
  2773. bnx2_has_work(struct bnx2_napi *bnapi)
  2774. {
  2775. struct status_block *sblk = bnapi->status_blk.msi;
  2776. if (bnx2_has_fast_work(bnapi))
  2777. return 1;
  2778. #ifdef BCM_CNIC
  2779. if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
  2780. return 1;
  2781. #endif
  2782. if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
  2783. (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
  2784. return 1;
  2785. return 0;
  2786. }
  2787. static void
  2788. bnx2_chk_missed_msi(struct bnx2 *bp)
  2789. {
  2790. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  2791. u32 msi_ctrl;
  2792. if (bnx2_has_work(bnapi)) {
  2793. msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
  2794. if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
  2795. return;
  2796. if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
  2797. REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
  2798. ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
  2799. REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
  2800. bnx2_msi(bp->irq_tbl[0].vector, bnapi);
  2801. }
  2802. }
  2803. bp->idle_chk_status_idx = bnapi->last_status_idx;
  2804. }
  2805. #ifdef BCM_CNIC
  2806. static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2807. {
  2808. struct cnic_ops *c_ops;
  2809. if (!bnapi->cnic_present)
  2810. return;
  2811. rcu_read_lock();
  2812. c_ops = rcu_dereference(bp->cnic_ops);
  2813. if (c_ops)
  2814. bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
  2815. bnapi->status_blk.msi);
  2816. rcu_read_unlock();
  2817. }
  2818. #endif
  2819. static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2820. {
  2821. struct status_block *sblk = bnapi->status_blk.msi;
  2822. u32 status_attn_bits = sblk->status_attn_bits;
  2823. u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
  2824. if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
  2825. (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
  2826. bnx2_phy_int(bp, bnapi);
  2827. /* This is needed to take care of transient status
  2828. * during link changes.
  2829. */
  2830. REG_WR(bp, BNX2_HC_COMMAND,
  2831. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  2832. REG_RD(bp, BNX2_HC_COMMAND);
  2833. }
  2834. }
  2835. static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
  2836. int work_done, int budget)
  2837. {
  2838. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2839. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2840. if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
  2841. bnx2_tx_int(bp, bnapi, 0);
  2842. if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
  2843. work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
  2844. return work_done;
  2845. }
  2846. static int bnx2_poll_msix(struct napi_struct *napi, int budget)
  2847. {
  2848. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2849. struct bnx2 *bp = bnapi->bp;
  2850. int work_done = 0;
  2851. struct status_block_msix *sblk = bnapi->status_blk.msix;
  2852. while (1) {
  2853. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2854. if (unlikely(work_done >= budget))
  2855. break;
  2856. bnapi->last_status_idx = sblk->status_idx;
  2857. /* status idx must be read before checking for more work. */
  2858. rmb();
  2859. if (likely(!bnx2_has_fast_work(bnapi))) {
  2860. napi_complete(napi);
  2861. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  2862. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2863. bnapi->last_status_idx);
  2864. break;
  2865. }
  2866. }
  2867. return work_done;
  2868. }
  2869. static int bnx2_poll(struct napi_struct *napi, int budget)
  2870. {
  2871. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2872. struct bnx2 *bp = bnapi->bp;
  2873. int work_done = 0;
  2874. struct status_block *sblk = bnapi->status_blk.msi;
  2875. while (1) {
  2876. bnx2_poll_link(bp, bnapi);
  2877. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2878. #ifdef BCM_CNIC
  2879. bnx2_poll_cnic(bp, bnapi);
  2880. #endif
  2881. /* bnapi->last_status_idx is used below to tell the hw how
  2882. * much work has been processed, so we must read it before
  2883. * checking for more work.
  2884. */
  2885. bnapi->last_status_idx = sblk->status_idx;
  2886. if (unlikely(work_done >= budget))
  2887. break;
  2888. rmb();
  2889. if (likely(!bnx2_has_work(bnapi))) {
  2890. napi_complete(napi);
  2891. if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
  2892. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2893. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2894. bnapi->last_status_idx);
  2895. break;
  2896. }
  2897. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2898. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2899. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  2900. bnapi->last_status_idx);
  2901. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2902. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2903. bnapi->last_status_idx);
  2904. break;
  2905. }
  2906. }
  2907. return work_done;
  2908. }
  2909. /* Called with rtnl_lock from vlan functions and also netif_tx_lock
  2910. * from set_multicast.
  2911. */
  2912. static void
  2913. bnx2_set_rx_mode(struct net_device *dev)
  2914. {
  2915. struct bnx2 *bp = netdev_priv(dev);
  2916. u32 rx_mode, sort_mode;
  2917. struct netdev_hw_addr *ha;
  2918. int i;
  2919. if (!netif_running(dev))
  2920. return;
  2921. spin_lock_bh(&bp->phy_lock);
  2922. rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
  2923. BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
  2924. sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
  2925. #ifdef BCM_VLAN
  2926. if (!bp->vlgrp && (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
  2927. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2928. #else
  2929. if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
  2930. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2931. #endif
  2932. if (dev->flags & IFF_PROMISC) {
  2933. /* Promiscuous mode. */
  2934. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2935. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2936. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2937. }
  2938. else if (dev->flags & IFF_ALLMULTI) {
  2939. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2940. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2941. 0xffffffff);
  2942. }
  2943. sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
  2944. }
  2945. else {
  2946. /* Accept one or more multicast(s). */
  2947. struct dev_mc_list *mclist;
  2948. u32 mc_filter[NUM_MC_HASH_REGISTERS];
  2949. u32 regidx;
  2950. u32 bit;
  2951. u32 crc;
  2952. memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
  2953. for (i = 0, mclist = dev->mc_list; mclist && i < netdev_mc_count(dev);
  2954. i++, mclist = mclist->next) {
  2955. crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
  2956. bit = crc & 0xff;
  2957. regidx = (bit & 0xe0) >> 5;
  2958. bit &= 0x1f;
  2959. mc_filter[regidx] |= (1 << bit);
  2960. }
  2961. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2962. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2963. mc_filter[i]);
  2964. }
  2965. sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
  2966. }
  2967. if (netdev_uc_count(dev) > BNX2_MAX_UNICAST_ADDRESSES) {
  2968. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2969. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2970. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2971. } else if (!(dev->flags & IFF_PROMISC)) {
  2972. /* Add all entries into to the match filter list */
  2973. i = 0;
  2974. netdev_for_each_uc_addr(ha, dev) {
  2975. bnx2_set_mac_addr(bp, ha->addr,
  2976. i + BNX2_START_UNICAST_ADDRESS_INDEX);
  2977. sort_mode |= (1 <<
  2978. (i + BNX2_START_UNICAST_ADDRESS_INDEX));
  2979. i++;
  2980. }
  2981. }
  2982. if (rx_mode != bp->rx_mode) {
  2983. bp->rx_mode = rx_mode;
  2984. REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
  2985. }
  2986. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  2987. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
  2988. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
  2989. spin_unlock_bh(&bp->phy_lock);
  2990. }
  2991. static int __devinit
  2992. check_fw_section(const struct firmware *fw,
  2993. const struct bnx2_fw_file_section *section,
  2994. u32 alignment, bool non_empty)
  2995. {
  2996. u32 offset = be32_to_cpu(section->offset);
  2997. u32 len = be32_to_cpu(section->len);
  2998. if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
  2999. return -EINVAL;
  3000. if ((non_empty && len == 0) || len > fw->size - offset ||
  3001. len & (alignment - 1))
  3002. return -EINVAL;
  3003. return 0;
  3004. }
  3005. static int __devinit
  3006. check_mips_fw_entry(const struct firmware *fw,
  3007. const struct bnx2_mips_fw_file_entry *entry)
  3008. {
  3009. if (check_fw_section(fw, &entry->text, 4, true) ||
  3010. check_fw_section(fw, &entry->data, 4, false) ||
  3011. check_fw_section(fw, &entry->rodata, 4, false))
  3012. return -EINVAL;
  3013. return 0;
  3014. }
  3015. static int __devinit
  3016. bnx2_request_firmware(struct bnx2 *bp)
  3017. {
  3018. const char *mips_fw_file, *rv2p_fw_file;
  3019. const struct bnx2_mips_fw_file *mips_fw;
  3020. const struct bnx2_rv2p_fw_file *rv2p_fw;
  3021. int rc;
  3022. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3023. mips_fw_file = FW_MIPS_FILE_09;
  3024. if ((CHIP_ID(bp) == CHIP_ID_5709_A0) ||
  3025. (CHIP_ID(bp) == CHIP_ID_5709_A1))
  3026. rv2p_fw_file = FW_RV2P_FILE_09_Ax;
  3027. else
  3028. rv2p_fw_file = FW_RV2P_FILE_09;
  3029. } else {
  3030. mips_fw_file = FW_MIPS_FILE_06;
  3031. rv2p_fw_file = FW_RV2P_FILE_06;
  3032. }
  3033. rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
  3034. if (rc) {
  3035. printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
  3036. mips_fw_file);
  3037. return rc;
  3038. }
  3039. rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
  3040. if (rc) {
  3041. printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
  3042. rv2p_fw_file);
  3043. return rc;
  3044. }
  3045. mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3046. rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3047. if (bp->mips_firmware->size < sizeof(*mips_fw) ||
  3048. check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
  3049. check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
  3050. check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
  3051. check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
  3052. check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
  3053. printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
  3054. mips_fw_file);
  3055. return -EINVAL;
  3056. }
  3057. if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
  3058. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
  3059. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
  3060. printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
  3061. rv2p_fw_file);
  3062. return -EINVAL;
  3063. }
  3064. return 0;
  3065. }
  3066. static u32
  3067. rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
  3068. {
  3069. switch (idx) {
  3070. case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
  3071. rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
  3072. rv2p_code |= RV2P_BD_PAGE_SIZE;
  3073. break;
  3074. }
  3075. return rv2p_code;
  3076. }
  3077. static int
  3078. load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
  3079. const struct bnx2_rv2p_fw_file_entry *fw_entry)
  3080. {
  3081. u32 rv2p_code_len, file_offset;
  3082. __be32 *rv2p_code;
  3083. int i;
  3084. u32 val, cmd, addr;
  3085. rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
  3086. file_offset = be32_to_cpu(fw_entry->rv2p.offset);
  3087. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3088. if (rv2p_proc == RV2P_PROC1) {
  3089. cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
  3090. addr = BNX2_RV2P_PROC1_ADDR_CMD;
  3091. } else {
  3092. cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
  3093. addr = BNX2_RV2P_PROC2_ADDR_CMD;
  3094. }
  3095. for (i = 0; i < rv2p_code_len; i += 8) {
  3096. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
  3097. rv2p_code++;
  3098. REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
  3099. rv2p_code++;
  3100. val = (i / 8) | cmd;
  3101. REG_WR(bp, addr, val);
  3102. }
  3103. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3104. for (i = 0; i < 8; i++) {
  3105. u32 loc, code;
  3106. loc = be32_to_cpu(fw_entry->fixup[i]);
  3107. if (loc && ((loc * 4) < rv2p_code_len)) {
  3108. code = be32_to_cpu(*(rv2p_code + loc - 1));
  3109. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
  3110. code = be32_to_cpu(*(rv2p_code + loc));
  3111. code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
  3112. REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
  3113. val = (loc / 2) | cmd;
  3114. REG_WR(bp, addr, val);
  3115. }
  3116. }
  3117. /* Reset the processor, un-stall is done later. */
  3118. if (rv2p_proc == RV2P_PROC1) {
  3119. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
  3120. }
  3121. else {
  3122. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
  3123. }
  3124. return 0;
  3125. }
  3126. static int
  3127. load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
  3128. const struct bnx2_mips_fw_file_entry *fw_entry)
  3129. {
  3130. u32 addr, len, file_offset;
  3131. __be32 *data;
  3132. u32 offset;
  3133. u32 val;
  3134. /* Halt the CPU. */
  3135. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3136. val |= cpu_reg->mode_value_halt;
  3137. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3138. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3139. /* Load the Text area. */
  3140. addr = be32_to_cpu(fw_entry->text.addr);
  3141. len = be32_to_cpu(fw_entry->text.len);
  3142. file_offset = be32_to_cpu(fw_entry->text.offset);
  3143. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3144. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3145. if (len) {
  3146. int j;
  3147. for (j = 0; j < (len / 4); j++, offset += 4)
  3148. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3149. }
  3150. /* Load the Data area. */
  3151. addr = be32_to_cpu(fw_entry->data.addr);
  3152. len = be32_to_cpu(fw_entry->data.len);
  3153. file_offset = be32_to_cpu(fw_entry->data.offset);
  3154. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3155. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3156. if (len) {
  3157. int j;
  3158. for (j = 0; j < (len / 4); j++, offset += 4)
  3159. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3160. }
  3161. /* Load the Read-Only area. */
  3162. addr = be32_to_cpu(fw_entry->rodata.addr);
  3163. len = be32_to_cpu(fw_entry->rodata.len);
  3164. file_offset = be32_to_cpu(fw_entry->rodata.offset);
  3165. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3166. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3167. if (len) {
  3168. int j;
  3169. for (j = 0; j < (len / 4); j++, offset += 4)
  3170. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3171. }
  3172. /* Clear the pre-fetch instruction. */
  3173. bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
  3174. val = be32_to_cpu(fw_entry->start_addr);
  3175. bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
  3176. /* Start the CPU. */
  3177. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3178. val &= ~cpu_reg->mode_value_halt;
  3179. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3180. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3181. return 0;
  3182. }
  3183. static int
  3184. bnx2_init_cpus(struct bnx2 *bp)
  3185. {
  3186. const struct bnx2_mips_fw_file *mips_fw =
  3187. (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3188. const struct bnx2_rv2p_fw_file *rv2p_fw =
  3189. (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3190. int rc;
  3191. /* Initialize the RV2P processor. */
  3192. load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
  3193. load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
  3194. /* Initialize the RX Processor. */
  3195. rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
  3196. if (rc)
  3197. goto init_cpu_err;
  3198. /* Initialize the TX Processor. */
  3199. rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
  3200. if (rc)
  3201. goto init_cpu_err;
  3202. /* Initialize the TX Patch-up Processor. */
  3203. rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
  3204. if (rc)
  3205. goto init_cpu_err;
  3206. /* Initialize the Completion Processor. */
  3207. rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
  3208. if (rc)
  3209. goto init_cpu_err;
  3210. /* Initialize the Command Processor. */
  3211. rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
  3212. init_cpu_err:
  3213. return rc;
  3214. }
  3215. static int
  3216. bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
  3217. {
  3218. u16 pmcsr;
  3219. pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
  3220. switch (state) {
  3221. case PCI_D0: {
  3222. u32 val;
  3223. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3224. (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
  3225. PCI_PM_CTRL_PME_STATUS);
  3226. if (pmcsr & PCI_PM_CTRL_STATE_MASK)
  3227. /* delay required during transition out of D3hot */
  3228. msleep(20);
  3229. val = REG_RD(bp, BNX2_EMAC_MODE);
  3230. val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
  3231. val &= ~BNX2_EMAC_MODE_MPKT;
  3232. REG_WR(bp, BNX2_EMAC_MODE, val);
  3233. val = REG_RD(bp, BNX2_RPM_CONFIG);
  3234. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3235. REG_WR(bp, BNX2_RPM_CONFIG, val);
  3236. break;
  3237. }
  3238. case PCI_D3hot: {
  3239. int i;
  3240. u32 val, wol_msg;
  3241. if (bp->wol) {
  3242. u32 advertising;
  3243. u8 autoneg;
  3244. autoneg = bp->autoneg;
  3245. advertising = bp->advertising;
  3246. if (bp->phy_port == PORT_TP) {
  3247. bp->autoneg = AUTONEG_SPEED;
  3248. bp->advertising = ADVERTISED_10baseT_Half |
  3249. ADVERTISED_10baseT_Full |
  3250. ADVERTISED_100baseT_Half |
  3251. ADVERTISED_100baseT_Full |
  3252. ADVERTISED_Autoneg;
  3253. }
  3254. spin_lock_bh(&bp->phy_lock);
  3255. bnx2_setup_phy(bp, bp->phy_port);
  3256. spin_unlock_bh(&bp->phy_lock);
  3257. bp->autoneg = autoneg;
  3258. bp->advertising = advertising;
  3259. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3260. val = REG_RD(bp, BNX2_EMAC_MODE);
  3261. /* Enable port mode. */
  3262. val &= ~BNX2_EMAC_MODE_PORT;
  3263. val |= BNX2_EMAC_MODE_MPKT_RCVD |
  3264. BNX2_EMAC_MODE_ACPI_RCVD |
  3265. BNX2_EMAC_MODE_MPKT;
  3266. if (bp->phy_port == PORT_TP)
  3267. val |= BNX2_EMAC_MODE_PORT_MII;
  3268. else {
  3269. val |= BNX2_EMAC_MODE_PORT_GMII;
  3270. if (bp->line_speed == SPEED_2500)
  3271. val |= BNX2_EMAC_MODE_25G_MODE;
  3272. }
  3273. REG_WR(bp, BNX2_EMAC_MODE, val);
  3274. /* receive all multicast */
  3275. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  3276. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  3277. 0xffffffff);
  3278. }
  3279. REG_WR(bp, BNX2_EMAC_RX_MODE,
  3280. BNX2_EMAC_RX_MODE_SORT_MODE);
  3281. val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
  3282. BNX2_RPM_SORT_USER0_MC_EN;
  3283. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  3284. REG_WR(bp, BNX2_RPM_SORT_USER0, val);
  3285. REG_WR(bp, BNX2_RPM_SORT_USER0, val |
  3286. BNX2_RPM_SORT_USER0_ENA);
  3287. /* Need to enable EMAC and RPM for WOL. */
  3288. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3289. BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
  3290. BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
  3291. BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
  3292. val = REG_RD(bp, BNX2_RPM_CONFIG);
  3293. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3294. REG_WR(bp, BNX2_RPM_CONFIG, val);
  3295. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  3296. }
  3297. else {
  3298. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  3299. }
  3300. if (!(bp->flags & BNX2_FLAG_NO_WOL))
  3301. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
  3302. 1, 0);
  3303. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  3304. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3305. (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
  3306. if (bp->wol)
  3307. pmcsr |= 3;
  3308. }
  3309. else {
  3310. pmcsr |= 3;
  3311. }
  3312. if (bp->wol) {
  3313. pmcsr |= PCI_PM_CTRL_PME_ENABLE;
  3314. }
  3315. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3316. pmcsr);
  3317. /* No more memory access after this point until
  3318. * device is brought back to D0.
  3319. */
  3320. udelay(50);
  3321. break;
  3322. }
  3323. default:
  3324. return -EINVAL;
  3325. }
  3326. return 0;
  3327. }
  3328. static int
  3329. bnx2_acquire_nvram_lock(struct bnx2 *bp)
  3330. {
  3331. u32 val;
  3332. int j;
  3333. /* Request access to the flash interface. */
  3334. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
  3335. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3336. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  3337. if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
  3338. break;
  3339. udelay(5);
  3340. }
  3341. if (j >= NVRAM_TIMEOUT_COUNT)
  3342. return -EBUSY;
  3343. return 0;
  3344. }
  3345. static int
  3346. bnx2_release_nvram_lock(struct bnx2 *bp)
  3347. {
  3348. int j;
  3349. u32 val;
  3350. /* Relinquish nvram interface. */
  3351. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
  3352. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3353. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  3354. if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
  3355. break;
  3356. udelay(5);
  3357. }
  3358. if (j >= NVRAM_TIMEOUT_COUNT)
  3359. return -EBUSY;
  3360. return 0;
  3361. }
  3362. static int
  3363. bnx2_enable_nvram_write(struct bnx2 *bp)
  3364. {
  3365. u32 val;
  3366. val = REG_RD(bp, BNX2_MISC_CFG);
  3367. REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
  3368. if (bp->flash_info->flags & BNX2_NV_WREN) {
  3369. int j;
  3370. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3371. REG_WR(bp, BNX2_NVM_COMMAND,
  3372. BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
  3373. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3374. udelay(5);
  3375. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3376. if (val & BNX2_NVM_COMMAND_DONE)
  3377. break;
  3378. }
  3379. if (j >= NVRAM_TIMEOUT_COUNT)
  3380. return -EBUSY;
  3381. }
  3382. return 0;
  3383. }
  3384. static void
  3385. bnx2_disable_nvram_write(struct bnx2 *bp)
  3386. {
  3387. u32 val;
  3388. val = REG_RD(bp, BNX2_MISC_CFG);
  3389. REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
  3390. }
  3391. static void
  3392. bnx2_enable_nvram_access(struct bnx2 *bp)
  3393. {
  3394. u32 val;
  3395. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3396. /* Enable both bits, even on read. */
  3397. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3398. val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
  3399. }
  3400. static void
  3401. bnx2_disable_nvram_access(struct bnx2 *bp)
  3402. {
  3403. u32 val;
  3404. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3405. /* Disable both bits, even after read. */
  3406. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3407. val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
  3408. BNX2_NVM_ACCESS_ENABLE_WR_EN));
  3409. }
  3410. static int
  3411. bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
  3412. {
  3413. u32 cmd;
  3414. int j;
  3415. if (bp->flash_info->flags & BNX2_NV_BUFFERED)
  3416. /* Buffered flash, no erase needed */
  3417. return 0;
  3418. /* Build an erase command */
  3419. cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
  3420. BNX2_NVM_COMMAND_DOIT;
  3421. /* Need to clear DONE bit separately. */
  3422. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3423. /* Address of the NVRAM to read from. */
  3424. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3425. /* Issue an erase command. */
  3426. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3427. /* Wait for completion. */
  3428. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3429. u32 val;
  3430. udelay(5);
  3431. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3432. if (val & BNX2_NVM_COMMAND_DONE)
  3433. break;
  3434. }
  3435. if (j >= NVRAM_TIMEOUT_COUNT)
  3436. return -EBUSY;
  3437. return 0;
  3438. }
  3439. static int
  3440. bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
  3441. {
  3442. u32 cmd;
  3443. int j;
  3444. /* Build the command word. */
  3445. cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
  3446. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3447. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3448. offset = ((offset / bp->flash_info->page_size) <<
  3449. bp->flash_info->page_bits) +
  3450. (offset % bp->flash_info->page_size);
  3451. }
  3452. /* Need to clear DONE bit separately. */
  3453. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3454. /* Address of the NVRAM to read from. */
  3455. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3456. /* Issue a read command. */
  3457. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3458. /* Wait for completion. */
  3459. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3460. u32 val;
  3461. udelay(5);
  3462. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3463. if (val & BNX2_NVM_COMMAND_DONE) {
  3464. __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
  3465. memcpy(ret_val, &v, 4);
  3466. break;
  3467. }
  3468. }
  3469. if (j >= NVRAM_TIMEOUT_COUNT)
  3470. return -EBUSY;
  3471. return 0;
  3472. }
  3473. static int
  3474. bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
  3475. {
  3476. u32 cmd;
  3477. __be32 val32;
  3478. int j;
  3479. /* Build the command word. */
  3480. cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
  3481. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3482. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3483. offset = ((offset / bp->flash_info->page_size) <<
  3484. bp->flash_info->page_bits) +
  3485. (offset % bp->flash_info->page_size);
  3486. }
  3487. /* Need to clear DONE bit separately. */
  3488. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3489. memcpy(&val32, val, 4);
  3490. /* Write the data. */
  3491. REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
  3492. /* Address of the NVRAM to write to. */
  3493. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3494. /* Issue the write command. */
  3495. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3496. /* Wait for completion. */
  3497. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3498. udelay(5);
  3499. if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
  3500. break;
  3501. }
  3502. if (j >= NVRAM_TIMEOUT_COUNT)
  3503. return -EBUSY;
  3504. return 0;
  3505. }
  3506. static int
  3507. bnx2_init_nvram(struct bnx2 *bp)
  3508. {
  3509. u32 val;
  3510. int j, entry_count, rc = 0;
  3511. const struct flash_spec *flash;
  3512. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3513. bp->flash_info = &flash_5709;
  3514. goto get_flash_size;
  3515. }
  3516. /* Determine the selected interface. */
  3517. val = REG_RD(bp, BNX2_NVM_CFG1);
  3518. entry_count = ARRAY_SIZE(flash_table);
  3519. if (val & 0x40000000) {
  3520. /* Flash interface has been reconfigured */
  3521. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3522. j++, flash++) {
  3523. if ((val & FLASH_BACKUP_STRAP_MASK) ==
  3524. (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
  3525. bp->flash_info = flash;
  3526. break;
  3527. }
  3528. }
  3529. }
  3530. else {
  3531. u32 mask;
  3532. /* Not yet been reconfigured */
  3533. if (val & (1 << 23))
  3534. mask = FLASH_BACKUP_STRAP_MASK;
  3535. else
  3536. mask = FLASH_STRAP_MASK;
  3537. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3538. j++, flash++) {
  3539. if ((val & mask) == (flash->strapping & mask)) {
  3540. bp->flash_info = flash;
  3541. /* Request access to the flash interface. */
  3542. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3543. return rc;
  3544. /* Enable access to flash interface */
  3545. bnx2_enable_nvram_access(bp);
  3546. /* Reconfigure the flash interface */
  3547. REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
  3548. REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
  3549. REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
  3550. REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
  3551. /* Disable access to flash interface */
  3552. bnx2_disable_nvram_access(bp);
  3553. bnx2_release_nvram_lock(bp);
  3554. break;
  3555. }
  3556. }
  3557. } /* if (val & 0x40000000) */
  3558. if (j == entry_count) {
  3559. bp->flash_info = NULL;
  3560. printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n");
  3561. return -ENODEV;
  3562. }
  3563. get_flash_size:
  3564. val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
  3565. val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
  3566. if (val)
  3567. bp->flash_size = val;
  3568. else
  3569. bp->flash_size = bp->flash_info->total_size;
  3570. return rc;
  3571. }
  3572. static int
  3573. bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
  3574. int buf_size)
  3575. {
  3576. int rc = 0;
  3577. u32 cmd_flags, offset32, len32, extra;
  3578. if (buf_size == 0)
  3579. return 0;
  3580. /* Request access to the flash interface. */
  3581. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3582. return rc;
  3583. /* Enable access to flash interface */
  3584. bnx2_enable_nvram_access(bp);
  3585. len32 = buf_size;
  3586. offset32 = offset;
  3587. extra = 0;
  3588. cmd_flags = 0;
  3589. if (offset32 & 3) {
  3590. u8 buf[4];
  3591. u32 pre_len;
  3592. offset32 &= ~3;
  3593. pre_len = 4 - (offset & 3);
  3594. if (pre_len >= len32) {
  3595. pre_len = len32;
  3596. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3597. BNX2_NVM_COMMAND_LAST;
  3598. }
  3599. else {
  3600. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3601. }
  3602. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3603. if (rc)
  3604. return rc;
  3605. memcpy(ret_buf, buf + (offset & 3), pre_len);
  3606. offset32 += 4;
  3607. ret_buf += pre_len;
  3608. len32 -= pre_len;
  3609. }
  3610. if (len32 & 3) {
  3611. extra = 4 - (len32 & 3);
  3612. len32 = (len32 + 4) & ~3;
  3613. }
  3614. if (len32 == 4) {
  3615. u8 buf[4];
  3616. if (cmd_flags)
  3617. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3618. else
  3619. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3620. BNX2_NVM_COMMAND_LAST;
  3621. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3622. memcpy(ret_buf, buf, 4 - extra);
  3623. }
  3624. else if (len32 > 0) {
  3625. u8 buf[4];
  3626. /* Read the first word. */
  3627. if (cmd_flags)
  3628. cmd_flags = 0;
  3629. else
  3630. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3631. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
  3632. /* Advance to the next dword. */
  3633. offset32 += 4;
  3634. ret_buf += 4;
  3635. len32 -= 4;
  3636. while (len32 > 4 && rc == 0) {
  3637. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
  3638. /* Advance to the next dword. */
  3639. offset32 += 4;
  3640. ret_buf += 4;
  3641. len32 -= 4;
  3642. }
  3643. if (rc)
  3644. return rc;
  3645. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3646. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3647. memcpy(ret_buf, buf, 4 - extra);
  3648. }
  3649. /* Disable access to flash interface */
  3650. bnx2_disable_nvram_access(bp);
  3651. bnx2_release_nvram_lock(bp);
  3652. return rc;
  3653. }
  3654. static int
  3655. bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
  3656. int buf_size)
  3657. {
  3658. u32 written, offset32, len32;
  3659. u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
  3660. int rc = 0;
  3661. int align_start, align_end;
  3662. buf = data_buf;
  3663. offset32 = offset;
  3664. len32 = buf_size;
  3665. align_start = align_end = 0;
  3666. if ((align_start = (offset32 & 3))) {
  3667. offset32 &= ~3;
  3668. len32 += align_start;
  3669. if (len32 < 4)
  3670. len32 = 4;
  3671. if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
  3672. return rc;
  3673. }
  3674. if (len32 & 3) {
  3675. align_end = 4 - (len32 & 3);
  3676. len32 += align_end;
  3677. if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
  3678. return rc;
  3679. }
  3680. if (align_start || align_end) {
  3681. align_buf = kmalloc(len32, GFP_KERNEL);
  3682. if (align_buf == NULL)
  3683. return -ENOMEM;
  3684. if (align_start) {
  3685. memcpy(align_buf, start, 4);
  3686. }
  3687. if (align_end) {
  3688. memcpy(align_buf + len32 - 4, end, 4);
  3689. }
  3690. memcpy(align_buf + align_start, data_buf, buf_size);
  3691. buf = align_buf;
  3692. }
  3693. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3694. flash_buffer = kmalloc(264, GFP_KERNEL);
  3695. if (flash_buffer == NULL) {
  3696. rc = -ENOMEM;
  3697. goto nvram_write_end;
  3698. }
  3699. }
  3700. written = 0;
  3701. while ((written < len32) && (rc == 0)) {
  3702. u32 page_start, page_end, data_start, data_end;
  3703. u32 addr, cmd_flags;
  3704. int i;
  3705. /* Find the page_start addr */
  3706. page_start = offset32 + written;
  3707. page_start -= (page_start % bp->flash_info->page_size);
  3708. /* Find the page_end addr */
  3709. page_end = page_start + bp->flash_info->page_size;
  3710. /* Find the data_start addr */
  3711. data_start = (written == 0) ? offset32 : page_start;
  3712. /* Find the data_end addr */
  3713. data_end = (page_end > offset32 + len32) ?
  3714. (offset32 + len32) : page_end;
  3715. /* Request access to the flash interface. */
  3716. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3717. goto nvram_write_end;
  3718. /* Enable access to flash interface */
  3719. bnx2_enable_nvram_access(bp);
  3720. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3721. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3722. int j;
  3723. /* Read the whole page into the buffer
  3724. * (non-buffer flash only) */
  3725. for (j = 0; j < bp->flash_info->page_size; j += 4) {
  3726. if (j == (bp->flash_info->page_size - 4)) {
  3727. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3728. }
  3729. rc = bnx2_nvram_read_dword(bp,
  3730. page_start + j,
  3731. &flash_buffer[j],
  3732. cmd_flags);
  3733. if (rc)
  3734. goto nvram_write_end;
  3735. cmd_flags = 0;
  3736. }
  3737. }
  3738. /* Enable writes to flash interface (unlock write-protect) */
  3739. if ((rc = bnx2_enable_nvram_write(bp)) != 0)
  3740. goto nvram_write_end;
  3741. /* Loop to write back the buffer data from page_start to
  3742. * data_start */
  3743. i = 0;
  3744. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3745. /* Erase the page */
  3746. if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
  3747. goto nvram_write_end;
  3748. /* Re-enable the write again for the actual write */
  3749. bnx2_enable_nvram_write(bp);
  3750. for (addr = page_start; addr < data_start;
  3751. addr += 4, i += 4) {
  3752. rc = bnx2_nvram_write_dword(bp, addr,
  3753. &flash_buffer[i], cmd_flags);
  3754. if (rc != 0)
  3755. goto nvram_write_end;
  3756. cmd_flags = 0;
  3757. }
  3758. }
  3759. /* Loop to write the new data from data_start to data_end */
  3760. for (addr = data_start; addr < data_end; addr += 4, i += 4) {
  3761. if ((addr == page_end - 4) ||
  3762. ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
  3763. (addr == data_end - 4))) {
  3764. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3765. }
  3766. rc = bnx2_nvram_write_dword(bp, addr, buf,
  3767. cmd_flags);
  3768. if (rc != 0)
  3769. goto nvram_write_end;
  3770. cmd_flags = 0;
  3771. buf += 4;
  3772. }
  3773. /* Loop to write back the buffer data from data_end
  3774. * to page_end */
  3775. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3776. for (addr = data_end; addr < page_end;
  3777. addr += 4, i += 4) {
  3778. if (addr == page_end-4) {
  3779. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3780. }
  3781. rc = bnx2_nvram_write_dword(bp, addr,
  3782. &flash_buffer[i], cmd_flags);
  3783. if (rc != 0)
  3784. goto nvram_write_end;
  3785. cmd_flags = 0;
  3786. }
  3787. }
  3788. /* Disable writes to flash interface (lock write-protect) */
  3789. bnx2_disable_nvram_write(bp);
  3790. /* Disable access to flash interface */
  3791. bnx2_disable_nvram_access(bp);
  3792. bnx2_release_nvram_lock(bp);
  3793. /* Increment written */
  3794. written += data_end - data_start;
  3795. }
  3796. nvram_write_end:
  3797. kfree(flash_buffer);
  3798. kfree(align_buf);
  3799. return rc;
  3800. }
  3801. static void
  3802. bnx2_init_fw_cap(struct bnx2 *bp)
  3803. {
  3804. u32 val, sig = 0;
  3805. bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3806. bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
  3807. if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
  3808. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3809. val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
  3810. if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
  3811. return;
  3812. if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
  3813. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3814. sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
  3815. }
  3816. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  3817. (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
  3818. u32 link;
  3819. bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3820. link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  3821. if (link & BNX2_LINK_STATUS_SERDES_LINK)
  3822. bp->phy_port = PORT_FIBRE;
  3823. else
  3824. bp->phy_port = PORT_TP;
  3825. sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
  3826. BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
  3827. }
  3828. if (netif_running(bp->dev) && sig)
  3829. bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
  3830. }
  3831. static void
  3832. bnx2_setup_msix_tbl(struct bnx2 *bp)
  3833. {
  3834. REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
  3835. REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
  3836. REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
  3837. }
  3838. static int
  3839. bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
  3840. {
  3841. u32 val;
  3842. int i, rc = 0;
  3843. u8 old_port;
  3844. /* Wait for the current PCI transaction to complete before
  3845. * issuing a reset. */
  3846. REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
  3847. BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
  3848. BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
  3849. BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
  3850. BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
  3851. val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
  3852. udelay(5);
  3853. /* Wait for the firmware to tell us it is ok to issue a reset. */
  3854. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
  3855. /* Deposit a driver reset signature so the firmware knows that
  3856. * this is a soft reset. */
  3857. bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
  3858. BNX2_DRV_RESET_SIGNATURE_MAGIC);
  3859. /* Do a dummy read to force the chip to complete all current transaction
  3860. * before we issue a reset. */
  3861. val = REG_RD(bp, BNX2_MISC_ID);
  3862. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3863. REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
  3864. REG_RD(bp, BNX2_MISC_COMMAND);
  3865. udelay(5);
  3866. val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3867. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3868. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
  3869. } else {
  3870. val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3871. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3872. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3873. /* Chip reset. */
  3874. REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  3875. /* Reading back any register after chip reset will hang the
  3876. * bus on 5706 A0 and A1. The msleep below provides plenty
  3877. * of margin for write posting.
  3878. */
  3879. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3880. (CHIP_ID(bp) == CHIP_ID_5706_A1))
  3881. msleep(20);
  3882. /* Reset takes approximate 30 usec */
  3883. for (i = 0; i < 10; i++) {
  3884. val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
  3885. if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3886. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
  3887. break;
  3888. udelay(10);
  3889. }
  3890. if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3891. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
  3892. printk(KERN_ERR PFX "Chip reset did not complete\n");
  3893. return -EBUSY;
  3894. }
  3895. }
  3896. /* Make sure byte swapping is properly configured. */
  3897. val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
  3898. if (val != 0x01020304) {
  3899. printk(KERN_ERR PFX "Chip not in correct endian mode\n");
  3900. return -ENODEV;
  3901. }
  3902. /* Wait for the firmware to finish its initialization. */
  3903. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
  3904. if (rc)
  3905. return rc;
  3906. spin_lock_bh(&bp->phy_lock);
  3907. old_port = bp->phy_port;
  3908. bnx2_init_fw_cap(bp);
  3909. if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
  3910. old_port != bp->phy_port)
  3911. bnx2_set_default_remote_link(bp);
  3912. spin_unlock_bh(&bp->phy_lock);
  3913. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3914. /* Adjust the voltage regular to two steps lower. The default
  3915. * of this register is 0x0000000e. */
  3916. REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
  3917. /* Remove bad rbuf memory from the free pool. */
  3918. rc = bnx2_alloc_bad_rbuf(bp);
  3919. }
  3920. if (bp->flags & BNX2_FLAG_USING_MSIX)
  3921. bnx2_setup_msix_tbl(bp);
  3922. return rc;
  3923. }
  3924. static int
  3925. bnx2_init_chip(struct bnx2 *bp)
  3926. {
  3927. u32 val, mtu;
  3928. int rc, i;
  3929. /* Make sure the interrupt is not active. */
  3930. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  3931. val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
  3932. BNX2_DMA_CONFIG_DATA_WORD_SWAP |
  3933. #ifdef __BIG_ENDIAN
  3934. BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
  3935. #endif
  3936. BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
  3937. DMA_READ_CHANS << 12 |
  3938. DMA_WRITE_CHANS << 16;
  3939. val |= (0x2 << 20) | (1 << 11);
  3940. if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
  3941. val |= (1 << 23);
  3942. if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
  3943. (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
  3944. val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
  3945. REG_WR(bp, BNX2_DMA_CONFIG, val);
  3946. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3947. val = REG_RD(bp, BNX2_TDMA_CONFIG);
  3948. val |= BNX2_TDMA_CONFIG_ONE_DMA;
  3949. REG_WR(bp, BNX2_TDMA_CONFIG, val);
  3950. }
  3951. if (bp->flags & BNX2_FLAG_PCIX) {
  3952. u16 val16;
  3953. pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3954. &val16);
  3955. pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3956. val16 & ~PCI_X_CMD_ERO);
  3957. }
  3958. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3959. BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
  3960. BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
  3961. BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
  3962. /* Initialize context mapping and zero out the quick contexts. The
  3963. * context block must have already been enabled. */
  3964. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3965. rc = bnx2_init_5709_context(bp);
  3966. if (rc)
  3967. return rc;
  3968. } else
  3969. bnx2_init_context(bp);
  3970. if ((rc = bnx2_init_cpus(bp)) != 0)
  3971. return rc;
  3972. bnx2_init_nvram(bp);
  3973. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3974. val = REG_RD(bp, BNX2_MQ_CONFIG);
  3975. val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
  3976. val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
  3977. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3978. val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
  3979. if (CHIP_REV(bp) == CHIP_REV_Ax)
  3980. val |= BNX2_MQ_CONFIG_HALT_DIS;
  3981. }
  3982. REG_WR(bp, BNX2_MQ_CONFIG, val);
  3983. val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
  3984. REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
  3985. REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
  3986. val = (BCM_PAGE_BITS - 8) << 24;
  3987. REG_WR(bp, BNX2_RV2P_CONFIG, val);
  3988. /* Configure page size. */
  3989. val = REG_RD(bp, BNX2_TBDR_CONFIG);
  3990. val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
  3991. val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
  3992. REG_WR(bp, BNX2_TBDR_CONFIG, val);
  3993. val = bp->mac_addr[0] +
  3994. (bp->mac_addr[1] << 8) +
  3995. (bp->mac_addr[2] << 16) +
  3996. bp->mac_addr[3] +
  3997. (bp->mac_addr[4] << 8) +
  3998. (bp->mac_addr[5] << 16);
  3999. REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
  4000. /* Program the MTU. Also include 4 bytes for CRC32. */
  4001. mtu = bp->dev->mtu;
  4002. val = mtu + ETH_HLEN + ETH_FCS_LEN;
  4003. if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
  4004. val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
  4005. REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
  4006. if (mtu < 1500)
  4007. mtu = 1500;
  4008. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
  4009. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
  4010. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
  4011. memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
  4012. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
  4013. bp->bnx2_napi[i].last_status_idx = 0;
  4014. bp->idle_chk_status_idx = 0xffff;
  4015. bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
  4016. /* Set up how to generate a link change interrupt. */
  4017. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  4018. REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
  4019. (u64) bp->status_blk_mapping & 0xffffffff);
  4020. REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
  4021. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
  4022. (u64) bp->stats_blk_mapping & 0xffffffff);
  4023. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
  4024. (u64) bp->stats_blk_mapping >> 32);
  4025. REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
  4026. (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
  4027. REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
  4028. (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
  4029. REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
  4030. (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
  4031. REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4032. REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4033. REG_WR(bp, BNX2_HC_COM_TICKS,
  4034. (bp->com_ticks_int << 16) | bp->com_ticks);
  4035. REG_WR(bp, BNX2_HC_CMD_TICKS,
  4036. (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
  4037. if (bp->flags & BNX2_FLAG_BROKEN_STATS)
  4038. REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
  4039. else
  4040. REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
  4041. REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
  4042. if (CHIP_ID(bp) == CHIP_ID_5706_A1)
  4043. val = BNX2_HC_CONFIG_COLLECT_STATS;
  4044. else {
  4045. val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
  4046. BNX2_HC_CONFIG_COLLECT_STATS;
  4047. }
  4048. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  4049. REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
  4050. BNX2_HC_MSIX_BIT_VECTOR_VAL);
  4051. val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
  4052. }
  4053. if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
  4054. val |= BNX2_HC_CONFIG_ONE_SHOT | BNX2_HC_CONFIG_USE_INT_PARAM;
  4055. REG_WR(bp, BNX2_HC_CONFIG, val);
  4056. for (i = 1; i < bp->irq_nvecs; i++) {
  4057. u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
  4058. BNX2_HC_SB_CONFIG_1;
  4059. REG_WR(bp, base,
  4060. BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
  4061. BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
  4062. BNX2_HC_SB_CONFIG_1_ONE_SHOT);
  4063. REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
  4064. (bp->tx_quick_cons_trip_int << 16) |
  4065. bp->tx_quick_cons_trip);
  4066. REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
  4067. (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4068. REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
  4069. (bp->rx_quick_cons_trip_int << 16) |
  4070. bp->rx_quick_cons_trip);
  4071. REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
  4072. (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4073. }
  4074. /* Clear internal stats counters. */
  4075. REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
  4076. REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
  4077. /* Initialize the receive filter. */
  4078. bnx2_set_rx_mode(bp->dev);
  4079. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4080. val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  4081. val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
  4082. REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
  4083. }
  4084. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
  4085. 1, 0);
  4086. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
  4087. REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
  4088. udelay(20);
  4089. bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
  4090. return rc;
  4091. }
  4092. static void
  4093. bnx2_clear_ring_states(struct bnx2 *bp)
  4094. {
  4095. struct bnx2_napi *bnapi;
  4096. struct bnx2_tx_ring_info *txr;
  4097. struct bnx2_rx_ring_info *rxr;
  4098. int i;
  4099. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  4100. bnapi = &bp->bnx2_napi[i];
  4101. txr = &bnapi->tx_ring;
  4102. rxr = &bnapi->rx_ring;
  4103. txr->tx_cons = 0;
  4104. txr->hw_tx_cons = 0;
  4105. rxr->rx_prod_bseq = 0;
  4106. rxr->rx_prod = 0;
  4107. rxr->rx_cons = 0;
  4108. rxr->rx_pg_prod = 0;
  4109. rxr->rx_pg_cons = 0;
  4110. }
  4111. }
  4112. static void
  4113. bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
  4114. {
  4115. u32 val, offset0, offset1, offset2, offset3;
  4116. u32 cid_addr = GET_CID_ADDR(cid);
  4117. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4118. offset0 = BNX2_L2CTX_TYPE_XI;
  4119. offset1 = BNX2_L2CTX_CMD_TYPE_XI;
  4120. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
  4121. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
  4122. } else {
  4123. offset0 = BNX2_L2CTX_TYPE;
  4124. offset1 = BNX2_L2CTX_CMD_TYPE;
  4125. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
  4126. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
  4127. }
  4128. val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
  4129. bnx2_ctx_wr(bp, cid_addr, offset0, val);
  4130. val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
  4131. bnx2_ctx_wr(bp, cid_addr, offset1, val);
  4132. val = (u64) txr->tx_desc_mapping >> 32;
  4133. bnx2_ctx_wr(bp, cid_addr, offset2, val);
  4134. val = (u64) txr->tx_desc_mapping & 0xffffffff;
  4135. bnx2_ctx_wr(bp, cid_addr, offset3, val);
  4136. }
  4137. static void
  4138. bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
  4139. {
  4140. struct tx_bd *txbd;
  4141. u32 cid = TX_CID;
  4142. struct bnx2_napi *bnapi;
  4143. struct bnx2_tx_ring_info *txr;
  4144. bnapi = &bp->bnx2_napi[ring_num];
  4145. txr = &bnapi->tx_ring;
  4146. if (ring_num == 0)
  4147. cid = TX_CID;
  4148. else
  4149. cid = TX_TSS_CID + ring_num - 1;
  4150. bp->tx_wake_thresh = bp->tx_ring_size / 2;
  4151. txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
  4152. txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
  4153. txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
  4154. txr->tx_prod = 0;
  4155. txr->tx_prod_bseq = 0;
  4156. txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
  4157. txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
  4158. bnx2_init_tx_context(bp, cid, txr);
  4159. }
  4160. static void
  4161. bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
  4162. int num_rings)
  4163. {
  4164. int i;
  4165. struct rx_bd *rxbd;
  4166. for (i = 0; i < num_rings; i++) {
  4167. int j;
  4168. rxbd = &rx_ring[i][0];
  4169. for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
  4170. rxbd->rx_bd_len = buf_size;
  4171. rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
  4172. }
  4173. if (i == (num_rings - 1))
  4174. j = 0;
  4175. else
  4176. j = i + 1;
  4177. rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
  4178. rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
  4179. }
  4180. }
  4181. static void
  4182. bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
  4183. {
  4184. int i;
  4185. u16 prod, ring_prod;
  4186. u32 cid, rx_cid_addr, val;
  4187. struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
  4188. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4189. if (ring_num == 0)
  4190. cid = RX_CID;
  4191. else
  4192. cid = RX_RSS_CID + ring_num - 1;
  4193. rx_cid_addr = GET_CID_ADDR(cid);
  4194. bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
  4195. bp->rx_buf_use_size, bp->rx_max_ring);
  4196. bnx2_init_rx_context(bp, cid);
  4197. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4198. val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
  4199. REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
  4200. }
  4201. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
  4202. if (bp->rx_pg_ring_size) {
  4203. bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
  4204. rxr->rx_pg_desc_mapping,
  4205. PAGE_SIZE, bp->rx_max_pg_ring);
  4206. val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
  4207. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
  4208. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
  4209. BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
  4210. val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
  4211. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
  4212. val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
  4213. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
  4214. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4215. REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
  4216. }
  4217. val = (u64) rxr->rx_desc_mapping[0] >> 32;
  4218. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
  4219. val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
  4220. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
  4221. ring_prod = prod = rxr->rx_pg_prod;
  4222. for (i = 0; i < bp->rx_pg_ring_size; i++) {
  4223. if (bnx2_alloc_rx_page(bp, rxr, ring_prod) < 0) {
  4224. printk(KERN_WARNING PFX "%s: init'ed rx page ring %d "
  4225. "with %d/%d pages only\n",
  4226. bp->dev->name, ring_num, i, bp->rx_pg_ring_size);
  4227. break;
  4228. }
  4229. prod = NEXT_RX_BD(prod);
  4230. ring_prod = RX_PG_RING_IDX(prod);
  4231. }
  4232. rxr->rx_pg_prod = prod;
  4233. ring_prod = prod = rxr->rx_prod;
  4234. for (i = 0; i < bp->rx_ring_size; i++) {
  4235. if (bnx2_alloc_rx_skb(bp, rxr, ring_prod) < 0) {
  4236. printk(KERN_WARNING PFX "%s: init'ed rx ring %d with "
  4237. "%d/%d skbs only\n",
  4238. bp->dev->name, ring_num, i, bp->rx_ring_size);
  4239. break;
  4240. }
  4241. prod = NEXT_RX_BD(prod);
  4242. ring_prod = RX_RING_IDX(prod);
  4243. }
  4244. rxr->rx_prod = prod;
  4245. rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
  4246. rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
  4247. rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
  4248. REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  4249. REG_WR16(bp, rxr->rx_bidx_addr, prod);
  4250. REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  4251. }
  4252. static void
  4253. bnx2_init_all_rings(struct bnx2 *bp)
  4254. {
  4255. int i;
  4256. u32 val;
  4257. bnx2_clear_ring_states(bp);
  4258. REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
  4259. for (i = 0; i < bp->num_tx_rings; i++)
  4260. bnx2_init_tx_ring(bp, i);
  4261. if (bp->num_tx_rings > 1)
  4262. REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
  4263. (TX_TSS_CID << 7));
  4264. REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
  4265. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
  4266. for (i = 0; i < bp->num_rx_rings; i++)
  4267. bnx2_init_rx_ring(bp, i);
  4268. if (bp->num_rx_rings > 1) {
  4269. u32 tbl_32;
  4270. u8 *tbl = (u8 *) &tbl_32;
  4271. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ,
  4272. BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES);
  4273. for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
  4274. tbl[i % 4] = i % (bp->num_rx_rings - 1);
  4275. if ((i % 4) == 3)
  4276. bnx2_reg_wr_ind(bp,
  4277. BNX2_RXP_SCRATCH_RSS_TBL + i,
  4278. cpu_to_be32(tbl_32));
  4279. }
  4280. val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
  4281. BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
  4282. REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
  4283. }
  4284. }
  4285. static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
  4286. {
  4287. u32 max, num_rings = 1;
  4288. while (ring_size > MAX_RX_DESC_CNT) {
  4289. ring_size -= MAX_RX_DESC_CNT;
  4290. num_rings++;
  4291. }
  4292. /* round to next power of 2 */
  4293. max = max_size;
  4294. while ((max & num_rings) == 0)
  4295. max >>= 1;
  4296. if (num_rings != max)
  4297. max <<= 1;
  4298. return max;
  4299. }
  4300. static void
  4301. bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
  4302. {
  4303. u32 rx_size, rx_space, jumbo_size;
  4304. /* 8 for CRC and VLAN */
  4305. rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
  4306. rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
  4307. sizeof(struct skb_shared_info);
  4308. bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
  4309. bp->rx_pg_ring_size = 0;
  4310. bp->rx_max_pg_ring = 0;
  4311. bp->rx_max_pg_ring_idx = 0;
  4312. if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
  4313. int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
  4314. jumbo_size = size * pages;
  4315. if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
  4316. jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
  4317. bp->rx_pg_ring_size = jumbo_size;
  4318. bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
  4319. MAX_RX_PG_RINGS);
  4320. bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
  4321. rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
  4322. bp->rx_copy_thresh = 0;
  4323. }
  4324. bp->rx_buf_use_size = rx_size;
  4325. /* hw alignment */
  4326. bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
  4327. bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
  4328. bp->rx_ring_size = size;
  4329. bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
  4330. bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
  4331. }
  4332. static void
  4333. bnx2_free_tx_skbs(struct bnx2 *bp)
  4334. {
  4335. int i;
  4336. for (i = 0; i < bp->num_tx_rings; i++) {
  4337. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4338. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4339. int j;
  4340. if (txr->tx_buf_ring == NULL)
  4341. continue;
  4342. for (j = 0; j < TX_DESC_CNT; ) {
  4343. struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
  4344. struct sk_buff *skb = tx_buf->skb;
  4345. int k, last;
  4346. if (skb == NULL) {
  4347. j++;
  4348. continue;
  4349. }
  4350. pci_unmap_single(bp->pdev,
  4351. pci_unmap_addr(tx_buf, mapping),
  4352. skb_headlen(skb),
  4353. PCI_DMA_TODEVICE);
  4354. tx_buf->skb = NULL;
  4355. last = tx_buf->nr_frags;
  4356. j++;
  4357. for (k = 0; k < last; k++, j++) {
  4358. tx_buf = &txr->tx_buf_ring[TX_RING_IDX(j)];
  4359. pci_unmap_page(bp->pdev,
  4360. pci_unmap_addr(tx_buf, mapping),
  4361. skb_shinfo(skb)->frags[k].size,
  4362. PCI_DMA_TODEVICE);
  4363. }
  4364. dev_kfree_skb(skb);
  4365. }
  4366. }
  4367. }
  4368. static void
  4369. bnx2_free_rx_skbs(struct bnx2 *bp)
  4370. {
  4371. int i;
  4372. for (i = 0; i < bp->num_rx_rings; i++) {
  4373. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4374. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4375. int j;
  4376. if (rxr->rx_buf_ring == NULL)
  4377. return;
  4378. for (j = 0; j < bp->rx_max_ring_idx; j++) {
  4379. struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
  4380. struct sk_buff *skb = rx_buf->skb;
  4381. if (skb == NULL)
  4382. continue;
  4383. pci_unmap_single(bp->pdev,
  4384. pci_unmap_addr(rx_buf, mapping),
  4385. bp->rx_buf_use_size,
  4386. PCI_DMA_FROMDEVICE);
  4387. rx_buf->skb = NULL;
  4388. dev_kfree_skb(skb);
  4389. }
  4390. for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
  4391. bnx2_free_rx_page(bp, rxr, j);
  4392. }
  4393. }
  4394. static void
  4395. bnx2_free_skbs(struct bnx2 *bp)
  4396. {
  4397. bnx2_free_tx_skbs(bp);
  4398. bnx2_free_rx_skbs(bp);
  4399. }
  4400. static int
  4401. bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
  4402. {
  4403. int rc;
  4404. rc = bnx2_reset_chip(bp, reset_code);
  4405. bnx2_free_skbs(bp);
  4406. if (rc)
  4407. return rc;
  4408. if ((rc = bnx2_init_chip(bp)) != 0)
  4409. return rc;
  4410. bnx2_init_all_rings(bp);
  4411. return 0;
  4412. }
  4413. static int
  4414. bnx2_init_nic(struct bnx2 *bp, int reset_phy)
  4415. {
  4416. int rc;
  4417. if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
  4418. return rc;
  4419. spin_lock_bh(&bp->phy_lock);
  4420. bnx2_init_phy(bp, reset_phy);
  4421. bnx2_set_link(bp);
  4422. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4423. bnx2_remote_phy_event(bp);
  4424. spin_unlock_bh(&bp->phy_lock);
  4425. return 0;
  4426. }
  4427. static int
  4428. bnx2_shutdown_chip(struct bnx2 *bp)
  4429. {
  4430. u32 reset_code;
  4431. if (bp->flags & BNX2_FLAG_NO_WOL)
  4432. reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
  4433. else if (bp->wol)
  4434. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  4435. else
  4436. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  4437. return bnx2_reset_chip(bp, reset_code);
  4438. }
  4439. static int
  4440. bnx2_test_registers(struct bnx2 *bp)
  4441. {
  4442. int ret;
  4443. int i, is_5709;
  4444. static const struct {
  4445. u16 offset;
  4446. u16 flags;
  4447. #define BNX2_FL_NOT_5709 1
  4448. u32 rw_mask;
  4449. u32 ro_mask;
  4450. } reg_tbl[] = {
  4451. { 0x006c, 0, 0x00000000, 0x0000003f },
  4452. { 0x0090, 0, 0xffffffff, 0x00000000 },
  4453. { 0x0094, 0, 0x00000000, 0x00000000 },
  4454. { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
  4455. { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4456. { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4457. { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
  4458. { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
  4459. { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4460. { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
  4461. { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4462. { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4463. { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4464. { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4465. { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4466. { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4467. { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4468. { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4469. { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4470. { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
  4471. { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
  4472. { 0x1000, 0, 0x00000000, 0x00000001 },
  4473. { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
  4474. { 0x1408, 0, 0x01c00800, 0x00000000 },
  4475. { 0x149c, 0, 0x8000ffff, 0x00000000 },
  4476. { 0x14a8, 0, 0x00000000, 0x000001ff },
  4477. { 0x14ac, 0, 0x0fffffff, 0x10000000 },
  4478. { 0x14b0, 0, 0x00000002, 0x00000001 },
  4479. { 0x14b8, 0, 0x00000000, 0x00000000 },
  4480. { 0x14c0, 0, 0x00000000, 0x00000009 },
  4481. { 0x14c4, 0, 0x00003fff, 0x00000000 },
  4482. { 0x14cc, 0, 0x00000000, 0x00000001 },
  4483. { 0x14d0, 0, 0xffffffff, 0x00000000 },
  4484. { 0x1800, 0, 0x00000000, 0x00000001 },
  4485. { 0x1804, 0, 0x00000000, 0x00000003 },
  4486. { 0x2800, 0, 0x00000000, 0x00000001 },
  4487. { 0x2804, 0, 0x00000000, 0x00003f01 },
  4488. { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
  4489. { 0x2810, 0, 0xffff0000, 0x00000000 },
  4490. { 0x2814, 0, 0xffff0000, 0x00000000 },
  4491. { 0x2818, 0, 0xffff0000, 0x00000000 },
  4492. { 0x281c, 0, 0xffff0000, 0x00000000 },
  4493. { 0x2834, 0, 0xffffffff, 0x00000000 },
  4494. { 0x2840, 0, 0x00000000, 0xffffffff },
  4495. { 0x2844, 0, 0x00000000, 0xffffffff },
  4496. { 0x2848, 0, 0xffffffff, 0x00000000 },
  4497. { 0x284c, 0, 0xf800f800, 0x07ff07ff },
  4498. { 0x2c00, 0, 0x00000000, 0x00000011 },
  4499. { 0x2c04, 0, 0x00000000, 0x00030007 },
  4500. { 0x3c00, 0, 0x00000000, 0x00000001 },
  4501. { 0x3c04, 0, 0x00000000, 0x00070000 },
  4502. { 0x3c08, 0, 0x00007f71, 0x07f00000 },
  4503. { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
  4504. { 0x3c10, 0, 0xffffffff, 0x00000000 },
  4505. { 0x3c14, 0, 0x00000000, 0xffffffff },
  4506. { 0x3c18, 0, 0x00000000, 0xffffffff },
  4507. { 0x3c1c, 0, 0xfffff000, 0x00000000 },
  4508. { 0x3c20, 0, 0xffffff00, 0x00000000 },
  4509. { 0x5004, 0, 0x00000000, 0x0000007f },
  4510. { 0x5008, 0, 0x0f0007ff, 0x00000000 },
  4511. { 0x5c00, 0, 0x00000000, 0x00000001 },
  4512. { 0x5c04, 0, 0x00000000, 0x0003000f },
  4513. { 0x5c08, 0, 0x00000003, 0x00000000 },
  4514. { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
  4515. { 0x5c10, 0, 0x00000000, 0xffffffff },
  4516. { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
  4517. { 0x5c84, 0, 0x00000000, 0x0000f333 },
  4518. { 0x5c88, 0, 0x00000000, 0x00077373 },
  4519. { 0x5c8c, 0, 0x00000000, 0x0007f737 },
  4520. { 0x6808, 0, 0x0000ff7f, 0x00000000 },
  4521. { 0x680c, 0, 0xffffffff, 0x00000000 },
  4522. { 0x6810, 0, 0xffffffff, 0x00000000 },
  4523. { 0x6814, 0, 0xffffffff, 0x00000000 },
  4524. { 0x6818, 0, 0xffffffff, 0x00000000 },
  4525. { 0x681c, 0, 0xffffffff, 0x00000000 },
  4526. { 0x6820, 0, 0x00ff00ff, 0x00000000 },
  4527. { 0x6824, 0, 0x00ff00ff, 0x00000000 },
  4528. { 0x6828, 0, 0x00ff00ff, 0x00000000 },
  4529. { 0x682c, 0, 0x03ff03ff, 0x00000000 },
  4530. { 0x6830, 0, 0x03ff03ff, 0x00000000 },
  4531. { 0x6834, 0, 0x03ff03ff, 0x00000000 },
  4532. { 0x6838, 0, 0x03ff03ff, 0x00000000 },
  4533. { 0x683c, 0, 0x0000ffff, 0x00000000 },
  4534. { 0x6840, 0, 0x00000ff0, 0x00000000 },
  4535. { 0x6844, 0, 0x00ffff00, 0x00000000 },
  4536. { 0x684c, 0, 0xffffffff, 0x00000000 },
  4537. { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
  4538. { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
  4539. { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
  4540. { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
  4541. { 0x6908, 0, 0x00000000, 0x0001ff0f },
  4542. { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
  4543. { 0xffff, 0, 0x00000000, 0x00000000 },
  4544. };
  4545. ret = 0;
  4546. is_5709 = 0;
  4547. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4548. is_5709 = 1;
  4549. for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
  4550. u32 offset, rw_mask, ro_mask, save_val, val;
  4551. u16 flags = reg_tbl[i].flags;
  4552. if (is_5709 && (flags & BNX2_FL_NOT_5709))
  4553. continue;
  4554. offset = (u32) reg_tbl[i].offset;
  4555. rw_mask = reg_tbl[i].rw_mask;
  4556. ro_mask = reg_tbl[i].ro_mask;
  4557. save_val = readl(bp->regview + offset);
  4558. writel(0, bp->regview + offset);
  4559. val = readl(bp->regview + offset);
  4560. if ((val & rw_mask) != 0) {
  4561. goto reg_test_err;
  4562. }
  4563. if ((val & ro_mask) != (save_val & ro_mask)) {
  4564. goto reg_test_err;
  4565. }
  4566. writel(0xffffffff, bp->regview + offset);
  4567. val = readl(bp->regview + offset);
  4568. if ((val & rw_mask) != rw_mask) {
  4569. goto reg_test_err;
  4570. }
  4571. if ((val & ro_mask) != (save_val & ro_mask)) {
  4572. goto reg_test_err;
  4573. }
  4574. writel(save_val, bp->regview + offset);
  4575. continue;
  4576. reg_test_err:
  4577. writel(save_val, bp->regview + offset);
  4578. ret = -ENODEV;
  4579. break;
  4580. }
  4581. return ret;
  4582. }
  4583. static int
  4584. bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
  4585. {
  4586. static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
  4587. 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
  4588. int i;
  4589. for (i = 0; i < sizeof(test_pattern) / 4; i++) {
  4590. u32 offset;
  4591. for (offset = 0; offset < size; offset += 4) {
  4592. bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
  4593. if (bnx2_reg_rd_ind(bp, start + offset) !=
  4594. test_pattern[i]) {
  4595. return -ENODEV;
  4596. }
  4597. }
  4598. }
  4599. return 0;
  4600. }
  4601. static int
  4602. bnx2_test_memory(struct bnx2 *bp)
  4603. {
  4604. int ret = 0;
  4605. int i;
  4606. static struct mem_entry {
  4607. u32 offset;
  4608. u32 len;
  4609. } mem_tbl_5706[] = {
  4610. { 0x60000, 0x4000 },
  4611. { 0xa0000, 0x3000 },
  4612. { 0xe0000, 0x4000 },
  4613. { 0x120000, 0x4000 },
  4614. { 0x1a0000, 0x4000 },
  4615. { 0x160000, 0x4000 },
  4616. { 0xffffffff, 0 },
  4617. },
  4618. mem_tbl_5709[] = {
  4619. { 0x60000, 0x4000 },
  4620. { 0xa0000, 0x3000 },
  4621. { 0xe0000, 0x4000 },
  4622. { 0x120000, 0x4000 },
  4623. { 0x1a0000, 0x4000 },
  4624. { 0xffffffff, 0 },
  4625. };
  4626. struct mem_entry *mem_tbl;
  4627. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4628. mem_tbl = mem_tbl_5709;
  4629. else
  4630. mem_tbl = mem_tbl_5706;
  4631. for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
  4632. if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
  4633. mem_tbl[i].len)) != 0) {
  4634. return ret;
  4635. }
  4636. }
  4637. return ret;
  4638. }
  4639. #define BNX2_MAC_LOOPBACK 0
  4640. #define BNX2_PHY_LOOPBACK 1
  4641. static int
  4642. bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
  4643. {
  4644. unsigned int pkt_size, num_pkts, i;
  4645. struct sk_buff *skb, *rx_skb;
  4646. unsigned char *packet;
  4647. u16 rx_start_idx, rx_idx;
  4648. dma_addr_t map;
  4649. struct tx_bd *txbd;
  4650. struct sw_bd *rx_buf;
  4651. struct l2_fhdr *rx_hdr;
  4652. int ret = -ENODEV;
  4653. struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
  4654. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4655. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4656. tx_napi = bnapi;
  4657. txr = &tx_napi->tx_ring;
  4658. rxr = &bnapi->rx_ring;
  4659. if (loopback_mode == BNX2_MAC_LOOPBACK) {
  4660. bp->loopback = MAC_LOOPBACK;
  4661. bnx2_set_mac_loopback(bp);
  4662. }
  4663. else if (loopback_mode == BNX2_PHY_LOOPBACK) {
  4664. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4665. return 0;
  4666. bp->loopback = PHY_LOOPBACK;
  4667. bnx2_set_phy_loopback(bp);
  4668. }
  4669. else
  4670. return -EINVAL;
  4671. pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
  4672. skb = netdev_alloc_skb(bp->dev, pkt_size);
  4673. if (!skb)
  4674. return -ENOMEM;
  4675. packet = skb_put(skb, pkt_size);
  4676. memcpy(packet, bp->dev->dev_addr, 6);
  4677. memset(packet + 6, 0x0, 8);
  4678. for (i = 14; i < pkt_size; i++)
  4679. packet[i] = (unsigned char) (i & 0xff);
  4680. map = pci_map_single(bp->pdev, skb->data, pkt_size,
  4681. PCI_DMA_TODEVICE);
  4682. if (pci_dma_mapping_error(bp->pdev, map)) {
  4683. dev_kfree_skb(skb);
  4684. return -EIO;
  4685. }
  4686. REG_WR(bp, BNX2_HC_COMMAND,
  4687. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4688. REG_RD(bp, BNX2_HC_COMMAND);
  4689. udelay(5);
  4690. rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
  4691. num_pkts = 0;
  4692. txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
  4693. txbd->tx_bd_haddr_hi = (u64) map >> 32;
  4694. txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
  4695. txbd->tx_bd_mss_nbytes = pkt_size;
  4696. txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
  4697. num_pkts++;
  4698. txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
  4699. txr->tx_prod_bseq += pkt_size;
  4700. REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
  4701. REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  4702. udelay(100);
  4703. REG_WR(bp, BNX2_HC_COMMAND,
  4704. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4705. REG_RD(bp, BNX2_HC_COMMAND);
  4706. udelay(5);
  4707. pci_unmap_single(bp->pdev, map, pkt_size, PCI_DMA_TODEVICE);
  4708. dev_kfree_skb(skb);
  4709. if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
  4710. goto loopback_test_done;
  4711. rx_idx = bnx2_get_hw_rx_cons(bnapi);
  4712. if (rx_idx != rx_start_idx + num_pkts) {
  4713. goto loopback_test_done;
  4714. }
  4715. rx_buf = &rxr->rx_buf_ring[rx_start_idx];
  4716. rx_skb = rx_buf->skb;
  4717. rx_hdr = (struct l2_fhdr *) rx_skb->data;
  4718. skb_reserve(rx_skb, BNX2_RX_OFFSET);
  4719. pci_dma_sync_single_for_cpu(bp->pdev,
  4720. pci_unmap_addr(rx_buf, mapping),
  4721. bp->rx_buf_size, PCI_DMA_FROMDEVICE);
  4722. if (rx_hdr->l2_fhdr_status &
  4723. (L2_FHDR_ERRORS_BAD_CRC |
  4724. L2_FHDR_ERRORS_PHY_DECODE |
  4725. L2_FHDR_ERRORS_ALIGNMENT |
  4726. L2_FHDR_ERRORS_TOO_SHORT |
  4727. L2_FHDR_ERRORS_GIANT_FRAME)) {
  4728. goto loopback_test_done;
  4729. }
  4730. if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
  4731. goto loopback_test_done;
  4732. }
  4733. for (i = 14; i < pkt_size; i++) {
  4734. if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
  4735. goto loopback_test_done;
  4736. }
  4737. }
  4738. ret = 0;
  4739. loopback_test_done:
  4740. bp->loopback = 0;
  4741. return ret;
  4742. }
  4743. #define BNX2_MAC_LOOPBACK_FAILED 1
  4744. #define BNX2_PHY_LOOPBACK_FAILED 2
  4745. #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
  4746. BNX2_PHY_LOOPBACK_FAILED)
  4747. static int
  4748. bnx2_test_loopback(struct bnx2 *bp)
  4749. {
  4750. int rc = 0;
  4751. if (!netif_running(bp->dev))
  4752. return BNX2_LOOPBACK_FAILED;
  4753. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  4754. spin_lock_bh(&bp->phy_lock);
  4755. bnx2_init_phy(bp, 1);
  4756. spin_unlock_bh(&bp->phy_lock);
  4757. if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
  4758. rc |= BNX2_MAC_LOOPBACK_FAILED;
  4759. if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
  4760. rc |= BNX2_PHY_LOOPBACK_FAILED;
  4761. return rc;
  4762. }
  4763. #define NVRAM_SIZE 0x200
  4764. #define CRC32_RESIDUAL 0xdebb20e3
  4765. static int
  4766. bnx2_test_nvram(struct bnx2 *bp)
  4767. {
  4768. __be32 buf[NVRAM_SIZE / 4];
  4769. u8 *data = (u8 *) buf;
  4770. int rc = 0;
  4771. u32 magic, csum;
  4772. if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
  4773. goto test_nvram_done;
  4774. magic = be32_to_cpu(buf[0]);
  4775. if (magic != 0x669955aa) {
  4776. rc = -ENODEV;
  4777. goto test_nvram_done;
  4778. }
  4779. if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
  4780. goto test_nvram_done;
  4781. csum = ether_crc_le(0x100, data);
  4782. if (csum != CRC32_RESIDUAL) {
  4783. rc = -ENODEV;
  4784. goto test_nvram_done;
  4785. }
  4786. csum = ether_crc_le(0x100, data + 0x100);
  4787. if (csum != CRC32_RESIDUAL) {
  4788. rc = -ENODEV;
  4789. }
  4790. test_nvram_done:
  4791. return rc;
  4792. }
  4793. static int
  4794. bnx2_test_link(struct bnx2 *bp)
  4795. {
  4796. u32 bmsr;
  4797. if (!netif_running(bp->dev))
  4798. return -ENODEV;
  4799. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  4800. if (bp->link_up)
  4801. return 0;
  4802. return -ENODEV;
  4803. }
  4804. spin_lock_bh(&bp->phy_lock);
  4805. bnx2_enable_bmsr1(bp);
  4806. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4807. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4808. bnx2_disable_bmsr1(bp);
  4809. spin_unlock_bh(&bp->phy_lock);
  4810. if (bmsr & BMSR_LSTATUS) {
  4811. return 0;
  4812. }
  4813. return -ENODEV;
  4814. }
  4815. static int
  4816. bnx2_test_intr(struct bnx2 *bp)
  4817. {
  4818. int i;
  4819. u16 status_idx;
  4820. if (!netif_running(bp->dev))
  4821. return -ENODEV;
  4822. status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
  4823. /* This register is not touched during run-time. */
  4824. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  4825. REG_RD(bp, BNX2_HC_COMMAND);
  4826. for (i = 0; i < 10; i++) {
  4827. if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
  4828. status_idx) {
  4829. break;
  4830. }
  4831. msleep_interruptible(10);
  4832. }
  4833. if (i < 10)
  4834. return 0;
  4835. return -ENODEV;
  4836. }
  4837. /* Determining link for parallel detection. */
  4838. static int
  4839. bnx2_5706_serdes_has_link(struct bnx2 *bp)
  4840. {
  4841. u32 mode_ctl, an_dbg, exp;
  4842. if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
  4843. return 0;
  4844. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
  4845. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
  4846. if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
  4847. return 0;
  4848. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4849. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4850. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4851. if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
  4852. return 0;
  4853. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
  4854. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4855. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4856. if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
  4857. return 0;
  4858. return 1;
  4859. }
  4860. static void
  4861. bnx2_5706_serdes_timer(struct bnx2 *bp)
  4862. {
  4863. int check_link = 1;
  4864. spin_lock(&bp->phy_lock);
  4865. if (bp->serdes_an_pending) {
  4866. bp->serdes_an_pending--;
  4867. check_link = 0;
  4868. } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4869. u32 bmcr;
  4870. bp->current_interval = BNX2_TIMER_INTERVAL;
  4871. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4872. if (bmcr & BMCR_ANENABLE) {
  4873. if (bnx2_5706_serdes_has_link(bp)) {
  4874. bmcr &= ~BMCR_ANENABLE;
  4875. bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
  4876. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4877. bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
  4878. }
  4879. }
  4880. }
  4881. else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
  4882. (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
  4883. u32 phy2;
  4884. bnx2_write_phy(bp, 0x17, 0x0f01);
  4885. bnx2_read_phy(bp, 0x15, &phy2);
  4886. if (phy2 & 0x20) {
  4887. u32 bmcr;
  4888. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4889. bmcr |= BMCR_ANENABLE;
  4890. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4891. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  4892. }
  4893. } else
  4894. bp->current_interval = BNX2_TIMER_INTERVAL;
  4895. if (check_link) {
  4896. u32 val;
  4897. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4898. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4899. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4900. if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
  4901. if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
  4902. bnx2_5706s_force_link_dn(bp, 1);
  4903. bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
  4904. } else
  4905. bnx2_set_link(bp);
  4906. } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
  4907. bnx2_set_link(bp);
  4908. }
  4909. spin_unlock(&bp->phy_lock);
  4910. }
  4911. static void
  4912. bnx2_5708_serdes_timer(struct bnx2 *bp)
  4913. {
  4914. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4915. return;
  4916. if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
  4917. bp->serdes_an_pending = 0;
  4918. return;
  4919. }
  4920. spin_lock(&bp->phy_lock);
  4921. if (bp->serdes_an_pending)
  4922. bp->serdes_an_pending--;
  4923. else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4924. u32 bmcr;
  4925. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4926. if (bmcr & BMCR_ANENABLE) {
  4927. bnx2_enable_forced_2g5(bp);
  4928. bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
  4929. } else {
  4930. bnx2_disable_forced_2g5(bp);
  4931. bp->serdes_an_pending = 2;
  4932. bp->current_interval = BNX2_TIMER_INTERVAL;
  4933. }
  4934. } else
  4935. bp->current_interval = BNX2_TIMER_INTERVAL;
  4936. spin_unlock(&bp->phy_lock);
  4937. }
  4938. static void
  4939. bnx2_timer(unsigned long data)
  4940. {
  4941. struct bnx2 *bp = (struct bnx2 *) data;
  4942. if (!netif_running(bp->dev))
  4943. return;
  4944. if (atomic_read(&bp->intr_sem) != 0)
  4945. goto bnx2_restart_timer;
  4946. if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
  4947. BNX2_FLAG_USING_MSI)
  4948. bnx2_chk_missed_msi(bp);
  4949. bnx2_send_heart_beat(bp);
  4950. bp->stats_blk->stat_FwRxDrop =
  4951. bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
  4952. /* workaround occasional corrupted counters */
  4953. if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks)
  4954. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
  4955. BNX2_HC_COMMAND_STATS_NOW);
  4956. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  4957. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  4958. bnx2_5706_serdes_timer(bp);
  4959. else
  4960. bnx2_5708_serdes_timer(bp);
  4961. }
  4962. bnx2_restart_timer:
  4963. mod_timer(&bp->timer, jiffies + bp->current_interval);
  4964. }
  4965. static int
  4966. bnx2_request_irq(struct bnx2 *bp)
  4967. {
  4968. unsigned long flags;
  4969. struct bnx2_irq *irq;
  4970. int rc = 0, i;
  4971. if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
  4972. flags = 0;
  4973. else
  4974. flags = IRQF_SHARED;
  4975. for (i = 0; i < bp->irq_nvecs; i++) {
  4976. irq = &bp->irq_tbl[i];
  4977. rc = request_irq(irq->vector, irq->handler, flags, irq->name,
  4978. &bp->bnx2_napi[i]);
  4979. if (rc)
  4980. break;
  4981. irq->requested = 1;
  4982. }
  4983. return rc;
  4984. }
  4985. static void
  4986. bnx2_free_irq(struct bnx2 *bp)
  4987. {
  4988. struct bnx2_irq *irq;
  4989. int i;
  4990. for (i = 0; i < bp->irq_nvecs; i++) {
  4991. irq = &bp->irq_tbl[i];
  4992. if (irq->requested)
  4993. free_irq(irq->vector, &bp->bnx2_napi[i]);
  4994. irq->requested = 0;
  4995. }
  4996. if (bp->flags & BNX2_FLAG_USING_MSI)
  4997. pci_disable_msi(bp->pdev);
  4998. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  4999. pci_disable_msix(bp->pdev);
  5000. bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
  5001. }
  5002. static void
  5003. bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
  5004. {
  5005. int i, rc;
  5006. struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
  5007. struct net_device *dev = bp->dev;
  5008. const int len = sizeof(bp->irq_tbl[0].name);
  5009. bnx2_setup_msix_tbl(bp);
  5010. REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
  5011. REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
  5012. REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
  5013. /* Need to flush the previous three writes to ensure MSI-X
  5014. * is setup properly */
  5015. REG_RD(bp, BNX2_PCI_MSIX_CONTROL);
  5016. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  5017. msix_ent[i].entry = i;
  5018. msix_ent[i].vector = 0;
  5019. }
  5020. rc = pci_enable_msix(bp->pdev, msix_ent, BNX2_MAX_MSIX_VEC);
  5021. if (rc != 0)
  5022. return;
  5023. bp->irq_nvecs = msix_vecs;
  5024. bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
  5025. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  5026. bp->irq_tbl[i].vector = msix_ent[i].vector;
  5027. snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
  5028. bp->irq_tbl[i].handler = bnx2_msi_1shot;
  5029. }
  5030. }
  5031. static void
  5032. bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
  5033. {
  5034. int cpus = num_online_cpus();
  5035. int msix_vecs = min(cpus + 1, RX_MAX_RINGS);
  5036. bp->irq_tbl[0].handler = bnx2_interrupt;
  5037. strcpy(bp->irq_tbl[0].name, bp->dev->name);
  5038. bp->irq_nvecs = 1;
  5039. bp->irq_tbl[0].vector = bp->pdev->irq;
  5040. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi && cpus > 1)
  5041. bnx2_enable_msix(bp, msix_vecs);
  5042. if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
  5043. !(bp->flags & BNX2_FLAG_USING_MSIX)) {
  5044. if (pci_enable_msi(bp->pdev) == 0) {
  5045. bp->flags |= BNX2_FLAG_USING_MSI;
  5046. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  5047. bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
  5048. bp->irq_tbl[0].handler = bnx2_msi_1shot;
  5049. } else
  5050. bp->irq_tbl[0].handler = bnx2_msi;
  5051. bp->irq_tbl[0].vector = bp->pdev->irq;
  5052. }
  5053. }
  5054. bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
  5055. bp->dev->real_num_tx_queues = bp->num_tx_rings;
  5056. bp->num_rx_rings = bp->irq_nvecs;
  5057. }
  5058. /* Called with rtnl_lock */
  5059. static int
  5060. bnx2_open(struct net_device *dev)
  5061. {
  5062. struct bnx2 *bp = netdev_priv(dev);
  5063. int rc;
  5064. netif_carrier_off(dev);
  5065. bnx2_set_power_state(bp, PCI_D0);
  5066. bnx2_disable_int(bp);
  5067. bnx2_setup_int_mode(bp, disable_msi);
  5068. bnx2_napi_enable(bp);
  5069. rc = bnx2_alloc_mem(bp);
  5070. if (rc)
  5071. goto open_err;
  5072. rc = bnx2_request_irq(bp);
  5073. if (rc)
  5074. goto open_err;
  5075. rc = bnx2_init_nic(bp, 1);
  5076. if (rc)
  5077. goto open_err;
  5078. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5079. atomic_set(&bp->intr_sem, 0);
  5080. memset(bp->temp_stats_blk, 0, sizeof(struct statistics_block));
  5081. bnx2_enable_int(bp);
  5082. if (bp->flags & BNX2_FLAG_USING_MSI) {
  5083. /* Test MSI to make sure it is working
  5084. * If MSI test fails, go back to INTx mode
  5085. */
  5086. if (bnx2_test_intr(bp) != 0) {
  5087. printk(KERN_WARNING PFX "%s: No interrupt was generated"
  5088. " using MSI, switching to INTx mode. Please"
  5089. " report this failure to the PCI maintainer"
  5090. " and include system chipset information.\n",
  5091. bp->dev->name);
  5092. bnx2_disable_int(bp);
  5093. bnx2_free_irq(bp);
  5094. bnx2_setup_int_mode(bp, 1);
  5095. rc = bnx2_init_nic(bp, 0);
  5096. if (!rc)
  5097. rc = bnx2_request_irq(bp);
  5098. if (rc) {
  5099. del_timer_sync(&bp->timer);
  5100. goto open_err;
  5101. }
  5102. bnx2_enable_int(bp);
  5103. }
  5104. }
  5105. if (bp->flags & BNX2_FLAG_USING_MSI)
  5106. printk(KERN_INFO PFX "%s: using MSI\n", dev->name);
  5107. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  5108. printk(KERN_INFO PFX "%s: using MSIX\n", dev->name);
  5109. netif_tx_start_all_queues(dev);
  5110. return 0;
  5111. open_err:
  5112. bnx2_napi_disable(bp);
  5113. bnx2_free_skbs(bp);
  5114. bnx2_free_irq(bp);
  5115. bnx2_free_mem(bp);
  5116. return rc;
  5117. }
  5118. static void
  5119. bnx2_reset_task(struct work_struct *work)
  5120. {
  5121. struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
  5122. rtnl_lock();
  5123. if (!netif_running(bp->dev)) {
  5124. rtnl_unlock();
  5125. return;
  5126. }
  5127. bnx2_netif_stop(bp);
  5128. bnx2_init_nic(bp, 1);
  5129. atomic_set(&bp->intr_sem, 1);
  5130. bnx2_netif_start(bp);
  5131. rtnl_unlock();
  5132. }
  5133. static void
  5134. bnx2_dump_state(struct bnx2 *bp)
  5135. {
  5136. struct net_device *dev = bp->dev;
  5137. printk(KERN_ERR PFX "%s DEBUG: intr_sem[%x]\n", dev->name,
  5138. atomic_read(&bp->intr_sem));
  5139. printk(KERN_ERR PFX "%s DEBUG: EMAC_TX_STATUS[%08x] "
  5140. "RPM_MGMT_PKT_CTRL[%08x]\n", dev->name,
  5141. REG_RD(bp, BNX2_EMAC_TX_STATUS),
  5142. REG_RD(bp, BNX2_RPM_MGMT_PKT_CTRL));
  5143. printk(KERN_ERR PFX "%s DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
  5144. dev->name, bnx2_reg_rd_ind(bp, BNX2_MCP_STATE_P0),
  5145. bnx2_reg_rd_ind(bp, BNX2_MCP_STATE_P1));
  5146. printk(KERN_ERR PFX "%s DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
  5147. dev->name, REG_RD(bp, BNX2_HC_STATS_INTERRUPT_STATUS));
  5148. if (bp->flags & BNX2_FLAG_USING_MSIX)
  5149. printk(KERN_ERR PFX "%s DEBUG: PBA[%08x]\n", dev->name,
  5150. REG_RD(bp, BNX2_PCI_GRC_WINDOW3_BASE));
  5151. }
  5152. static void
  5153. bnx2_tx_timeout(struct net_device *dev)
  5154. {
  5155. struct bnx2 *bp = netdev_priv(dev);
  5156. bnx2_dump_state(bp);
  5157. /* This allows the netif to be shutdown gracefully before resetting */
  5158. schedule_work(&bp->reset_task);
  5159. }
  5160. #ifdef BCM_VLAN
  5161. /* Called with rtnl_lock */
  5162. static void
  5163. bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
  5164. {
  5165. struct bnx2 *bp = netdev_priv(dev);
  5166. if (netif_running(dev))
  5167. bnx2_netif_stop(bp);
  5168. bp->vlgrp = vlgrp;
  5169. if (!netif_running(dev))
  5170. return;
  5171. bnx2_set_rx_mode(dev);
  5172. if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
  5173. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
  5174. bnx2_netif_start(bp);
  5175. }
  5176. #endif
  5177. /* Called with netif_tx_lock.
  5178. * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
  5179. * netif_wake_queue().
  5180. */
  5181. static netdev_tx_t
  5182. bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
  5183. {
  5184. struct bnx2 *bp = netdev_priv(dev);
  5185. dma_addr_t mapping;
  5186. struct tx_bd *txbd;
  5187. struct sw_tx_bd *tx_buf;
  5188. u32 len, vlan_tag_flags, last_frag, mss;
  5189. u16 prod, ring_prod;
  5190. int i;
  5191. struct bnx2_napi *bnapi;
  5192. struct bnx2_tx_ring_info *txr;
  5193. struct netdev_queue *txq;
  5194. /* Determine which tx ring we will be placed on */
  5195. i = skb_get_queue_mapping(skb);
  5196. bnapi = &bp->bnx2_napi[i];
  5197. txr = &bnapi->tx_ring;
  5198. txq = netdev_get_tx_queue(dev, i);
  5199. if (unlikely(bnx2_tx_avail(bp, txr) <
  5200. (skb_shinfo(skb)->nr_frags + 1))) {
  5201. netif_tx_stop_queue(txq);
  5202. printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n",
  5203. dev->name);
  5204. return NETDEV_TX_BUSY;
  5205. }
  5206. len = skb_headlen(skb);
  5207. prod = txr->tx_prod;
  5208. ring_prod = TX_RING_IDX(prod);
  5209. vlan_tag_flags = 0;
  5210. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5211. vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
  5212. }
  5213. #ifdef BCM_VLAN
  5214. if (bp->vlgrp && vlan_tx_tag_present(skb)) {
  5215. vlan_tag_flags |=
  5216. (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
  5217. }
  5218. #endif
  5219. if ((mss = skb_shinfo(skb)->gso_size)) {
  5220. u32 tcp_opt_len;
  5221. struct iphdr *iph;
  5222. vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
  5223. tcp_opt_len = tcp_optlen(skb);
  5224. if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
  5225. u32 tcp_off = skb_transport_offset(skb) -
  5226. sizeof(struct ipv6hdr) - ETH_HLEN;
  5227. vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
  5228. TX_BD_FLAGS_SW_FLAGS;
  5229. if (likely(tcp_off == 0))
  5230. vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
  5231. else {
  5232. tcp_off >>= 3;
  5233. vlan_tag_flags |= ((tcp_off & 0x3) <<
  5234. TX_BD_FLAGS_TCP6_OFF0_SHL) |
  5235. ((tcp_off & 0x10) <<
  5236. TX_BD_FLAGS_TCP6_OFF4_SHL);
  5237. mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
  5238. }
  5239. } else {
  5240. iph = ip_hdr(skb);
  5241. if (tcp_opt_len || (iph->ihl > 5)) {
  5242. vlan_tag_flags |= ((iph->ihl - 5) +
  5243. (tcp_opt_len >> 2)) << 8;
  5244. }
  5245. }
  5246. } else
  5247. mss = 0;
  5248. mapping = pci_map_single(bp->pdev, skb->data, len, PCI_DMA_TODEVICE);
  5249. if (pci_dma_mapping_error(bp->pdev, mapping)) {
  5250. dev_kfree_skb(skb);
  5251. return NETDEV_TX_OK;
  5252. }
  5253. tx_buf = &txr->tx_buf_ring[ring_prod];
  5254. tx_buf->skb = skb;
  5255. pci_unmap_addr_set(tx_buf, mapping, mapping);
  5256. txbd = &txr->tx_desc_ring[ring_prod];
  5257. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5258. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5259. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5260. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
  5261. last_frag = skb_shinfo(skb)->nr_frags;
  5262. tx_buf->nr_frags = last_frag;
  5263. tx_buf->is_gso = skb_is_gso(skb);
  5264. for (i = 0; i < last_frag; i++) {
  5265. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5266. prod = NEXT_TX_BD(prod);
  5267. ring_prod = TX_RING_IDX(prod);
  5268. txbd = &txr->tx_desc_ring[ring_prod];
  5269. len = frag->size;
  5270. mapping = pci_map_page(bp->pdev, frag->page, frag->page_offset,
  5271. len, PCI_DMA_TODEVICE);
  5272. if (pci_dma_mapping_error(bp->pdev, mapping))
  5273. goto dma_error;
  5274. pci_unmap_addr_set(&txr->tx_buf_ring[ring_prod], mapping,
  5275. mapping);
  5276. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5277. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5278. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5279. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
  5280. }
  5281. txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
  5282. prod = NEXT_TX_BD(prod);
  5283. txr->tx_prod_bseq += skb->len;
  5284. REG_WR16(bp, txr->tx_bidx_addr, prod);
  5285. REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  5286. mmiowb();
  5287. txr->tx_prod = prod;
  5288. if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
  5289. netif_tx_stop_queue(txq);
  5290. if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
  5291. netif_tx_wake_queue(txq);
  5292. }
  5293. return NETDEV_TX_OK;
  5294. dma_error:
  5295. /* save value of frag that failed */
  5296. last_frag = i;
  5297. /* start back at beginning and unmap skb */
  5298. prod = txr->tx_prod;
  5299. ring_prod = TX_RING_IDX(prod);
  5300. tx_buf = &txr->tx_buf_ring[ring_prod];
  5301. tx_buf->skb = NULL;
  5302. pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
  5303. skb_headlen(skb), PCI_DMA_TODEVICE);
  5304. /* unmap remaining mapped pages */
  5305. for (i = 0; i < last_frag; i++) {
  5306. prod = NEXT_TX_BD(prod);
  5307. ring_prod = TX_RING_IDX(prod);
  5308. tx_buf = &txr->tx_buf_ring[ring_prod];
  5309. pci_unmap_page(bp->pdev, pci_unmap_addr(tx_buf, mapping),
  5310. skb_shinfo(skb)->frags[i].size,
  5311. PCI_DMA_TODEVICE);
  5312. }
  5313. dev_kfree_skb(skb);
  5314. return NETDEV_TX_OK;
  5315. }
  5316. /* Called with rtnl_lock */
  5317. static int
  5318. bnx2_close(struct net_device *dev)
  5319. {
  5320. struct bnx2 *bp = netdev_priv(dev);
  5321. cancel_work_sync(&bp->reset_task);
  5322. bnx2_disable_int_sync(bp);
  5323. bnx2_napi_disable(bp);
  5324. del_timer_sync(&bp->timer);
  5325. bnx2_shutdown_chip(bp);
  5326. bnx2_free_irq(bp);
  5327. bnx2_free_skbs(bp);
  5328. bnx2_free_mem(bp);
  5329. bp->link_up = 0;
  5330. netif_carrier_off(bp->dev);
  5331. bnx2_set_power_state(bp, PCI_D3hot);
  5332. return 0;
  5333. }
  5334. static void
  5335. bnx2_save_stats(struct bnx2 *bp)
  5336. {
  5337. u32 *hw_stats = (u32 *) bp->stats_blk;
  5338. u32 *temp_stats = (u32 *) bp->temp_stats_blk;
  5339. int i;
  5340. /* The 1st 10 counters are 64-bit counters */
  5341. for (i = 0; i < 20; i += 2) {
  5342. u32 hi;
  5343. u64 lo;
  5344. hi = *(temp_stats + i) + *(hw_stats + i);
  5345. lo = *(temp_stats + i + 1) + *(hw_stats + i + 1);
  5346. if (lo > 0xffffffff)
  5347. hi++;
  5348. *(temp_stats + i) = hi;
  5349. *(temp_stats + i + 1) = lo & 0xffffffff;
  5350. }
  5351. for ( ; i < sizeof(struct statistics_block) / 4; i++)
  5352. *(temp_stats + i) = *(temp_stats + i) + *(hw_stats + i);
  5353. }
  5354. #define GET_64BIT_NET_STATS64(ctr) \
  5355. (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
  5356. (unsigned long) (ctr##_lo)
  5357. #define GET_64BIT_NET_STATS32(ctr) \
  5358. (ctr##_lo)
  5359. #if (BITS_PER_LONG == 64)
  5360. #define GET_64BIT_NET_STATS(ctr) \
  5361. GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \
  5362. GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
  5363. #else
  5364. #define GET_64BIT_NET_STATS(ctr) \
  5365. GET_64BIT_NET_STATS32(bp->stats_blk->ctr) + \
  5366. GET_64BIT_NET_STATS32(bp->temp_stats_blk->ctr)
  5367. #endif
  5368. #define GET_32BIT_NET_STATS(ctr) \
  5369. (unsigned long) (bp->stats_blk->ctr + \
  5370. bp->temp_stats_blk->ctr)
  5371. static struct net_device_stats *
  5372. bnx2_get_stats(struct net_device *dev)
  5373. {
  5374. struct bnx2 *bp = netdev_priv(dev);
  5375. struct net_device_stats *net_stats = &dev->stats;
  5376. if (bp->stats_blk == NULL) {
  5377. return net_stats;
  5378. }
  5379. net_stats->rx_packets =
  5380. GET_64BIT_NET_STATS(stat_IfHCInUcastPkts) +
  5381. GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts) +
  5382. GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts);
  5383. net_stats->tx_packets =
  5384. GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts) +
  5385. GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts) +
  5386. GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts);
  5387. net_stats->rx_bytes =
  5388. GET_64BIT_NET_STATS(stat_IfHCInOctets);
  5389. net_stats->tx_bytes =
  5390. GET_64BIT_NET_STATS(stat_IfHCOutOctets);
  5391. net_stats->multicast =
  5392. GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts);
  5393. net_stats->collisions =
  5394. GET_32BIT_NET_STATS(stat_EtherStatsCollisions);
  5395. net_stats->rx_length_errors =
  5396. GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts) +
  5397. GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts);
  5398. net_stats->rx_over_errors =
  5399. GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
  5400. GET_32BIT_NET_STATS(stat_IfInMBUFDiscards);
  5401. net_stats->rx_frame_errors =
  5402. GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors);
  5403. net_stats->rx_crc_errors =
  5404. GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors);
  5405. net_stats->rx_errors = net_stats->rx_length_errors +
  5406. net_stats->rx_over_errors + net_stats->rx_frame_errors +
  5407. net_stats->rx_crc_errors;
  5408. net_stats->tx_aborted_errors =
  5409. GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions) +
  5410. GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions);
  5411. if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
  5412. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  5413. net_stats->tx_carrier_errors = 0;
  5414. else {
  5415. net_stats->tx_carrier_errors =
  5416. GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors);
  5417. }
  5418. net_stats->tx_errors =
  5419. GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors) +
  5420. net_stats->tx_aborted_errors +
  5421. net_stats->tx_carrier_errors;
  5422. net_stats->rx_missed_errors =
  5423. GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
  5424. GET_32BIT_NET_STATS(stat_IfInMBUFDiscards) +
  5425. GET_32BIT_NET_STATS(stat_FwRxDrop);
  5426. return net_stats;
  5427. }
  5428. /* All ethtool functions called with rtnl_lock */
  5429. static int
  5430. bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5431. {
  5432. struct bnx2 *bp = netdev_priv(dev);
  5433. int support_serdes = 0, support_copper = 0;
  5434. cmd->supported = SUPPORTED_Autoneg;
  5435. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5436. support_serdes = 1;
  5437. support_copper = 1;
  5438. } else if (bp->phy_port == PORT_FIBRE)
  5439. support_serdes = 1;
  5440. else
  5441. support_copper = 1;
  5442. if (support_serdes) {
  5443. cmd->supported |= SUPPORTED_1000baseT_Full |
  5444. SUPPORTED_FIBRE;
  5445. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  5446. cmd->supported |= SUPPORTED_2500baseX_Full;
  5447. }
  5448. if (support_copper) {
  5449. cmd->supported |= SUPPORTED_10baseT_Half |
  5450. SUPPORTED_10baseT_Full |
  5451. SUPPORTED_100baseT_Half |
  5452. SUPPORTED_100baseT_Full |
  5453. SUPPORTED_1000baseT_Full |
  5454. SUPPORTED_TP;
  5455. }
  5456. spin_lock_bh(&bp->phy_lock);
  5457. cmd->port = bp->phy_port;
  5458. cmd->advertising = bp->advertising;
  5459. if (bp->autoneg & AUTONEG_SPEED) {
  5460. cmd->autoneg = AUTONEG_ENABLE;
  5461. }
  5462. else {
  5463. cmd->autoneg = AUTONEG_DISABLE;
  5464. }
  5465. if (netif_carrier_ok(dev)) {
  5466. cmd->speed = bp->line_speed;
  5467. cmd->duplex = bp->duplex;
  5468. }
  5469. else {
  5470. cmd->speed = -1;
  5471. cmd->duplex = -1;
  5472. }
  5473. spin_unlock_bh(&bp->phy_lock);
  5474. cmd->transceiver = XCVR_INTERNAL;
  5475. cmd->phy_address = bp->phy_addr;
  5476. return 0;
  5477. }
  5478. static int
  5479. bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5480. {
  5481. struct bnx2 *bp = netdev_priv(dev);
  5482. u8 autoneg = bp->autoneg;
  5483. u8 req_duplex = bp->req_duplex;
  5484. u16 req_line_speed = bp->req_line_speed;
  5485. u32 advertising = bp->advertising;
  5486. int err = -EINVAL;
  5487. spin_lock_bh(&bp->phy_lock);
  5488. if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
  5489. goto err_out_unlock;
  5490. if (cmd->port != bp->phy_port &&
  5491. !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
  5492. goto err_out_unlock;
  5493. /* If device is down, we can store the settings only if the user
  5494. * is setting the currently active port.
  5495. */
  5496. if (!netif_running(dev) && cmd->port != bp->phy_port)
  5497. goto err_out_unlock;
  5498. if (cmd->autoneg == AUTONEG_ENABLE) {
  5499. autoneg |= AUTONEG_SPEED;
  5500. advertising = cmd->advertising;
  5501. if (cmd->port == PORT_TP) {
  5502. advertising &= ETHTOOL_ALL_COPPER_SPEED;
  5503. if (!advertising)
  5504. advertising = ETHTOOL_ALL_COPPER_SPEED;
  5505. } else {
  5506. advertising &= ETHTOOL_ALL_FIBRE_SPEED;
  5507. if (!advertising)
  5508. advertising = ETHTOOL_ALL_FIBRE_SPEED;
  5509. }
  5510. advertising |= ADVERTISED_Autoneg;
  5511. }
  5512. else {
  5513. if (cmd->port == PORT_FIBRE) {
  5514. if ((cmd->speed != SPEED_1000 &&
  5515. cmd->speed != SPEED_2500) ||
  5516. (cmd->duplex != DUPLEX_FULL))
  5517. goto err_out_unlock;
  5518. if (cmd->speed == SPEED_2500 &&
  5519. !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  5520. goto err_out_unlock;
  5521. }
  5522. else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
  5523. goto err_out_unlock;
  5524. autoneg &= ~AUTONEG_SPEED;
  5525. req_line_speed = cmd->speed;
  5526. req_duplex = cmd->duplex;
  5527. advertising = 0;
  5528. }
  5529. bp->autoneg = autoneg;
  5530. bp->advertising = advertising;
  5531. bp->req_line_speed = req_line_speed;
  5532. bp->req_duplex = req_duplex;
  5533. err = 0;
  5534. /* If device is down, the new settings will be picked up when it is
  5535. * brought up.
  5536. */
  5537. if (netif_running(dev))
  5538. err = bnx2_setup_phy(bp, cmd->port);
  5539. err_out_unlock:
  5540. spin_unlock_bh(&bp->phy_lock);
  5541. return err;
  5542. }
  5543. static void
  5544. bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  5545. {
  5546. struct bnx2 *bp = netdev_priv(dev);
  5547. strcpy(info->driver, DRV_MODULE_NAME);
  5548. strcpy(info->version, DRV_MODULE_VERSION);
  5549. strcpy(info->bus_info, pci_name(bp->pdev));
  5550. strcpy(info->fw_version, bp->fw_version);
  5551. }
  5552. #define BNX2_REGDUMP_LEN (32 * 1024)
  5553. static int
  5554. bnx2_get_regs_len(struct net_device *dev)
  5555. {
  5556. return BNX2_REGDUMP_LEN;
  5557. }
  5558. static void
  5559. bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
  5560. {
  5561. u32 *p = _p, i, offset;
  5562. u8 *orig_p = _p;
  5563. struct bnx2 *bp = netdev_priv(dev);
  5564. u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
  5565. 0x0800, 0x0880, 0x0c00, 0x0c10,
  5566. 0x0c30, 0x0d08, 0x1000, 0x101c,
  5567. 0x1040, 0x1048, 0x1080, 0x10a4,
  5568. 0x1400, 0x1490, 0x1498, 0x14f0,
  5569. 0x1500, 0x155c, 0x1580, 0x15dc,
  5570. 0x1600, 0x1658, 0x1680, 0x16d8,
  5571. 0x1800, 0x1820, 0x1840, 0x1854,
  5572. 0x1880, 0x1894, 0x1900, 0x1984,
  5573. 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
  5574. 0x1c80, 0x1c94, 0x1d00, 0x1d84,
  5575. 0x2000, 0x2030, 0x23c0, 0x2400,
  5576. 0x2800, 0x2820, 0x2830, 0x2850,
  5577. 0x2b40, 0x2c10, 0x2fc0, 0x3058,
  5578. 0x3c00, 0x3c94, 0x4000, 0x4010,
  5579. 0x4080, 0x4090, 0x43c0, 0x4458,
  5580. 0x4c00, 0x4c18, 0x4c40, 0x4c54,
  5581. 0x4fc0, 0x5010, 0x53c0, 0x5444,
  5582. 0x5c00, 0x5c18, 0x5c80, 0x5c90,
  5583. 0x5fc0, 0x6000, 0x6400, 0x6428,
  5584. 0x6800, 0x6848, 0x684c, 0x6860,
  5585. 0x6888, 0x6910, 0x8000 };
  5586. regs->version = 0;
  5587. memset(p, 0, BNX2_REGDUMP_LEN);
  5588. if (!netif_running(bp->dev))
  5589. return;
  5590. i = 0;
  5591. offset = reg_boundaries[0];
  5592. p += offset;
  5593. while (offset < BNX2_REGDUMP_LEN) {
  5594. *p++ = REG_RD(bp, offset);
  5595. offset += 4;
  5596. if (offset == reg_boundaries[i + 1]) {
  5597. offset = reg_boundaries[i + 2];
  5598. p = (u32 *) (orig_p + offset);
  5599. i += 2;
  5600. }
  5601. }
  5602. }
  5603. static void
  5604. bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5605. {
  5606. struct bnx2 *bp = netdev_priv(dev);
  5607. if (bp->flags & BNX2_FLAG_NO_WOL) {
  5608. wol->supported = 0;
  5609. wol->wolopts = 0;
  5610. }
  5611. else {
  5612. wol->supported = WAKE_MAGIC;
  5613. if (bp->wol)
  5614. wol->wolopts = WAKE_MAGIC;
  5615. else
  5616. wol->wolopts = 0;
  5617. }
  5618. memset(&wol->sopass, 0, sizeof(wol->sopass));
  5619. }
  5620. static int
  5621. bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5622. {
  5623. struct bnx2 *bp = netdev_priv(dev);
  5624. if (wol->wolopts & ~WAKE_MAGIC)
  5625. return -EINVAL;
  5626. if (wol->wolopts & WAKE_MAGIC) {
  5627. if (bp->flags & BNX2_FLAG_NO_WOL)
  5628. return -EINVAL;
  5629. bp->wol = 1;
  5630. }
  5631. else {
  5632. bp->wol = 0;
  5633. }
  5634. return 0;
  5635. }
  5636. static int
  5637. bnx2_nway_reset(struct net_device *dev)
  5638. {
  5639. struct bnx2 *bp = netdev_priv(dev);
  5640. u32 bmcr;
  5641. if (!netif_running(dev))
  5642. return -EAGAIN;
  5643. if (!(bp->autoneg & AUTONEG_SPEED)) {
  5644. return -EINVAL;
  5645. }
  5646. spin_lock_bh(&bp->phy_lock);
  5647. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5648. int rc;
  5649. rc = bnx2_setup_remote_phy(bp, bp->phy_port);
  5650. spin_unlock_bh(&bp->phy_lock);
  5651. return rc;
  5652. }
  5653. /* Force a link down visible on the other side */
  5654. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  5655. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  5656. spin_unlock_bh(&bp->phy_lock);
  5657. msleep(20);
  5658. spin_lock_bh(&bp->phy_lock);
  5659. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  5660. bp->serdes_an_pending = 1;
  5661. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5662. }
  5663. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  5664. bmcr &= ~BMCR_LOOPBACK;
  5665. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
  5666. spin_unlock_bh(&bp->phy_lock);
  5667. return 0;
  5668. }
  5669. static u32
  5670. bnx2_get_link(struct net_device *dev)
  5671. {
  5672. struct bnx2 *bp = netdev_priv(dev);
  5673. return bp->link_up;
  5674. }
  5675. static int
  5676. bnx2_get_eeprom_len(struct net_device *dev)
  5677. {
  5678. struct bnx2 *bp = netdev_priv(dev);
  5679. if (bp->flash_info == NULL)
  5680. return 0;
  5681. return (int) bp->flash_size;
  5682. }
  5683. static int
  5684. bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5685. u8 *eebuf)
  5686. {
  5687. struct bnx2 *bp = netdev_priv(dev);
  5688. int rc;
  5689. if (!netif_running(dev))
  5690. return -EAGAIN;
  5691. /* parameters already validated in ethtool_get_eeprom */
  5692. rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
  5693. return rc;
  5694. }
  5695. static int
  5696. bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5697. u8 *eebuf)
  5698. {
  5699. struct bnx2 *bp = netdev_priv(dev);
  5700. int rc;
  5701. if (!netif_running(dev))
  5702. return -EAGAIN;
  5703. /* parameters already validated in ethtool_set_eeprom */
  5704. rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
  5705. return rc;
  5706. }
  5707. static int
  5708. bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5709. {
  5710. struct bnx2 *bp = netdev_priv(dev);
  5711. memset(coal, 0, sizeof(struct ethtool_coalesce));
  5712. coal->rx_coalesce_usecs = bp->rx_ticks;
  5713. coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
  5714. coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
  5715. coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
  5716. coal->tx_coalesce_usecs = bp->tx_ticks;
  5717. coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
  5718. coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
  5719. coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
  5720. coal->stats_block_coalesce_usecs = bp->stats_ticks;
  5721. return 0;
  5722. }
  5723. static int
  5724. bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5725. {
  5726. struct bnx2 *bp = netdev_priv(dev);
  5727. bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
  5728. if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
  5729. bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
  5730. if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
  5731. bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
  5732. if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
  5733. bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
  5734. if (bp->rx_quick_cons_trip_int > 0xff)
  5735. bp->rx_quick_cons_trip_int = 0xff;
  5736. bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
  5737. if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
  5738. bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
  5739. if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
  5740. bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
  5741. if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
  5742. bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
  5743. if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
  5744. 0xff;
  5745. bp->stats_ticks = coal->stats_block_coalesce_usecs;
  5746. if (bp->flags & BNX2_FLAG_BROKEN_STATS) {
  5747. if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
  5748. bp->stats_ticks = USEC_PER_SEC;
  5749. }
  5750. if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
  5751. bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5752. bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5753. if (netif_running(bp->dev)) {
  5754. bnx2_netif_stop(bp);
  5755. bnx2_init_nic(bp, 0);
  5756. bnx2_netif_start(bp);
  5757. }
  5758. return 0;
  5759. }
  5760. static void
  5761. bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5762. {
  5763. struct bnx2 *bp = netdev_priv(dev);
  5764. ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
  5765. ering->rx_mini_max_pending = 0;
  5766. ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
  5767. ering->rx_pending = bp->rx_ring_size;
  5768. ering->rx_mini_pending = 0;
  5769. ering->rx_jumbo_pending = bp->rx_pg_ring_size;
  5770. ering->tx_max_pending = MAX_TX_DESC_CNT;
  5771. ering->tx_pending = bp->tx_ring_size;
  5772. }
  5773. static int
  5774. bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
  5775. {
  5776. if (netif_running(bp->dev)) {
  5777. /* Reset will erase chipset stats; save them */
  5778. bnx2_save_stats(bp);
  5779. bnx2_netif_stop(bp);
  5780. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  5781. bnx2_free_skbs(bp);
  5782. bnx2_free_mem(bp);
  5783. }
  5784. bnx2_set_rx_ring_size(bp, rx);
  5785. bp->tx_ring_size = tx;
  5786. if (netif_running(bp->dev)) {
  5787. int rc;
  5788. rc = bnx2_alloc_mem(bp);
  5789. if (!rc)
  5790. rc = bnx2_init_nic(bp, 0);
  5791. if (rc) {
  5792. bnx2_napi_enable(bp);
  5793. dev_close(bp->dev);
  5794. return rc;
  5795. }
  5796. #ifdef BCM_CNIC
  5797. mutex_lock(&bp->cnic_lock);
  5798. /* Let cnic know about the new status block. */
  5799. if (bp->cnic_eth_dev.drv_state & CNIC_DRV_STATE_REGD)
  5800. bnx2_setup_cnic_irq_info(bp);
  5801. mutex_unlock(&bp->cnic_lock);
  5802. #endif
  5803. bnx2_netif_start(bp);
  5804. }
  5805. return 0;
  5806. }
  5807. static int
  5808. bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5809. {
  5810. struct bnx2 *bp = netdev_priv(dev);
  5811. int rc;
  5812. if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
  5813. (ering->tx_pending > MAX_TX_DESC_CNT) ||
  5814. (ering->tx_pending <= MAX_SKB_FRAGS)) {
  5815. return -EINVAL;
  5816. }
  5817. rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
  5818. return rc;
  5819. }
  5820. static void
  5821. bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5822. {
  5823. struct bnx2 *bp = netdev_priv(dev);
  5824. epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
  5825. epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
  5826. epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
  5827. }
  5828. static int
  5829. bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5830. {
  5831. struct bnx2 *bp = netdev_priv(dev);
  5832. bp->req_flow_ctrl = 0;
  5833. if (epause->rx_pause)
  5834. bp->req_flow_ctrl |= FLOW_CTRL_RX;
  5835. if (epause->tx_pause)
  5836. bp->req_flow_ctrl |= FLOW_CTRL_TX;
  5837. if (epause->autoneg) {
  5838. bp->autoneg |= AUTONEG_FLOW_CTRL;
  5839. }
  5840. else {
  5841. bp->autoneg &= ~AUTONEG_FLOW_CTRL;
  5842. }
  5843. if (netif_running(dev)) {
  5844. spin_lock_bh(&bp->phy_lock);
  5845. bnx2_setup_phy(bp, bp->phy_port);
  5846. spin_unlock_bh(&bp->phy_lock);
  5847. }
  5848. return 0;
  5849. }
  5850. static u32
  5851. bnx2_get_rx_csum(struct net_device *dev)
  5852. {
  5853. struct bnx2 *bp = netdev_priv(dev);
  5854. return bp->rx_csum;
  5855. }
  5856. static int
  5857. bnx2_set_rx_csum(struct net_device *dev, u32 data)
  5858. {
  5859. struct bnx2 *bp = netdev_priv(dev);
  5860. bp->rx_csum = data;
  5861. return 0;
  5862. }
  5863. static int
  5864. bnx2_set_tso(struct net_device *dev, u32 data)
  5865. {
  5866. struct bnx2 *bp = netdev_priv(dev);
  5867. if (data) {
  5868. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  5869. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  5870. dev->features |= NETIF_F_TSO6;
  5871. } else
  5872. dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
  5873. NETIF_F_TSO_ECN);
  5874. return 0;
  5875. }
  5876. static struct {
  5877. char string[ETH_GSTRING_LEN];
  5878. } bnx2_stats_str_arr[] = {
  5879. { "rx_bytes" },
  5880. { "rx_error_bytes" },
  5881. { "tx_bytes" },
  5882. { "tx_error_bytes" },
  5883. { "rx_ucast_packets" },
  5884. { "rx_mcast_packets" },
  5885. { "rx_bcast_packets" },
  5886. { "tx_ucast_packets" },
  5887. { "tx_mcast_packets" },
  5888. { "tx_bcast_packets" },
  5889. { "tx_mac_errors" },
  5890. { "tx_carrier_errors" },
  5891. { "rx_crc_errors" },
  5892. { "rx_align_errors" },
  5893. { "tx_single_collisions" },
  5894. { "tx_multi_collisions" },
  5895. { "tx_deferred" },
  5896. { "tx_excess_collisions" },
  5897. { "tx_late_collisions" },
  5898. { "tx_total_collisions" },
  5899. { "rx_fragments" },
  5900. { "rx_jabbers" },
  5901. { "rx_undersize_packets" },
  5902. { "rx_oversize_packets" },
  5903. { "rx_64_byte_packets" },
  5904. { "rx_65_to_127_byte_packets" },
  5905. { "rx_128_to_255_byte_packets" },
  5906. { "rx_256_to_511_byte_packets" },
  5907. { "rx_512_to_1023_byte_packets" },
  5908. { "rx_1024_to_1522_byte_packets" },
  5909. { "rx_1523_to_9022_byte_packets" },
  5910. { "tx_64_byte_packets" },
  5911. { "tx_65_to_127_byte_packets" },
  5912. { "tx_128_to_255_byte_packets" },
  5913. { "tx_256_to_511_byte_packets" },
  5914. { "tx_512_to_1023_byte_packets" },
  5915. { "tx_1024_to_1522_byte_packets" },
  5916. { "tx_1523_to_9022_byte_packets" },
  5917. { "rx_xon_frames" },
  5918. { "rx_xoff_frames" },
  5919. { "tx_xon_frames" },
  5920. { "tx_xoff_frames" },
  5921. { "rx_mac_ctrl_frames" },
  5922. { "rx_filtered_packets" },
  5923. { "rx_ftq_discards" },
  5924. { "rx_discards" },
  5925. { "rx_fw_discards" },
  5926. };
  5927. #define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
  5928. sizeof(bnx2_stats_str_arr[0]))
  5929. #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
  5930. static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
  5931. STATS_OFFSET32(stat_IfHCInOctets_hi),
  5932. STATS_OFFSET32(stat_IfHCInBadOctets_hi),
  5933. STATS_OFFSET32(stat_IfHCOutOctets_hi),
  5934. STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
  5935. STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
  5936. STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
  5937. STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
  5938. STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
  5939. STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
  5940. STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
  5941. STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
  5942. STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
  5943. STATS_OFFSET32(stat_Dot3StatsFCSErrors),
  5944. STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
  5945. STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
  5946. STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
  5947. STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
  5948. STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
  5949. STATS_OFFSET32(stat_Dot3StatsLateCollisions),
  5950. STATS_OFFSET32(stat_EtherStatsCollisions),
  5951. STATS_OFFSET32(stat_EtherStatsFragments),
  5952. STATS_OFFSET32(stat_EtherStatsJabbers),
  5953. STATS_OFFSET32(stat_EtherStatsUndersizePkts),
  5954. STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
  5955. STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
  5956. STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
  5957. STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
  5958. STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
  5959. STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
  5960. STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
  5961. STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
  5962. STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
  5963. STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
  5964. STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
  5965. STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
  5966. STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
  5967. STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
  5968. STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
  5969. STATS_OFFSET32(stat_XonPauseFramesReceived),
  5970. STATS_OFFSET32(stat_XoffPauseFramesReceived),
  5971. STATS_OFFSET32(stat_OutXonSent),
  5972. STATS_OFFSET32(stat_OutXoffSent),
  5973. STATS_OFFSET32(stat_MacControlFramesReceived),
  5974. STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
  5975. STATS_OFFSET32(stat_IfInFTQDiscards),
  5976. STATS_OFFSET32(stat_IfInMBUFDiscards),
  5977. STATS_OFFSET32(stat_FwRxDrop),
  5978. };
  5979. /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
  5980. * skipped because of errata.
  5981. */
  5982. static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
  5983. 8,0,8,8,8,8,8,8,8,8,
  5984. 4,0,4,4,4,4,4,4,4,4,
  5985. 4,4,4,4,4,4,4,4,4,4,
  5986. 4,4,4,4,4,4,4,4,4,4,
  5987. 4,4,4,4,4,4,4,
  5988. };
  5989. static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
  5990. 8,0,8,8,8,8,8,8,8,8,
  5991. 4,4,4,4,4,4,4,4,4,4,
  5992. 4,4,4,4,4,4,4,4,4,4,
  5993. 4,4,4,4,4,4,4,4,4,4,
  5994. 4,4,4,4,4,4,4,
  5995. };
  5996. #define BNX2_NUM_TESTS 6
  5997. static struct {
  5998. char string[ETH_GSTRING_LEN];
  5999. } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
  6000. { "register_test (offline)" },
  6001. { "memory_test (offline)" },
  6002. { "loopback_test (offline)" },
  6003. { "nvram_test (online)" },
  6004. { "interrupt_test (online)" },
  6005. { "link_test (online)" },
  6006. };
  6007. static int
  6008. bnx2_get_sset_count(struct net_device *dev, int sset)
  6009. {
  6010. switch (sset) {
  6011. case ETH_SS_TEST:
  6012. return BNX2_NUM_TESTS;
  6013. case ETH_SS_STATS:
  6014. return BNX2_NUM_STATS;
  6015. default:
  6016. return -EOPNOTSUPP;
  6017. }
  6018. }
  6019. static void
  6020. bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
  6021. {
  6022. struct bnx2 *bp = netdev_priv(dev);
  6023. bnx2_set_power_state(bp, PCI_D0);
  6024. memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
  6025. if (etest->flags & ETH_TEST_FL_OFFLINE) {
  6026. int i;
  6027. bnx2_netif_stop(bp);
  6028. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
  6029. bnx2_free_skbs(bp);
  6030. if (bnx2_test_registers(bp) != 0) {
  6031. buf[0] = 1;
  6032. etest->flags |= ETH_TEST_FL_FAILED;
  6033. }
  6034. if (bnx2_test_memory(bp) != 0) {
  6035. buf[1] = 1;
  6036. etest->flags |= ETH_TEST_FL_FAILED;
  6037. }
  6038. if ((buf[2] = bnx2_test_loopback(bp)) != 0)
  6039. etest->flags |= ETH_TEST_FL_FAILED;
  6040. if (!netif_running(bp->dev))
  6041. bnx2_shutdown_chip(bp);
  6042. else {
  6043. bnx2_init_nic(bp, 1);
  6044. bnx2_netif_start(bp);
  6045. }
  6046. /* wait for link up */
  6047. for (i = 0; i < 7; i++) {
  6048. if (bp->link_up)
  6049. break;
  6050. msleep_interruptible(1000);
  6051. }
  6052. }
  6053. if (bnx2_test_nvram(bp) != 0) {
  6054. buf[3] = 1;
  6055. etest->flags |= ETH_TEST_FL_FAILED;
  6056. }
  6057. if (bnx2_test_intr(bp) != 0) {
  6058. buf[4] = 1;
  6059. etest->flags |= ETH_TEST_FL_FAILED;
  6060. }
  6061. if (bnx2_test_link(bp) != 0) {
  6062. buf[5] = 1;
  6063. etest->flags |= ETH_TEST_FL_FAILED;
  6064. }
  6065. if (!netif_running(bp->dev))
  6066. bnx2_set_power_state(bp, PCI_D3hot);
  6067. }
  6068. static void
  6069. bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
  6070. {
  6071. switch (stringset) {
  6072. case ETH_SS_STATS:
  6073. memcpy(buf, bnx2_stats_str_arr,
  6074. sizeof(bnx2_stats_str_arr));
  6075. break;
  6076. case ETH_SS_TEST:
  6077. memcpy(buf, bnx2_tests_str_arr,
  6078. sizeof(bnx2_tests_str_arr));
  6079. break;
  6080. }
  6081. }
  6082. static void
  6083. bnx2_get_ethtool_stats(struct net_device *dev,
  6084. struct ethtool_stats *stats, u64 *buf)
  6085. {
  6086. struct bnx2 *bp = netdev_priv(dev);
  6087. int i;
  6088. u32 *hw_stats = (u32 *) bp->stats_blk;
  6089. u32 *temp_stats = (u32 *) bp->temp_stats_blk;
  6090. u8 *stats_len_arr = NULL;
  6091. if (hw_stats == NULL) {
  6092. memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
  6093. return;
  6094. }
  6095. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  6096. (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
  6097. (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
  6098. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  6099. stats_len_arr = bnx2_5706_stats_len_arr;
  6100. else
  6101. stats_len_arr = bnx2_5708_stats_len_arr;
  6102. for (i = 0; i < BNX2_NUM_STATS; i++) {
  6103. unsigned long offset;
  6104. if (stats_len_arr[i] == 0) {
  6105. /* skip this counter */
  6106. buf[i] = 0;
  6107. continue;
  6108. }
  6109. offset = bnx2_stats_offset_arr[i];
  6110. if (stats_len_arr[i] == 4) {
  6111. /* 4-byte counter */
  6112. buf[i] = (u64) *(hw_stats + offset) +
  6113. *(temp_stats + offset);
  6114. continue;
  6115. }
  6116. /* 8-byte counter */
  6117. buf[i] = (((u64) *(hw_stats + offset)) << 32) +
  6118. *(hw_stats + offset + 1) +
  6119. (((u64) *(temp_stats + offset)) << 32) +
  6120. *(temp_stats + offset + 1);
  6121. }
  6122. }
  6123. static int
  6124. bnx2_phys_id(struct net_device *dev, u32 data)
  6125. {
  6126. struct bnx2 *bp = netdev_priv(dev);
  6127. int i;
  6128. u32 save;
  6129. bnx2_set_power_state(bp, PCI_D0);
  6130. if (data == 0)
  6131. data = 2;
  6132. save = REG_RD(bp, BNX2_MISC_CFG);
  6133. REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
  6134. for (i = 0; i < (data * 2); i++) {
  6135. if ((i % 2) == 0) {
  6136. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
  6137. }
  6138. else {
  6139. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
  6140. BNX2_EMAC_LED_1000MB_OVERRIDE |
  6141. BNX2_EMAC_LED_100MB_OVERRIDE |
  6142. BNX2_EMAC_LED_10MB_OVERRIDE |
  6143. BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
  6144. BNX2_EMAC_LED_TRAFFIC);
  6145. }
  6146. msleep_interruptible(500);
  6147. if (signal_pending(current))
  6148. break;
  6149. }
  6150. REG_WR(bp, BNX2_EMAC_LED, 0);
  6151. REG_WR(bp, BNX2_MISC_CFG, save);
  6152. if (!netif_running(dev))
  6153. bnx2_set_power_state(bp, PCI_D3hot);
  6154. return 0;
  6155. }
  6156. static int
  6157. bnx2_set_tx_csum(struct net_device *dev, u32 data)
  6158. {
  6159. struct bnx2 *bp = netdev_priv(dev);
  6160. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6161. return (ethtool_op_set_tx_ipv6_csum(dev, data));
  6162. else
  6163. return (ethtool_op_set_tx_csum(dev, data));
  6164. }
  6165. static const struct ethtool_ops bnx2_ethtool_ops = {
  6166. .get_settings = bnx2_get_settings,
  6167. .set_settings = bnx2_set_settings,
  6168. .get_drvinfo = bnx2_get_drvinfo,
  6169. .get_regs_len = bnx2_get_regs_len,
  6170. .get_regs = bnx2_get_regs,
  6171. .get_wol = bnx2_get_wol,
  6172. .set_wol = bnx2_set_wol,
  6173. .nway_reset = bnx2_nway_reset,
  6174. .get_link = bnx2_get_link,
  6175. .get_eeprom_len = bnx2_get_eeprom_len,
  6176. .get_eeprom = bnx2_get_eeprom,
  6177. .set_eeprom = bnx2_set_eeprom,
  6178. .get_coalesce = bnx2_get_coalesce,
  6179. .set_coalesce = bnx2_set_coalesce,
  6180. .get_ringparam = bnx2_get_ringparam,
  6181. .set_ringparam = bnx2_set_ringparam,
  6182. .get_pauseparam = bnx2_get_pauseparam,
  6183. .set_pauseparam = bnx2_set_pauseparam,
  6184. .get_rx_csum = bnx2_get_rx_csum,
  6185. .set_rx_csum = bnx2_set_rx_csum,
  6186. .set_tx_csum = bnx2_set_tx_csum,
  6187. .set_sg = ethtool_op_set_sg,
  6188. .set_tso = bnx2_set_tso,
  6189. .self_test = bnx2_self_test,
  6190. .get_strings = bnx2_get_strings,
  6191. .phys_id = bnx2_phys_id,
  6192. .get_ethtool_stats = bnx2_get_ethtool_stats,
  6193. .get_sset_count = bnx2_get_sset_count,
  6194. };
  6195. /* Called with rtnl_lock */
  6196. static int
  6197. bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  6198. {
  6199. struct mii_ioctl_data *data = if_mii(ifr);
  6200. struct bnx2 *bp = netdev_priv(dev);
  6201. int err;
  6202. switch(cmd) {
  6203. case SIOCGMIIPHY:
  6204. data->phy_id = bp->phy_addr;
  6205. /* fallthru */
  6206. case SIOCGMIIREG: {
  6207. u32 mii_regval;
  6208. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6209. return -EOPNOTSUPP;
  6210. if (!netif_running(dev))
  6211. return -EAGAIN;
  6212. spin_lock_bh(&bp->phy_lock);
  6213. err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
  6214. spin_unlock_bh(&bp->phy_lock);
  6215. data->val_out = mii_regval;
  6216. return err;
  6217. }
  6218. case SIOCSMIIREG:
  6219. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6220. return -EOPNOTSUPP;
  6221. if (!netif_running(dev))
  6222. return -EAGAIN;
  6223. spin_lock_bh(&bp->phy_lock);
  6224. err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
  6225. spin_unlock_bh(&bp->phy_lock);
  6226. return err;
  6227. default:
  6228. /* do nothing */
  6229. break;
  6230. }
  6231. return -EOPNOTSUPP;
  6232. }
  6233. /* Called with rtnl_lock */
  6234. static int
  6235. bnx2_change_mac_addr(struct net_device *dev, void *p)
  6236. {
  6237. struct sockaddr *addr = p;
  6238. struct bnx2 *bp = netdev_priv(dev);
  6239. if (!is_valid_ether_addr(addr->sa_data))
  6240. return -EINVAL;
  6241. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  6242. if (netif_running(dev))
  6243. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  6244. return 0;
  6245. }
  6246. /* Called with rtnl_lock */
  6247. static int
  6248. bnx2_change_mtu(struct net_device *dev, int new_mtu)
  6249. {
  6250. struct bnx2 *bp = netdev_priv(dev);
  6251. if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
  6252. ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
  6253. return -EINVAL;
  6254. dev->mtu = new_mtu;
  6255. return (bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size));
  6256. }
  6257. #ifdef CONFIG_NET_POLL_CONTROLLER
  6258. static void
  6259. poll_bnx2(struct net_device *dev)
  6260. {
  6261. struct bnx2 *bp = netdev_priv(dev);
  6262. int i;
  6263. for (i = 0; i < bp->irq_nvecs; i++) {
  6264. disable_irq(bp->irq_tbl[i].vector);
  6265. bnx2_interrupt(bp->irq_tbl[i].vector, &bp->bnx2_napi[i]);
  6266. enable_irq(bp->irq_tbl[i].vector);
  6267. }
  6268. }
  6269. #endif
  6270. static void __devinit
  6271. bnx2_get_5709_media(struct bnx2 *bp)
  6272. {
  6273. u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
  6274. u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
  6275. u32 strap;
  6276. if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
  6277. return;
  6278. else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
  6279. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6280. return;
  6281. }
  6282. if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
  6283. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
  6284. else
  6285. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
  6286. if (PCI_FUNC(bp->pdev->devfn) == 0) {
  6287. switch (strap) {
  6288. case 0x4:
  6289. case 0x5:
  6290. case 0x6:
  6291. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6292. return;
  6293. }
  6294. } else {
  6295. switch (strap) {
  6296. case 0x1:
  6297. case 0x2:
  6298. case 0x4:
  6299. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6300. return;
  6301. }
  6302. }
  6303. }
  6304. static void __devinit
  6305. bnx2_get_pci_speed(struct bnx2 *bp)
  6306. {
  6307. u32 reg;
  6308. reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
  6309. if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
  6310. u32 clkreg;
  6311. bp->flags |= BNX2_FLAG_PCIX;
  6312. clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
  6313. clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
  6314. switch (clkreg) {
  6315. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
  6316. bp->bus_speed_mhz = 133;
  6317. break;
  6318. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
  6319. bp->bus_speed_mhz = 100;
  6320. break;
  6321. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
  6322. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
  6323. bp->bus_speed_mhz = 66;
  6324. break;
  6325. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
  6326. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
  6327. bp->bus_speed_mhz = 50;
  6328. break;
  6329. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
  6330. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
  6331. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
  6332. bp->bus_speed_mhz = 33;
  6333. break;
  6334. }
  6335. }
  6336. else {
  6337. if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
  6338. bp->bus_speed_mhz = 66;
  6339. else
  6340. bp->bus_speed_mhz = 33;
  6341. }
  6342. if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
  6343. bp->flags |= BNX2_FLAG_PCI_32BIT;
  6344. }
  6345. static void __devinit
  6346. bnx2_read_vpd_fw_ver(struct bnx2 *bp)
  6347. {
  6348. int rc, i, v0_len = 0;
  6349. u8 *data;
  6350. u8 *v0_str = NULL;
  6351. bool mn_match = false;
  6352. #define BNX2_VPD_NVRAM_OFFSET 0x300
  6353. #define BNX2_VPD_LEN 128
  6354. #define BNX2_MAX_VER_SLEN 30
  6355. data = kmalloc(256, GFP_KERNEL);
  6356. if (!data)
  6357. return;
  6358. rc = bnx2_nvram_read(bp, BNX2_VPD_NVRAM_OFFSET, data + BNX2_VPD_LEN,
  6359. BNX2_VPD_LEN);
  6360. if (rc)
  6361. goto vpd_done;
  6362. for (i = 0; i < BNX2_VPD_LEN; i += 4) {
  6363. data[i] = data[i + BNX2_VPD_LEN + 3];
  6364. data[i + 1] = data[i + BNX2_VPD_LEN + 2];
  6365. data[i + 2] = data[i + BNX2_VPD_LEN + 1];
  6366. data[i + 3] = data[i + BNX2_VPD_LEN];
  6367. }
  6368. for (i = 0; i <= BNX2_VPD_LEN - 3; ) {
  6369. unsigned char val = data[i];
  6370. unsigned int block_end;
  6371. if (val == 0x82 || val == 0x91) {
  6372. i = (i + 3 + (data[i + 1] + (data[i + 2] << 8)));
  6373. continue;
  6374. }
  6375. if (val != 0x90)
  6376. goto vpd_done;
  6377. block_end = (i + 3 + (data[i + 1] + (data[i + 2] << 8)));
  6378. i += 3;
  6379. if (block_end > BNX2_VPD_LEN)
  6380. goto vpd_done;
  6381. while (i < (block_end - 2)) {
  6382. int len = data[i + 2];
  6383. if (i + 3 + len > block_end)
  6384. goto vpd_done;
  6385. if (data[i] == 'M' && data[i + 1] == 'N') {
  6386. if (len != 4 ||
  6387. memcmp(&data[i + 3], "1028", 4))
  6388. goto vpd_done;
  6389. mn_match = true;
  6390. } else if (data[i] == 'V' && data[i + 1] == '0') {
  6391. if (len > BNX2_MAX_VER_SLEN)
  6392. goto vpd_done;
  6393. v0_len = len;
  6394. v0_str = &data[i + 3];
  6395. }
  6396. i += 3 + len;
  6397. if (mn_match && v0_str) {
  6398. memcpy(bp->fw_version, v0_str, v0_len);
  6399. bp->fw_version[v0_len] = ' ';
  6400. goto vpd_done;
  6401. }
  6402. }
  6403. goto vpd_done;
  6404. }
  6405. vpd_done:
  6406. kfree(data);
  6407. }
  6408. static int __devinit
  6409. bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
  6410. {
  6411. struct bnx2 *bp;
  6412. unsigned long mem_len;
  6413. int rc, i, j;
  6414. u32 reg;
  6415. u64 dma_mask, persist_dma_mask;
  6416. SET_NETDEV_DEV(dev, &pdev->dev);
  6417. bp = netdev_priv(dev);
  6418. bp->flags = 0;
  6419. bp->phy_flags = 0;
  6420. bp->temp_stats_blk =
  6421. kzalloc(sizeof(struct statistics_block), GFP_KERNEL);
  6422. if (bp->temp_stats_blk == NULL) {
  6423. rc = -ENOMEM;
  6424. goto err_out;
  6425. }
  6426. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  6427. rc = pci_enable_device(pdev);
  6428. if (rc) {
  6429. dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n");
  6430. goto err_out;
  6431. }
  6432. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  6433. dev_err(&pdev->dev,
  6434. "Cannot find PCI device base address, aborting.\n");
  6435. rc = -ENODEV;
  6436. goto err_out_disable;
  6437. }
  6438. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  6439. if (rc) {
  6440. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
  6441. goto err_out_disable;
  6442. }
  6443. pci_set_master(pdev);
  6444. pci_save_state(pdev);
  6445. bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  6446. if (bp->pm_cap == 0) {
  6447. dev_err(&pdev->dev,
  6448. "Cannot find power management capability, aborting.\n");
  6449. rc = -EIO;
  6450. goto err_out_release;
  6451. }
  6452. bp->dev = dev;
  6453. bp->pdev = pdev;
  6454. spin_lock_init(&bp->phy_lock);
  6455. spin_lock_init(&bp->indirect_lock);
  6456. #ifdef BCM_CNIC
  6457. mutex_init(&bp->cnic_lock);
  6458. #endif
  6459. INIT_WORK(&bp->reset_task, bnx2_reset_task);
  6460. dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
  6461. mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS + 1);
  6462. dev->mem_end = dev->mem_start + mem_len;
  6463. dev->irq = pdev->irq;
  6464. bp->regview = ioremap_nocache(dev->base_addr, mem_len);
  6465. if (!bp->regview) {
  6466. dev_err(&pdev->dev, "Cannot map register space, aborting.\n");
  6467. rc = -ENOMEM;
  6468. goto err_out_release;
  6469. }
  6470. /* Configure byte swap and enable write to the reg_window registers.
  6471. * Rely on CPU to do target byte swapping on big endian systems
  6472. * The chip's target access swapping will not swap all accesses
  6473. */
  6474. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
  6475. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  6476. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
  6477. bnx2_set_power_state(bp, PCI_D0);
  6478. bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
  6479. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6480. if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
  6481. dev_err(&pdev->dev,
  6482. "Cannot find PCIE capability, aborting.\n");
  6483. rc = -EIO;
  6484. goto err_out_unmap;
  6485. }
  6486. bp->flags |= BNX2_FLAG_PCIE;
  6487. if (CHIP_REV(bp) == CHIP_REV_Ax)
  6488. bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
  6489. } else {
  6490. bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
  6491. if (bp->pcix_cap == 0) {
  6492. dev_err(&pdev->dev,
  6493. "Cannot find PCIX capability, aborting.\n");
  6494. rc = -EIO;
  6495. goto err_out_unmap;
  6496. }
  6497. bp->flags |= BNX2_FLAG_BROKEN_STATS;
  6498. }
  6499. if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
  6500. if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
  6501. bp->flags |= BNX2_FLAG_MSIX_CAP;
  6502. }
  6503. if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
  6504. if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
  6505. bp->flags |= BNX2_FLAG_MSI_CAP;
  6506. }
  6507. /* 5708 cannot support DMA addresses > 40-bit. */
  6508. if (CHIP_NUM(bp) == CHIP_NUM_5708)
  6509. persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
  6510. else
  6511. persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
  6512. /* Configure DMA attributes. */
  6513. if (pci_set_dma_mask(pdev, dma_mask) == 0) {
  6514. dev->features |= NETIF_F_HIGHDMA;
  6515. rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
  6516. if (rc) {
  6517. dev_err(&pdev->dev,
  6518. "pci_set_consistent_dma_mask failed, aborting.\n");
  6519. goto err_out_unmap;
  6520. }
  6521. } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
  6522. dev_err(&pdev->dev, "System does not support DMA, aborting.\n");
  6523. goto err_out_unmap;
  6524. }
  6525. if (!(bp->flags & BNX2_FLAG_PCIE))
  6526. bnx2_get_pci_speed(bp);
  6527. /* 5706A0 may falsely detect SERR and PERR. */
  6528. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6529. reg = REG_RD(bp, PCI_COMMAND);
  6530. reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  6531. REG_WR(bp, PCI_COMMAND, reg);
  6532. }
  6533. else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
  6534. !(bp->flags & BNX2_FLAG_PCIX)) {
  6535. dev_err(&pdev->dev,
  6536. "5706 A1 can only be used in a PCIX bus, aborting.\n");
  6537. goto err_out_unmap;
  6538. }
  6539. bnx2_init_nvram(bp);
  6540. reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
  6541. if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
  6542. BNX2_SHM_HDR_SIGNATURE_SIG) {
  6543. u32 off = PCI_FUNC(pdev->devfn) << 2;
  6544. bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
  6545. } else
  6546. bp->shmem_base = HOST_VIEW_SHMEM_BASE;
  6547. /* Get the permanent MAC address. First we need to make sure the
  6548. * firmware is actually running.
  6549. */
  6550. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
  6551. if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
  6552. BNX2_DEV_INFO_SIGNATURE_MAGIC) {
  6553. dev_err(&pdev->dev, "Firmware not running, aborting.\n");
  6554. rc = -ENODEV;
  6555. goto err_out_unmap;
  6556. }
  6557. bnx2_read_vpd_fw_ver(bp);
  6558. j = strlen(bp->fw_version);
  6559. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
  6560. for (i = 0; i < 3 && j < 24; i++) {
  6561. u8 num, k, skip0;
  6562. if (i == 0) {
  6563. bp->fw_version[j++] = 'b';
  6564. bp->fw_version[j++] = 'c';
  6565. bp->fw_version[j++] = ' ';
  6566. }
  6567. num = (u8) (reg >> (24 - (i * 8)));
  6568. for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
  6569. if (num >= k || !skip0 || k == 1) {
  6570. bp->fw_version[j++] = (num / k) + '0';
  6571. skip0 = 0;
  6572. }
  6573. }
  6574. if (i != 2)
  6575. bp->fw_version[j++] = '.';
  6576. }
  6577. reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
  6578. if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
  6579. bp->wol = 1;
  6580. if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
  6581. bp->flags |= BNX2_FLAG_ASF_ENABLE;
  6582. for (i = 0; i < 30; i++) {
  6583. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6584. if (reg & BNX2_CONDITION_MFW_RUN_MASK)
  6585. break;
  6586. msleep(10);
  6587. }
  6588. }
  6589. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6590. reg &= BNX2_CONDITION_MFW_RUN_MASK;
  6591. if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
  6592. reg != BNX2_CONDITION_MFW_RUN_NONE) {
  6593. u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
  6594. if (j < 32)
  6595. bp->fw_version[j++] = ' ';
  6596. for (i = 0; i < 3 && j < 28; i++) {
  6597. reg = bnx2_reg_rd_ind(bp, addr + i * 4);
  6598. reg = swab32(reg);
  6599. memcpy(&bp->fw_version[j], &reg, 4);
  6600. j += 4;
  6601. }
  6602. }
  6603. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
  6604. bp->mac_addr[0] = (u8) (reg >> 8);
  6605. bp->mac_addr[1] = (u8) reg;
  6606. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
  6607. bp->mac_addr[2] = (u8) (reg >> 24);
  6608. bp->mac_addr[3] = (u8) (reg >> 16);
  6609. bp->mac_addr[4] = (u8) (reg >> 8);
  6610. bp->mac_addr[5] = (u8) reg;
  6611. bp->tx_ring_size = MAX_TX_DESC_CNT;
  6612. bnx2_set_rx_ring_size(bp, 255);
  6613. bp->rx_csum = 1;
  6614. bp->tx_quick_cons_trip_int = 2;
  6615. bp->tx_quick_cons_trip = 20;
  6616. bp->tx_ticks_int = 18;
  6617. bp->tx_ticks = 80;
  6618. bp->rx_quick_cons_trip_int = 2;
  6619. bp->rx_quick_cons_trip = 12;
  6620. bp->rx_ticks_int = 18;
  6621. bp->rx_ticks = 18;
  6622. bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  6623. bp->current_interval = BNX2_TIMER_INTERVAL;
  6624. bp->phy_addr = 1;
  6625. /* Disable WOL support if we are running on a SERDES chip. */
  6626. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6627. bnx2_get_5709_media(bp);
  6628. else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
  6629. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6630. bp->phy_port = PORT_TP;
  6631. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  6632. bp->phy_port = PORT_FIBRE;
  6633. reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  6634. if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
  6635. bp->flags |= BNX2_FLAG_NO_WOL;
  6636. bp->wol = 0;
  6637. }
  6638. if (CHIP_NUM(bp) == CHIP_NUM_5706) {
  6639. /* Don't do parallel detect on this board because of
  6640. * some board problems. The link will not go down
  6641. * if we do parallel detect.
  6642. */
  6643. if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
  6644. pdev->subsystem_device == 0x310c)
  6645. bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
  6646. } else {
  6647. bp->phy_addr = 2;
  6648. if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
  6649. bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
  6650. }
  6651. } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
  6652. CHIP_NUM(bp) == CHIP_NUM_5708)
  6653. bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
  6654. else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
  6655. (CHIP_REV(bp) == CHIP_REV_Ax ||
  6656. CHIP_REV(bp) == CHIP_REV_Bx))
  6657. bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
  6658. bnx2_init_fw_cap(bp);
  6659. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  6660. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  6661. (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
  6662. !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
  6663. bp->flags |= BNX2_FLAG_NO_WOL;
  6664. bp->wol = 0;
  6665. }
  6666. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6667. bp->tx_quick_cons_trip_int =
  6668. bp->tx_quick_cons_trip;
  6669. bp->tx_ticks_int = bp->tx_ticks;
  6670. bp->rx_quick_cons_trip_int =
  6671. bp->rx_quick_cons_trip;
  6672. bp->rx_ticks_int = bp->rx_ticks;
  6673. bp->comp_prod_trip_int = bp->comp_prod_trip;
  6674. bp->com_ticks_int = bp->com_ticks;
  6675. bp->cmd_ticks_int = bp->cmd_ticks;
  6676. }
  6677. /* Disable MSI on 5706 if AMD 8132 bridge is found.
  6678. *
  6679. * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
  6680. * with byte enables disabled on the unused 32-bit word. This is legal
  6681. * but causes problems on the AMD 8132 which will eventually stop
  6682. * responding after a while.
  6683. *
  6684. * AMD believes this incompatibility is unique to the 5706, and
  6685. * prefers to locally disable MSI rather than globally disabling it.
  6686. */
  6687. if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
  6688. struct pci_dev *amd_8132 = NULL;
  6689. while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
  6690. PCI_DEVICE_ID_AMD_8132_BRIDGE,
  6691. amd_8132))) {
  6692. if (amd_8132->revision >= 0x10 &&
  6693. amd_8132->revision <= 0x13) {
  6694. disable_msi = 1;
  6695. pci_dev_put(amd_8132);
  6696. break;
  6697. }
  6698. }
  6699. }
  6700. bnx2_set_default_link(bp);
  6701. bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
  6702. init_timer(&bp->timer);
  6703. bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
  6704. bp->timer.data = (unsigned long) bp;
  6705. bp->timer.function = bnx2_timer;
  6706. return 0;
  6707. err_out_unmap:
  6708. if (bp->regview) {
  6709. iounmap(bp->regview);
  6710. bp->regview = NULL;
  6711. }
  6712. err_out_release:
  6713. pci_release_regions(pdev);
  6714. err_out_disable:
  6715. pci_disable_device(pdev);
  6716. pci_set_drvdata(pdev, NULL);
  6717. err_out:
  6718. return rc;
  6719. }
  6720. static char * __devinit
  6721. bnx2_bus_string(struct bnx2 *bp, char *str)
  6722. {
  6723. char *s = str;
  6724. if (bp->flags & BNX2_FLAG_PCIE) {
  6725. s += sprintf(s, "PCI Express");
  6726. } else {
  6727. s += sprintf(s, "PCI");
  6728. if (bp->flags & BNX2_FLAG_PCIX)
  6729. s += sprintf(s, "-X");
  6730. if (bp->flags & BNX2_FLAG_PCI_32BIT)
  6731. s += sprintf(s, " 32-bit");
  6732. else
  6733. s += sprintf(s, " 64-bit");
  6734. s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
  6735. }
  6736. return str;
  6737. }
  6738. static void __devinit
  6739. bnx2_init_napi(struct bnx2 *bp)
  6740. {
  6741. int i;
  6742. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  6743. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  6744. int (*poll)(struct napi_struct *, int);
  6745. if (i == 0)
  6746. poll = bnx2_poll;
  6747. else
  6748. poll = bnx2_poll_msix;
  6749. netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
  6750. bnapi->bp = bp;
  6751. }
  6752. }
  6753. static const struct net_device_ops bnx2_netdev_ops = {
  6754. .ndo_open = bnx2_open,
  6755. .ndo_start_xmit = bnx2_start_xmit,
  6756. .ndo_stop = bnx2_close,
  6757. .ndo_get_stats = bnx2_get_stats,
  6758. .ndo_set_rx_mode = bnx2_set_rx_mode,
  6759. .ndo_do_ioctl = bnx2_ioctl,
  6760. .ndo_validate_addr = eth_validate_addr,
  6761. .ndo_set_mac_address = bnx2_change_mac_addr,
  6762. .ndo_change_mtu = bnx2_change_mtu,
  6763. .ndo_tx_timeout = bnx2_tx_timeout,
  6764. #ifdef BCM_VLAN
  6765. .ndo_vlan_rx_register = bnx2_vlan_rx_register,
  6766. #endif
  6767. #ifdef CONFIG_NET_POLL_CONTROLLER
  6768. .ndo_poll_controller = poll_bnx2,
  6769. #endif
  6770. };
  6771. static void inline vlan_features_add(struct net_device *dev, unsigned long flags)
  6772. {
  6773. #ifdef BCM_VLAN
  6774. dev->vlan_features |= flags;
  6775. #endif
  6776. }
  6777. static int __devinit
  6778. bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  6779. {
  6780. static int version_printed = 0;
  6781. struct net_device *dev = NULL;
  6782. struct bnx2 *bp;
  6783. int rc;
  6784. char str[40];
  6785. if (version_printed++ == 0)
  6786. printk(KERN_INFO "%s", version);
  6787. /* dev zeroed in init_etherdev */
  6788. dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
  6789. if (!dev)
  6790. return -ENOMEM;
  6791. rc = bnx2_init_board(pdev, dev);
  6792. if (rc < 0) {
  6793. free_netdev(dev);
  6794. return rc;
  6795. }
  6796. dev->netdev_ops = &bnx2_netdev_ops;
  6797. dev->watchdog_timeo = TX_TIMEOUT;
  6798. dev->ethtool_ops = &bnx2_ethtool_ops;
  6799. bp = netdev_priv(dev);
  6800. bnx2_init_napi(bp);
  6801. pci_set_drvdata(pdev, dev);
  6802. rc = bnx2_request_firmware(bp);
  6803. if (rc)
  6804. goto error;
  6805. memcpy(dev->dev_addr, bp->mac_addr, 6);
  6806. memcpy(dev->perm_addr, bp->mac_addr, 6);
  6807. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  6808. vlan_features_add(dev, NETIF_F_IP_CSUM | NETIF_F_SG);
  6809. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6810. dev->features |= NETIF_F_IPV6_CSUM;
  6811. vlan_features_add(dev, NETIF_F_IPV6_CSUM);
  6812. }
  6813. #ifdef BCM_VLAN
  6814. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  6815. #endif
  6816. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  6817. vlan_features_add(dev, NETIF_F_TSO | NETIF_F_TSO_ECN);
  6818. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6819. dev->features |= NETIF_F_TSO6;
  6820. vlan_features_add(dev, NETIF_F_TSO6);
  6821. }
  6822. if ((rc = register_netdev(dev))) {
  6823. dev_err(&pdev->dev, "Cannot register net device\n");
  6824. goto error;
  6825. }
  6826. printk(KERN_INFO "%s: %s (%c%d) %s found at mem %lx, "
  6827. "IRQ %d, node addr %pM\n",
  6828. dev->name,
  6829. board_info[ent->driver_data].name,
  6830. ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
  6831. ((CHIP_ID(bp) & 0x0ff0) >> 4),
  6832. bnx2_bus_string(bp, str),
  6833. dev->base_addr,
  6834. bp->pdev->irq, dev->dev_addr);
  6835. return 0;
  6836. error:
  6837. if (bp->mips_firmware)
  6838. release_firmware(bp->mips_firmware);
  6839. if (bp->rv2p_firmware)
  6840. release_firmware(bp->rv2p_firmware);
  6841. if (bp->regview)
  6842. iounmap(bp->regview);
  6843. pci_release_regions(pdev);
  6844. pci_disable_device(pdev);
  6845. pci_set_drvdata(pdev, NULL);
  6846. free_netdev(dev);
  6847. return rc;
  6848. }
  6849. static void __devexit
  6850. bnx2_remove_one(struct pci_dev *pdev)
  6851. {
  6852. struct net_device *dev = pci_get_drvdata(pdev);
  6853. struct bnx2 *bp = netdev_priv(dev);
  6854. flush_scheduled_work();
  6855. unregister_netdev(dev);
  6856. if (bp->mips_firmware)
  6857. release_firmware(bp->mips_firmware);
  6858. if (bp->rv2p_firmware)
  6859. release_firmware(bp->rv2p_firmware);
  6860. if (bp->regview)
  6861. iounmap(bp->regview);
  6862. kfree(bp->temp_stats_blk);
  6863. free_netdev(dev);
  6864. pci_release_regions(pdev);
  6865. pci_disable_device(pdev);
  6866. pci_set_drvdata(pdev, NULL);
  6867. }
  6868. static int
  6869. bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
  6870. {
  6871. struct net_device *dev = pci_get_drvdata(pdev);
  6872. struct bnx2 *bp = netdev_priv(dev);
  6873. /* PCI register 4 needs to be saved whether netif_running() or not.
  6874. * MSI address and data need to be saved if using MSI and
  6875. * netif_running().
  6876. */
  6877. pci_save_state(pdev);
  6878. if (!netif_running(dev))
  6879. return 0;
  6880. flush_scheduled_work();
  6881. bnx2_netif_stop(bp);
  6882. netif_device_detach(dev);
  6883. del_timer_sync(&bp->timer);
  6884. bnx2_shutdown_chip(bp);
  6885. bnx2_free_skbs(bp);
  6886. bnx2_set_power_state(bp, pci_choose_state(pdev, state));
  6887. return 0;
  6888. }
  6889. static int
  6890. bnx2_resume(struct pci_dev *pdev)
  6891. {
  6892. struct net_device *dev = pci_get_drvdata(pdev);
  6893. struct bnx2 *bp = netdev_priv(dev);
  6894. pci_restore_state(pdev);
  6895. if (!netif_running(dev))
  6896. return 0;
  6897. bnx2_set_power_state(bp, PCI_D0);
  6898. netif_device_attach(dev);
  6899. bnx2_init_nic(bp, 1);
  6900. bnx2_netif_start(bp);
  6901. return 0;
  6902. }
  6903. /**
  6904. * bnx2_io_error_detected - called when PCI error is detected
  6905. * @pdev: Pointer to PCI device
  6906. * @state: The current pci connection state
  6907. *
  6908. * This function is called after a PCI bus error affecting
  6909. * this device has been detected.
  6910. */
  6911. static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
  6912. pci_channel_state_t state)
  6913. {
  6914. struct net_device *dev = pci_get_drvdata(pdev);
  6915. struct bnx2 *bp = netdev_priv(dev);
  6916. rtnl_lock();
  6917. netif_device_detach(dev);
  6918. if (state == pci_channel_io_perm_failure) {
  6919. rtnl_unlock();
  6920. return PCI_ERS_RESULT_DISCONNECT;
  6921. }
  6922. if (netif_running(dev)) {
  6923. bnx2_netif_stop(bp);
  6924. del_timer_sync(&bp->timer);
  6925. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  6926. }
  6927. pci_disable_device(pdev);
  6928. rtnl_unlock();
  6929. /* Request a slot slot reset. */
  6930. return PCI_ERS_RESULT_NEED_RESET;
  6931. }
  6932. /**
  6933. * bnx2_io_slot_reset - called after the pci bus has been reset.
  6934. * @pdev: Pointer to PCI device
  6935. *
  6936. * Restart the card from scratch, as if from a cold-boot.
  6937. */
  6938. static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
  6939. {
  6940. struct net_device *dev = pci_get_drvdata(pdev);
  6941. struct bnx2 *bp = netdev_priv(dev);
  6942. rtnl_lock();
  6943. if (pci_enable_device(pdev)) {
  6944. dev_err(&pdev->dev,
  6945. "Cannot re-enable PCI device after reset.\n");
  6946. rtnl_unlock();
  6947. return PCI_ERS_RESULT_DISCONNECT;
  6948. }
  6949. pci_set_master(pdev);
  6950. pci_restore_state(pdev);
  6951. pci_save_state(pdev);
  6952. if (netif_running(dev)) {
  6953. bnx2_set_power_state(bp, PCI_D0);
  6954. bnx2_init_nic(bp, 1);
  6955. }
  6956. rtnl_unlock();
  6957. return PCI_ERS_RESULT_RECOVERED;
  6958. }
  6959. /**
  6960. * bnx2_io_resume - called when traffic can start flowing again.
  6961. * @pdev: Pointer to PCI device
  6962. *
  6963. * This callback is called when the error recovery driver tells us that
  6964. * its OK to resume normal operation.
  6965. */
  6966. static void bnx2_io_resume(struct pci_dev *pdev)
  6967. {
  6968. struct net_device *dev = pci_get_drvdata(pdev);
  6969. struct bnx2 *bp = netdev_priv(dev);
  6970. rtnl_lock();
  6971. if (netif_running(dev))
  6972. bnx2_netif_start(bp);
  6973. netif_device_attach(dev);
  6974. rtnl_unlock();
  6975. }
  6976. static struct pci_error_handlers bnx2_err_handler = {
  6977. .error_detected = bnx2_io_error_detected,
  6978. .slot_reset = bnx2_io_slot_reset,
  6979. .resume = bnx2_io_resume,
  6980. };
  6981. static struct pci_driver bnx2_pci_driver = {
  6982. .name = DRV_MODULE_NAME,
  6983. .id_table = bnx2_pci_tbl,
  6984. .probe = bnx2_init_one,
  6985. .remove = __devexit_p(bnx2_remove_one),
  6986. .suspend = bnx2_suspend,
  6987. .resume = bnx2_resume,
  6988. .err_handler = &bnx2_err_handler,
  6989. };
  6990. static int __init bnx2_init(void)
  6991. {
  6992. return pci_register_driver(&bnx2_pci_driver);
  6993. }
  6994. static void __exit bnx2_cleanup(void)
  6995. {
  6996. pci_unregister_driver(&bnx2_pci_driver);
  6997. }
  6998. module_init(bnx2_init);
  6999. module_exit(bnx2_cleanup);