mcp251x.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202
  1. /*
  2. * CAN bus driver for Microchip 251x CAN Controller with SPI Interface
  3. *
  4. * MCP2510 support and bug fixes by Christian Pellegrin
  5. * <chripell@evolware.org>
  6. *
  7. * Copyright 2009 Christian Pellegrin EVOL S.r.l.
  8. *
  9. * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
  10. * Written under contract by:
  11. * Chris Elston, Katalix Systems, Ltd.
  12. *
  13. * Based on Microchip MCP251x CAN controller driver written by
  14. * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
  15. *
  16. * Based on CAN bus driver for the CCAN controller written by
  17. * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
  18. * - Simon Kallweit, intefo AG
  19. * Copyright 2007
  20. *
  21. * This program is free software; you can redistribute it and/or modify
  22. * it under the terms of the version 2 of the GNU General Public License
  23. * as published by the Free Software Foundation
  24. *
  25. * This program is distributed in the hope that it will be useful,
  26. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  27. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  28. * GNU General Public License for more details.
  29. *
  30. * You should have received a copy of the GNU General Public License
  31. * along with this program; if not, write to the Free Software
  32. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  33. *
  34. *
  35. *
  36. * Your platform definition file should specify something like:
  37. *
  38. * static struct mcp251x_platform_data mcp251x_info = {
  39. * .oscillator_frequency = 8000000,
  40. * .board_specific_setup = &mcp251x_setup,
  41. * .power_enable = mcp251x_power_enable,
  42. * .transceiver_enable = NULL,
  43. * };
  44. *
  45. * static struct spi_board_info spi_board_info[] = {
  46. * {
  47. * .modalias = "mcp2510",
  48. * // or "mcp2515" depending on your controller
  49. * .platform_data = &mcp251x_info,
  50. * .irq = IRQ_EINT13,
  51. * .max_speed_hz = 2*1000*1000,
  52. * .chip_select = 2,
  53. * },
  54. * };
  55. *
  56. * Please see mcp251x.h for a description of the fields in
  57. * struct mcp251x_platform_data.
  58. *
  59. */
  60. #include <linux/can/core.h>
  61. #include <linux/can/dev.h>
  62. #include <linux/can/platform/mcp251x.h>
  63. #include <linux/completion.h>
  64. #include <linux/delay.h>
  65. #include <linux/device.h>
  66. #include <linux/dma-mapping.h>
  67. #include <linux/freezer.h>
  68. #include <linux/interrupt.h>
  69. #include <linux/io.h>
  70. #include <linux/kernel.h>
  71. #include <linux/module.h>
  72. #include <linux/netdevice.h>
  73. #include <linux/platform_device.h>
  74. #include <linux/slab.h>
  75. #include <linux/spi/spi.h>
  76. #include <linux/uaccess.h>
  77. /* SPI interface instruction set */
  78. #define INSTRUCTION_WRITE 0x02
  79. #define INSTRUCTION_READ 0x03
  80. #define INSTRUCTION_BIT_MODIFY 0x05
  81. #define INSTRUCTION_LOAD_TXB(n) (0x40 + 2 * (n))
  82. #define INSTRUCTION_READ_RXB(n) (((n) == 0) ? 0x90 : 0x94)
  83. #define INSTRUCTION_RESET 0xC0
  84. /* MPC251x registers */
  85. #define CANSTAT 0x0e
  86. #define CANCTRL 0x0f
  87. # define CANCTRL_REQOP_MASK 0xe0
  88. # define CANCTRL_REQOP_CONF 0x80
  89. # define CANCTRL_REQOP_LISTEN_ONLY 0x60
  90. # define CANCTRL_REQOP_LOOPBACK 0x40
  91. # define CANCTRL_REQOP_SLEEP 0x20
  92. # define CANCTRL_REQOP_NORMAL 0x00
  93. # define CANCTRL_OSM 0x08
  94. # define CANCTRL_ABAT 0x10
  95. #define TEC 0x1c
  96. #define REC 0x1d
  97. #define CNF1 0x2a
  98. # define CNF1_SJW_SHIFT 6
  99. #define CNF2 0x29
  100. # define CNF2_BTLMODE 0x80
  101. # define CNF2_SAM 0x40
  102. # define CNF2_PS1_SHIFT 3
  103. #define CNF3 0x28
  104. # define CNF3_SOF 0x08
  105. # define CNF3_WAKFIL 0x04
  106. # define CNF3_PHSEG2_MASK 0x07
  107. #define CANINTE 0x2b
  108. # define CANINTE_MERRE 0x80
  109. # define CANINTE_WAKIE 0x40
  110. # define CANINTE_ERRIE 0x20
  111. # define CANINTE_TX2IE 0x10
  112. # define CANINTE_TX1IE 0x08
  113. # define CANINTE_TX0IE 0x04
  114. # define CANINTE_RX1IE 0x02
  115. # define CANINTE_RX0IE 0x01
  116. #define CANINTF 0x2c
  117. # define CANINTF_MERRF 0x80
  118. # define CANINTF_WAKIF 0x40
  119. # define CANINTF_ERRIF 0x20
  120. # define CANINTF_TX2IF 0x10
  121. # define CANINTF_TX1IF 0x08
  122. # define CANINTF_TX0IF 0x04
  123. # define CANINTF_RX1IF 0x02
  124. # define CANINTF_RX0IF 0x01
  125. # define CANINTF_ERR_TX \
  126. (CANINTF_ERRIF | CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
  127. #define EFLG 0x2d
  128. # define EFLG_EWARN 0x01
  129. # define EFLG_RXWAR 0x02
  130. # define EFLG_TXWAR 0x04
  131. # define EFLG_RXEP 0x08
  132. # define EFLG_TXEP 0x10
  133. # define EFLG_TXBO 0x20
  134. # define EFLG_RX0OVR 0x40
  135. # define EFLG_RX1OVR 0x80
  136. #define TXBCTRL(n) (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
  137. # define TXBCTRL_ABTF 0x40
  138. # define TXBCTRL_MLOA 0x20
  139. # define TXBCTRL_TXERR 0x10
  140. # define TXBCTRL_TXREQ 0x08
  141. #define TXBSIDH(n) (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
  142. # define SIDH_SHIFT 3
  143. #define TXBSIDL(n) (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
  144. # define SIDL_SID_MASK 7
  145. # define SIDL_SID_SHIFT 5
  146. # define SIDL_EXIDE_SHIFT 3
  147. # define SIDL_EID_SHIFT 16
  148. # define SIDL_EID_MASK 3
  149. #define TXBEID8(n) (((n) * 0x10) + 0x30 + TXBEID8_OFF)
  150. #define TXBEID0(n) (((n) * 0x10) + 0x30 + TXBEID0_OFF)
  151. #define TXBDLC(n) (((n) * 0x10) + 0x30 + TXBDLC_OFF)
  152. # define DLC_RTR_SHIFT 6
  153. #define TXBCTRL_OFF 0
  154. #define TXBSIDH_OFF 1
  155. #define TXBSIDL_OFF 2
  156. #define TXBEID8_OFF 3
  157. #define TXBEID0_OFF 4
  158. #define TXBDLC_OFF 5
  159. #define TXBDAT_OFF 6
  160. #define RXBCTRL(n) (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
  161. # define RXBCTRL_BUKT 0x04
  162. # define RXBCTRL_RXM0 0x20
  163. # define RXBCTRL_RXM1 0x40
  164. #define RXBSIDH(n) (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
  165. # define RXBSIDH_SHIFT 3
  166. #define RXBSIDL(n) (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
  167. # define RXBSIDL_IDE 0x08
  168. # define RXBSIDL_EID 3
  169. # define RXBSIDL_SHIFT 5
  170. #define RXBEID8(n) (((n) * 0x10) + 0x60 + RXBEID8_OFF)
  171. #define RXBEID0(n) (((n) * 0x10) + 0x60 + RXBEID0_OFF)
  172. #define RXBDLC(n) (((n) * 0x10) + 0x60 + RXBDLC_OFF)
  173. # define RXBDLC_LEN_MASK 0x0f
  174. # define RXBDLC_RTR 0x40
  175. #define RXBCTRL_OFF 0
  176. #define RXBSIDH_OFF 1
  177. #define RXBSIDL_OFF 2
  178. #define RXBEID8_OFF 3
  179. #define RXBEID0_OFF 4
  180. #define RXBDLC_OFF 5
  181. #define RXBDAT_OFF 6
  182. #define RXFSIDH(n) ((n) * 4)
  183. #define RXFSIDL(n) ((n) * 4 + 1)
  184. #define RXFEID8(n) ((n) * 4 + 2)
  185. #define RXFEID0(n) ((n) * 4 + 3)
  186. #define RXMSIDH(n) ((n) * 4 + 0x20)
  187. #define RXMSIDL(n) ((n) * 4 + 0x21)
  188. #define RXMEID8(n) ((n) * 4 + 0x22)
  189. #define RXMEID0(n) ((n) * 4 + 0x23)
  190. #define GET_BYTE(val, byte) \
  191. (((val) >> ((byte) * 8)) & 0xff)
  192. #define SET_BYTE(val, byte) \
  193. (((val) & 0xff) << ((byte) * 8))
  194. /*
  195. * Buffer size required for the largest SPI transfer (i.e., reading a
  196. * frame)
  197. */
  198. #define CAN_FRAME_MAX_DATA_LEN 8
  199. #define SPI_TRANSFER_BUF_LEN (6 + CAN_FRAME_MAX_DATA_LEN)
  200. #define CAN_FRAME_MAX_BITS 128
  201. #define TX_ECHO_SKB_MAX 1
  202. #define DEVICE_NAME "mcp251x"
  203. static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
  204. module_param(mcp251x_enable_dma, int, S_IRUGO);
  205. MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");
  206. static struct can_bittiming_const mcp251x_bittiming_const = {
  207. .name = DEVICE_NAME,
  208. .tseg1_min = 3,
  209. .tseg1_max = 16,
  210. .tseg2_min = 2,
  211. .tseg2_max = 8,
  212. .sjw_max = 4,
  213. .brp_min = 1,
  214. .brp_max = 64,
  215. .brp_inc = 1,
  216. };
  217. enum mcp251x_model {
  218. CAN_MCP251X_MCP2510 = 0x2510,
  219. CAN_MCP251X_MCP2515 = 0x2515,
  220. };
  221. struct mcp251x_priv {
  222. struct can_priv can;
  223. struct net_device *net;
  224. struct spi_device *spi;
  225. enum mcp251x_model model;
  226. struct mutex mcp_lock; /* SPI device lock */
  227. u8 *spi_tx_buf;
  228. u8 *spi_rx_buf;
  229. dma_addr_t spi_tx_dma;
  230. dma_addr_t spi_rx_dma;
  231. struct sk_buff *tx_skb;
  232. int tx_len;
  233. struct workqueue_struct *wq;
  234. struct work_struct tx_work;
  235. struct work_struct restart_work;
  236. int force_quit;
  237. int after_suspend;
  238. #define AFTER_SUSPEND_UP 1
  239. #define AFTER_SUSPEND_DOWN 2
  240. #define AFTER_SUSPEND_POWER 4
  241. #define AFTER_SUSPEND_RESTART 8
  242. int restart_tx;
  243. };
  244. #define MCP251X_IS(_model) \
  245. static inline int mcp251x_is_##_model(struct spi_device *spi) \
  246. { \
  247. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev); \
  248. return priv->model == CAN_MCP251X_MCP##_model; \
  249. }
  250. MCP251X_IS(2510);
  251. MCP251X_IS(2515);
  252. static void mcp251x_clean(struct net_device *net)
  253. {
  254. struct mcp251x_priv *priv = netdev_priv(net);
  255. if (priv->tx_skb || priv->tx_len)
  256. net->stats.tx_errors++;
  257. if (priv->tx_skb)
  258. dev_kfree_skb(priv->tx_skb);
  259. if (priv->tx_len)
  260. can_free_echo_skb(priv->net, 0);
  261. priv->tx_skb = NULL;
  262. priv->tx_len = 0;
  263. }
  264. /*
  265. * Note about handling of error return of mcp251x_spi_trans: accessing
  266. * registers via SPI is not really different conceptually than using
  267. * normal I/O assembler instructions, although it's much more
  268. * complicated from a practical POV. So it's not advisable to always
  269. * check the return value of this function. Imagine that every
  270. * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
  271. * error();", it would be a great mess (well there are some situation
  272. * when exception handling C++ like could be useful after all). So we
  273. * just check that transfers are OK at the beginning of our
  274. * conversation with the chip and to avoid doing really nasty things
  275. * (like injecting bogus packets in the network stack).
  276. */
  277. static int mcp251x_spi_trans(struct spi_device *spi, int len)
  278. {
  279. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  280. struct spi_transfer t = {
  281. .tx_buf = priv->spi_tx_buf,
  282. .rx_buf = priv->spi_rx_buf,
  283. .len = len,
  284. .cs_change = 0,
  285. };
  286. struct spi_message m;
  287. int ret;
  288. spi_message_init(&m);
  289. if (mcp251x_enable_dma) {
  290. t.tx_dma = priv->spi_tx_dma;
  291. t.rx_dma = priv->spi_rx_dma;
  292. m.is_dma_mapped = 1;
  293. }
  294. spi_message_add_tail(&t, &m);
  295. ret = spi_sync(spi, &m);
  296. if (ret)
  297. dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
  298. return ret;
  299. }
  300. static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg)
  301. {
  302. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  303. u8 val = 0;
  304. priv->spi_tx_buf[0] = INSTRUCTION_READ;
  305. priv->spi_tx_buf[1] = reg;
  306. mcp251x_spi_trans(spi, 3);
  307. val = priv->spi_rx_buf[2];
  308. return val;
  309. }
  310. static void mcp251x_read_2regs(struct spi_device *spi, uint8_t reg,
  311. uint8_t *v1, uint8_t *v2)
  312. {
  313. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  314. priv->spi_tx_buf[0] = INSTRUCTION_READ;
  315. priv->spi_tx_buf[1] = reg;
  316. mcp251x_spi_trans(spi, 4);
  317. *v1 = priv->spi_rx_buf[2];
  318. *v2 = priv->spi_rx_buf[3];
  319. }
  320. static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val)
  321. {
  322. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  323. priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
  324. priv->spi_tx_buf[1] = reg;
  325. priv->spi_tx_buf[2] = val;
  326. mcp251x_spi_trans(spi, 3);
  327. }
  328. static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
  329. u8 mask, uint8_t val)
  330. {
  331. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  332. priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
  333. priv->spi_tx_buf[1] = reg;
  334. priv->spi_tx_buf[2] = mask;
  335. priv->spi_tx_buf[3] = val;
  336. mcp251x_spi_trans(spi, 4);
  337. }
  338. static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
  339. int len, int tx_buf_idx)
  340. {
  341. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  342. if (mcp251x_is_2510(spi)) {
  343. int i;
  344. for (i = 1; i < TXBDAT_OFF + len; i++)
  345. mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
  346. buf[i]);
  347. } else {
  348. memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
  349. mcp251x_spi_trans(spi, TXBDAT_OFF + len);
  350. }
  351. }
  352. static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
  353. int tx_buf_idx)
  354. {
  355. u32 sid, eid, exide, rtr;
  356. u8 buf[SPI_TRANSFER_BUF_LEN];
  357. exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
  358. if (exide)
  359. sid = (frame->can_id & CAN_EFF_MASK) >> 18;
  360. else
  361. sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
  362. eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
  363. rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
  364. buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
  365. buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
  366. buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
  367. (exide << SIDL_EXIDE_SHIFT) |
  368. ((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
  369. buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
  370. buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
  371. buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
  372. memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
  373. mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
  374. mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx), TXBCTRL_TXREQ);
  375. }
  376. static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
  377. int buf_idx)
  378. {
  379. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  380. if (mcp251x_is_2510(spi)) {
  381. int i, len;
  382. for (i = 1; i < RXBDAT_OFF; i++)
  383. buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
  384. len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
  385. for (; i < (RXBDAT_OFF + len); i++)
  386. buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
  387. } else {
  388. priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
  389. mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
  390. memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
  391. }
  392. }
  393. static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
  394. {
  395. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  396. struct sk_buff *skb;
  397. struct can_frame *frame;
  398. u8 buf[SPI_TRANSFER_BUF_LEN];
  399. skb = alloc_can_skb(priv->net, &frame);
  400. if (!skb) {
  401. dev_err(&spi->dev, "cannot allocate RX skb\n");
  402. priv->net->stats.rx_dropped++;
  403. return;
  404. }
  405. mcp251x_hw_rx_frame(spi, buf, buf_idx);
  406. if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
  407. /* Extended ID format */
  408. frame->can_id = CAN_EFF_FLAG;
  409. frame->can_id |=
  410. /* Extended ID part */
  411. SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
  412. SET_BYTE(buf[RXBEID8_OFF], 1) |
  413. SET_BYTE(buf[RXBEID0_OFF], 0) |
  414. /* Standard ID part */
  415. (((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
  416. (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
  417. /* Remote transmission request */
  418. if (buf[RXBDLC_OFF] & RXBDLC_RTR)
  419. frame->can_id |= CAN_RTR_FLAG;
  420. } else {
  421. /* Standard ID format */
  422. frame->can_id =
  423. (buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
  424. (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
  425. }
  426. /* Data length */
  427. frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
  428. memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);
  429. priv->net->stats.rx_packets++;
  430. priv->net->stats.rx_bytes += frame->can_dlc;
  431. netif_rx_ni(skb);
  432. }
  433. static void mcp251x_hw_sleep(struct spi_device *spi)
  434. {
  435. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
  436. }
  437. static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
  438. struct net_device *net)
  439. {
  440. struct mcp251x_priv *priv = netdev_priv(net);
  441. struct spi_device *spi = priv->spi;
  442. if (priv->tx_skb || priv->tx_len) {
  443. dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
  444. return NETDEV_TX_BUSY;
  445. }
  446. if (can_dropped_invalid_skb(net, skb))
  447. return NETDEV_TX_OK;
  448. netif_stop_queue(net);
  449. priv->tx_skb = skb;
  450. queue_work(priv->wq, &priv->tx_work);
  451. return NETDEV_TX_OK;
  452. }
  453. static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
  454. {
  455. struct mcp251x_priv *priv = netdev_priv(net);
  456. switch (mode) {
  457. case CAN_MODE_START:
  458. mcp251x_clean(net);
  459. /* We have to delay work since SPI I/O may sleep */
  460. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  461. priv->restart_tx = 1;
  462. if (priv->can.restart_ms == 0)
  463. priv->after_suspend = AFTER_SUSPEND_RESTART;
  464. queue_work(priv->wq, &priv->restart_work);
  465. break;
  466. default:
  467. return -EOPNOTSUPP;
  468. }
  469. return 0;
  470. }
  471. static int mcp251x_set_normal_mode(struct spi_device *spi)
  472. {
  473. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  474. unsigned long timeout;
  475. /* Enable interrupts */
  476. mcp251x_write_reg(spi, CANINTE,
  477. CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
  478. CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
  479. if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
  480. /* Put device into loopback mode */
  481. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
  482. } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
  483. /* Put device into listen-only mode */
  484. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
  485. } else {
  486. /* Put device into normal mode */
  487. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
  488. /* Wait for the device to enter normal mode */
  489. timeout = jiffies + HZ;
  490. while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
  491. schedule();
  492. if (time_after(jiffies, timeout)) {
  493. dev_err(&spi->dev, "MCP251x didn't"
  494. " enter in normal mode\n");
  495. return -EBUSY;
  496. }
  497. }
  498. }
  499. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  500. return 0;
  501. }
  502. static int mcp251x_do_set_bittiming(struct net_device *net)
  503. {
  504. struct mcp251x_priv *priv = netdev_priv(net);
  505. struct can_bittiming *bt = &priv->can.bittiming;
  506. struct spi_device *spi = priv->spi;
  507. mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
  508. (bt->brp - 1));
  509. mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
  510. (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
  511. CNF2_SAM : 0) |
  512. ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
  513. (bt->prop_seg - 1));
  514. mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
  515. (bt->phase_seg2 - 1));
  516. dev_info(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
  517. mcp251x_read_reg(spi, CNF1),
  518. mcp251x_read_reg(spi, CNF2),
  519. mcp251x_read_reg(spi, CNF3));
  520. return 0;
  521. }
  522. static int mcp251x_setup(struct net_device *net, struct mcp251x_priv *priv,
  523. struct spi_device *spi)
  524. {
  525. mcp251x_do_set_bittiming(net);
  526. mcp251x_write_reg(spi, RXBCTRL(0),
  527. RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
  528. mcp251x_write_reg(spi, RXBCTRL(1),
  529. RXBCTRL_RXM0 | RXBCTRL_RXM1);
  530. return 0;
  531. }
  532. static int mcp251x_hw_reset(struct spi_device *spi)
  533. {
  534. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  535. int ret;
  536. unsigned long timeout;
  537. priv->spi_tx_buf[0] = INSTRUCTION_RESET;
  538. ret = spi_write(spi, priv->spi_tx_buf, 1);
  539. if (ret) {
  540. dev_err(&spi->dev, "reset failed: ret = %d\n", ret);
  541. return -EIO;
  542. }
  543. /* Wait for reset to finish */
  544. timeout = jiffies + HZ;
  545. mdelay(10);
  546. while ((mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK)
  547. != CANCTRL_REQOP_CONF) {
  548. schedule();
  549. if (time_after(jiffies, timeout)) {
  550. dev_err(&spi->dev, "MCP251x didn't"
  551. " enter in conf mode after reset\n");
  552. return -EBUSY;
  553. }
  554. }
  555. return 0;
  556. }
  557. static int mcp251x_hw_probe(struct spi_device *spi)
  558. {
  559. int st1, st2;
  560. mcp251x_hw_reset(spi);
  561. /*
  562. * Please note that these are "magic values" based on after
  563. * reset defaults taken from data sheet which allows us to see
  564. * if we really have a chip on the bus (we avoid common all
  565. * zeroes or all ones situations)
  566. */
  567. st1 = mcp251x_read_reg(spi, CANSTAT) & 0xEE;
  568. st2 = mcp251x_read_reg(spi, CANCTRL) & 0x17;
  569. dev_dbg(&spi->dev, "CANSTAT 0x%02x CANCTRL 0x%02x\n", st1, st2);
  570. /* Check for power up default values */
  571. return (st1 == 0x80 && st2 == 0x07) ? 1 : 0;
  572. }
  573. static void mcp251x_open_clean(struct net_device *net)
  574. {
  575. struct mcp251x_priv *priv = netdev_priv(net);
  576. struct spi_device *spi = priv->spi;
  577. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  578. free_irq(spi->irq, priv);
  579. mcp251x_hw_sleep(spi);
  580. if (pdata->transceiver_enable)
  581. pdata->transceiver_enable(0);
  582. close_candev(net);
  583. }
  584. static int mcp251x_stop(struct net_device *net)
  585. {
  586. struct mcp251x_priv *priv = netdev_priv(net);
  587. struct spi_device *spi = priv->spi;
  588. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  589. close_candev(net);
  590. priv->force_quit = 1;
  591. free_irq(spi->irq, priv);
  592. destroy_workqueue(priv->wq);
  593. priv->wq = NULL;
  594. mutex_lock(&priv->mcp_lock);
  595. /* Disable and clear pending interrupts */
  596. mcp251x_write_reg(spi, CANINTE, 0x00);
  597. mcp251x_write_reg(spi, CANINTF, 0x00);
  598. mcp251x_write_reg(spi, TXBCTRL(0), 0);
  599. mcp251x_clean(net);
  600. mcp251x_hw_sleep(spi);
  601. if (pdata->transceiver_enable)
  602. pdata->transceiver_enable(0);
  603. priv->can.state = CAN_STATE_STOPPED;
  604. mutex_unlock(&priv->mcp_lock);
  605. return 0;
  606. }
  607. static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
  608. {
  609. struct sk_buff *skb;
  610. struct can_frame *frame;
  611. skb = alloc_can_err_skb(net, &frame);
  612. if (skb) {
  613. frame->can_id = can_id;
  614. frame->data[1] = data1;
  615. netif_rx_ni(skb);
  616. } else {
  617. dev_err(&net->dev,
  618. "cannot allocate error skb\n");
  619. }
  620. }
  621. static void mcp251x_tx_work_handler(struct work_struct *ws)
  622. {
  623. struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
  624. tx_work);
  625. struct spi_device *spi = priv->spi;
  626. struct net_device *net = priv->net;
  627. struct can_frame *frame;
  628. mutex_lock(&priv->mcp_lock);
  629. if (priv->tx_skb) {
  630. if (priv->can.state == CAN_STATE_BUS_OFF) {
  631. mcp251x_clean(net);
  632. } else {
  633. frame = (struct can_frame *)priv->tx_skb->data;
  634. if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
  635. frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
  636. mcp251x_hw_tx(spi, frame, 0);
  637. priv->tx_len = 1 + frame->can_dlc;
  638. can_put_echo_skb(priv->tx_skb, net, 0);
  639. priv->tx_skb = NULL;
  640. }
  641. }
  642. mutex_unlock(&priv->mcp_lock);
  643. }
  644. static void mcp251x_restart_work_handler(struct work_struct *ws)
  645. {
  646. struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
  647. restart_work);
  648. struct spi_device *spi = priv->spi;
  649. struct net_device *net = priv->net;
  650. mutex_lock(&priv->mcp_lock);
  651. if (priv->after_suspend) {
  652. mdelay(10);
  653. mcp251x_hw_reset(spi);
  654. mcp251x_setup(net, priv, spi);
  655. if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
  656. mcp251x_set_normal_mode(spi);
  657. } else if (priv->after_suspend & AFTER_SUSPEND_UP) {
  658. netif_device_attach(net);
  659. mcp251x_clean(net);
  660. mcp251x_set_normal_mode(spi);
  661. netif_wake_queue(net);
  662. } else {
  663. mcp251x_hw_sleep(spi);
  664. }
  665. priv->after_suspend = 0;
  666. priv->force_quit = 0;
  667. }
  668. if (priv->restart_tx) {
  669. priv->restart_tx = 0;
  670. mcp251x_write_reg(spi, TXBCTRL(0), 0);
  671. mcp251x_clean(net);
  672. netif_wake_queue(net);
  673. mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
  674. }
  675. mutex_unlock(&priv->mcp_lock);
  676. }
  677. static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
  678. {
  679. struct mcp251x_priv *priv = dev_id;
  680. struct spi_device *spi = priv->spi;
  681. struct net_device *net = priv->net;
  682. mutex_lock(&priv->mcp_lock);
  683. while (!priv->force_quit) {
  684. enum can_state new_state;
  685. u8 intf, eflag;
  686. u8 clear_intf = 0;
  687. int can_id = 0, data1 = 0;
  688. mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
  689. /* receive buffer 0 */
  690. if (intf & CANINTF_RX0IF) {
  691. mcp251x_hw_rx(spi, 0);
  692. /* Free one buffer ASAP */
  693. mcp251x_write_bits(spi, CANINTF, intf & CANINTF_RX0IF,
  694. 0x00);
  695. }
  696. /* receive buffer 1 */
  697. if (intf & CANINTF_RX1IF) {
  698. mcp251x_hw_rx(spi, 1);
  699. clear_intf |= CANINTF_RX1IF;
  700. }
  701. /* any error or tx interrupt we need to clear? */
  702. if (intf & CANINTF_ERR_TX)
  703. clear_intf |= intf & CANINTF_ERR_TX;
  704. if (clear_intf)
  705. mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
  706. if (eflag)
  707. mcp251x_write_bits(spi, EFLG, eflag, 0x00);
  708. /* Update can state */
  709. if (eflag & EFLG_TXBO) {
  710. new_state = CAN_STATE_BUS_OFF;
  711. can_id |= CAN_ERR_BUSOFF;
  712. } else if (eflag & EFLG_TXEP) {
  713. new_state = CAN_STATE_ERROR_PASSIVE;
  714. can_id |= CAN_ERR_CRTL;
  715. data1 |= CAN_ERR_CRTL_TX_PASSIVE;
  716. } else if (eflag & EFLG_RXEP) {
  717. new_state = CAN_STATE_ERROR_PASSIVE;
  718. can_id |= CAN_ERR_CRTL;
  719. data1 |= CAN_ERR_CRTL_RX_PASSIVE;
  720. } else if (eflag & EFLG_TXWAR) {
  721. new_state = CAN_STATE_ERROR_WARNING;
  722. can_id |= CAN_ERR_CRTL;
  723. data1 |= CAN_ERR_CRTL_TX_WARNING;
  724. } else if (eflag & EFLG_RXWAR) {
  725. new_state = CAN_STATE_ERROR_WARNING;
  726. can_id |= CAN_ERR_CRTL;
  727. data1 |= CAN_ERR_CRTL_RX_WARNING;
  728. } else {
  729. new_state = CAN_STATE_ERROR_ACTIVE;
  730. }
  731. /* Update can state statistics */
  732. switch (priv->can.state) {
  733. case CAN_STATE_ERROR_ACTIVE:
  734. if (new_state >= CAN_STATE_ERROR_WARNING &&
  735. new_state <= CAN_STATE_BUS_OFF)
  736. priv->can.can_stats.error_warning++;
  737. case CAN_STATE_ERROR_WARNING: /* fallthrough */
  738. if (new_state >= CAN_STATE_ERROR_PASSIVE &&
  739. new_state <= CAN_STATE_BUS_OFF)
  740. priv->can.can_stats.error_passive++;
  741. break;
  742. default:
  743. break;
  744. }
  745. priv->can.state = new_state;
  746. if (intf & CANINTF_ERRIF) {
  747. /* Handle overflow counters */
  748. if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
  749. if (eflag & EFLG_RX0OVR) {
  750. net->stats.rx_over_errors++;
  751. net->stats.rx_errors++;
  752. }
  753. if (eflag & EFLG_RX1OVR) {
  754. net->stats.rx_over_errors++;
  755. net->stats.rx_errors++;
  756. }
  757. can_id |= CAN_ERR_CRTL;
  758. data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
  759. }
  760. mcp251x_error_skb(net, can_id, data1);
  761. }
  762. if (priv->can.state == CAN_STATE_BUS_OFF) {
  763. if (priv->can.restart_ms == 0) {
  764. priv->force_quit = 1;
  765. can_bus_off(net);
  766. mcp251x_hw_sleep(spi);
  767. break;
  768. }
  769. }
  770. if (intf == 0)
  771. break;
  772. if (intf & (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)) {
  773. net->stats.tx_packets++;
  774. net->stats.tx_bytes += priv->tx_len - 1;
  775. if (priv->tx_len) {
  776. can_get_echo_skb(net, 0);
  777. priv->tx_len = 0;
  778. }
  779. netif_wake_queue(net);
  780. }
  781. }
  782. mutex_unlock(&priv->mcp_lock);
  783. return IRQ_HANDLED;
  784. }
  785. static int mcp251x_open(struct net_device *net)
  786. {
  787. struct mcp251x_priv *priv = netdev_priv(net);
  788. struct spi_device *spi = priv->spi;
  789. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  790. int ret;
  791. ret = open_candev(net);
  792. if (ret) {
  793. dev_err(&spi->dev, "unable to set initial baudrate!\n");
  794. return ret;
  795. }
  796. mutex_lock(&priv->mcp_lock);
  797. if (pdata->transceiver_enable)
  798. pdata->transceiver_enable(1);
  799. priv->force_quit = 0;
  800. priv->tx_skb = NULL;
  801. priv->tx_len = 0;
  802. ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
  803. IRQF_TRIGGER_FALLING, DEVICE_NAME, priv);
  804. if (ret) {
  805. dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
  806. if (pdata->transceiver_enable)
  807. pdata->transceiver_enable(0);
  808. close_candev(net);
  809. goto open_unlock;
  810. }
  811. priv->wq = create_freezeable_workqueue("mcp251x_wq");
  812. INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
  813. INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
  814. ret = mcp251x_hw_reset(spi);
  815. if (ret) {
  816. mcp251x_open_clean(net);
  817. goto open_unlock;
  818. }
  819. ret = mcp251x_setup(net, priv, spi);
  820. if (ret) {
  821. mcp251x_open_clean(net);
  822. goto open_unlock;
  823. }
  824. ret = mcp251x_set_normal_mode(spi);
  825. if (ret) {
  826. mcp251x_open_clean(net);
  827. goto open_unlock;
  828. }
  829. netif_wake_queue(net);
  830. open_unlock:
  831. mutex_unlock(&priv->mcp_lock);
  832. return ret;
  833. }
  834. static const struct net_device_ops mcp251x_netdev_ops = {
  835. .ndo_open = mcp251x_open,
  836. .ndo_stop = mcp251x_stop,
  837. .ndo_start_xmit = mcp251x_hard_start_xmit,
  838. };
  839. static int __devinit mcp251x_can_probe(struct spi_device *spi)
  840. {
  841. struct net_device *net;
  842. struct mcp251x_priv *priv;
  843. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  844. int ret = -ENODEV;
  845. if (!pdata)
  846. /* Platform data is required for osc freq */
  847. goto error_out;
  848. /* Allocate can/net device */
  849. net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
  850. if (!net) {
  851. ret = -ENOMEM;
  852. goto error_alloc;
  853. }
  854. net->netdev_ops = &mcp251x_netdev_ops;
  855. net->flags |= IFF_ECHO;
  856. priv = netdev_priv(net);
  857. priv->can.bittiming_const = &mcp251x_bittiming_const;
  858. priv->can.do_set_mode = mcp251x_do_set_mode;
  859. priv->can.clock.freq = pdata->oscillator_frequency / 2;
  860. priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
  861. CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
  862. priv->model = spi_get_device_id(spi)->driver_data;
  863. priv->net = net;
  864. dev_set_drvdata(&spi->dev, priv);
  865. priv->spi = spi;
  866. mutex_init(&priv->mcp_lock);
  867. /* If requested, allocate DMA buffers */
  868. if (mcp251x_enable_dma) {
  869. spi->dev.coherent_dma_mask = ~0;
  870. /*
  871. * Minimum coherent DMA allocation is PAGE_SIZE, so allocate
  872. * that much and share it between Tx and Rx DMA buffers.
  873. */
  874. priv->spi_tx_buf = dma_alloc_coherent(&spi->dev,
  875. PAGE_SIZE,
  876. &priv->spi_tx_dma,
  877. GFP_DMA);
  878. if (priv->spi_tx_buf) {
  879. priv->spi_rx_buf = (u8 *)(priv->spi_tx_buf +
  880. (PAGE_SIZE / 2));
  881. priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
  882. (PAGE_SIZE / 2));
  883. } else {
  884. /* Fall back to non-DMA */
  885. mcp251x_enable_dma = 0;
  886. }
  887. }
  888. /* Allocate non-DMA buffers */
  889. if (!mcp251x_enable_dma) {
  890. priv->spi_tx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
  891. if (!priv->spi_tx_buf) {
  892. ret = -ENOMEM;
  893. goto error_tx_buf;
  894. }
  895. priv->spi_rx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
  896. if (!priv->spi_rx_buf) {
  897. ret = -ENOMEM;
  898. goto error_rx_buf;
  899. }
  900. }
  901. if (pdata->power_enable)
  902. pdata->power_enable(1);
  903. /* Call out to platform specific setup */
  904. if (pdata->board_specific_setup)
  905. pdata->board_specific_setup(spi);
  906. SET_NETDEV_DEV(net, &spi->dev);
  907. /* Configure the SPI bus */
  908. spi->mode = SPI_MODE_0;
  909. spi->bits_per_word = 8;
  910. spi_setup(spi);
  911. /* Here is OK to not lock the MCP, no one knows about it yet */
  912. if (!mcp251x_hw_probe(spi)) {
  913. dev_info(&spi->dev, "Probe failed\n");
  914. goto error_probe;
  915. }
  916. mcp251x_hw_sleep(spi);
  917. if (pdata->transceiver_enable)
  918. pdata->transceiver_enable(0);
  919. ret = register_candev(net);
  920. if (!ret) {
  921. dev_info(&spi->dev, "probed\n");
  922. return ret;
  923. }
  924. error_probe:
  925. if (!mcp251x_enable_dma)
  926. kfree(priv->spi_rx_buf);
  927. error_rx_buf:
  928. if (!mcp251x_enable_dma)
  929. kfree(priv->spi_tx_buf);
  930. error_tx_buf:
  931. free_candev(net);
  932. if (mcp251x_enable_dma)
  933. dma_free_coherent(&spi->dev, PAGE_SIZE,
  934. priv->spi_tx_buf, priv->spi_tx_dma);
  935. error_alloc:
  936. if (pdata->power_enable)
  937. pdata->power_enable(0);
  938. dev_err(&spi->dev, "probe failed\n");
  939. error_out:
  940. return ret;
  941. }
  942. static int __devexit mcp251x_can_remove(struct spi_device *spi)
  943. {
  944. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  945. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  946. struct net_device *net = priv->net;
  947. unregister_candev(net);
  948. free_candev(net);
  949. if (mcp251x_enable_dma) {
  950. dma_free_coherent(&spi->dev, PAGE_SIZE,
  951. priv->spi_tx_buf, priv->spi_tx_dma);
  952. } else {
  953. kfree(priv->spi_tx_buf);
  954. kfree(priv->spi_rx_buf);
  955. }
  956. if (pdata->power_enable)
  957. pdata->power_enable(0);
  958. return 0;
  959. }
  960. #ifdef CONFIG_PM
  961. static int mcp251x_can_suspend(struct spi_device *spi, pm_message_t state)
  962. {
  963. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  964. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  965. struct net_device *net = priv->net;
  966. priv->force_quit = 1;
  967. disable_irq(spi->irq);
  968. /*
  969. * Note: at this point neither IST nor workqueues are running.
  970. * open/stop cannot be called anyway so locking is not needed
  971. */
  972. if (netif_running(net)) {
  973. netif_device_detach(net);
  974. mcp251x_hw_sleep(spi);
  975. if (pdata->transceiver_enable)
  976. pdata->transceiver_enable(0);
  977. priv->after_suspend = AFTER_SUSPEND_UP;
  978. } else {
  979. priv->after_suspend = AFTER_SUSPEND_DOWN;
  980. }
  981. if (pdata->power_enable) {
  982. pdata->power_enable(0);
  983. priv->after_suspend |= AFTER_SUSPEND_POWER;
  984. }
  985. return 0;
  986. }
  987. static int mcp251x_can_resume(struct spi_device *spi)
  988. {
  989. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  990. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  991. if (priv->after_suspend & AFTER_SUSPEND_POWER) {
  992. pdata->power_enable(1);
  993. queue_work(priv->wq, &priv->restart_work);
  994. } else {
  995. if (priv->after_suspend & AFTER_SUSPEND_UP) {
  996. if (pdata->transceiver_enable)
  997. pdata->transceiver_enable(1);
  998. queue_work(priv->wq, &priv->restart_work);
  999. } else {
  1000. priv->after_suspend = 0;
  1001. }
  1002. }
  1003. priv->force_quit = 0;
  1004. enable_irq(spi->irq);
  1005. return 0;
  1006. }
  1007. #else
  1008. #define mcp251x_can_suspend NULL
  1009. #define mcp251x_can_resume NULL
  1010. #endif
  1011. static const struct spi_device_id mcp251x_id_table[] = {
  1012. { "mcp2510", CAN_MCP251X_MCP2510 },
  1013. { "mcp2515", CAN_MCP251X_MCP2515 },
  1014. { },
  1015. };
  1016. MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
  1017. static struct spi_driver mcp251x_can_driver = {
  1018. .driver = {
  1019. .name = DEVICE_NAME,
  1020. .bus = &spi_bus_type,
  1021. .owner = THIS_MODULE,
  1022. },
  1023. .id_table = mcp251x_id_table,
  1024. .probe = mcp251x_can_probe,
  1025. .remove = __devexit_p(mcp251x_can_remove),
  1026. .suspend = mcp251x_can_suspend,
  1027. .resume = mcp251x_can_resume,
  1028. };
  1029. static int __init mcp251x_can_init(void)
  1030. {
  1031. return spi_register_driver(&mcp251x_can_driver);
  1032. }
  1033. static void __exit mcp251x_can_exit(void)
  1034. {
  1035. spi_unregister_driver(&mcp251x_can_driver);
  1036. }
  1037. module_init(mcp251x_can_init);
  1038. module_exit(mcp251x_can_exit);
  1039. MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
  1040. "Christian Pellegrin <chripell@evolware.org>");
  1041. MODULE_DESCRIPTION("Microchip 251x CAN driver");
  1042. MODULE_LICENSE("GPL v2");