core.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799
  1. /*
  2. * Copyright (C) 2012 Intel Corporation. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the
  16. * Free Software Foundation, Inc.,
  17. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  18. */
  19. #define pr_fmt(fmt) "hci: %s: " fmt, __func__
  20. #include <linux/init.h>
  21. #include <linux/kernel.h>
  22. #include <linux/module.h>
  23. #include <linux/nfc.h>
  24. #include <net/nfc/nfc.h>
  25. #include <net/nfc/hci.h>
  26. #include "hci.h"
  27. /* Largest headroom needed for outgoing HCI commands */
  28. #define HCI_CMDS_HEADROOM 1
  29. static void nfc_hci_msg_tx_work(struct work_struct *work)
  30. {
  31. struct nfc_hci_dev *hdev = container_of(work, struct nfc_hci_dev,
  32. msg_tx_work);
  33. struct hci_msg *msg;
  34. struct sk_buff *skb;
  35. int r = 0;
  36. mutex_lock(&hdev->msg_tx_mutex);
  37. if (hdev->cmd_pending_msg) {
  38. if (timer_pending(&hdev->cmd_timer) == 0) {
  39. if (hdev->cmd_pending_msg->cb)
  40. hdev->cmd_pending_msg->cb(hdev,
  41. NFC_HCI_ANY_E_TIMEOUT,
  42. NULL,
  43. hdev->
  44. cmd_pending_msg->
  45. cb_context);
  46. kfree(hdev->cmd_pending_msg);
  47. hdev->cmd_pending_msg = NULL;
  48. } else
  49. goto exit;
  50. }
  51. next_msg:
  52. if (list_empty(&hdev->msg_tx_queue))
  53. goto exit;
  54. msg = list_first_entry(&hdev->msg_tx_queue, struct hci_msg, msg_l);
  55. list_del(&msg->msg_l);
  56. pr_debug("msg_tx_queue has a cmd to send\n");
  57. while ((skb = skb_dequeue(&msg->msg_frags)) != NULL) {
  58. r = hdev->ops->xmit(hdev, skb);
  59. if (r < 0) {
  60. kfree_skb(skb);
  61. skb_queue_purge(&msg->msg_frags);
  62. if (msg->cb)
  63. msg->cb(hdev, NFC_HCI_ANY_E_NOK, NULL,
  64. msg->cb_context);
  65. kfree(msg);
  66. break;
  67. }
  68. }
  69. if (r)
  70. goto next_msg;
  71. if (msg->wait_response == false) {
  72. kfree(msg);
  73. goto next_msg;
  74. }
  75. hdev->cmd_pending_msg = msg;
  76. mod_timer(&hdev->cmd_timer, jiffies +
  77. msecs_to_jiffies(hdev->cmd_pending_msg->completion_delay));
  78. exit:
  79. mutex_unlock(&hdev->msg_tx_mutex);
  80. }
  81. static void nfc_hci_msg_rx_work(struct work_struct *work)
  82. {
  83. struct nfc_hci_dev *hdev = container_of(work, struct nfc_hci_dev,
  84. msg_rx_work);
  85. struct sk_buff *skb;
  86. struct hcp_message *message;
  87. u8 pipe;
  88. u8 type;
  89. u8 instruction;
  90. while ((skb = skb_dequeue(&hdev->msg_rx_queue)) != NULL) {
  91. pipe = skb->data[0];
  92. skb_pull(skb, NFC_HCI_HCP_PACKET_HEADER_LEN);
  93. message = (struct hcp_message *)skb->data;
  94. type = HCP_MSG_GET_TYPE(message->header);
  95. instruction = HCP_MSG_GET_CMD(message->header);
  96. skb_pull(skb, NFC_HCI_HCP_MESSAGE_HEADER_LEN);
  97. nfc_hci_hcp_message_rx(hdev, pipe, type, instruction, skb);
  98. }
  99. }
  100. void nfc_hci_resp_received(struct nfc_hci_dev *hdev, u8 result,
  101. struct sk_buff *skb)
  102. {
  103. mutex_lock(&hdev->msg_tx_mutex);
  104. if (hdev->cmd_pending_msg == NULL) {
  105. kfree_skb(skb);
  106. goto exit;
  107. }
  108. del_timer_sync(&hdev->cmd_timer);
  109. if (hdev->cmd_pending_msg->cb)
  110. hdev->cmd_pending_msg->cb(hdev, result, skb,
  111. hdev->cmd_pending_msg->cb_context);
  112. else
  113. kfree_skb(skb);
  114. kfree(hdev->cmd_pending_msg);
  115. hdev->cmd_pending_msg = NULL;
  116. queue_work(hdev->msg_tx_wq, &hdev->msg_tx_work);
  117. exit:
  118. mutex_unlock(&hdev->msg_tx_mutex);
  119. }
  120. void nfc_hci_cmd_received(struct nfc_hci_dev *hdev, u8 pipe, u8 cmd,
  121. struct sk_buff *skb)
  122. {
  123. kfree_skb(skb);
  124. }
  125. static u32 nfc_hci_sak_to_protocol(u8 sak)
  126. {
  127. switch (NFC_HCI_TYPE_A_SEL_PROT(sak)) {
  128. case NFC_HCI_TYPE_A_SEL_PROT_MIFARE:
  129. return NFC_PROTO_MIFARE_MASK;
  130. case NFC_HCI_TYPE_A_SEL_PROT_ISO14443:
  131. return NFC_PROTO_ISO14443_MASK;
  132. case NFC_HCI_TYPE_A_SEL_PROT_DEP:
  133. return NFC_PROTO_NFC_DEP_MASK;
  134. case NFC_HCI_TYPE_A_SEL_PROT_ISO14443_DEP:
  135. return NFC_PROTO_ISO14443_MASK | NFC_PROTO_NFC_DEP_MASK;
  136. default:
  137. return 0xffffffff;
  138. }
  139. }
  140. static int nfc_hci_target_discovered(struct nfc_hci_dev *hdev, u8 gate)
  141. {
  142. struct nfc_target *targets;
  143. struct sk_buff *atqa_skb = NULL;
  144. struct sk_buff *sak_skb = NULL;
  145. int r;
  146. pr_debug("from gate %d\n", gate);
  147. targets = kzalloc(sizeof(struct nfc_target), GFP_KERNEL);
  148. if (targets == NULL)
  149. return -ENOMEM;
  150. switch (gate) {
  151. case NFC_HCI_RF_READER_A_GATE:
  152. r = nfc_hci_get_param(hdev, NFC_HCI_RF_READER_A_GATE,
  153. NFC_HCI_RF_READER_A_ATQA, &atqa_skb);
  154. if (r < 0)
  155. goto exit;
  156. r = nfc_hci_get_param(hdev, NFC_HCI_RF_READER_A_GATE,
  157. NFC_HCI_RF_READER_A_SAK, &sak_skb);
  158. if (r < 0)
  159. goto exit;
  160. if (atqa_skb->len != 2 || sak_skb->len != 1) {
  161. r = -EPROTO;
  162. goto exit;
  163. }
  164. targets->supported_protocols =
  165. nfc_hci_sak_to_protocol(sak_skb->data[0]);
  166. if (targets->supported_protocols == 0xffffffff) {
  167. r = -EPROTO;
  168. goto exit;
  169. }
  170. targets->sens_res = be16_to_cpu(*(u16 *)atqa_skb->data);
  171. targets->sel_res = sak_skb->data[0];
  172. if (hdev->ops->complete_target_discovered) {
  173. r = hdev->ops->complete_target_discovered(hdev, gate,
  174. targets);
  175. if (r < 0)
  176. goto exit;
  177. }
  178. break;
  179. case NFC_HCI_RF_READER_B_GATE:
  180. targets->supported_protocols = NFC_PROTO_ISO14443_MASK;
  181. break;
  182. default:
  183. if (hdev->ops->target_from_gate)
  184. r = hdev->ops->target_from_gate(hdev, gate, targets);
  185. else
  186. r = -EPROTO;
  187. if (r < 0)
  188. goto exit;
  189. if (hdev->ops->complete_target_discovered) {
  190. r = hdev->ops->complete_target_discovered(hdev, gate,
  191. targets);
  192. if (r < 0)
  193. goto exit;
  194. }
  195. break;
  196. }
  197. targets->hci_reader_gate = gate;
  198. r = nfc_targets_found(hdev->ndev, targets, 1);
  199. exit:
  200. kfree(targets);
  201. kfree_skb(atqa_skb);
  202. kfree_skb(sak_skb);
  203. return r;
  204. }
  205. void nfc_hci_event_received(struct nfc_hci_dev *hdev, u8 pipe, u8 event,
  206. struct sk_buff *skb)
  207. {
  208. int r = 0;
  209. switch (event) {
  210. case NFC_HCI_EVT_TARGET_DISCOVERED:
  211. if (skb->len < 1) { /* no status data? */
  212. r = -EPROTO;
  213. goto exit;
  214. }
  215. if (skb->data[0] == 3) {
  216. /* TODO: Multiple targets in field, none activated
  217. * poll is supposedly stopped, but there is no
  218. * single target to activate, so nothing to report
  219. * up.
  220. * if we need to restart poll, we must save the
  221. * protocols from the initial poll and reuse here.
  222. */
  223. }
  224. if (skb->data[0] != 0) {
  225. r = -EPROTO;
  226. goto exit;
  227. }
  228. r = nfc_hci_target_discovered(hdev,
  229. nfc_hci_pipe2gate(hdev, pipe));
  230. break;
  231. default:
  232. /* TODO: Unknown events are hardware specific
  233. * pass them to the driver (needs a new hci_ops) */
  234. break;
  235. }
  236. exit:
  237. kfree_skb(skb);
  238. if (r) {
  239. /* TODO: There was an error dispatching the event,
  240. * how to propagate up to nfc core?
  241. */
  242. }
  243. }
  244. static void nfc_hci_cmd_timeout(unsigned long data)
  245. {
  246. struct nfc_hci_dev *hdev = (struct nfc_hci_dev *)data;
  247. queue_work(hdev->msg_tx_wq, &hdev->msg_tx_work);
  248. }
  249. static int hci_dev_connect_gates(struct nfc_hci_dev *hdev, u8 gate_count,
  250. u8 gates[])
  251. {
  252. int r;
  253. u8 *p = gates;
  254. while (gate_count--) {
  255. r = nfc_hci_connect_gate(hdev, NFC_HCI_HOST_CONTROLLER_ID, *p);
  256. if (r < 0)
  257. return r;
  258. p++;
  259. }
  260. return 0;
  261. }
  262. static int hci_dev_session_init(struct nfc_hci_dev *hdev)
  263. {
  264. struct sk_buff *skb = NULL;
  265. int r;
  266. u8 hci_gates[] = { /* NFC_HCI_ADMIN_GATE MUST be first */
  267. NFC_HCI_ADMIN_GATE, NFC_HCI_LOOPBACK_GATE,
  268. NFC_HCI_ID_MGMT_GATE, NFC_HCI_LINK_MGMT_GATE,
  269. NFC_HCI_RF_READER_B_GATE, NFC_HCI_RF_READER_A_GATE
  270. };
  271. r = nfc_hci_connect_gate(hdev, NFC_HCI_HOST_CONTROLLER_ID,
  272. NFC_HCI_ADMIN_GATE);
  273. if (r < 0)
  274. goto exit;
  275. r = nfc_hci_get_param(hdev, NFC_HCI_ADMIN_GATE,
  276. NFC_HCI_ADMIN_SESSION_IDENTITY, &skb);
  277. if (r < 0)
  278. goto disconnect_all;
  279. if (skb->len && skb->len == strlen(hdev->init_data.session_id))
  280. if (memcmp(hdev->init_data.session_id, skb->data,
  281. skb->len) == 0) {
  282. /* TODO ELa: restore gate<->pipe table from
  283. * some TBD location.
  284. * note: it doesn't seem possible to get the chip
  285. * currently open gate/pipe table.
  286. * It is only possible to obtain the supported
  287. * gate list.
  288. */
  289. /* goto exit
  290. * For now, always do a full initialization */
  291. }
  292. r = nfc_hci_disconnect_all_gates(hdev);
  293. if (r < 0)
  294. goto exit;
  295. r = hci_dev_connect_gates(hdev, sizeof(hci_gates), hci_gates);
  296. if (r < 0)
  297. goto disconnect_all;
  298. r = hci_dev_connect_gates(hdev, hdev->init_data.gate_count,
  299. hdev->init_data.gates);
  300. if (r < 0)
  301. goto disconnect_all;
  302. r = nfc_hci_set_param(hdev, NFC_HCI_ADMIN_GATE,
  303. NFC_HCI_ADMIN_SESSION_IDENTITY,
  304. hdev->init_data.session_id,
  305. strlen(hdev->init_data.session_id));
  306. if (r == 0)
  307. goto exit;
  308. disconnect_all:
  309. nfc_hci_disconnect_all_gates(hdev);
  310. exit:
  311. if (skb)
  312. kfree_skb(skb);
  313. return r;
  314. }
  315. static int hci_dev_version(struct nfc_hci_dev *hdev)
  316. {
  317. int r;
  318. struct sk_buff *skb;
  319. r = nfc_hci_get_param(hdev, NFC_HCI_ID_MGMT_GATE,
  320. NFC_HCI_ID_MGMT_VERSION_SW, &skb);
  321. if (r < 0)
  322. return r;
  323. if (skb->len != 3) {
  324. kfree_skb(skb);
  325. return -EINVAL;
  326. }
  327. hdev->sw_romlib = (skb->data[0] & 0xf0) >> 4;
  328. hdev->sw_patch = skb->data[0] & 0x0f;
  329. hdev->sw_flashlib_major = skb->data[1];
  330. hdev->sw_flashlib_minor = skb->data[2];
  331. kfree_skb(skb);
  332. r = nfc_hci_get_param(hdev, NFC_HCI_ID_MGMT_GATE,
  333. NFC_HCI_ID_MGMT_VERSION_HW, &skb);
  334. if (r < 0)
  335. return r;
  336. if (skb->len != 3) {
  337. kfree_skb(skb);
  338. return -EINVAL;
  339. }
  340. hdev->hw_derivative = (skb->data[0] & 0xe0) >> 5;
  341. hdev->hw_version = skb->data[0] & 0x1f;
  342. hdev->hw_mpw = (skb->data[1] & 0xc0) >> 6;
  343. hdev->hw_software = skb->data[1] & 0x3f;
  344. hdev->hw_bsid = skb->data[2];
  345. kfree_skb(skb);
  346. pr_info("SOFTWARE INFO:\n");
  347. pr_info("RomLib : %d\n", hdev->sw_romlib);
  348. pr_info("Patch : %d\n", hdev->sw_patch);
  349. pr_info("FlashLib Major : %d\n", hdev->sw_flashlib_major);
  350. pr_info("FlashLib Minor : %d\n", hdev->sw_flashlib_minor);
  351. pr_info("HARDWARE INFO:\n");
  352. pr_info("Derivative : %d\n", hdev->hw_derivative);
  353. pr_info("HW Version : %d\n", hdev->hw_version);
  354. pr_info("#MPW : %d\n", hdev->hw_mpw);
  355. pr_info("Software : %d\n", hdev->hw_software);
  356. pr_info("BSID Version : %d\n", hdev->hw_bsid);
  357. return 0;
  358. }
  359. static int hci_dev_up(struct nfc_dev *nfc_dev)
  360. {
  361. struct nfc_hci_dev *hdev = nfc_get_drvdata(nfc_dev);
  362. int r = 0;
  363. if (hdev->ops->open) {
  364. r = hdev->ops->open(hdev);
  365. if (r < 0)
  366. return r;
  367. }
  368. r = hci_dev_session_init(hdev);
  369. if (r < 0)
  370. goto exit;
  371. r = nfc_hci_send_event(hdev, NFC_HCI_RF_READER_A_GATE,
  372. NFC_HCI_EVT_END_OPERATION, NULL, 0);
  373. if (r < 0)
  374. goto exit;
  375. if (hdev->ops->hci_ready) {
  376. r = hdev->ops->hci_ready(hdev);
  377. if (r < 0)
  378. goto exit;
  379. }
  380. r = hci_dev_version(hdev);
  381. if (r < 0)
  382. goto exit;
  383. exit:
  384. if (r < 0)
  385. if (hdev->ops->close)
  386. hdev->ops->close(hdev);
  387. return r;
  388. }
  389. static int hci_dev_down(struct nfc_dev *nfc_dev)
  390. {
  391. struct nfc_hci_dev *hdev = nfc_get_drvdata(nfc_dev);
  392. if (hdev->ops->close)
  393. hdev->ops->close(hdev);
  394. memset(hdev->gate2pipe, NFC_HCI_INVALID_PIPE, sizeof(hdev->gate2pipe));
  395. return 0;
  396. }
  397. static int hci_start_poll(struct nfc_dev *nfc_dev,
  398. u32 im_protocols, u32 tm_protocols)
  399. {
  400. struct nfc_hci_dev *hdev = nfc_get_drvdata(nfc_dev);
  401. if (hdev->ops->start_poll)
  402. return hdev->ops->start_poll(hdev, im_protocols, tm_protocols);
  403. else
  404. return nfc_hci_send_event(hdev, NFC_HCI_RF_READER_A_GATE,
  405. NFC_HCI_EVT_READER_REQUESTED, NULL, 0);
  406. }
  407. static void hci_stop_poll(struct nfc_dev *nfc_dev)
  408. {
  409. struct nfc_hci_dev *hdev = nfc_get_drvdata(nfc_dev);
  410. nfc_hci_send_event(hdev, NFC_HCI_RF_READER_A_GATE,
  411. NFC_HCI_EVT_END_OPERATION, NULL, 0);
  412. }
  413. static int hci_activate_target(struct nfc_dev *nfc_dev,
  414. struct nfc_target *target, u32 protocol)
  415. {
  416. return 0;
  417. }
  418. static void hci_deactivate_target(struct nfc_dev *nfc_dev,
  419. struct nfc_target *target)
  420. {
  421. }
  422. static int hci_transceive(struct nfc_dev *nfc_dev, struct nfc_target *target,
  423. struct sk_buff *skb, data_exchange_cb_t cb,
  424. void *cb_context)
  425. {
  426. struct nfc_hci_dev *hdev = nfc_get_drvdata(nfc_dev);
  427. int r;
  428. struct sk_buff *res_skb = NULL;
  429. pr_debug("target_idx=%d\n", target->idx);
  430. switch (target->hci_reader_gate) {
  431. case NFC_HCI_RF_READER_A_GATE:
  432. case NFC_HCI_RF_READER_B_GATE:
  433. if (hdev->ops->data_exchange) {
  434. r = hdev->ops->data_exchange(hdev, target, skb,
  435. &res_skb);
  436. if (r <= 0) /* handled */
  437. break;
  438. }
  439. *skb_push(skb, 1) = 0; /* CTR, see spec:10.2.2.1 */
  440. r = nfc_hci_send_cmd(hdev, target->hci_reader_gate,
  441. NFC_HCI_WR_XCHG_DATA,
  442. skb->data, skb->len, &res_skb);
  443. /*
  444. * TODO: Check RF Error indicator to make sure data is valid.
  445. * It seems that HCI cmd can complete without error, but data
  446. * can be invalid if an RF error occured? Ignore for now.
  447. */
  448. if (r == 0)
  449. skb_trim(res_skb, res_skb->len - 1); /* RF Err ind */
  450. break;
  451. default:
  452. if (hdev->ops->data_exchange) {
  453. r = hdev->ops->data_exchange(hdev, target, skb,
  454. &res_skb);
  455. if (r == 1)
  456. r = -ENOTSUPP;
  457. }
  458. else
  459. r = -ENOTSUPP;
  460. }
  461. kfree_skb(skb);
  462. cb(cb_context, res_skb, r);
  463. return 0;
  464. }
  465. static int hci_check_presence(struct nfc_dev *nfc_dev,
  466. struct nfc_target *target)
  467. {
  468. struct nfc_hci_dev *hdev = nfc_get_drvdata(nfc_dev);
  469. if (hdev->ops->check_presence)
  470. return hdev->ops->check_presence(hdev, target);
  471. return 0;
  472. }
  473. static struct nfc_ops hci_nfc_ops = {
  474. .dev_up = hci_dev_up,
  475. .dev_down = hci_dev_down,
  476. .start_poll = hci_start_poll,
  477. .stop_poll = hci_stop_poll,
  478. .activate_target = hci_activate_target,
  479. .deactivate_target = hci_deactivate_target,
  480. .im_transceive = hci_transceive,
  481. .check_presence = hci_check_presence,
  482. };
  483. struct nfc_hci_dev *nfc_hci_allocate_device(struct nfc_hci_ops *ops,
  484. struct nfc_hci_init_data *init_data,
  485. u32 protocols,
  486. int tx_headroom,
  487. int tx_tailroom,
  488. int max_link_payload)
  489. {
  490. struct nfc_hci_dev *hdev;
  491. if (ops->xmit == NULL)
  492. return NULL;
  493. if (protocols == 0)
  494. return NULL;
  495. hdev = kzalloc(sizeof(struct nfc_hci_dev), GFP_KERNEL);
  496. if (hdev == NULL)
  497. return NULL;
  498. hdev->ndev = nfc_allocate_device(&hci_nfc_ops, protocols,
  499. tx_headroom + HCI_CMDS_HEADROOM,
  500. tx_tailroom);
  501. if (!hdev->ndev) {
  502. kfree(hdev);
  503. return NULL;
  504. }
  505. hdev->ops = ops;
  506. hdev->max_data_link_payload = max_link_payload;
  507. hdev->init_data = *init_data;
  508. nfc_set_drvdata(hdev->ndev, hdev);
  509. memset(hdev->gate2pipe, NFC_HCI_INVALID_PIPE, sizeof(hdev->gate2pipe));
  510. return hdev;
  511. }
  512. EXPORT_SYMBOL(nfc_hci_allocate_device);
  513. void nfc_hci_free_device(struct nfc_hci_dev *hdev)
  514. {
  515. nfc_free_device(hdev->ndev);
  516. kfree(hdev);
  517. }
  518. EXPORT_SYMBOL(nfc_hci_free_device);
  519. int nfc_hci_register_device(struct nfc_hci_dev *hdev)
  520. {
  521. struct device *dev = &hdev->ndev->dev;
  522. const char *devname = dev_name(dev);
  523. char name[32];
  524. int r = 0;
  525. mutex_init(&hdev->msg_tx_mutex);
  526. INIT_LIST_HEAD(&hdev->msg_tx_queue);
  527. INIT_WORK(&hdev->msg_tx_work, nfc_hci_msg_tx_work);
  528. snprintf(name, sizeof(name), "%s_hci_msg_tx_wq", devname);
  529. hdev->msg_tx_wq = alloc_workqueue(name, WQ_NON_REENTRANT | WQ_UNBOUND |
  530. WQ_MEM_RECLAIM, 1);
  531. if (hdev->msg_tx_wq == NULL) {
  532. r = -ENOMEM;
  533. goto exit;
  534. }
  535. init_timer(&hdev->cmd_timer);
  536. hdev->cmd_timer.data = (unsigned long)hdev;
  537. hdev->cmd_timer.function = nfc_hci_cmd_timeout;
  538. skb_queue_head_init(&hdev->rx_hcp_frags);
  539. INIT_WORK(&hdev->msg_rx_work, nfc_hci_msg_rx_work);
  540. snprintf(name, sizeof(name), "%s_hci_msg_rx_wq", devname);
  541. hdev->msg_rx_wq = alloc_workqueue(name, WQ_NON_REENTRANT | WQ_UNBOUND |
  542. WQ_MEM_RECLAIM, 1);
  543. if (hdev->msg_rx_wq == NULL) {
  544. r = -ENOMEM;
  545. goto exit;
  546. }
  547. skb_queue_head_init(&hdev->msg_rx_queue);
  548. r = nfc_register_device(hdev->ndev);
  549. exit:
  550. if (r < 0) {
  551. if (hdev->msg_tx_wq)
  552. destroy_workqueue(hdev->msg_tx_wq);
  553. if (hdev->msg_rx_wq)
  554. destroy_workqueue(hdev->msg_rx_wq);
  555. }
  556. return r;
  557. }
  558. EXPORT_SYMBOL(nfc_hci_register_device);
  559. void nfc_hci_unregister_device(struct nfc_hci_dev *hdev)
  560. {
  561. struct hci_msg *msg;
  562. skb_queue_purge(&hdev->rx_hcp_frags);
  563. skb_queue_purge(&hdev->msg_rx_queue);
  564. while ((msg = list_first_entry(&hdev->msg_tx_queue, struct hci_msg,
  565. msg_l)) != NULL) {
  566. list_del(&msg->msg_l);
  567. skb_queue_purge(&msg->msg_frags);
  568. kfree(msg);
  569. }
  570. del_timer_sync(&hdev->cmd_timer);
  571. nfc_unregister_device(hdev->ndev);
  572. destroy_workqueue(hdev->msg_tx_wq);
  573. destroy_workqueue(hdev->msg_rx_wq);
  574. }
  575. EXPORT_SYMBOL(nfc_hci_unregister_device);
  576. void nfc_hci_set_clientdata(struct nfc_hci_dev *hdev, void *clientdata)
  577. {
  578. hdev->clientdata = clientdata;
  579. }
  580. EXPORT_SYMBOL(nfc_hci_set_clientdata);
  581. void *nfc_hci_get_clientdata(struct nfc_hci_dev *hdev)
  582. {
  583. return hdev->clientdata;
  584. }
  585. EXPORT_SYMBOL(nfc_hci_get_clientdata);
  586. void nfc_hci_recv_frame(struct nfc_hci_dev *hdev, struct sk_buff *skb)
  587. {
  588. struct hcp_packet *packet;
  589. u8 type;
  590. u8 instruction;
  591. struct sk_buff *hcp_skb;
  592. u8 pipe;
  593. struct sk_buff *frag_skb;
  594. int msg_len;
  595. if (skb == NULL) {
  596. /* TODO ELa: lower layer had permanent failure, need to
  597. * propagate that up
  598. */
  599. skb_queue_purge(&hdev->rx_hcp_frags);
  600. return;
  601. }
  602. packet = (struct hcp_packet *)skb->data;
  603. if ((packet->header & ~NFC_HCI_FRAGMENT) == 0) {
  604. skb_queue_tail(&hdev->rx_hcp_frags, skb);
  605. return;
  606. }
  607. /* it's the last fragment. Does it need re-aggregation? */
  608. if (skb_queue_len(&hdev->rx_hcp_frags)) {
  609. pipe = packet->header & NFC_HCI_FRAGMENT;
  610. skb_queue_tail(&hdev->rx_hcp_frags, skb);
  611. msg_len = 0;
  612. skb_queue_walk(&hdev->rx_hcp_frags, frag_skb) {
  613. msg_len += (frag_skb->len -
  614. NFC_HCI_HCP_PACKET_HEADER_LEN);
  615. }
  616. hcp_skb = nfc_alloc_recv_skb(NFC_HCI_HCP_PACKET_HEADER_LEN +
  617. msg_len, GFP_KERNEL);
  618. if (hcp_skb == NULL) {
  619. /* TODO ELa: cannot deliver HCP message. How to
  620. * propagate error up?
  621. */
  622. }
  623. *skb_put(hcp_skb, NFC_HCI_HCP_PACKET_HEADER_LEN) = pipe;
  624. skb_queue_walk(&hdev->rx_hcp_frags, frag_skb) {
  625. msg_len = frag_skb->len - NFC_HCI_HCP_PACKET_HEADER_LEN;
  626. memcpy(skb_put(hcp_skb, msg_len),
  627. frag_skb->data + NFC_HCI_HCP_PACKET_HEADER_LEN,
  628. msg_len);
  629. }
  630. skb_queue_purge(&hdev->rx_hcp_frags);
  631. } else {
  632. packet->header &= NFC_HCI_FRAGMENT;
  633. hcp_skb = skb;
  634. }
  635. /* if this is a response, dispatch immediately to
  636. * unblock waiting cmd context. Otherwise, enqueue to dispatch
  637. * in separate context where handler can also execute command.
  638. */
  639. packet = (struct hcp_packet *)hcp_skb->data;
  640. type = HCP_MSG_GET_TYPE(packet->message.header);
  641. if (type == NFC_HCI_HCP_RESPONSE) {
  642. pipe = packet->header;
  643. instruction = HCP_MSG_GET_CMD(packet->message.header);
  644. skb_pull(hcp_skb, NFC_HCI_HCP_PACKET_HEADER_LEN +
  645. NFC_HCI_HCP_MESSAGE_HEADER_LEN);
  646. nfc_hci_hcp_message_rx(hdev, pipe, type, instruction, hcp_skb);
  647. } else {
  648. skb_queue_tail(&hdev->msg_rx_queue, hcp_skb);
  649. queue_work(hdev->msg_rx_wq, &hdev->msg_rx_work);
  650. }
  651. }
  652. EXPORT_SYMBOL(nfc_hci_recv_frame);
  653. MODULE_LICENSE("GPL");