cxgb2.c 37 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390
  1. /*****************************************************************************
  2. * *
  3. * File: cxgb2.c *
  4. * $Revision: 1.25 $ *
  5. * $Date: 2005/06/22 00:43:25 $ *
  6. * Description: *
  7. * Chelsio 10Gb Ethernet Driver. *
  8. * *
  9. * This program is free software; you can redistribute it and/or modify *
  10. * it under the terms of the GNU General Public License, version 2, as *
  11. * published by the Free Software Foundation. *
  12. * *
  13. * You should have received a copy of the GNU General Public License along *
  14. * with this program; if not, write to the Free Software Foundation, Inc., *
  15. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
  16. * *
  17. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
  18. * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
  19. * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
  20. * *
  21. * http://www.chelsio.com *
  22. * *
  23. * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
  24. * All rights reserved. *
  25. * *
  26. * Maintainers: maintainers@chelsio.com *
  27. * *
  28. * Authors: Dimitrios Michailidis <dm@chelsio.com> *
  29. * Tina Yang <tainay@chelsio.com> *
  30. * Felix Marti <felix@chelsio.com> *
  31. * Scott Bardone <sbardone@chelsio.com> *
  32. * Kurt Ottaway <kottaway@chelsio.com> *
  33. * Frank DiMambro <frank@chelsio.com> *
  34. * *
  35. * History: *
  36. * *
  37. ****************************************************************************/
  38. #include "common.h"
  39. #include <linux/module.h>
  40. #include <linux/init.h>
  41. #include <linux/pci.h>
  42. #include <linux/netdevice.h>
  43. #include <linux/etherdevice.h>
  44. #include <linux/if_vlan.h>
  45. #include <linux/mii.h>
  46. #include <linux/sockios.h>
  47. #include <linux/dma-mapping.h>
  48. #include <asm/uaccess.h>
  49. #include "cpl5_cmd.h"
  50. #include "regs.h"
  51. #include "gmac.h"
  52. #include "cphy.h"
  53. #include "sge.h"
  54. #include "tp.h"
  55. #include "espi.h"
  56. #include "elmer0.h"
  57. #include <linux/workqueue.h>
  58. static inline void schedule_mac_stats_update(struct adapter *ap, int secs)
  59. {
  60. schedule_delayed_work(&ap->stats_update_task, secs * HZ);
  61. }
  62. static inline void cancel_mac_stats_update(struct adapter *ap)
  63. {
  64. cancel_delayed_work(&ap->stats_update_task);
  65. }
  66. #define MAX_CMDQ_ENTRIES 16384
  67. #define MAX_CMDQ1_ENTRIES 1024
  68. #define MAX_RX_BUFFERS 16384
  69. #define MAX_RX_JUMBO_BUFFERS 16384
  70. #define MAX_TX_BUFFERS_HIGH 16384U
  71. #define MAX_TX_BUFFERS_LOW 1536U
  72. #define MAX_TX_BUFFERS 1460U
  73. #define MIN_FL_ENTRIES 32
  74. #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
  75. NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
  76. NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
  77. /*
  78. * The EEPROM is actually bigger but only the first few bytes are used so we
  79. * only report those.
  80. */
  81. #define EEPROM_SIZE 32
  82. MODULE_DESCRIPTION(DRV_DESCRIPTION);
  83. MODULE_AUTHOR("Chelsio Communications");
  84. MODULE_LICENSE("GPL");
  85. static int dflt_msg_enable = DFLT_MSG_ENABLE;
  86. module_param(dflt_msg_enable, int, 0);
  87. MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T1 default message enable bitmap");
  88. #define HCLOCK 0x0
  89. #define LCLOCK 0x1
  90. /* T1 cards powersave mode */
  91. static int t1_clock(struct adapter *adapter, int mode);
  92. static int t1powersave = 1; /* HW default is powersave mode. */
  93. module_param(t1powersave, int, 0);
  94. MODULE_PARM_DESC(t1powersave, "Enable/Disable T1 powersaving mode");
  95. static int disable_msi = 0;
  96. module_param(disable_msi, int, 0);
  97. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  98. static const char pci_speed[][4] = {
  99. "33", "66", "100", "133"
  100. };
  101. /*
  102. * Setup MAC to receive the types of packets we want.
  103. */
  104. static void t1_set_rxmode(struct net_device *dev)
  105. {
  106. struct adapter *adapter = dev->priv;
  107. struct cmac *mac = adapter->port[dev->if_port].mac;
  108. struct t1_rx_mode rm;
  109. rm.dev = dev;
  110. rm.idx = 0;
  111. rm.list = dev->mc_list;
  112. mac->ops->set_rx_mode(mac, &rm);
  113. }
  114. static void link_report(struct port_info *p)
  115. {
  116. if (!netif_carrier_ok(p->dev))
  117. printk(KERN_INFO "%s: link down\n", p->dev->name);
  118. else {
  119. const char *s = "10Mbps";
  120. switch (p->link_config.speed) {
  121. case SPEED_10000: s = "10Gbps"; break;
  122. case SPEED_1000: s = "1000Mbps"; break;
  123. case SPEED_100: s = "100Mbps"; break;
  124. }
  125. printk(KERN_INFO "%s: link up, %s, %s-duplex\n",
  126. p->dev->name, s,
  127. p->link_config.duplex == DUPLEX_FULL ? "full" : "half");
  128. }
  129. }
  130. void t1_link_negotiated(struct adapter *adapter, int port_id, int link_stat,
  131. int speed, int duplex, int pause)
  132. {
  133. struct port_info *p = &adapter->port[port_id];
  134. if (link_stat != netif_carrier_ok(p->dev)) {
  135. if (link_stat)
  136. netif_carrier_on(p->dev);
  137. else
  138. netif_carrier_off(p->dev);
  139. link_report(p);
  140. /* multi-ports: inform toe */
  141. if ((speed > 0) && (adapter->params.nports > 1)) {
  142. unsigned int sched_speed = 10;
  143. switch (speed) {
  144. case SPEED_1000:
  145. sched_speed = 1000;
  146. break;
  147. case SPEED_100:
  148. sched_speed = 100;
  149. break;
  150. case SPEED_10:
  151. sched_speed = 10;
  152. break;
  153. }
  154. t1_sched_update_parms(adapter->sge, port_id, 0, sched_speed);
  155. }
  156. }
  157. }
  158. static void link_start(struct port_info *p)
  159. {
  160. struct cmac *mac = p->mac;
  161. mac->ops->reset(mac);
  162. if (mac->ops->macaddress_set)
  163. mac->ops->macaddress_set(mac, p->dev->dev_addr);
  164. t1_set_rxmode(p->dev);
  165. t1_link_start(p->phy, mac, &p->link_config);
  166. mac->ops->enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
  167. }
  168. static void enable_hw_csum(struct adapter *adapter)
  169. {
  170. if (adapter->flags & TSO_CAPABLE)
  171. t1_tp_set_ip_checksum_offload(adapter->tp, 1); /* for TSO only */
  172. if (adapter->flags & UDP_CSUM_CAPABLE)
  173. t1_tp_set_udp_checksum_offload(adapter->tp, 1);
  174. t1_tp_set_tcp_checksum_offload(adapter->tp, 1);
  175. }
  176. /*
  177. * Things to do upon first use of a card.
  178. * This must run with the rtnl lock held.
  179. */
  180. static int cxgb_up(struct adapter *adapter)
  181. {
  182. int err = 0;
  183. if (!(adapter->flags & FULL_INIT_DONE)) {
  184. err = t1_init_hw_modules(adapter);
  185. if (err)
  186. goto out_err;
  187. enable_hw_csum(adapter);
  188. adapter->flags |= FULL_INIT_DONE;
  189. }
  190. t1_interrupts_clear(adapter);
  191. adapter->params.has_msi = !disable_msi && !pci_enable_msi(adapter->pdev);
  192. err = request_irq(adapter->pdev->irq, t1_interrupt,
  193. adapter->params.has_msi ? 0 : IRQF_SHARED,
  194. adapter->name, adapter);
  195. if (err) {
  196. if (adapter->params.has_msi)
  197. pci_disable_msi(adapter->pdev);
  198. goto out_err;
  199. }
  200. t1_sge_start(adapter->sge);
  201. t1_interrupts_enable(adapter);
  202. out_err:
  203. return err;
  204. }
  205. /*
  206. * Release resources when all the ports have been stopped.
  207. */
  208. static void cxgb_down(struct adapter *adapter)
  209. {
  210. t1_sge_stop(adapter->sge);
  211. t1_interrupts_disable(adapter);
  212. free_irq(adapter->pdev->irq, adapter);
  213. if (adapter->params.has_msi)
  214. pci_disable_msi(adapter->pdev);
  215. }
  216. static int cxgb_open(struct net_device *dev)
  217. {
  218. int err;
  219. struct adapter *adapter = dev->priv;
  220. int other_ports = adapter->open_device_map & PORT_MASK;
  221. napi_enable(&adapter->napi);
  222. if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0) {
  223. napi_disable(&adapter->napi);
  224. return err;
  225. }
  226. __set_bit(dev->if_port, &adapter->open_device_map);
  227. link_start(&adapter->port[dev->if_port]);
  228. netif_start_queue(dev);
  229. if (!other_ports && adapter->params.stats_update_period)
  230. schedule_mac_stats_update(adapter,
  231. adapter->params.stats_update_period);
  232. return 0;
  233. }
  234. static int cxgb_close(struct net_device *dev)
  235. {
  236. struct adapter *adapter = dev->priv;
  237. struct port_info *p = &adapter->port[dev->if_port];
  238. struct cmac *mac = p->mac;
  239. netif_stop_queue(dev);
  240. napi_disable(&adapter->napi);
  241. mac->ops->disable(mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX);
  242. netif_carrier_off(dev);
  243. clear_bit(dev->if_port, &adapter->open_device_map);
  244. if (adapter->params.stats_update_period &&
  245. !(adapter->open_device_map & PORT_MASK)) {
  246. /* Stop statistics accumulation. */
  247. smp_mb__after_clear_bit();
  248. spin_lock(&adapter->work_lock); /* sync with update task */
  249. spin_unlock(&adapter->work_lock);
  250. cancel_mac_stats_update(adapter);
  251. }
  252. if (!adapter->open_device_map)
  253. cxgb_down(adapter);
  254. return 0;
  255. }
  256. static struct net_device_stats *t1_get_stats(struct net_device *dev)
  257. {
  258. struct adapter *adapter = dev->priv;
  259. struct port_info *p = &adapter->port[dev->if_port];
  260. struct net_device_stats *ns = &p->netstats;
  261. const struct cmac_statistics *pstats;
  262. /* Do a full update of the MAC stats */
  263. pstats = p->mac->ops->statistics_update(p->mac,
  264. MAC_STATS_UPDATE_FULL);
  265. ns->tx_packets = pstats->TxUnicastFramesOK +
  266. pstats->TxMulticastFramesOK + pstats->TxBroadcastFramesOK;
  267. ns->rx_packets = pstats->RxUnicastFramesOK +
  268. pstats->RxMulticastFramesOK + pstats->RxBroadcastFramesOK;
  269. ns->tx_bytes = pstats->TxOctetsOK;
  270. ns->rx_bytes = pstats->RxOctetsOK;
  271. ns->tx_errors = pstats->TxLateCollisions + pstats->TxLengthErrors +
  272. pstats->TxUnderrun + pstats->TxFramesAbortedDueToXSCollisions;
  273. ns->rx_errors = pstats->RxDataErrors + pstats->RxJabberErrors +
  274. pstats->RxFCSErrors + pstats->RxAlignErrors +
  275. pstats->RxSequenceErrors + pstats->RxFrameTooLongErrors +
  276. pstats->RxSymbolErrors + pstats->RxRuntErrors;
  277. ns->multicast = pstats->RxMulticastFramesOK;
  278. ns->collisions = pstats->TxTotalCollisions;
  279. /* detailed rx_errors */
  280. ns->rx_length_errors = pstats->RxFrameTooLongErrors +
  281. pstats->RxJabberErrors;
  282. ns->rx_over_errors = 0;
  283. ns->rx_crc_errors = pstats->RxFCSErrors;
  284. ns->rx_frame_errors = pstats->RxAlignErrors;
  285. ns->rx_fifo_errors = 0;
  286. ns->rx_missed_errors = 0;
  287. /* detailed tx_errors */
  288. ns->tx_aborted_errors = pstats->TxFramesAbortedDueToXSCollisions;
  289. ns->tx_carrier_errors = 0;
  290. ns->tx_fifo_errors = pstats->TxUnderrun;
  291. ns->tx_heartbeat_errors = 0;
  292. ns->tx_window_errors = pstats->TxLateCollisions;
  293. return ns;
  294. }
  295. static u32 get_msglevel(struct net_device *dev)
  296. {
  297. struct adapter *adapter = dev->priv;
  298. return adapter->msg_enable;
  299. }
  300. static void set_msglevel(struct net_device *dev, u32 val)
  301. {
  302. struct adapter *adapter = dev->priv;
  303. adapter->msg_enable = val;
  304. }
  305. static char stats_strings[][ETH_GSTRING_LEN] = {
  306. "TxOctetsOK",
  307. "TxOctetsBad",
  308. "TxUnicastFramesOK",
  309. "TxMulticastFramesOK",
  310. "TxBroadcastFramesOK",
  311. "TxPauseFrames",
  312. "TxFramesWithDeferredXmissions",
  313. "TxLateCollisions",
  314. "TxTotalCollisions",
  315. "TxFramesAbortedDueToXSCollisions",
  316. "TxUnderrun",
  317. "TxLengthErrors",
  318. "TxInternalMACXmitError",
  319. "TxFramesWithExcessiveDeferral",
  320. "TxFCSErrors",
  321. "RxOctetsOK",
  322. "RxOctetsBad",
  323. "RxUnicastFramesOK",
  324. "RxMulticastFramesOK",
  325. "RxBroadcastFramesOK",
  326. "RxPauseFrames",
  327. "RxFCSErrors",
  328. "RxAlignErrors",
  329. "RxSymbolErrors",
  330. "RxDataErrors",
  331. "RxSequenceErrors",
  332. "RxRuntErrors",
  333. "RxJabberErrors",
  334. "RxInternalMACRcvError",
  335. "RxInRangeLengthErrors",
  336. "RxOutOfRangeLengthField",
  337. "RxFrameTooLongErrors",
  338. /* Port stats */
  339. "RxPackets",
  340. "RxCsumGood",
  341. "TxPackets",
  342. "TxCsumOffload",
  343. "TxTso",
  344. "RxVlan",
  345. "TxVlan",
  346. /* Interrupt stats */
  347. "rx drops",
  348. "pure_rsps",
  349. "unhandled irqs",
  350. "respQ_empty",
  351. "respQ_overflow",
  352. "freelistQ_empty",
  353. "pkt_too_big",
  354. "pkt_mismatch",
  355. "cmdQ_full0",
  356. "cmdQ_full1",
  357. "espi_DIP2ParityErr",
  358. "espi_DIP4Err",
  359. "espi_RxDrops",
  360. "espi_TxDrops",
  361. "espi_RxOvfl",
  362. "espi_ParityErr"
  363. };
  364. #define T2_REGMAP_SIZE (3 * 1024)
  365. static int get_regs_len(struct net_device *dev)
  366. {
  367. return T2_REGMAP_SIZE;
  368. }
  369. static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  370. {
  371. struct adapter *adapter = dev->priv;
  372. strcpy(info->driver, DRV_NAME);
  373. strcpy(info->version, DRV_VERSION);
  374. strcpy(info->fw_version, "N/A");
  375. strcpy(info->bus_info, pci_name(adapter->pdev));
  376. }
  377. static int get_stats_count(struct net_device *dev)
  378. {
  379. return ARRAY_SIZE(stats_strings);
  380. }
  381. static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
  382. {
  383. if (stringset == ETH_SS_STATS)
  384. memcpy(data, stats_strings, sizeof(stats_strings));
  385. }
  386. static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
  387. u64 *data)
  388. {
  389. struct adapter *adapter = dev->priv;
  390. struct cmac *mac = adapter->port[dev->if_port].mac;
  391. const struct cmac_statistics *s;
  392. const struct sge_intr_counts *t;
  393. struct sge_port_stats ss;
  394. unsigned int len;
  395. s = mac->ops->statistics_update(mac, MAC_STATS_UPDATE_FULL);
  396. len = sizeof(u64)*(&s->TxFCSErrors + 1 - &s->TxOctetsOK);
  397. memcpy(data, &s->TxOctetsOK, len);
  398. data += len;
  399. len = sizeof(u64)*(&s->RxFrameTooLongErrors + 1 - &s->RxOctetsOK);
  400. memcpy(data, &s->RxOctetsOK, len);
  401. data += len;
  402. t1_sge_get_port_stats(adapter->sge, dev->if_port, &ss);
  403. memcpy(data, &ss, sizeof(ss));
  404. data += sizeof(ss);
  405. t = t1_sge_get_intr_counts(adapter->sge);
  406. *data++ = t->rx_drops;
  407. *data++ = t->pure_rsps;
  408. *data++ = t->unhandled_irqs;
  409. *data++ = t->respQ_empty;
  410. *data++ = t->respQ_overflow;
  411. *data++ = t->freelistQ_empty;
  412. *data++ = t->pkt_too_big;
  413. *data++ = t->pkt_mismatch;
  414. *data++ = t->cmdQ_full[0];
  415. *data++ = t->cmdQ_full[1];
  416. if (adapter->espi) {
  417. const struct espi_intr_counts *e;
  418. e = t1_espi_get_intr_counts(adapter->espi);
  419. *data++ = e->DIP2_parity_err;
  420. *data++ = e->DIP4_err;
  421. *data++ = e->rx_drops;
  422. *data++ = e->tx_drops;
  423. *data++ = e->rx_ovflw;
  424. *data++ = e->parity_err;
  425. }
  426. }
  427. static inline void reg_block_dump(struct adapter *ap, void *buf,
  428. unsigned int start, unsigned int end)
  429. {
  430. u32 *p = buf + start;
  431. for ( ; start <= end; start += sizeof(u32))
  432. *p++ = readl(ap->regs + start);
  433. }
  434. static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
  435. void *buf)
  436. {
  437. struct adapter *ap = dev->priv;
  438. /*
  439. * Version scheme: bits 0..9: chip version, bits 10..15: chip revision
  440. */
  441. regs->version = 2;
  442. memset(buf, 0, T2_REGMAP_SIZE);
  443. reg_block_dump(ap, buf, 0, A_SG_RESPACCUTIMER);
  444. reg_block_dump(ap, buf, A_MC3_CFG, A_MC4_INT_CAUSE);
  445. reg_block_dump(ap, buf, A_TPI_ADDR, A_TPI_PAR);
  446. reg_block_dump(ap, buf, A_TP_IN_CONFIG, A_TP_TX_DROP_COUNT);
  447. reg_block_dump(ap, buf, A_RAT_ROUTE_CONTROL, A_RAT_INTR_CAUSE);
  448. reg_block_dump(ap, buf, A_CSPI_RX_AE_WM, A_CSPI_INTR_ENABLE);
  449. reg_block_dump(ap, buf, A_ESPI_SCH_TOKEN0, A_ESPI_GOSTAT);
  450. reg_block_dump(ap, buf, A_ULP_ULIMIT, A_ULP_PIO_CTRL);
  451. reg_block_dump(ap, buf, A_PL_ENABLE, A_PL_CAUSE);
  452. reg_block_dump(ap, buf, A_MC5_CONFIG, A_MC5_MASK_WRITE_CMD);
  453. }
  454. static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  455. {
  456. struct adapter *adapter = dev->priv;
  457. struct port_info *p = &adapter->port[dev->if_port];
  458. cmd->supported = p->link_config.supported;
  459. cmd->advertising = p->link_config.advertising;
  460. if (netif_carrier_ok(dev)) {
  461. cmd->speed = p->link_config.speed;
  462. cmd->duplex = p->link_config.duplex;
  463. } else {
  464. cmd->speed = -1;
  465. cmd->duplex = -1;
  466. }
  467. cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
  468. cmd->phy_address = p->phy->addr;
  469. cmd->transceiver = XCVR_EXTERNAL;
  470. cmd->autoneg = p->link_config.autoneg;
  471. cmd->maxtxpkt = 0;
  472. cmd->maxrxpkt = 0;
  473. return 0;
  474. }
  475. static int speed_duplex_to_caps(int speed, int duplex)
  476. {
  477. int cap = 0;
  478. switch (speed) {
  479. case SPEED_10:
  480. if (duplex == DUPLEX_FULL)
  481. cap = SUPPORTED_10baseT_Full;
  482. else
  483. cap = SUPPORTED_10baseT_Half;
  484. break;
  485. case SPEED_100:
  486. if (duplex == DUPLEX_FULL)
  487. cap = SUPPORTED_100baseT_Full;
  488. else
  489. cap = SUPPORTED_100baseT_Half;
  490. break;
  491. case SPEED_1000:
  492. if (duplex == DUPLEX_FULL)
  493. cap = SUPPORTED_1000baseT_Full;
  494. else
  495. cap = SUPPORTED_1000baseT_Half;
  496. break;
  497. case SPEED_10000:
  498. if (duplex == DUPLEX_FULL)
  499. cap = SUPPORTED_10000baseT_Full;
  500. }
  501. return cap;
  502. }
  503. #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
  504. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
  505. ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \
  506. ADVERTISED_10000baseT_Full)
  507. static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  508. {
  509. struct adapter *adapter = dev->priv;
  510. struct port_info *p = &adapter->port[dev->if_port];
  511. struct link_config *lc = &p->link_config;
  512. if (!(lc->supported & SUPPORTED_Autoneg))
  513. return -EOPNOTSUPP; /* can't change speed/duplex */
  514. if (cmd->autoneg == AUTONEG_DISABLE) {
  515. int cap = speed_duplex_to_caps(cmd->speed, cmd->duplex);
  516. if (!(lc->supported & cap) || cmd->speed == SPEED_1000)
  517. return -EINVAL;
  518. lc->requested_speed = cmd->speed;
  519. lc->requested_duplex = cmd->duplex;
  520. lc->advertising = 0;
  521. } else {
  522. cmd->advertising &= ADVERTISED_MASK;
  523. if (cmd->advertising & (cmd->advertising - 1))
  524. cmd->advertising = lc->supported;
  525. cmd->advertising &= lc->supported;
  526. if (!cmd->advertising)
  527. return -EINVAL;
  528. lc->requested_speed = SPEED_INVALID;
  529. lc->requested_duplex = DUPLEX_INVALID;
  530. lc->advertising = cmd->advertising | ADVERTISED_Autoneg;
  531. }
  532. lc->autoneg = cmd->autoneg;
  533. if (netif_running(dev))
  534. t1_link_start(p->phy, p->mac, lc);
  535. return 0;
  536. }
  537. static void get_pauseparam(struct net_device *dev,
  538. struct ethtool_pauseparam *epause)
  539. {
  540. struct adapter *adapter = dev->priv;
  541. struct port_info *p = &adapter->port[dev->if_port];
  542. epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0;
  543. epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0;
  544. epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0;
  545. }
  546. static int set_pauseparam(struct net_device *dev,
  547. struct ethtool_pauseparam *epause)
  548. {
  549. struct adapter *adapter = dev->priv;
  550. struct port_info *p = &adapter->port[dev->if_port];
  551. struct link_config *lc = &p->link_config;
  552. if (epause->autoneg == AUTONEG_DISABLE)
  553. lc->requested_fc = 0;
  554. else if (lc->supported & SUPPORTED_Autoneg)
  555. lc->requested_fc = PAUSE_AUTONEG;
  556. else
  557. return -EINVAL;
  558. if (epause->rx_pause)
  559. lc->requested_fc |= PAUSE_RX;
  560. if (epause->tx_pause)
  561. lc->requested_fc |= PAUSE_TX;
  562. if (lc->autoneg == AUTONEG_ENABLE) {
  563. if (netif_running(dev))
  564. t1_link_start(p->phy, p->mac, lc);
  565. } else {
  566. lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  567. if (netif_running(dev))
  568. p->mac->ops->set_speed_duplex_fc(p->mac, -1, -1,
  569. lc->fc);
  570. }
  571. return 0;
  572. }
  573. static u32 get_rx_csum(struct net_device *dev)
  574. {
  575. struct adapter *adapter = dev->priv;
  576. return (adapter->flags & RX_CSUM_ENABLED) != 0;
  577. }
  578. static int set_rx_csum(struct net_device *dev, u32 data)
  579. {
  580. struct adapter *adapter = dev->priv;
  581. if (data)
  582. adapter->flags |= RX_CSUM_ENABLED;
  583. else
  584. adapter->flags &= ~RX_CSUM_ENABLED;
  585. return 0;
  586. }
  587. static int set_tso(struct net_device *dev, u32 value)
  588. {
  589. struct adapter *adapter = dev->priv;
  590. if (!(adapter->flags & TSO_CAPABLE))
  591. return value ? -EOPNOTSUPP : 0;
  592. return ethtool_op_set_tso(dev, value);
  593. }
  594. static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
  595. {
  596. struct adapter *adapter = dev->priv;
  597. int jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
  598. e->rx_max_pending = MAX_RX_BUFFERS;
  599. e->rx_mini_max_pending = 0;
  600. e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS;
  601. e->tx_max_pending = MAX_CMDQ_ENTRIES;
  602. e->rx_pending = adapter->params.sge.freelQ_size[!jumbo_fl];
  603. e->rx_mini_pending = 0;
  604. e->rx_jumbo_pending = adapter->params.sge.freelQ_size[jumbo_fl];
  605. e->tx_pending = adapter->params.sge.cmdQ_size[0];
  606. }
  607. static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
  608. {
  609. struct adapter *adapter = dev->priv;
  610. int jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
  611. if (e->rx_pending > MAX_RX_BUFFERS || e->rx_mini_pending ||
  612. e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS ||
  613. e->tx_pending > MAX_CMDQ_ENTRIES ||
  614. e->rx_pending < MIN_FL_ENTRIES ||
  615. e->rx_jumbo_pending < MIN_FL_ENTRIES ||
  616. e->tx_pending < (adapter->params.nports + 1) * (MAX_SKB_FRAGS + 1))
  617. return -EINVAL;
  618. if (adapter->flags & FULL_INIT_DONE)
  619. return -EBUSY;
  620. adapter->params.sge.freelQ_size[!jumbo_fl] = e->rx_pending;
  621. adapter->params.sge.freelQ_size[jumbo_fl] = e->rx_jumbo_pending;
  622. adapter->params.sge.cmdQ_size[0] = e->tx_pending;
  623. adapter->params.sge.cmdQ_size[1] = e->tx_pending > MAX_CMDQ1_ENTRIES ?
  624. MAX_CMDQ1_ENTRIES : e->tx_pending;
  625. return 0;
  626. }
  627. static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
  628. {
  629. struct adapter *adapter = dev->priv;
  630. adapter->params.sge.rx_coalesce_usecs = c->rx_coalesce_usecs;
  631. adapter->params.sge.coalesce_enable = c->use_adaptive_rx_coalesce;
  632. adapter->params.sge.sample_interval_usecs = c->rate_sample_interval;
  633. t1_sge_set_coalesce_params(adapter->sge, &adapter->params.sge);
  634. return 0;
  635. }
  636. static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
  637. {
  638. struct adapter *adapter = dev->priv;
  639. c->rx_coalesce_usecs = adapter->params.sge.rx_coalesce_usecs;
  640. c->rate_sample_interval = adapter->params.sge.sample_interval_usecs;
  641. c->use_adaptive_rx_coalesce = adapter->params.sge.coalesce_enable;
  642. return 0;
  643. }
  644. static int get_eeprom_len(struct net_device *dev)
  645. {
  646. struct adapter *adapter = dev->priv;
  647. return t1_is_asic(adapter) ? EEPROM_SIZE : 0;
  648. }
  649. #define EEPROM_MAGIC(ap) \
  650. (PCI_VENDOR_ID_CHELSIO | ((ap)->params.chip_version << 16))
  651. static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
  652. u8 *data)
  653. {
  654. int i;
  655. u8 buf[EEPROM_SIZE] __attribute__((aligned(4)));
  656. struct adapter *adapter = dev->priv;
  657. e->magic = EEPROM_MAGIC(adapter);
  658. for (i = e->offset & ~3; i < e->offset + e->len; i += sizeof(u32))
  659. t1_seeprom_read(adapter, i, (u32 *)&buf[i]);
  660. memcpy(data, buf + e->offset, e->len);
  661. return 0;
  662. }
  663. static const struct ethtool_ops t1_ethtool_ops = {
  664. .get_settings = get_settings,
  665. .set_settings = set_settings,
  666. .get_drvinfo = get_drvinfo,
  667. .get_msglevel = get_msglevel,
  668. .set_msglevel = set_msglevel,
  669. .get_ringparam = get_sge_param,
  670. .set_ringparam = set_sge_param,
  671. .get_coalesce = get_coalesce,
  672. .set_coalesce = set_coalesce,
  673. .get_eeprom_len = get_eeprom_len,
  674. .get_eeprom = get_eeprom,
  675. .get_pauseparam = get_pauseparam,
  676. .set_pauseparam = set_pauseparam,
  677. .get_rx_csum = get_rx_csum,
  678. .set_rx_csum = set_rx_csum,
  679. .get_tx_csum = ethtool_op_get_tx_csum,
  680. .set_tx_csum = ethtool_op_set_tx_csum,
  681. .get_sg = ethtool_op_get_sg,
  682. .set_sg = ethtool_op_set_sg,
  683. .get_link = ethtool_op_get_link,
  684. .get_strings = get_strings,
  685. .get_stats_count = get_stats_count,
  686. .get_ethtool_stats = get_stats,
  687. .get_regs_len = get_regs_len,
  688. .get_regs = get_regs,
  689. .get_tso = ethtool_op_get_tso,
  690. .set_tso = set_tso,
  691. };
  692. static int t1_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
  693. {
  694. struct adapter *adapter = dev->priv;
  695. struct mii_ioctl_data *data = if_mii(req);
  696. switch (cmd) {
  697. case SIOCGMIIPHY:
  698. data->phy_id = adapter->port[dev->if_port].phy->addr;
  699. /* FALLTHRU */
  700. case SIOCGMIIREG: {
  701. struct cphy *phy = adapter->port[dev->if_port].phy;
  702. u32 val;
  703. if (!phy->mdio_read)
  704. return -EOPNOTSUPP;
  705. phy->mdio_read(adapter, data->phy_id, 0, data->reg_num & 0x1f,
  706. &val);
  707. data->val_out = val;
  708. break;
  709. }
  710. case SIOCSMIIREG: {
  711. struct cphy *phy = adapter->port[dev->if_port].phy;
  712. if (!capable(CAP_NET_ADMIN))
  713. return -EPERM;
  714. if (!phy->mdio_write)
  715. return -EOPNOTSUPP;
  716. phy->mdio_write(adapter, data->phy_id, 0, data->reg_num & 0x1f,
  717. data->val_in);
  718. break;
  719. }
  720. default:
  721. return -EOPNOTSUPP;
  722. }
  723. return 0;
  724. }
  725. static int t1_change_mtu(struct net_device *dev, int new_mtu)
  726. {
  727. int ret;
  728. struct adapter *adapter = dev->priv;
  729. struct cmac *mac = adapter->port[dev->if_port].mac;
  730. if (!mac->ops->set_mtu)
  731. return -EOPNOTSUPP;
  732. if (new_mtu < 68)
  733. return -EINVAL;
  734. if ((ret = mac->ops->set_mtu(mac, new_mtu)))
  735. return ret;
  736. dev->mtu = new_mtu;
  737. return 0;
  738. }
  739. static int t1_set_mac_addr(struct net_device *dev, void *p)
  740. {
  741. struct adapter *adapter = dev->priv;
  742. struct cmac *mac = adapter->port[dev->if_port].mac;
  743. struct sockaddr *addr = p;
  744. if (!mac->ops->macaddress_set)
  745. return -EOPNOTSUPP;
  746. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  747. mac->ops->macaddress_set(mac, dev->dev_addr);
  748. return 0;
  749. }
  750. #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  751. static void vlan_rx_register(struct net_device *dev,
  752. struct vlan_group *grp)
  753. {
  754. struct adapter *adapter = dev->priv;
  755. spin_lock_irq(&adapter->async_lock);
  756. adapter->vlan_grp = grp;
  757. t1_set_vlan_accel(adapter, grp != NULL);
  758. spin_unlock_irq(&adapter->async_lock);
  759. }
  760. #endif
  761. #ifdef CONFIG_NET_POLL_CONTROLLER
  762. static void t1_netpoll(struct net_device *dev)
  763. {
  764. unsigned long flags;
  765. struct adapter *adapter = dev->priv;
  766. local_irq_save(flags);
  767. t1_interrupt(adapter->pdev->irq, adapter);
  768. local_irq_restore(flags);
  769. }
  770. #endif
  771. /*
  772. * Periodic accumulation of MAC statistics. This is used only if the MAC
  773. * does not have any other way to prevent stats counter overflow.
  774. */
  775. static void mac_stats_task(struct work_struct *work)
  776. {
  777. int i;
  778. struct adapter *adapter =
  779. container_of(work, struct adapter, stats_update_task.work);
  780. for_each_port(adapter, i) {
  781. struct port_info *p = &adapter->port[i];
  782. if (netif_running(p->dev))
  783. p->mac->ops->statistics_update(p->mac,
  784. MAC_STATS_UPDATE_FAST);
  785. }
  786. /* Schedule the next statistics update if any port is active. */
  787. spin_lock(&adapter->work_lock);
  788. if (adapter->open_device_map & PORT_MASK)
  789. schedule_mac_stats_update(adapter,
  790. adapter->params.stats_update_period);
  791. spin_unlock(&adapter->work_lock);
  792. }
  793. /*
  794. * Processes elmer0 external interrupts in process context.
  795. */
  796. static void ext_intr_task(struct work_struct *work)
  797. {
  798. struct adapter *adapter =
  799. container_of(work, struct adapter, ext_intr_handler_task);
  800. t1_elmer0_ext_intr_handler(adapter);
  801. /* Now reenable external interrupts */
  802. spin_lock_irq(&adapter->async_lock);
  803. adapter->slow_intr_mask |= F_PL_INTR_EXT;
  804. writel(F_PL_INTR_EXT, adapter->regs + A_PL_CAUSE);
  805. writel(adapter->slow_intr_mask | F_PL_INTR_SGE_DATA,
  806. adapter->regs + A_PL_ENABLE);
  807. spin_unlock_irq(&adapter->async_lock);
  808. }
  809. /*
  810. * Interrupt-context handler for elmer0 external interrupts.
  811. */
  812. void t1_elmer0_ext_intr(struct adapter *adapter)
  813. {
  814. /*
  815. * Schedule a task to handle external interrupts as we require
  816. * a process context. We disable EXT interrupts in the interim
  817. * and let the task reenable them when it's done.
  818. */
  819. adapter->slow_intr_mask &= ~F_PL_INTR_EXT;
  820. writel(adapter->slow_intr_mask | F_PL_INTR_SGE_DATA,
  821. adapter->regs + A_PL_ENABLE);
  822. schedule_work(&adapter->ext_intr_handler_task);
  823. }
  824. void t1_fatal_err(struct adapter *adapter)
  825. {
  826. if (adapter->flags & FULL_INIT_DONE) {
  827. t1_sge_stop(adapter->sge);
  828. t1_interrupts_disable(adapter);
  829. }
  830. CH_ALERT("%s: encountered fatal error, operation suspended\n",
  831. adapter->name);
  832. }
  833. static int __devinit init_one(struct pci_dev *pdev,
  834. const struct pci_device_id *ent)
  835. {
  836. static int version_printed;
  837. int i, err, pci_using_dac = 0;
  838. unsigned long mmio_start, mmio_len;
  839. const struct board_info *bi;
  840. struct adapter *adapter = NULL;
  841. struct port_info *pi;
  842. if (!version_printed) {
  843. printk(KERN_INFO "%s - version %s\n", DRV_DESCRIPTION,
  844. DRV_VERSION);
  845. ++version_printed;
  846. }
  847. err = pci_enable_device(pdev);
  848. if (err)
  849. return err;
  850. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  851. CH_ERR("%s: cannot find PCI device memory base address\n",
  852. pci_name(pdev));
  853. err = -ENODEV;
  854. goto out_disable_pdev;
  855. }
  856. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  857. pci_using_dac = 1;
  858. if (pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK)) {
  859. CH_ERR("%s: unable to obtain 64-bit DMA for"
  860. "consistent allocations\n", pci_name(pdev));
  861. err = -ENODEV;
  862. goto out_disable_pdev;
  863. }
  864. } else if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) != 0) {
  865. CH_ERR("%s: no usable DMA configuration\n", pci_name(pdev));
  866. goto out_disable_pdev;
  867. }
  868. err = pci_request_regions(pdev, DRV_NAME);
  869. if (err) {
  870. CH_ERR("%s: cannot obtain PCI resources\n", pci_name(pdev));
  871. goto out_disable_pdev;
  872. }
  873. pci_set_master(pdev);
  874. mmio_start = pci_resource_start(pdev, 0);
  875. mmio_len = pci_resource_len(pdev, 0);
  876. bi = t1_get_board_info(ent->driver_data);
  877. for (i = 0; i < bi->port_number; ++i) {
  878. struct net_device *netdev;
  879. netdev = alloc_etherdev(adapter ? 0 : sizeof(*adapter));
  880. if (!netdev) {
  881. err = -ENOMEM;
  882. goto out_free_dev;
  883. }
  884. SET_MODULE_OWNER(netdev);
  885. SET_NETDEV_DEV(netdev, &pdev->dev);
  886. if (!adapter) {
  887. adapter = netdev->priv;
  888. adapter->pdev = pdev;
  889. adapter->port[0].dev = netdev; /* so we don't leak it */
  890. adapter->regs = ioremap(mmio_start, mmio_len);
  891. if (!adapter->regs) {
  892. CH_ERR("%s: cannot map device registers\n",
  893. pci_name(pdev));
  894. err = -ENOMEM;
  895. goto out_free_dev;
  896. }
  897. if (t1_get_board_rev(adapter, bi, &adapter->params)) {
  898. err = -ENODEV; /* Can't handle this chip rev */
  899. goto out_free_dev;
  900. }
  901. adapter->name = pci_name(pdev);
  902. adapter->msg_enable = dflt_msg_enable;
  903. adapter->mmio_len = mmio_len;
  904. spin_lock_init(&adapter->tpi_lock);
  905. spin_lock_init(&adapter->work_lock);
  906. spin_lock_init(&adapter->async_lock);
  907. spin_lock_init(&adapter->mac_lock);
  908. INIT_WORK(&adapter->ext_intr_handler_task,
  909. ext_intr_task);
  910. INIT_DELAYED_WORK(&adapter->stats_update_task,
  911. mac_stats_task);
  912. pci_set_drvdata(pdev, netdev);
  913. }
  914. pi = &adapter->port[i];
  915. pi->dev = netdev;
  916. netif_carrier_off(netdev);
  917. netdev->irq = pdev->irq;
  918. netdev->if_port = i;
  919. netdev->mem_start = mmio_start;
  920. netdev->mem_end = mmio_start + mmio_len - 1;
  921. netdev->priv = adapter;
  922. netdev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
  923. netdev->features |= NETIF_F_LLTX;
  924. adapter->flags |= RX_CSUM_ENABLED | TCP_CSUM_CAPABLE;
  925. if (pci_using_dac)
  926. netdev->features |= NETIF_F_HIGHDMA;
  927. if (vlan_tso_capable(adapter)) {
  928. #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  929. adapter->flags |= VLAN_ACCEL_CAPABLE;
  930. netdev->features |=
  931. NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  932. netdev->vlan_rx_register = vlan_rx_register;
  933. #endif
  934. /* T204: disable TSO */
  935. if (!(is_T2(adapter)) || bi->port_number != 4) {
  936. adapter->flags |= TSO_CAPABLE;
  937. netdev->features |= NETIF_F_TSO;
  938. }
  939. }
  940. netdev->open = cxgb_open;
  941. netdev->stop = cxgb_close;
  942. netdev->hard_start_xmit = t1_start_xmit;
  943. netdev->hard_header_len += (adapter->flags & TSO_CAPABLE) ?
  944. sizeof(struct cpl_tx_pkt_lso) : sizeof(struct cpl_tx_pkt);
  945. netdev->get_stats = t1_get_stats;
  946. netdev->set_multicast_list = t1_set_rxmode;
  947. netdev->do_ioctl = t1_ioctl;
  948. netdev->change_mtu = t1_change_mtu;
  949. netdev->set_mac_address = t1_set_mac_addr;
  950. #ifdef CONFIG_NET_POLL_CONTROLLER
  951. netdev->poll_controller = t1_netpoll;
  952. #endif
  953. #ifdef CONFIG_CHELSIO_T1_NAPI
  954. netif_napi_add(netdev, &adapter->napi, t1_poll, 64);
  955. #endif
  956. SET_ETHTOOL_OPS(netdev, &t1_ethtool_ops);
  957. }
  958. if (t1_init_sw_modules(adapter, bi) < 0) {
  959. err = -ENODEV;
  960. goto out_free_dev;
  961. }
  962. /*
  963. * The card is now ready to go. If any errors occur during device
  964. * registration we do not fail the whole card but rather proceed only
  965. * with the ports we manage to register successfully. However we must
  966. * register at least one net device.
  967. */
  968. for (i = 0; i < bi->port_number; ++i) {
  969. err = register_netdev(adapter->port[i].dev);
  970. if (err)
  971. CH_WARN("%s: cannot register net device %s, skipping\n",
  972. pci_name(pdev), adapter->port[i].dev->name);
  973. else {
  974. /*
  975. * Change the name we use for messages to the name of
  976. * the first successfully registered interface.
  977. */
  978. if (!adapter->registered_device_map)
  979. adapter->name = adapter->port[i].dev->name;
  980. __set_bit(i, &adapter->registered_device_map);
  981. }
  982. }
  983. if (!adapter->registered_device_map) {
  984. CH_ERR("%s: could not register any net devices\n",
  985. pci_name(pdev));
  986. goto out_release_adapter_res;
  987. }
  988. printk(KERN_INFO "%s: %s (rev %d), %s %dMHz/%d-bit\n", adapter->name,
  989. bi->desc, adapter->params.chip_revision,
  990. adapter->params.pci.is_pcix ? "PCIX" : "PCI",
  991. adapter->params.pci.speed, adapter->params.pci.width);
  992. /*
  993. * Set the T1B ASIC and memory clocks.
  994. */
  995. if (t1powersave)
  996. adapter->t1powersave = LCLOCK; /* HW default is powersave mode. */
  997. else
  998. adapter->t1powersave = HCLOCK;
  999. if (t1_is_T1B(adapter))
  1000. t1_clock(adapter, t1powersave);
  1001. return 0;
  1002. out_release_adapter_res:
  1003. t1_free_sw_modules(adapter);
  1004. out_free_dev:
  1005. if (adapter) {
  1006. if (adapter->regs)
  1007. iounmap(adapter->regs);
  1008. for (i = bi->port_number - 1; i >= 0; --i)
  1009. if (adapter->port[i].dev)
  1010. free_netdev(adapter->port[i].dev);
  1011. }
  1012. pci_release_regions(pdev);
  1013. out_disable_pdev:
  1014. pci_disable_device(pdev);
  1015. pci_set_drvdata(pdev, NULL);
  1016. return err;
  1017. }
  1018. static void bit_bang(struct adapter *adapter, int bitdata, int nbits)
  1019. {
  1020. int data;
  1021. int i;
  1022. u32 val;
  1023. enum {
  1024. S_CLOCK = 1 << 3,
  1025. S_DATA = 1 << 4
  1026. };
  1027. for (i = (nbits - 1); i > -1; i--) {
  1028. udelay(50);
  1029. data = ((bitdata >> i) & 0x1);
  1030. __t1_tpi_read(adapter, A_ELMER0_GPO, &val);
  1031. if (data)
  1032. val |= S_DATA;
  1033. else
  1034. val &= ~S_DATA;
  1035. udelay(50);
  1036. /* Set SCLOCK low */
  1037. val &= ~S_CLOCK;
  1038. __t1_tpi_write(adapter, A_ELMER0_GPO, val);
  1039. udelay(50);
  1040. /* Write SCLOCK high */
  1041. val |= S_CLOCK;
  1042. __t1_tpi_write(adapter, A_ELMER0_GPO, val);
  1043. }
  1044. }
  1045. static int t1_clock(struct adapter *adapter, int mode)
  1046. {
  1047. u32 val;
  1048. int M_CORE_VAL;
  1049. int M_MEM_VAL;
  1050. enum {
  1051. M_CORE_BITS = 9,
  1052. T_CORE_VAL = 0,
  1053. T_CORE_BITS = 2,
  1054. N_CORE_VAL = 0,
  1055. N_CORE_BITS = 2,
  1056. M_MEM_BITS = 9,
  1057. T_MEM_VAL = 0,
  1058. T_MEM_BITS = 2,
  1059. N_MEM_VAL = 0,
  1060. N_MEM_BITS = 2,
  1061. NP_LOAD = 1 << 17,
  1062. S_LOAD_MEM = 1 << 5,
  1063. S_LOAD_CORE = 1 << 6,
  1064. S_CLOCK = 1 << 3
  1065. };
  1066. if (!t1_is_T1B(adapter))
  1067. return -ENODEV; /* Can't re-clock this chip. */
  1068. if (mode & 2)
  1069. return 0; /* show current mode. */
  1070. if ((adapter->t1powersave & 1) == (mode & 1))
  1071. return -EALREADY; /* ASIC already running in mode. */
  1072. if ((mode & 1) == HCLOCK) {
  1073. M_CORE_VAL = 0x14;
  1074. M_MEM_VAL = 0x18;
  1075. adapter->t1powersave = HCLOCK; /* overclock */
  1076. } else {
  1077. M_CORE_VAL = 0xe;
  1078. M_MEM_VAL = 0x10;
  1079. adapter->t1powersave = LCLOCK; /* underclock */
  1080. }
  1081. /* Don't interrupt this serial stream! */
  1082. spin_lock(&adapter->tpi_lock);
  1083. /* Initialize for ASIC core */
  1084. __t1_tpi_read(adapter, A_ELMER0_GPO, &val);
  1085. val |= NP_LOAD;
  1086. udelay(50);
  1087. __t1_tpi_write(adapter, A_ELMER0_GPO, val);
  1088. udelay(50);
  1089. __t1_tpi_read(adapter, A_ELMER0_GPO, &val);
  1090. val &= ~S_LOAD_CORE;
  1091. val &= ~S_CLOCK;
  1092. __t1_tpi_write(adapter, A_ELMER0_GPO, val);
  1093. udelay(50);
  1094. /* Serial program the ASIC clock synthesizer */
  1095. bit_bang(adapter, T_CORE_VAL, T_CORE_BITS);
  1096. bit_bang(adapter, N_CORE_VAL, N_CORE_BITS);
  1097. bit_bang(adapter, M_CORE_VAL, M_CORE_BITS);
  1098. udelay(50);
  1099. /* Finish ASIC core */
  1100. __t1_tpi_read(adapter, A_ELMER0_GPO, &val);
  1101. val |= S_LOAD_CORE;
  1102. udelay(50);
  1103. __t1_tpi_write(adapter, A_ELMER0_GPO, val);
  1104. udelay(50);
  1105. __t1_tpi_read(adapter, A_ELMER0_GPO, &val);
  1106. val &= ~S_LOAD_CORE;
  1107. udelay(50);
  1108. __t1_tpi_write(adapter, A_ELMER0_GPO, val);
  1109. udelay(50);
  1110. /* Initialize for memory */
  1111. __t1_tpi_read(adapter, A_ELMER0_GPO, &val);
  1112. val |= NP_LOAD;
  1113. udelay(50);
  1114. __t1_tpi_write(adapter, A_ELMER0_GPO, val);
  1115. udelay(50);
  1116. __t1_tpi_read(adapter, A_ELMER0_GPO, &val);
  1117. val &= ~S_LOAD_MEM;
  1118. val &= ~S_CLOCK;
  1119. udelay(50);
  1120. __t1_tpi_write(adapter, A_ELMER0_GPO, val);
  1121. udelay(50);
  1122. /* Serial program the memory clock synthesizer */
  1123. bit_bang(adapter, T_MEM_VAL, T_MEM_BITS);
  1124. bit_bang(adapter, N_MEM_VAL, N_MEM_BITS);
  1125. bit_bang(adapter, M_MEM_VAL, M_MEM_BITS);
  1126. udelay(50);
  1127. /* Finish memory */
  1128. __t1_tpi_read(adapter, A_ELMER0_GPO, &val);
  1129. val |= S_LOAD_MEM;
  1130. udelay(50);
  1131. __t1_tpi_write(adapter, A_ELMER0_GPO, val);
  1132. udelay(50);
  1133. __t1_tpi_read(adapter, A_ELMER0_GPO, &val);
  1134. val &= ~S_LOAD_MEM;
  1135. udelay(50);
  1136. __t1_tpi_write(adapter, A_ELMER0_GPO, val);
  1137. spin_unlock(&adapter->tpi_lock);
  1138. return 0;
  1139. }
  1140. static inline void t1_sw_reset(struct pci_dev *pdev)
  1141. {
  1142. pci_write_config_dword(pdev, A_PCICFG_PM_CSR, 3);
  1143. pci_write_config_dword(pdev, A_PCICFG_PM_CSR, 0);
  1144. }
  1145. static void __devexit remove_one(struct pci_dev *pdev)
  1146. {
  1147. struct net_device *dev = pci_get_drvdata(pdev);
  1148. struct adapter *adapter = dev->priv;
  1149. int i;
  1150. for_each_port(adapter, i) {
  1151. if (test_bit(i, &adapter->registered_device_map))
  1152. unregister_netdev(adapter->port[i].dev);
  1153. }
  1154. t1_free_sw_modules(adapter);
  1155. iounmap(adapter->regs);
  1156. while (--i >= 0) {
  1157. if (adapter->port[i].dev)
  1158. free_netdev(adapter->port[i].dev);
  1159. }
  1160. pci_release_regions(pdev);
  1161. pci_disable_device(pdev);
  1162. pci_set_drvdata(pdev, NULL);
  1163. t1_sw_reset(pdev);
  1164. }
  1165. static struct pci_driver driver = {
  1166. .name = DRV_NAME,
  1167. .id_table = t1_pci_tbl,
  1168. .probe = init_one,
  1169. .remove = __devexit_p(remove_one),
  1170. };
  1171. static int __init t1_init_module(void)
  1172. {
  1173. return pci_register_driver(&driver);
  1174. }
  1175. static void __exit t1_cleanup_module(void)
  1176. {
  1177. pci_unregister_driver(&driver);
  1178. }
  1179. module_init(t1_init_module);
  1180. module_exit(t1_cleanup_module);