i915_gem.c 100 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/shmem_fs.h>
  34. #include <linux/slab.h>
  35. #include <linux/swap.h>
  36. #include <linux/pci.h>
  37. static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  39. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  40. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  41. unsigned alignment,
  42. bool map_and_fenceable);
  43. static int i915_gem_phys_pwrite(struct drm_device *dev,
  44. struct drm_i915_gem_object *obj,
  45. struct drm_i915_gem_pwrite *args,
  46. struct drm_file *file);
  47. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  48. struct drm_i915_gem_object *obj);
  49. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  50. struct drm_i915_fence_reg *fence,
  51. bool enable);
  52. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  53. struct shrink_control *sc);
  54. static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
  55. static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
  56. {
  57. if (obj->tiling_mode)
  58. i915_gem_release_mmap(obj);
  59. /* As we do not have an associated fence register, we will force
  60. * a tiling change if we ever need to acquire one.
  61. */
  62. obj->fence_dirty = false;
  63. obj->fence_reg = I915_FENCE_REG_NONE;
  64. }
  65. /* some bookkeeping */
  66. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  67. size_t size)
  68. {
  69. dev_priv->mm.object_count++;
  70. dev_priv->mm.object_memory += size;
  71. }
  72. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  73. size_t size)
  74. {
  75. dev_priv->mm.object_count--;
  76. dev_priv->mm.object_memory -= size;
  77. }
  78. static int
  79. i915_gem_wait_for_error(struct drm_device *dev)
  80. {
  81. struct drm_i915_private *dev_priv = dev->dev_private;
  82. struct completion *x = &dev_priv->error_completion;
  83. unsigned long flags;
  84. int ret;
  85. if (!atomic_read(&dev_priv->mm.wedged))
  86. return 0;
  87. ret = wait_for_completion_interruptible(x);
  88. if (ret)
  89. return ret;
  90. if (atomic_read(&dev_priv->mm.wedged)) {
  91. /* GPU is hung, bump the completion count to account for
  92. * the token we just consumed so that we never hit zero and
  93. * end up waiting upon a subsequent completion event that
  94. * will never happen.
  95. */
  96. spin_lock_irqsave(&x->wait.lock, flags);
  97. x->done++;
  98. spin_unlock_irqrestore(&x->wait.lock, flags);
  99. }
  100. return 0;
  101. }
  102. int i915_mutex_lock_interruptible(struct drm_device *dev)
  103. {
  104. int ret;
  105. ret = i915_gem_wait_for_error(dev);
  106. if (ret)
  107. return ret;
  108. ret = mutex_lock_interruptible(&dev->struct_mutex);
  109. if (ret)
  110. return ret;
  111. WARN_ON(i915_verify_lists(dev));
  112. return 0;
  113. }
  114. static inline bool
  115. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  116. {
  117. return !obj->active;
  118. }
  119. int
  120. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  121. struct drm_file *file)
  122. {
  123. struct drm_i915_gem_init *args = data;
  124. if (drm_core_check_feature(dev, DRIVER_MODESET))
  125. return -ENODEV;
  126. if (args->gtt_start >= args->gtt_end ||
  127. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  128. return -EINVAL;
  129. /* GEM with user mode setting was never supported on ilk and later. */
  130. if (INTEL_INFO(dev)->gen >= 5)
  131. return -ENODEV;
  132. mutex_lock(&dev->struct_mutex);
  133. i915_gem_init_global_gtt(dev, args->gtt_start,
  134. args->gtt_end, args->gtt_end);
  135. mutex_unlock(&dev->struct_mutex);
  136. return 0;
  137. }
  138. int
  139. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  140. struct drm_file *file)
  141. {
  142. struct drm_i915_private *dev_priv = dev->dev_private;
  143. struct drm_i915_gem_get_aperture *args = data;
  144. struct drm_i915_gem_object *obj;
  145. size_t pinned;
  146. pinned = 0;
  147. mutex_lock(&dev->struct_mutex);
  148. list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
  149. if (obj->pin_count)
  150. pinned += obj->gtt_space->size;
  151. mutex_unlock(&dev->struct_mutex);
  152. args->aper_size = dev_priv->mm.gtt_total;
  153. args->aper_available_size = args->aper_size - pinned;
  154. return 0;
  155. }
  156. static int
  157. i915_gem_create(struct drm_file *file,
  158. struct drm_device *dev,
  159. uint64_t size,
  160. uint32_t *handle_p)
  161. {
  162. struct drm_i915_gem_object *obj;
  163. int ret;
  164. u32 handle;
  165. size = roundup(size, PAGE_SIZE);
  166. if (size == 0)
  167. return -EINVAL;
  168. /* Allocate the new object */
  169. obj = i915_gem_alloc_object(dev, size);
  170. if (obj == NULL)
  171. return -ENOMEM;
  172. ret = drm_gem_handle_create(file, &obj->base, &handle);
  173. if (ret) {
  174. drm_gem_object_release(&obj->base);
  175. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  176. kfree(obj);
  177. return ret;
  178. }
  179. /* drop reference from allocate - handle holds it now */
  180. drm_gem_object_unreference(&obj->base);
  181. trace_i915_gem_object_create(obj);
  182. *handle_p = handle;
  183. return 0;
  184. }
  185. int
  186. i915_gem_dumb_create(struct drm_file *file,
  187. struct drm_device *dev,
  188. struct drm_mode_create_dumb *args)
  189. {
  190. /* have to work out size/pitch and return them */
  191. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  192. args->size = args->pitch * args->height;
  193. return i915_gem_create(file, dev,
  194. args->size, &args->handle);
  195. }
  196. int i915_gem_dumb_destroy(struct drm_file *file,
  197. struct drm_device *dev,
  198. uint32_t handle)
  199. {
  200. return drm_gem_handle_delete(file, handle);
  201. }
  202. /**
  203. * Creates a new mm object and returns a handle to it.
  204. */
  205. int
  206. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  207. struct drm_file *file)
  208. {
  209. struct drm_i915_gem_create *args = data;
  210. return i915_gem_create(file, dev,
  211. args->size, &args->handle);
  212. }
  213. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  214. {
  215. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  216. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  217. obj->tiling_mode != I915_TILING_NONE;
  218. }
  219. static inline int
  220. __copy_to_user_swizzled(char __user *cpu_vaddr,
  221. const char *gpu_vaddr, int gpu_offset,
  222. int length)
  223. {
  224. int ret, cpu_offset = 0;
  225. while (length > 0) {
  226. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  227. int this_length = min(cacheline_end - gpu_offset, length);
  228. int swizzled_gpu_offset = gpu_offset ^ 64;
  229. ret = __copy_to_user(cpu_vaddr + cpu_offset,
  230. gpu_vaddr + swizzled_gpu_offset,
  231. this_length);
  232. if (ret)
  233. return ret + length;
  234. cpu_offset += this_length;
  235. gpu_offset += this_length;
  236. length -= this_length;
  237. }
  238. return 0;
  239. }
  240. static inline int
  241. __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
  242. const char __user *cpu_vaddr,
  243. int length)
  244. {
  245. int ret, cpu_offset = 0;
  246. while (length > 0) {
  247. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  248. int this_length = min(cacheline_end - gpu_offset, length);
  249. int swizzled_gpu_offset = gpu_offset ^ 64;
  250. ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
  251. cpu_vaddr + cpu_offset,
  252. this_length);
  253. if (ret)
  254. return ret + length;
  255. cpu_offset += this_length;
  256. gpu_offset += this_length;
  257. length -= this_length;
  258. }
  259. return 0;
  260. }
  261. /* Per-page copy function for the shmem pread fastpath.
  262. * Flushes invalid cachelines before reading the target if
  263. * needs_clflush is set. */
  264. static int
  265. shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
  266. char __user *user_data,
  267. bool page_do_bit17_swizzling, bool needs_clflush)
  268. {
  269. char *vaddr;
  270. int ret;
  271. if (unlikely(page_do_bit17_swizzling))
  272. return -EINVAL;
  273. vaddr = kmap_atomic(page);
  274. if (needs_clflush)
  275. drm_clflush_virt_range(vaddr + shmem_page_offset,
  276. page_length);
  277. ret = __copy_to_user_inatomic(user_data,
  278. vaddr + shmem_page_offset,
  279. page_length);
  280. kunmap_atomic(vaddr);
  281. return ret;
  282. }
  283. static void
  284. shmem_clflush_swizzled_range(char *addr, unsigned long length,
  285. bool swizzled)
  286. {
  287. if (unlikely(swizzled)) {
  288. unsigned long start = (unsigned long) addr;
  289. unsigned long end = (unsigned long) addr + length;
  290. /* For swizzling simply ensure that we always flush both
  291. * channels. Lame, but simple and it works. Swizzled
  292. * pwrite/pread is far from a hotpath - current userspace
  293. * doesn't use it at all. */
  294. start = round_down(start, 128);
  295. end = round_up(end, 128);
  296. drm_clflush_virt_range((void *)start, end - start);
  297. } else {
  298. drm_clflush_virt_range(addr, length);
  299. }
  300. }
  301. /* Only difference to the fast-path function is that this can handle bit17
  302. * and uses non-atomic copy and kmap functions. */
  303. static int
  304. shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
  305. char __user *user_data,
  306. bool page_do_bit17_swizzling, bool needs_clflush)
  307. {
  308. char *vaddr;
  309. int ret;
  310. vaddr = kmap(page);
  311. if (needs_clflush)
  312. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  313. page_length,
  314. page_do_bit17_swizzling);
  315. if (page_do_bit17_swizzling)
  316. ret = __copy_to_user_swizzled(user_data,
  317. vaddr, shmem_page_offset,
  318. page_length);
  319. else
  320. ret = __copy_to_user(user_data,
  321. vaddr + shmem_page_offset,
  322. page_length);
  323. kunmap(page);
  324. return ret;
  325. }
  326. static int
  327. i915_gem_shmem_pread(struct drm_device *dev,
  328. struct drm_i915_gem_object *obj,
  329. struct drm_i915_gem_pread *args,
  330. struct drm_file *file)
  331. {
  332. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  333. char __user *user_data;
  334. ssize_t remain;
  335. loff_t offset;
  336. int shmem_page_offset, page_length, ret = 0;
  337. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  338. int hit_slowpath = 0;
  339. int prefaulted = 0;
  340. int needs_clflush = 0;
  341. int release_page;
  342. user_data = (char __user *) (uintptr_t) args->data_ptr;
  343. remain = args->size;
  344. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  345. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
  346. /* If we're not in the cpu read domain, set ourself into the gtt
  347. * read domain and manually flush cachelines (if required). This
  348. * optimizes for the case when the gpu will dirty the data
  349. * anyway again before the next pread happens. */
  350. if (obj->cache_level == I915_CACHE_NONE)
  351. needs_clflush = 1;
  352. ret = i915_gem_object_set_to_gtt_domain(obj, false);
  353. if (ret)
  354. return ret;
  355. }
  356. offset = args->offset;
  357. while (remain > 0) {
  358. struct page *page;
  359. /* Operation in this page
  360. *
  361. * shmem_page_offset = offset within page in shmem file
  362. * page_length = bytes to copy for this page
  363. */
  364. shmem_page_offset = offset_in_page(offset);
  365. page_length = remain;
  366. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  367. page_length = PAGE_SIZE - shmem_page_offset;
  368. if (obj->pages) {
  369. page = obj->pages[offset >> PAGE_SHIFT];
  370. release_page = 0;
  371. } else {
  372. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  373. if (IS_ERR(page)) {
  374. ret = PTR_ERR(page);
  375. goto out;
  376. }
  377. release_page = 1;
  378. }
  379. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  380. (page_to_phys(page) & (1 << 17)) != 0;
  381. ret = shmem_pread_fast(page, shmem_page_offset, page_length,
  382. user_data, page_do_bit17_swizzling,
  383. needs_clflush);
  384. if (ret == 0)
  385. goto next_page;
  386. hit_slowpath = 1;
  387. page_cache_get(page);
  388. mutex_unlock(&dev->struct_mutex);
  389. if (!prefaulted) {
  390. ret = fault_in_multipages_writeable(user_data, remain);
  391. /* Userspace is tricking us, but we've already clobbered
  392. * its pages with the prefault and promised to write the
  393. * data up to the first fault. Hence ignore any errors
  394. * and just continue. */
  395. (void)ret;
  396. prefaulted = 1;
  397. }
  398. ret = shmem_pread_slow(page, shmem_page_offset, page_length,
  399. user_data, page_do_bit17_swizzling,
  400. needs_clflush);
  401. mutex_lock(&dev->struct_mutex);
  402. page_cache_release(page);
  403. next_page:
  404. mark_page_accessed(page);
  405. if (release_page)
  406. page_cache_release(page);
  407. if (ret) {
  408. ret = -EFAULT;
  409. goto out;
  410. }
  411. remain -= page_length;
  412. user_data += page_length;
  413. offset += page_length;
  414. }
  415. out:
  416. if (hit_slowpath) {
  417. /* Fixup: Kill any reinstated backing storage pages */
  418. if (obj->madv == __I915_MADV_PURGED)
  419. i915_gem_object_truncate(obj);
  420. }
  421. return ret;
  422. }
  423. /**
  424. * Reads data from the object referenced by handle.
  425. *
  426. * On error, the contents of *data are undefined.
  427. */
  428. int
  429. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  430. struct drm_file *file)
  431. {
  432. struct drm_i915_gem_pread *args = data;
  433. struct drm_i915_gem_object *obj;
  434. int ret = 0;
  435. if (args->size == 0)
  436. return 0;
  437. if (!access_ok(VERIFY_WRITE,
  438. (char __user *)(uintptr_t)args->data_ptr,
  439. args->size))
  440. return -EFAULT;
  441. ret = i915_mutex_lock_interruptible(dev);
  442. if (ret)
  443. return ret;
  444. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  445. if (&obj->base == NULL) {
  446. ret = -ENOENT;
  447. goto unlock;
  448. }
  449. /* Bounds check source. */
  450. if (args->offset > obj->base.size ||
  451. args->size > obj->base.size - args->offset) {
  452. ret = -EINVAL;
  453. goto out;
  454. }
  455. trace_i915_gem_object_pread(obj, args->offset, args->size);
  456. ret = i915_gem_shmem_pread(dev, obj, args, file);
  457. out:
  458. drm_gem_object_unreference(&obj->base);
  459. unlock:
  460. mutex_unlock(&dev->struct_mutex);
  461. return ret;
  462. }
  463. /* This is the fast write path which cannot handle
  464. * page faults in the source data
  465. */
  466. static inline int
  467. fast_user_write(struct io_mapping *mapping,
  468. loff_t page_base, int page_offset,
  469. char __user *user_data,
  470. int length)
  471. {
  472. void __iomem *vaddr_atomic;
  473. void *vaddr;
  474. unsigned long unwritten;
  475. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  476. /* We can use the cpu mem copy function because this is X86. */
  477. vaddr = (void __force*)vaddr_atomic + page_offset;
  478. unwritten = __copy_from_user_inatomic_nocache(vaddr,
  479. user_data, length);
  480. io_mapping_unmap_atomic(vaddr_atomic);
  481. return unwritten;
  482. }
  483. /**
  484. * This is the fast pwrite path, where we copy the data directly from the
  485. * user into the GTT, uncached.
  486. */
  487. static int
  488. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  489. struct drm_i915_gem_object *obj,
  490. struct drm_i915_gem_pwrite *args,
  491. struct drm_file *file)
  492. {
  493. drm_i915_private_t *dev_priv = dev->dev_private;
  494. ssize_t remain;
  495. loff_t offset, page_base;
  496. char __user *user_data;
  497. int page_offset, page_length, ret;
  498. ret = i915_gem_object_pin(obj, 0, true);
  499. if (ret)
  500. goto out;
  501. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  502. if (ret)
  503. goto out_unpin;
  504. ret = i915_gem_object_put_fence(obj);
  505. if (ret)
  506. goto out_unpin;
  507. user_data = (char __user *) (uintptr_t) args->data_ptr;
  508. remain = args->size;
  509. offset = obj->gtt_offset + args->offset;
  510. while (remain > 0) {
  511. /* Operation in this page
  512. *
  513. * page_base = page offset within aperture
  514. * page_offset = offset within page
  515. * page_length = bytes to copy for this page
  516. */
  517. page_base = offset & PAGE_MASK;
  518. page_offset = offset_in_page(offset);
  519. page_length = remain;
  520. if ((page_offset + remain) > PAGE_SIZE)
  521. page_length = PAGE_SIZE - page_offset;
  522. /* If we get a fault while copying data, then (presumably) our
  523. * source page isn't available. Return the error and we'll
  524. * retry in the slow path.
  525. */
  526. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  527. page_offset, user_data, page_length)) {
  528. ret = -EFAULT;
  529. goto out_unpin;
  530. }
  531. remain -= page_length;
  532. user_data += page_length;
  533. offset += page_length;
  534. }
  535. out_unpin:
  536. i915_gem_object_unpin(obj);
  537. out:
  538. return ret;
  539. }
  540. /* Per-page copy function for the shmem pwrite fastpath.
  541. * Flushes invalid cachelines before writing to the target if
  542. * needs_clflush_before is set and flushes out any written cachelines after
  543. * writing if needs_clflush is set. */
  544. static int
  545. shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
  546. char __user *user_data,
  547. bool page_do_bit17_swizzling,
  548. bool needs_clflush_before,
  549. bool needs_clflush_after)
  550. {
  551. char *vaddr;
  552. int ret;
  553. if (unlikely(page_do_bit17_swizzling))
  554. return -EINVAL;
  555. vaddr = kmap_atomic(page);
  556. if (needs_clflush_before)
  557. drm_clflush_virt_range(vaddr + shmem_page_offset,
  558. page_length);
  559. ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
  560. user_data,
  561. page_length);
  562. if (needs_clflush_after)
  563. drm_clflush_virt_range(vaddr + shmem_page_offset,
  564. page_length);
  565. kunmap_atomic(vaddr);
  566. return ret;
  567. }
  568. /* Only difference to the fast-path function is that this can handle bit17
  569. * and uses non-atomic copy and kmap functions. */
  570. static int
  571. shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
  572. char __user *user_data,
  573. bool page_do_bit17_swizzling,
  574. bool needs_clflush_before,
  575. bool needs_clflush_after)
  576. {
  577. char *vaddr;
  578. int ret;
  579. vaddr = kmap(page);
  580. if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
  581. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  582. page_length,
  583. page_do_bit17_swizzling);
  584. if (page_do_bit17_swizzling)
  585. ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
  586. user_data,
  587. page_length);
  588. else
  589. ret = __copy_from_user(vaddr + shmem_page_offset,
  590. user_data,
  591. page_length);
  592. if (needs_clflush_after)
  593. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  594. page_length,
  595. page_do_bit17_swizzling);
  596. kunmap(page);
  597. return ret;
  598. }
  599. static int
  600. i915_gem_shmem_pwrite(struct drm_device *dev,
  601. struct drm_i915_gem_object *obj,
  602. struct drm_i915_gem_pwrite *args,
  603. struct drm_file *file)
  604. {
  605. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  606. ssize_t remain;
  607. loff_t offset;
  608. char __user *user_data;
  609. int shmem_page_offset, page_length, ret = 0;
  610. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  611. int hit_slowpath = 0;
  612. int needs_clflush_after = 0;
  613. int needs_clflush_before = 0;
  614. int release_page;
  615. user_data = (char __user *) (uintptr_t) args->data_ptr;
  616. remain = args->size;
  617. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  618. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  619. /* If we're not in the cpu write domain, set ourself into the gtt
  620. * write domain and manually flush cachelines (if required). This
  621. * optimizes for the case when the gpu will use the data
  622. * right away and we therefore have to clflush anyway. */
  623. if (obj->cache_level == I915_CACHE_NONE)
  624. needs_clflush_after = 1;
  625. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  626. if (ret)
  627. return ret;
  628. }
  629. /* Same trick applies for invalidate partially written cachelines before
  630. * writing. */
  631. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
  632. && obj->cache_level == I915_CACHE_NONE)
  633. needs_clflush_before = 1;
  634. offset = args->offset;
  635. obj->dirty = 1;
  636. while (remain > 0) {
  637. struct page *page;
  638. int partial_cacheline_write;
  639. /* Operation in this page
  640. *
  641. * shmem_page_offset = offset within page in shmem file
  642. * page_length = bytes to copy for this page
  643. */
  644. shmem_page_offset = offset_in_page(offset);
  645. page_length = remain;
  646. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  647. page_length = PAGE_SIZE - shmem_page_offset;
  648. /* If we don't overwrite a cacheline completely we need to be
  649. * careful to have up-to-date data by first clflushing. Don't
  650. * overcomplicate things and flush the entire patch. */
  651. partial_cacheline_write = needs_clflush_before &&
  652. ((shmem_page_offset | page_length)
  653. & (boot_cpu_data.x86_clflush_size - 1));
  654. if (obj->pages) {
  655. page = obj->pages[offset >> PAGE_SHIFT];
  656. release_page = 0;
  657. } else {
  658. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  659. if (IS_ERR(page)) {
  660. ret = PTR_ERR(page);
  661. goto out;
  662. }
  663. release_page = 1;
  664. }
  665. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  666. (page_to_phys(page) & (1 << 17)) != 0;
  667. ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
  668. user_data, page_do_bit17_swizzling,
  669. partial_cacheline_write,
  670. needs_clflush_after);
  671. if (ret == 0)
  672. goto next_page;
  673. hit_slowpath = 1;
  674. page_cache_get(page);
  675. mutex_unlock(&dev->struct_mutex);
  676. ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
  677. user_data, page_do_bit17_swizzling,
  678. partial_cacheline_write,
  679. needs_clflush_after);
  680. mutex_lock(&dev->struct_mutex);
  681. page_cache_release(page);
  682. next_page:
  683. set_page_dirty(page);
  684. mark_page_accessed(page);
  685. if (release_page)
  686. page_cache_release(page);
  687. if (ret) {
  688. ret = -EFAULT;
  689. goto out;
  690. }
  691. remain -= page_length;
  692. user_data += page_length;
  693. offset += page_length;
  694. }
  695. out:
  696. if (hit_slowpath) {
  697. /* Fixup: Kill any reinstated backing storage pages */
  698. if (obj->madv == __I915_MADV_PURGED)
  699. i915_gem_object_truncate(obj);
  700. /* and flush dirty cachelines in case the object isn't in the cpu write
  701. * domain anymore. */
  702. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  703. i915_gem_clflush_object(obj);
  704. intel_gtt_chipset_flush();
  705. }
  706. }
  707. if (needs_clflush_after)
  708. intel_gtt_chipset_flush();
  709. return ret;
  710. }
  711. /**
  712. * Writes data to the object referenced by handle.
  713. *
  714. * On error, the contents of the buffer that were to be modified are undefined.
  715. */
  716. int
  717. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  718. struct drm_file *file)
  719. {
  720. struct drm_i915_gem_pwrite *args = data;
  721. struct drm_i915_gem_object *obj;
  722. int ret;
  723. if (args->size == 0)
  724. return 0;
  725. if (!access_ok(VERIFY_READ,
  726. (char __user *)(uintptr_t)args->data_ptr,
  727. args->size))
  728. return -EFAULT;
  729. ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
  730. args->size);
  731. if (ret)
  732. return -EFAULT;
  733. ret = i915_mutex_lock_interruptible(dev);
  734. if (ret)
  735. return ret;
  736. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  737. if (&obj->base == NULL) {
  738. ret = -ENOENT;
  739. goto unlock;
  740. }
  741. /* Bounds check destination. */
  742. if (args->offset > obj->base.size ||
  743. args->size > obj->base.size - args->offset) {
  744. ret = -EINVAL;
  745. goto out;
  746. }
  747. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  748. ret = -EFAULT;
  749. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  750. * it would end up going through the fenced access, and we'll get
  751. * different detiling behavior between reading and writing.
  752. * pread/pwrite currently are reading and writing from the CPU
  753. * perspective, requiring manual detiling by the client.
  754. */
  755. if (obj->phys_obj) {
  756. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  757. goto out;
  758. }
  759. if (obj->gtt_space &&
  760. obj->cache_level == I915_CACHE_NONE &&
  761. obj->tiling_mode == I915_TILING_NONE &&
  762. obj->map_and_fenceable &&
  763. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  764. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  765. /* Note that the gtt paths might fail with non-page-backed user
  766. * pointers (e.g. gtt mappings when moving data between
  767. * textures). Fallback to the shmem path in that case. */
  768. }
  769. if (ret == -EFAULT)
  770. ret = i915_gem_shmem_pwrite(dev, obj, args, file);
  771. out:
  772. drm_gem_object_unreference(&obj->base);
  773. unlock:
  774. mutex_unlock(&dev->struct_mutex);
  775. return ret;
  776. }
  777. /**
  778. * Called when user space prepares to use an object with the CPU, either
  779. * through the mmap ioctl's mapping or a GTT mapping.
  780. */
  781. int
  782. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  783. struct drm_file *file)
  784. {
  785. struct drm_i915_gem_set_domain *args = data;
  786. struct drm_i915_gem_object *obj;
  787. uint32_t read_domains = args->read_domains;
  788. uint32_t write_domain = args->write_domain;
  789. int ret;
  790. /* Only handle setting domains to types used by the CPU. */
  791. if (write_domain & I915_GEM_GPU_DOMAINS)
  792. return -EINVAL;
  793. if (read_domains & I915_GEM_GPU_DOMAINS)
  794. return -EINVAL;
  795. /* Having something in the write domain implies it's in the read
  796. * domain, and only that read domain. Enforce that in the request.
  797. */
  798. if (write_domain != 0 && read_domains != write_domain)
  799. return -EINVAL;
  800. ret = i915_mutex_lock_interruptible(dev);
  801. if (ret)
  802. return ret;
  803. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  804. if (&obj->base == NULL) {
  805. ret = -ENOENT;
  806. goto unlock;
  807. }
  808. if (read_domains & I915_GEM_DOMAIN_GTT) {
  809. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  810. /* Silently promote "you're not bound, there was nothing to do"
  811. * to success, since the client was just asking us to
  812. * make sure everything was done.
  813. */
  814. if (ret == -EINVAL)
  815. ret = 0;
  816. } else {
  817. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  818. }
  819. drm_gem_object_unreference(&obj->base);
  820. unlock:
  821. mutex_unlock(&dev->struct_mutex);
  822. return ret;
  823. }
  824. /**
  825. * Called when user space has done writes to this buffer
  826. */
  827. int
  828. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  829. struct drm_file *file)
  830. {
  831. struct drm_i915_gem_sw_finish *args = data;
  832. struct drm_i915_gem_object *obj;
  833. int ret = 0;
  834. ret = i915_mutex_lock_interruptible(dev);
  835. if (ret)
  836. return ret;
  837. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  838. if (&obj->base == NULL) {
  839. ret = -ENOENT;
  840. goto unlock;
  841. }
  842. /* Pinned buffers may be scanout, so flush the cache */
  843. if (obj->pin_count)
  844. i915_gem_object_flush_cpu_write_domain(obj);
  845. drm_gem_object_unreference(&obj->base);
  846. unlock:
  847. mutex_unlock(&dev->struct_mutex);
  848. return ret;
  849. }
  850. /**
  851. * Maps the contents of an object, returning the address it is mapped
  852. * into.
  853. *
  854. * While the mapping holds a reference on the contents of the object, it doesn't
  855. * imply a ref on the object itself.
  856. */
  857. int
  858. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  859. struct drm_file *file)
  860. {
  861. struct drm_i915_gem_mmap *args = data;
  862. struct drm_gem_object *obj;
  863. unsigned long addr;
  864. obj = drm_gem_object_lookup(dev, file, args->handle);
  865. if (obj == NULL)
  866. return -ENOENT;
  867. down_write(&current->mm->mmap_sem);
  868. addr = do_mmap(obj->filp, 0, args->size,
  869. PROT_READ | PROT_WRITE, MAP_SHARED,
  870. args->offset);
  871. up_write(&current->mm->mmap_sem);
  872. drm_gem_object_unreference_unlocked(obj);
  873. if (IS_ERR((void *)addr))
  874. return addr;
  875. args->addr_ptr = (uint64_t) addr;
  876. return 0;
  877. }
  878. /**
  879. * i915_gem_fault - fault a page into the GTT
  880. * vma: VMA in question
  881. * vmf: fault info
  882. *
  883. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  884. * from userspace. The fault handler takes care of binding the object to
  885. * the GTT (if needed), allocating and programming a fence register (again,
  886. * only if needed based on whether the old reg is still valid or the object
  887. * is tiled) and inserting a new PTE into the faulting process.
  888. *
  889. * Note that the faulting process may involve evicting existing objects
  890. * from the GTT and/or fence registers to make room. So performance may
  891. * suffer if the GTT working set is large or there are few fence registers
  892. * left.
  893. */
  894. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  895. {
  896. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  897. struct drm_device *dev = obj->base.dev;
  898. drm_i915_private_t *dev_priv = dev->dev_private;
  899. pgoff_t page_offset;
  900. unsigned long pfn;
  901. int ret = 0;
  902. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  903. /* We don't use vmf->pgoff since that has the fake offset */
  904. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  905. PAGE_SHIFT;
  906. ret = i915_mutex_lock_interruptible(dev);
  907. if (ret)
  908. goto out;
  909. trace_i915_gem_object_fault(obj, page_offset, true, write);
  910. /* Now bind it into the GTT if needed */
  911. if (!obj->map_and_fenceable) {
  912. ret = i915_gem_object_unbind(obj);
  913. if (ret)
  914. goto unlock;
  915. }
  916. if (!obj->gtt_space) {
  917. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  918. if (ret)
  919. goto unlock;
  920. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  921. if (ret)
  922. goto unlock;
  923. }
  924. if (!obj->has_global_gtt_mapping)
  925. i915_gem_gtt_bind_object(obj, obj->cache_level);
  926. ret = i915_gem_object_get_fence(obj);
  927. if (ret)
  928. goto unlock;
  929. if (i915_gem_object_is_inactive(obj))
  930. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  931. obj->fault_mappable = true;
  932. pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
  933. page_offset;
  934. /* Finally, remap it using the new GTT offset */
  935. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  936. unlock:
  937. mutex_unlock(&dev->struct_mutex);
  938. out:
  939. switch (ret) {
  940. case -EIO:
  941. case -EAGAIN:
  942. /* Give the error handler a chance to run and move the
  943. * objects off the GPU active list. Next time we service the
  944. * fault, we should be able to transition the page into the
  945. * GTT without touching the GPU (and so avoid further
  946. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  947. * with coherency, just lost writes.
  948. */
  949. set_need_resched();
  950. case 0:
  951. case -ERESTARTSYS:
  952. case -EINTR:
  953. return VM_FAULT_NOPAGE;
  954. case -ENOMEM:
  955. return VM_FAULT_OOM;
  956. default:
  957. return VM_FAULT_SIGBUS;
  958. }
  959. }
  960. /**
  961. * i915_gem_release_mmap - remove physical page mappings
  962. * @obj: obj in question
  963. *
  964. * Preserve the reservation of the mmapping with the DRM core code, but
  965. * relinquish ownership of the pages back to the system.
  966. *
  967. * It is vital that we remove the page mapping if we have mapped a tiled
  968. * object through the GTT and then lose the fence register due to
  969. * resource pressure. Similarly if the object has been moved out of the
  970. * aperture, than pages mapped into userspace must be revoked. Removing the
  971. * mapping will then trigger a page fault on the next user access, allowing
  972. * fixup by i915_gem_fault().
  973. */
  974. void
  975. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  976. {
  977. if (!obj->fault_mappable)
  978. return;
  979. if (obj->base.dev->dev_mapping)
  980. unmap_mapping_range(obj->base.dev->dev_mapping,
  981. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  982. obj->base.size, 1);
  983. obj->fault_mappable = false;
  984. }
  985. static uint32_t
  986. i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
  987. {
  988. uint32_t gtt_size;
  989. if (INTEL_INFO(dev)->gen >= 4 ||
  990. tiling_mode == I915_TILING_NONE)
  991. return size;
  992. /* Previous chips need a power-of-two fence region when tiling */
  993. if (INTEL_INFO(dev)->gen == 3)
  994. gtt_size = 1024*1024;
  995. else
  996. gtt_size = 512*1024;
  997. while (gtt_size < size)
  998. gtt_size <<= 1;
  999. return gtt_size;
  1000. }
  1001. /**
  1002. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1003. * @obj: object to check
  1004. *
  1005. * Return the required GTT alignment for an object, taking into account
  1006. * potential fence register mapping.
  1007. */
  1008. static uint32_t
  1009. i915_gem_get_gtt_alignment(struct drm_device *dev,
  1010. uint32_t size,
  1011. int tiling_mode)
  1012. {
  1013. /*
  1014. * Minimum alignment is 4k (GTT page size), but might be greater
  1015. * if a fence register is needed for the object.
  1016. */
  1017. if (INTEL_INFO(dev)->gen >= 4 ||
  1018. tiling_mode == I915_TILING_NONE)
  1019. return 4096;
  1020. /*
  1021. * Previous chips need to be aligned to the size of the smallest
  1022. * fence register that can contain the object.
  1023. */
  1024. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1025. }
  1026. /**
  1027. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1028. * unfenced object
  1029. * @dev: the device
  1030. * @size: size of the object
  1031. * @tiling_mode: tiling mode of the object
  1032. *
  1033. * Return the required GTT alignment for an object, only taking into account
  1034. * unfenced tiled surface requirements.
  1035. */
  1036. uint32_t
  1037. i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
  1038. uint32_t size,
  1039. int tiling_mode)
  1040. {
  1041. /*
  1042. * Minimum alignment is 4k (GTT page size) for sane hw.
  1043. */
  1044. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1045. tiling_mode == I915_TILING_NONE)
  1046. return 4096;
  1047. /* Previous hardware however needs to be aligned to a power-of-two
  1048. * tile height. The simplest method for determining this is to reuse
  1049. * the power-of-tile object size.
  1050. */
  1051. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1052. }
  1053. int
  1054. i915_gem_mmap_gtt(struct drm_file *file,
  1055. struct drm_device *dev,
  1056. uint32_t handle,
  1057. uint64_t *offset)
  1058. {
  1059. struct drm_i915_private *dev_priv = dev->dev_private;
  1060. struct drm_i915_gem_object *obj;
  1061. int ret;
  1062. ret = i915_mutex_lock_interruptible(dev);
  1063. if (ret)
  1064. return ret;
  1065. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1066. if (&obj->base == NULL) {
  1067. ret = -ENOENT;
  1068. goto unlock;
  1069. }
  1070. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1071. ret = -E2BIG;
  1072. goto out;
  1073. }
  1074. if (obj->madv != I915_MADV_WILLNEED) {
  1075. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1076. ret = -EINVAL;
  1077. goto out;
  1078. }
  1079. if (!obj->base.map_list.map) {
  1080. ret = drm_gem_create_mmap_offset(&obj->base);
  1081. if (ret)
  1082. goto out;
  1083. }
  1084. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1085. out:
  1086. drm_gem_object_unreference(&obj->base);
  1087. unlock:
  1088. mutex_unlock(&dev->struct_mutex);
  1089. return ret;
  1090. }
  1091. /**
  1092. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1093. * @dev: DRM device
  1094. * @data: GTT mapping ioctl data
  1095. * @file: GEM object info
  1096. *
  1097. * Simply returns the fake offset to userspace so it can mmap it.
  1098. * The mmap call will end up in drm_gem_mmap(), which will set things
  1099. * up so we can get faults in the handler above.
  1100. *
  1101. * The fault handler will take care of binding the object into the GTT
  1102. * (since it may have been evicted to make room for something), allocating
  1103. * a fence register, and mapping the appropriate aperture address into
  1104. * userspace.
  1105. */
  1106. int
  1107. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1108. struct drm_file *file)
  1109. {
  1110. struct drm_i915_gem_mmap_gtt *args = data;
  1111. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1112. }
  1113. static int
  1114. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
  1115. gfp_t gfpmask)
  1116. {
  1117. int page_count, i;
  1118. struct address_space *mapping;
  1119. struct inode *inode;
  1120. struct page *page;
  1121. /* Get the list of pages out of our struct file. They'll be pinned
  1122. * at this point until we release them.
  1123. */
  1124. page_count = obj->base.size / PAGE_SIZE;
  1125. BUG_ON(obj->pages != NULL);
  1126. obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1127. if (obj->pages == NULL)
  1128. return -ENOMEM;
  1129. inode = obj->base.filp->f_path.dentry->d_inode;
  1130. mapping = inode->i_mapping;
  1131. gfpmask |= mapping_gfp_mask(mapping);
  1132. for (i = 0; i < page_count; i++) {
  1133. page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
  1134. if (IS_ERR(page))
  1135. goto err_pages;
  1136. obj->pages[i] = page;
  1137. }
  1138. if (i915_gem_object_needs_bit17_swizzle(obj))
  1139. i915_gem_object_do_bit_17_swizzle(obj);
  1140. return 0;
  1141. err_pages:
  1142. while (i--)
  1143. page_cache_release(obj->pages[i]);
  1144. drm_free_large(obj->pages);
  1145. obj->pages = NULL;
  1146. return PTR_ERR(page);
  1147. }
  1148. static void
  1149. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1150. {
  1151. int page_count = obj->base.size / PAGE_SIZE;
  1152. int i;
  1153. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1154. if (i915_gem_object_needs_bit17_swizzle(obj))
  1155. i915_gem_object_save_bit_17_swizzle(obj);
  1156. if (obj->madv == I915_MADV_DONTNEED)
  1157. obj->dirty = 0;
  1158. for (i = 0; i < page_count; i++) {
  1159. if (obj->dirty)
  1160. set_page_dirty(obj->pages[i]);
  1161. if (obj->madv == I915_MADV_WILLNEED)
  1162. mark_page_accessed(obj->pages[i]);
  1163. page_cache_release(obj->pages[i]);
  1164. }
  1165. obj->dirty = 0;
  1166. drm_free_large(obj->pages);
  1167. obj->pages = NULL;
  1168. }
  1169. void
  1170. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1171. struct intel_ring_buffer *ring,
  1172. u32 seqno)
  1173. {
  1174. struct drm_device *dev = obj->base.dev;
  1175. struct drm_i915_private *dev_priv = dev->dev_private;
  1176. BUG_ON(ring == NULL);
  1177. obj->ring = ring;
  1178. /* Add a reference if we're newly entering the active list. */
  1179. if (!obj->active) {
  1180. drm_gem_object_reference(&obj->base);
  1181. obj->active = 1;
  1182. }
  1183. /* Move from whatever list we were on to the tail of execution. */
  1184. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1185. list_move_tail(&obj->ring_list, &ring->active_list);
  1186. obj->last_rendering_seqno = seqno;
  1187. if (obj->fenced_gpu_access) {
  1188. obj->last_fenced_seqno = seqno;
  1189. /* Bump MRU to take account of the delayed flush */
  1190. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1191. struct drm_i915_fence_reg *reg;
  1192. reg = &dev_priv->fence_regs[obj->fence_reg];
  1193. list_move_tail(&reg->lru_list,
  1194. &dev_priv->mm.fence_list);
  1195. }
  1196. }
  1197. }
  1198. static void
  1199. i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
  1200. {
  1201. list_del_init(&obj->ring_list);
  1202. obj->last_rendering_seqno = 0;
  1203. obj->last_fenced_seqno = 0;
  1204. }
  1205. static void
  1206. i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
  1207. {
  1208. struct drm_device *dev = obj->base.dev;
  1209. drm_i915_private_t *dev_priv = dev->dev_private;
  1210. BUG_ON(!obj->active);
  1211. list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
  1212. i915_gem_object_move_off_active(obj);
  1213. }
  1214. static void
  1215. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1216. {
  1217. struct drm_device *dev = obj->base.dev;
  1218. struct drm_i915_private *dev_priv = dev->dev_private;
  1219. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1220. BUG_ON(!list_empty(&obj->gpu_write_list));
  1221. BUG_ON(!obj->active);
  1222. obj->ring = NULL;
  1223. i915_gem_object_move_off_active(obj);
  1224. obj->fenced_gpu_access = false;
  1225. obj->active = 0;
  1226. obj->pending_gpu_write = false;
  1227. drm_gem_object_unreference(&obj->base);
  1228. WARN_ON(i915_verify_lists(dev));
  1229. }
  1230. /* Immediately discard the backing storage */
  1231. static void
  1232. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1233. {
  1234. struct inode *inode;
  1235. /* Our goal here is to return as much of the memory as
  1236. * is possible back to the system as we are called from OOM.
  1237. * To do this we must instruct the shmfs to drop all of its
  1238. * backing pages, *now*.
  1239. */
  1240. inode = obj->base.filp->f_path.dentry->d_inode;
  1241. shmem_truncate_range(inode, 0, (loff_t)-1);
  1242. if (obj->base.map_list.map)
  1243. drm_gem_free_mmap_offset(&obj->base);
  1244. obj->madv = __I915_MADV_PURGED;
  1245. }
  1246. static inline int
  1247. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1248. {
  1249. return obj->madv == I915_MADV_DONTNEED;
  1250. }
  1251. static void
  1252. i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
  1253. uint32_t flush_domains)
  1254. {
  1255. struct drm_i915_gem_object *obj, *next;
  1256. list_for_each_entry_safe(obj, next,
  1257. &ring->gpu_write_list,
  1258. gpu_write_list) {
  1259. if (obj->base.write_domain & flush_domains) {
  1260. uint32_t old_write_domain = obj->base.write_domain;
  1261. obj->base.write_domain = 0;
  1262. list_del_init(&obj->gpu_write_list);
  1263. i915_gem_object_move_to_active(obj, ring,
  1264. i915_gem_next_request_seqno(ring));
  1265. trace_i915_gem_object_change_domain(obj,
  1266. obj->base.read_domains,
  1267. old_write_domain);
  1268. }
  1269. }
  1270. }
  1271. static u32
  1272. i915_gem_get_seqno(struct drm_device *dev)
  1273. {
  1274. drm_i915_private_t *dev_priv = dev->dev_private;
  1275. u32 seqno = dev_priv->next_seqno;
  1276. /* reserve 0 for non-seqno */
  1277. if (++dev_priv->next_seqno == 0)
  1278. dev_priv->next_seqno = 1;
  1279. return seqno;
  1280. }
  1281. u32
  1282. i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
  1283. {
  1284. if (ring->outstanding_lazy_request == 0)
  1285. ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
  1286. return ring->outstanding_lazy_request;
  1287. }
  1288. int
  1289. i915_add_request(struct intel_ring_buffer *ring,
  1290. struct drm_file *file,
  1291. struct drm_i915_gem_request *request)
  1292. {
  1293. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1294. uint32_t seqno;
  1295. u32 request_ring_position;
  1296. int was_empty;
  1297. int ret;
  1298. BUG_ON(request == NULL);
  1299. seqno = i915_gem_next_request_seqno(ring);
  1300. /* Record the position of the start of the request so that
  1301. * should we detect the updated seqno part-way through the
  1302. * GPU processing the request, we never over-estimate the
  1303. * position of the head.
  1304. */
  1305. request_ring_position = intel_ring_get_tail(ring);
  1306. ret = ring->add_request(ring, &seqno);
  1307. if (ret)
  1308. return ret;
  1309. trace_i915_gem_request_add(ring, seqno);
  1310. request->seqno = seqno;
  1311. request->ring = ring;
  1312. request->tail = request_ring_position;
  1313. request->emitted_jiffies = jiffies;
  1314. was_empty = list_empty(&ring->request_list);
  1315. list_add_tail(&request->list, &ring->request_list);
  1316. if (file) {
  1317. struct drm_i915_file_private *file_priv = file->driver_priv;
  1318. spin_lock(&file_priv->mm.lock);
  1319. request->file_priv = file_priv;
  1320. list_add_tail(&request->client_list,
  1321. &file_priv->mm.request_list);
  1322. spin_unlock(&file_priv->mm.lock);
  1323. }
  1324. ring->outstanding_lazy_request = 0;
  1325. if (!dev_priv->mm.suspended) {
  1326. if (i915_enable_hangcheck) {
  1327. mod_timer(&dev_priv->hangcheck_timer,
  1328. jiffies +
  1329. msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1330. }
  1331. if (was_empty)
  1332. queue_delayed_work(dev_priv->wq,
  1333. &dev_priv->mm.retire_work, HZ);
  1334. }
  1335. return 0;
  1336. }
  1337. static inline void
  1338. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1339. {
  1340. struct drm_i915_file_private *file_priv = request->file_priv;
  1341. if (!file_priv)
  1342. return;
  1343. spin_lock(&file_priv->mm.lock);
  1344. if (request->file_priv) {
  1345. list_del(&request->client_list);
  1346. request->file_priv = NULL;
  1347. }
  1348. spin_unlock(&file_priv->mm.lock);
  1349. }
  1350. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1351. struct intel_ring_buffer *ring)
  1352. {
  1353. while (!list_empty(&ring->request_list)) {
  1354. struct drm_i915_gem_request *request;
  1355. request = list_first_entry(&ring->request_list,
  1356. struct drm_i915_gem_request,
  1357. list);
  1358. list_del(&request->list);
  1359. i915_gem_request_remove_from_client(request);
  1360. kfree(request);
  1361. }
  1362. while (!list_empty(&ring->active_list)) {
  1363. struct drm_i915_gem_object *obj;
  1364. obj = list_first_entry(&ring->active_list,
  1365. struct drm_i915_gem_object,
  1366. ring_list);
  1367. obj->base.write_domain = 0;
  1368. list_del_init(&obj->gpu_write_list);
  1369. i915_gem_object_move_to_inactive(obj);
  1370. }
  1371. }
  1372. static void i915_gem_reset_fences(struct drm_device *dev)
  1373. {
  1374. struct drm_i915_private *dev_priv = dev->dev_private;
  1375. int i;
  1376. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  1377. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1378. i915_gem_write_fence(dev, i, NULL);
  1379. if (reg->obj)
  1380. i915_gem_object_fence_lost(reg->obj);
  1381. reg->pin_count = 0;
  1382. reg->obj = NULL;
  1383. INIT_LIST_HEAD(&reg->lru_list);
  1384. }
  1385. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  1386. }
  1387. void i915_gem_reset(struct drm_device *dev)
  1388. {
  1389. struct drm_i915_private *dev_priv = dev->dev_private;
  1390. struct drm_i915_gem_object *obj;
  1391. int i;
  1392. for (i = 0; i < I915_NUM_RINGS; i++)
  1393. i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
  1394. /* Remove anything from the flushing lists. The GPU cache is likely
  1395. * to be lost on reset along with the data, so simply move the
  1396. * lost bo to the inactive list.
  1397. */
  1398. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1399. obj = list_first_entry(&dev_priv->mm.flushing_list,
  1400. struct drm_i915_gem_object,
  1401. mm_list);
  1402. obj->base.write_domain = 0;
  1403. list_del_init(&obj->gpu_write_list);
  1404. i915_gem_object_move_to_inactive(obj);
  1405. }
  1406. /* Move everything out of the GPU domains to ensure we do any
  1407. * necessary invalidation upon reuse.
  1408. */
  1409. list_for_each_entry(obj,
  1410. &dev_priv->mm.inactive_list,
  1411. mm_list)
  1412. {
  1413. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1414. }
  1415. /* The fence registers are invalidated so clear them out */
  1416. i915_gem_reset_fences(dev);
  1417. }
  1418. /**
  1419. * This function clears the request list as sequence numbers are passed.
  1420. */
  1421. void
  1422. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1423. {
  1424. uint32_t seqno;
  1425. int i;
  1426. if (list_empty(&ring->request_list))
  1427. return;
  1428. WARN_ON(i915_verify_lists(ring->dev));
  1429. seqno = ring->get_seqno(ring);
  1430. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1431. if (seqno >= ring->sync_seqno[i])
  1432. ring->sync_seqno[i] = 0;
  1433. while (!list_empty(&ring->request_list)) {
  1434. struct drm_i915_gem_request *request;
  1435. request = list_first_entry(&ring->request_list,
  1436. struct drm_i915_gem_request,
  1437. list);
  1438. if (!i915_seqno_passed(seqno, request->seqno))
  1439. break;
  1440. trace_i915_gem_request_retire(ring, request->seqno);
  1441. /* We know the GPU must have read the request to have
  1442. * sent us the seqno + interrupt, so use the position
  1443. * of tail of the request to update the last known position
  1444. * of the GPU head.
  1445. */
  1446. ring->last_retired_head = request->tail;
  1447. list_del(&request->list);
  1448. i915_gem_request_remove_from_client(request);
  1449. kfree(request);
  1450. }
  1451. /* Move any buffers on the active list that are no longer referenced
  1452. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1453. */
  1454. while (!list_empty(&ring->active_list)) {
  1455. struct drm_i915_gem_object *obj;
  1456. obj = list_first_entry(&ring->active_list,
  1457. struct drm_i915_gem_object,
  1458. ring_list);
  1459. if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
  1460. break;
  1461. if (obj->base.write_domain != 0)
  1462. i915_gem_object_move_to_flushing(obj);
  1463. else
  1464. i915_gem_object_move_to_inactive(obj);
  1465. }
  1466. if (unlikely(ring->trace_irq_seqno &&
  1467. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1468. ring->irq_put(ring);
  1469. ring->trace_irq_seqno = 0;
  1470. }
  1471. WARN_ON(i915_verify_lists(ring->dev));
  1472. }
  1473. void
  1474. i915_gem_retire_requests(struct drm_device *dev)
  1475. {
  1476. drm_i915_private_t *dev_priv = dev->dev_private;
  1477. int i;
  1478. for (i = 0; i < I915_NUM_RINGS; i++)
  1479. i915_gem_retire_requests_ring(&dev_priv->ring[i]);
  1480. }
  1481. static void
  1482. i915_gem_retire_work_handler(struct work_struct *work)
  1483. {
  1484. drm_i915_private_t *dev_priv;
  1485. struct drm_device *dev;
  1486. bool idle;
  1487. int i;
  1488. dev_priv = container_of(work, drm_i915_private_t,
  1489. mm.retire_work.work);
  1490. dev = dev_priv->dev;
  1491. /* Come back later if the device is busy... */
  1492. if (!mutex_trylock(&dev->struct_mutex)) {
  1493. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1494. return;
  1495. }
  1496. i915_gem_retire_requests(dev);
  1497. /* Send a periodic flush down the ring so we don't hold onto GEM
  1498. * objects indefinitely.
  1499. */
  1500. idle = true;
  1501. for (i = 0; i < I915_NUM_RINGS; i++) {
  1502. struct intel_ring_buffer *ring = &dev_priv->ring[i];
  1503. if (!list_empty(&ring->gpu_write_list)) {
  1504. struct drm_i915_gem_request *request;
  1505. int ret;
  1506. ret = i915_gem_flush_ring(ring,
  1507. 0, I915_GEM_GPU_DOMAINS);
  1508. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1509. if (ret || request == NULL ||
  1510. i915_add_request(ring, NULL, request))
  1511. kfree(request);
  1512. }
  1513. idle &= list_empty(&ring->request_list);
  1514. }
  1515. if (!dev_priv->mm.suspended && !idle)
  1516. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1517. mutex_unlock(&dev->struct_mutex);
  1518. }
  1519. /**
  1520. * Waits for a sequence number to be signaled, and cleans up the
  1521. * request and object lists appropriately for that event.
  1522. */
  1523. int
  1524. i915_wait_request(struct intel_ring_buffer *ring,
  1525. uint32_t seqno)
  1526. {
  1527. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1528. int ret = 0;
  1529. BUG_ON(seqno == 0);
  1530. if (atomic_read(&dev_priv->mm.wedged)) {
  1531. struct completion *x = &dev_priv->error_completion;
  1532. bool recovery_complete;
  1533. unsigned long flags;
  1534. /* Give the error handler a chance to run. */
  1535. spin_lock_irqsave(&x->wait.lock, flags);
  1536. recovery_complete = x->done > 0;
  1537. spin_unlock_irqrestore(&x->wait.lock, flags);
  1538. return recovery_complete ? -EIO : -EAGAIN;
  1539. }
  1540. if (seqno == ring->outstanding_lazy_request) {
  1541. struct drm_i915_gem_request *request;
  1542. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1543. if (request == NULL)
  1544. return -ENOMEM;
  1545. ret = i915_add_request(ring, NULL, request);
  1546. if (ret) {
  1547. kfree(request);
  1548. return ret;
  1549. }
  1550. seqno = request->seqno;
  1551. }
  1552. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1553. trace_i915_gem_request_wait_begin(ring, seqno);
  1554. ring->waiting_seqno = seqno;
  1555. if (ring->irq_get(ring)) {
  1556. if (dev_priv->mm.interruptible)
  1557. ret = wait_event_interruptible(ring->irq_queue,
  1558. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1559. || atomic_read(&dev_priv->mm.wedged));
  1560. else
  1561. wait_event(ring->irq_queue,
  1562. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1563. || atomic_read(&dev_priv->mm.wedged));
  1564. ring->irq_put(ring);
  1565. } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
  1566. seqno) ||
  1567. atomic_read(&dev_priv->mm.wedged), 3000))
  1568. ret = -EBUSY;
  1569. ring->waiting_seqno = 0;
  1570. trace_i915_gem_request_wait_end(ring, seqno);
  1571. }
  1572. if (atomic_read(&dev_priv->mm.wedged))
  1573. ret = -EAGAIN;
  1574. return ret;
  1575. }
  1576. /**
  1577. * Ensures that all rendering to the object has completed and the object is
  1578. * safe to unbind from the GTT or access from the CPU.
  1579. */
  1580. int
  1581. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
  1582. {
  1583. int ret;
  1584. /* This function only exists to support waiting for existing rendering,
  1585. * not for emitting required flushes.
  1586. */
  1587. BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1588. /* If there is rendering queued on the buffer being evicted, wait for
  1589. * it.
  1590. */
  1591. if (obj->active) {
  1592. ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
  1593. if (ret)
  1594. return ret;
  1595. i915_gem_retire_requests_ring(obj->ring);
  1596. }
  1597. return 0;
  1598. }
  1599. /**
  1600. * i915_gem_object_sync - sync an object to a ring.
  1601. *
  1602. * @obj: object which may be in use on another ring.
  1603. * @to: ring we wish to use the object on. May be NULL.
  1604. *
  1605. * This code is meant to abstract object synchronization with the GPU.
  1606. * Calling with NULL implies synchronizing the object with the CPU
  1607. * rather than a particular GPU ring.
  1608. *
  1609. * Returns 0 if successful, else propagates up the lower layer error.
  1610. */
  1611. int
  1612. i915_gem_object_sync(struct drm_i915_gem_object *obj,
  1613. struct intel_ring_buffer *to)
  1614. {
  1615. struct intel_ring_buffer *from = obj->ring;
  1616. u32 seqno;
  1617. int ret, idx;
  1618. if (from == NULL || to == from)
  1619. return 0;
  1620. if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
  1621. return i915_gem_object_wait_rendering(obj);
  1622. idx = intel_ring_sync_index(from, to);
  1623. seqno = obj->last_rendering_seqno;
  1624. if (seqno <= from->sync_seqno[idx])
  1625. return 0;
  1626. if (seqno == from->outstanding_lazy_request) {
  1627. struct drm_i915_gem_request *request;
  1628. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1629. if (request == NULL)
  1630. return -ENOMEM;
  1631. ret = i915_add_request(from, NULL, request);
  1632. if (ret) {
  1633. kfree(request);
  1634. return ret;
  1635. }
  1636. seqno = request->seqno;
  1637. }
  1638. ret = to->sync_to(to, from, seqno);
  1639. if (!ret)
  1640. from->sync_seqno[idx] = seqno;
  1641. return ret;
  1642. }
  1643. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  1644. {
  1645. u32 old_write_domain, old_read_domains;
  1646. /* Act a barrier for all accesses through the GTT */
  1647. mb();
  1648. /* Force a pagefault for domain tracking on next user access */
  1649. i915_gem_release_mmap(obj);
  1650. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  1651. return;
  1652. old_read_domains = obj->base.read_domains;
  1653. old_write_domain = obj->base.write_domain;
  1654. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  1655. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  1656. trace_i915_gem_object_change_domain(obj,
  1657. old_read_domains,
  1658. old_write_domain);
  1659. }
  1660. /**
  1661. * Unbinds an object from the GTT aperture.
  1662. */
  1663. int
  1664. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  1665. {
  1666. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  1667. int ret = 0;
  1668. if (obj->gtt_space == NULL)
  1669. return 0;
  1670. if (obj->pin_count != 0) {
  1671. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1672. return -EINVAL;
  1673. }
  1674. ret = i915_gem_object_finish_gpu(obj);
  1675. if (ret)
  1676. return ret;
  1677. /* Continue on if we fail due to EIO, the GPU is hung so we
  1678. * should be safe and we need to cleanup or else we might
  1679. * cause memory corruption through use-after-free.
  1680. */
  1681. i915_gem_object_finish_gtt(obj);
  1682. /* Move the object to the CPU domain to ensure that
  1683. * any possible CPU writes while it's not in the GTT
  1684. * are flushed when we go to remap it.
  1685. */
  1686. if (ret == 0)
  1687. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1688. if (ret == -ERESTARTSYS)
  1689. return ret;
  1690. if (ret) {
  1691. /* In the event of a disaster, abandon all caches and
  1692. * hope for the best.
  1693. */
  1694. i915_gem_clflush_object(obj);
  1695. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1696. }
  1697. /* release the fence reg _after_ flushing */
  1698. ret = i915_gem_object_put_fence(obj);
  1699. if (ret)
  1700. return ret;
  1701. trace_i915_gem_object_unbind(obj);
  1702. if (obj->has_global_gtt_mapping)
  1703. i915_gem_gtt_unbind_object(obj);
  1704. if (obj->has_aliasing_ppgtt_mapping) {
  1705. i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
  1706. obj->has_aliasing_ppgtt_mapping = 0;
  1707. }
  1708. i915_gem_gtt_finish_object(obj);
  1709. i915_gem_object_put_pages_gtt(obj);
  1710. list_del_init(&obj->gtt_list);
  1711. list_del_init(&obj->mm_list);
  1712. /* Avoid an unnecessary call to unbind on rebind. */
  1713. obj->map_and_fenceable = true;
  1714. drm_mm_put_block(obj->gtt_space);
  1715. obj->gtt_space = NULL;
  1716. obj->gtt_offset = 0;
  1717. if (i915_gem_object_is_purgeable(obj))
  1718. i915_gem_object_truncate(obj);
  1719. return ret;
  1720. }
  1721. int
  1722. i915_gem_flush_ring(struct intel_ring_buffer *ring,
  1723. uint32_t invalidate_domains,
  1724. uint32_t flush_domains)
  1725. {
  1726. int ret;
  1727. if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
  1728. return 0;
  1729. trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
  1730. ret = ring->flush(ring, invalidate_domains, flush_domains);
  1731. if (ret)
  1732. return ret;
  1733. if (flush_domains & I915_GEM_GPU_DOMAINS)
  1734. i915_gem_process_flushing_list(ring, flush_domains);
  1735. return 0;
  1736. }
  1737. static int i915_ring_idle(struct intel_ring_buffer *ring)
  1738. {
  1739. int ret;
  1740. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1741. return 0;
  1742. if (!list_empty(&ring->gpu_write_list)) {
  1743. ret = i915_gem_flush_ring(ring,
  1744. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1745. if (ret)
  1746. return ret;
  1747. }
  1748. return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
  1749. }
  1750. int i915_gpu_idle(struct drm_device *dev)
  1751. {
  1752. drm_i915_private_t *dev_priv = dev->dev_private;
  1753. int ret, i;
  1754. /* Flush everything onto the inactive list. */
  1755. for (i = 0; i < I915_NUM_RINGS; i++) {
  1756. ret = i915_ring_idle(&dev_priv->ring[i]);
  1757. if (ret)
  1758. return ret;
  1759. }
  1760. return 0;
  1761. }
  1762. static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
  1763. struct drm_i915_gem_object *obj)
  1764. {
  1765. drm_i915_private_t *dev_priv = dev->dev_private;
  1766. uint64_t val;
  1767. if (obj) {
  1768. u32 size = obj->gtt_space->size;
  1769. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1770. 0xfffff000) << 32;
  1771. val |= obj->gtt_offset & 0xfffff000;
  1772. val |= (uint64_t)((obj->stride / 128) - 1) <<
  1773. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1774. if (obj->tiling_mode == I915_TILING_Y)
  1775. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1776. val |= I965_FENCE_REG_VALID;
  1777. } else
  1778. val = 0;
  1779. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
  1780. POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
  1781. }
  1782. static void i965_write_fence_reg(struct drm_device *dev, int reg,
  1783. struct drm_i915_gem_object *obj)
  1784. {
  1785. drm_i915_private_t *dev_priv = dev->dev_private;
  1786. uint64_t val;
  1787. if (obj) {
  1788. u32 size = obj->gtt_space->size;
  1789. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1790. 0xfffff000) << 32;
  1791. val |= obj->gtt_offset & 0xfffff000;
  1792. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1793. if (obj->tiling_mode == I915_TILING_Y)
  1794. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1795. val |= I965_FENCE_REG_VALID;
  1796. } else
  1797. val = 0;
  1798. I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
  1799. POSTING_READ(FENCE_REG_965_0 + reg * 8);
  1800. }
  1801. static void i915_write_fence_reg(struct drm_device *dev, int reg,
  1802. struct drm_i915_gem_object *obj)
  1803. {
  1804. drm_i915_private_t *dev_priv = dev->dev_private;
  1805. u32 val;
  1806. if (obj) {
  1807. u32 size = obj->gtt_space->size;
  1808. int pitch_val;
  1809. int tile_width;
  1810. WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  1811. (size & -size) != size ||
  1812. (obj->gtt_offset & (size - 1)),
  1813. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  1814. obj->gtt_offset, obj->map_and_fenceable, size);
  1815. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  1816. tile_width = 128;
  1817. else
  1818. tile_width = 512;
  1819. /* Note: pitch better be a power of two tile widths */
  1820. pitch_val = obj->stride / tile_width;
  1821. pitch_val = ffs(pitch_val) - 1;
  1822. val = obj->gtt_offset;
  1823. if (obj->tiling_mode == I915_TILING_Y)
  1824. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1825. val |= I915_FENCE_SIZE_BITS(size);
  1826. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1827. val |= I830_FENCE_REG_VALID;
  1828. } else
  1829. val = 0;
  1830. if (reg < 8)
  1831. reg = FENCE_REG_830_0 + reg * 4;
  1832. else
  1833. reg = FENCE_REG_945_8 + (reg - 8) * 4;
  1834. I915_WRITE(reg, val);
  1835. POSTING_READ(reg);
  1836. }
  1837. static void i830_write_fence_reg(struct drm_device *dev, int reg,
  1838. struct drm_i915_gem_object *obj)
  1839. {
  1840. drm_i915_private_t *dev_priv = dev->dev_private;
  1841. uint32_t val;
  1842. if (obj) {
  1843. u32 size = obj->gtt_space->size;
  1844. uint32_t pitch_val;
  1845. WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  1846. (size & -size) != size ||
  1847. (obj->gtt_offset & (size - 1)),
  1848. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  1849. obj->gtt_offset, size);
  1850. pitch_val = obj->stride / 128;
  1851. pitch_val = ffs(pitch_val) - 1;
  1852. val = obj->gtt_offset;
  1853. if (obj->tiling_mode == I915_TILING_Y)
  1854. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1855. val |= I830_FENCE_SIZE_BITS(size);
  1856. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1857. val |= I830_FENCE_REG_VALID;
  1858. } else
  1859. val = 0;
  1860. I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
  1861. POSTING_READ(FENCE_REG_830_0 + reg * 4);
  1862. }
  1863. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  1864. struct drm_i915_gem_object *obj)
  1865. {
  1866. switch (INTEL_INFO(dev)->gen) {
  1867. case 7:
  1868. case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
  1869. case 5:
  1870. case 4: i965_write_fence_reg(dev, reg, obj); break;
  1871. case 3: i915_write_fence_reg(dev, reg, obj); break;
  1872. case 2: i830_write_fence_reg(dev, reg, obj); break;
  1873. default: break;
  1874. }
  1875. }
  1876. static inline int fence_number(struct drm_i915_private *dev_priv,
  1877. struct drm_i915_fence_reg *fence)
  1878. {
  1879. return fence - dev_priv->fence_regs;
  1880. }
  1881. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  1882. struct drm_i915_fence_reg *fence,
  1883. bool enable)
  1884. {
  1885. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1886. int reg = fence_number(dev_priv, fence);
  1887. i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
  1888. if (enable) {
  1889. obj->fence_reg = reg;
  1890. fence->obj = obj;
  1891. list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
  1892. } else {
  1893. obj->fence_reg = I915_FENCE_REG_NONE;
  1894. fence->obj = NULL;
  1895. list_del_init(&fence->lru_list);
  1896. }
  1897. }
  1898. static int
  1899. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
  1900. {
  1901. int ret;
  1902. if (obj->fenced_gpu_access) {
  1903. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  1904. ret = i915_gem_flush_ring(obj->ring,
  1905. 0, obj->base.write_domain);
  1906. if (ret)
  1907. return ret;
  1908. }
  1909. obj->fenced_gpu_access = false;
  1910. }
  1911. if (obj->last_fenced_seqno) {
  1912. ret = i915_wait_request(obj->ring, obj->last_fenced_seqno);
  1913. if (ret)
  1914. return ret;
  1915. obj->last_fenced_seqno = 0;
  1916. }
  1917. /* Ensure that all CPU reads are completed before installing a fence
  1918. * and all writes before removing the fence.
  1919. */
  1920. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  1921. mb();
  1922. return 0;
  1923. }
  1924. int
  1925. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  1926. {
  1927. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1928. int ret;
  1929. ret = i915_gem_object_flush_fence(obj);
  1930. if (ret)
  1931. return ret;
  1932. if (obj->fence_reg == I915_FENCE_REG_NONE)
  1933. return 0;
  1934. i915_gem_object_update_fence(obj,
  1935. &dev_priv->fence_regs[obj->fence_reg],
  1936. false);
  1937. i915_gem_object_fence_lost(obj);
  1938. return 0;
  1939. }
  1940. static struct drm_i915_fence_reg *
  1941. i915_find_fence_reg(struct drm_device *dev)
  1942. {
  1943. struct drm_i915_private *dev_priv = dev->dev_private;
  1944. struct drm_i915_fence_reg *reg, *avail;
  1945. int i;
  1946. /* First try to find a free reg */
  1947. avail = NULL;
  1948. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  1949. reg = &dev_priv->fence_regs[i];
  1950. if (!reg->obj)
  1951. return reg;
  1952. if (!reg->pin_count)
  1953. avail = reg;
  1954. }
  1955. if (avail == NULL)
  1956. return NULL;
  1957. /* None available, try to steal one or wait for a user to finish */
  1958. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  1959. if (reg->pin_count)
  1960. continue;
  1961. return reg;
  1962. }
  1963. return NULL;
  1964. }
  1965. /**
  1966. * i915_gem_object_get_fence - set up fencing for an object
  1967. * @obj: object to map through a fence reg
  1968. *
  1969. * When mapping objects through the GTT, userspace wants to be able to write
  1970. * to them without having to worry about swizzling if the object is tiled.
  1971. * This function walks the fence regs looking for a free one for @obj,
  1972. * stealing one if it can't find any.
  1973. *
  1974. * It then sets up the reg based on the object's properties: address, pitch
  1975. * and tiling format.
  1976. *
  1977. * For an untiled surface, this removes any existing fence.
  1978. */
  1979. int
  1980. i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
  1981. {
  1982. struct drm_device *dev = obj->base.dev;
  1983. struct drm_i915_private *dev_priv = dev->dev_private;
  1984. bool enable = obj->tiling_mode != I915_TILING_NONE;
  1985. struct drm_i915_fence_reg *reg;
  1986. int ret;
  1987. /* Have we updated the tiling parameters upon the object and so
  1988. * will need to serialise the write to the associated fence register?
  1989. */
  1990. if (obj->fence_dirty) {
  1991. ret = i915_gem_object_flush_fence(obj);
  1992. if (ret)
  1993. return ret;
  1994. }
  1995. /* Just update our place in the LRU if our fence is getting reused. */
  1996. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1997. reg = &dev_priv->fence_regs[obj->fence_reg];
  1998. if (!obj->fence_dirty) {
  1999. list_move_tail(&reg->lru_list,
  2000. &dev_priv->mm.fence_list);
  2001. return 0;
  2002. }
  2003. } else if (enable) {
  2004. reg = i915_find_fence_reg(dev);
  2005. if (reg == NULL)
  2006. return -EDEADLK;
  2007. if (reg->obj) {
  2008. struct drm_i915_gem_object *old = reg->obj;
  2009. ret = i915_gem_object_flush_fence(old);
  2010. if (ret)
  2011. return ret;
  2012. i915_gem_object_fence_lost(old);
  2013. }
  2014. } else
  2015. return 0;
  2016. i915_gem_object_update_fence(obj, reg, enable);
  2017. obj->fence_dirty = false;
  2018. return 0;
  2019. }
  2020. /**
  2021. * Finds free space in the GTT aperture and binds the object there.
  2022. */
  2023. static int
  2024. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2025. unsigned alignment,
  2026. bool map_and_fenceable)
  2027. {
  2028. struct drm_device *dev = obj->base.dev;
  2029. drm_i915_private_t *dev_priv = dev->dev_private;
  2030. struct drm_mm_node *free_space;
  2031. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2032. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2033. bool mappable, fenceable;
  2034. int ret;
  2035. if (obj->madv != I915_MADV_WILLNEED) {
  2036. DRM_ERROR("Attempting to bind a purgeable object\n");
  2037. return -EINVAL;
  2038. }
  2039. fence_size = i915_gem_get_gtt_size(dev,
  2040. obj->base.size,
  2041. obj->tiling_mode);
  2042. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2043. obj->base.size,
  2044. obj->tiling_mode);
  2045. unfenced_alignment =
  2046. i915_gem_get_unfenced_gtt_alignment(dev,
  2047. obj->base.size,
  2048. obj->tiling_mode);
  2049. if (alignment == 0)
  2050. alignment = map_and_fenceable ? fence_alignment :
  2051. unfenced_alignment;
  2052. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2053. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2054. return -EINVAL;
  2055. }
  2056. size = map_and_fenceable ? fence_size : obj->base.size;
  2057. /* If the object is bigger than the entire aperture, reject it early
  2058. * before evicting everything in a vain attempt to find space.
  2059. */
  2060. if (obj->base.size >
  2061. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2062. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2063. return -E2BIG;
  2064. }
  2065. search_free:
  2066. if (map_and_fenceable)
  2067. free_space =
  2068. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2069. size, alignment, 0,
  2070. dev_priv->mm.gtt_mappable_end,
  2071. 0);
  2072. else
  2073. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2074. size, alignment, 0);
  2075. if (free_space != NULL) {
  2076. if (map_and_fenceable)
  2077. obj->gtt_space =
  2078. drm_mm_get_block_range_generic(free_space,
  2079. size, alignment, 0,
  2080. dev_priv->mm.gtt_mappable_end,
  2081. 0);
  2082. else
  2083. obj->gtt_space =
  2084. drm_mm_get_block(free_space, size, alignment);
  2085. }
  2086. if (obj->gtt_space == NULL) {
  2087. /* If the gtt is empty and we're still having trouble
  2088. * fitting our object in, we're out of memory.
  2089. */
  2090. ret = i915_gem_evict_something(dev, size, alignment,
  2091. map_and_fenceable);
  2092. if (ret)
  2093. return ret;
  2094. goto search_free;
  2095. }
  2096. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2097. if (ret) {
  2098. drm_mm_put_block(obj->gtt_space);
  2099. obj->gtt_space = NULL;
  2100. if (ret == -ENOMEM) {
  2101. /* first try to reclaim some memory by clearing the GTT */
  2102. ret = i915_gem_evict_everything(dev, false);
  2103. if (ret) {
  2104. /* now try to shrink everyone else */
  2105. if (gfpmask) {
  2106. gfpmask = 0;
  2107. goto search_free;
  2108. }
  2109. return -ENOMEM;
  2110. }
  2111. goto search_free;
  2112. }
  2113. return ret;
  2114. }
  2115. ret = i915_gem_gtt_prepare_object(obj);
  2116. if (ret) {
  2117. i915_gem_object_put_pages_gtt(obj);
  2118. drm_mm_put_block(obj->gtt_space);
  2119. obj->gtt_space = NULL;
  2120. if (i915_gem_evict_everything(dev, false))
  2121. return ret;
  2122. goto search_free;
  2123. }
  2124. if (!dev_priv->mm.aliasing_ppgtt)
  2125. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2126. list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
  2127. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2128. /* Assert that the object is not currently in any GPU domain. As it
  2129. * wasn't in the GTT, there shouldn't be any way it could have been in
  2130. * a GPU cache
  2131. */
  2132. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  2133. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  2134. obj->gtt_offset = obj->gtt_space->start;
  2135. fenceable =
  2136. obj->gtt_space->size == fence_size &&
  2137. (obj->gtt_space->start & (fence_alignment - 1)) == 0;
  2138. mappable =
  2139. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2140. obj->map_and_fenceable = mappable && fenceable;
  2141. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2142. return 0;
  2143. }
  2144. void
  2145. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2146. {
  2147. /* If we don't have a page list set up, then we're not pinned
  2148. * to GPU, and we can ignore the cache flush because it'll happen
  2149. * again at bind time.
  2150. */
  2151. if (obj->pages == NULL)
  2152. return;
  2153. /* If the GPU is snooping the contents of the CPU cache,
  2154. * we do not need to manually clear the CPU cache lines. However,
  2155. * the caches are only snooped when the render cache is
  2156. * flushed/invalidated. As we always have to emit invalidations
  2157. * and flushes when moving into and out of the RENDER domain, correct
  2158. * snooping behaviour occurs naturally as the result of our domain
  2159. * tracking.
  2160. */
  2161. if (obj->cache_level != I915_CACHE_NONE)
  2162. return;
  2163. trace_i915_gem_object_clflush(obj);
  2164. drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
  2165. }
  2166. /** Flushes any GPU write domain for the object if it's dirty. */
  2167. static int
  2168. i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
  2169. {
  2170. if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2171. return 0;
  2172. /* Queue the GPU write cache flushing we need. */
  2173. return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2174. }
  2175. /** Flushes the GTT write domain for the object if it's dirty. */
  2176. static void
  2177. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2178. {
  2179. uint32_t old_write_domain;
  2180. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2181. return;
  2182. /* No actual flushing is required for the GTT write domain. Writes
  2183. * to it immediately go to main memory as far as we know, so there's
  2184. * no chipset flush. It also doesn't land in render cache.
  2185. *
  2186. * However, we do have to enforce the order so that all writes through
  2187. * the GTT land before any writes to the device, such as updates to
  2188. * the GATT itself.
  2189. */
  2190. wmb();
  2191. old_write_domain = obj->base.write_domain;
  2192. obj->base.write_domain = 0;
  2193. trace_i915_gem_object_change_domain(obj,
  2194. obj->base.read_domains,
  2195. old_write_domain);
  2196. }
  2197. /** Flushes the CPU write domain for the object if it's dirty. */
  2198. static void
  2199. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2200. {
  2201. uint32_t old_write_domain;
  2202. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2203. return;
  2204. i915_gem_clflush_object(obj);
  2205. intel_gtt_chipset_flush();
  2206. old_write_domain = obj->base.write_domain;
  2207. obj->base.write_domain = 0;
  2208. trace_i915_gem_object_change_domain(obj,
  2209. obj->base.read_domains,
  2210. old_write_domain);
  2211. }
  2212. /**
  2213. * Moves a single object to the GTT read, and possibly write domain.
  2214. *
  2215. * This function returns when the move is complete, including waiting on
  2216. * flushes to occur.
  2217. */
  2218. int
  2219. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2220. {
  2221. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  2222. uint32_t old_write_domain, old_read_domains;
  2223. int ret;
  2224. /* Not valid to be called on unbound objects. */
  2225. if (obj->gtt_space == NULL)
  2226. return -EINVAL;
  2227. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2228. return 0;
  2229. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2230. if (ret)
  2231. return ret;
  2232. if (obj->pending_gpu_write || write) {
  2233. ret = i915_gem_object_wait_rendering(obj);
  2234. if (ret)
  2235. return ret;
  2236. }
  2237. i915_gem_object_flush_cpu_write_domain(obj);
  2238. old_write_domain = obj->base.write_domain;
  2239. old_read_domains = obj->base.read_domains;
  2240. /* It should now be out of any other write domains, and we can update
  2241. * the domain values for our changes.
  2242. */
  2243. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2244. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2245. if (write) {
  2246. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2247. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2248. obj->dirty = 1;
  2249. }
  2250. trace_i915_gem_object_change_domain(obj,
  2251. old_read_domains,
  2252. old_write_domain);
  2253. /* And bump the LRU for this access */
  2254. if (i915_gem_object_is_inactive(obj))
  2255. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2256. return 0;
  2257. }
  2258. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  2259. enum i915_cache_level cache_level)
  2260. {
  2261. struct drm_device *dev = obj->base.dev;
  2262. drm_i915_private_t *dev_priv = dev->dev_private;
  2263. int ret;
  2264. if (obj->cache_level == cache_level)
  2265. return 0;
  2266. if (obj->pin_count) {
  2267. DRM_DEBUG("can not change the cache level of pinned objects\n");
  2268. return -EBUSY;
  2269. }
  2270. if (obj->gtt_space) {
  2271. ret = i915_gem_object_finish_gpu(obj);
  2272. if (ret)
  2273. return ret;
  2274. i915_gem_object_finish_gtt(obj);
  2275. /* Before SandyBridge, you could not use tiling or fence
  2276. * registers with snooped memory, so relinquish any fences
  2277. * currently pointing to our region in the aperture.
  2278. */
  2279. if (INTEL_INFO(obj->base.dev)->gen < 6) {
  2280. ret = i915_gem_object_put_fence(obj);
  2281. if (ret)
  2282. return ret;
  2283. }
  2284. if (obj->has_global_gtt_mapping)
  2285. i915_gem_gtt_bind_object(obj, cache_level);
  2286. if (obj->has_aliasing_ppgtt_mapping)
  2287. i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
  2288. obj, cache_level);
  2289. }
  2290. if (cache_level == I915_CACHE_NONE) {
  2291. u32 old_read_domains, old_write_domain;
  2292. /* If we're coming from LLC cached, then we haven't
  2293. * actually been tracking whether the data is in the
  2294. * CPU cache or not, since we only allow one bit set
  2295. * in obj->write_domain and have been skipping the clflushes.
  2296. * Just set it to the CPU cache for now.
  2297. */
  2298. WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
  2299. WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
  2300. old_read_domains = obj->base.read_domains;
  2301. old_write_domain = obj->base.write_domain;
  2302. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2303. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2304. trace_i915_gem_object_change_domain(obj,
  2305. old_read_domains,
  2306. old_write_domain);
  2307. }
  2308. obj->cache_level = cache_level;
  2309. return 0;
  2310. }
  2311. /*
  2312. * Prepare buffer for display plane (scanout, cursors, etc).
  2313. * Can be called from an uninterruptible phase (modesetting) and allows
  2314. * any flushes to be pipelined (for pageflips).
  2315. */
  2316. int
  2317. i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
  2318. u32 alignment,
  2319. struct intel_ring_buffer *pipelined)
  2320. {
  2321. u32 old_read_domains, old_write_domain;
  2322. int ret;
  2323. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2324. if (ret)
  2325. return ret;
  2326. if (pipelined != obj->ring) {
  2327. ret = i915_gem_object_sync(obj, pipelined);
  2328. if (ret)
  2329. return ret;
  2330. }
  2331. /* The display engine is not coherent with the LLC cache on gen6. As
  2332. * a result, we make sure that the pinning that is about to occur is
  2333. * done with uncached PTEs. This is lowest common denominator for all
  2334. * chipsets.
  2335. *
  2336. * However for gen6+, we could do better by using the GFDT bit instead
  2337. * of uncaching, which would allow us to flush all the LLC-cached data
  2338. * with that bit in the PTE to main memory with just one PIPE_CONTROL.
  2339. */
  2340. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
  2341. if (ret)
  2342. return ret;
  2343. /* As the user may map the buffer once pinned in the display plane
  2344. * (e.g. libkms for the bootup splash), we have to ensure that we
  2345. * always use map_and_fenceable for all scanout buffers.
  2346. */
  2347. ret = i915_gem_object_pin(obj, alignment, true);
  2348. if (ret)
  2349. return ret;
  2350. i915_gem_object_flush_cpu_write_domain(obj);
  2351. old_write_domain = obj->base.write_domain;
  2352. old_read_domains = obj->base.read_domains;
  2353. /* It should now be out of any other write domains, and we can update
  2354. * the domain values for our changes.
  2355. */
  2356. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2357. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2358. trace_i915_gem_object_change_domain(obj,
  2359. old_read_domains,
  2360. old_write_domain);
  2361. return 0;
  2362. }
  2363. int
  2364. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  2365. {
  2366. int ret;
  2367. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  2368. return 0;
  2369. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2370. ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2371. if (ret)
  2372. return ret;
  2373. }
  2374. ret = i915_gem_object_wait_rendering(obj);
  2375. if (ret)
  2376. return ret;
  2377. /* Ensure that we invalidate the GPU's caches and TLBs. */
  2378. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  2379. return 0;
  2380. }
  2381. /**
  2382. * Moves a single object to the CPU read, and possibly write domain.
  2383. *
  2384. * This function returns when the move is complete, including waiting on
  2385. * flushes to occur.
  2386. */
  2387. int
  2388. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2389. {
  2390. uint32_t old_write_domain, old_read_domains;
  2391. int ret;
  2392. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2393. return 0;
  2394. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2395. if (ret)
  2396. return ret;
  2397. if (write || obj->pending_gpu_write) {
  2398. ret = i915_gem_object_wait_rendering(obj);
  2399. if (ret)
  2400. return ret;
  2401. }
  2402. i915_gem_object_flush_gtt_write_domain(obj);
  2403. old_write_domain = obj->base.write_domain;
  2404. old_read_domains = obj->base.read_domains;
  2405. /* Flush the CPU cache if it's still invalid. */
  2406. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2407. i915_gem_clflush_object(obj);
  2408. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2409. }
  2410. /* It should now be out of any other write domains, and we can update
  2411. * the domain values for our changes.
  2412. */
  2413. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2414. /* If we're writing through the CPU, then the GPU read domains will
  2415. * need to be invalidated at next use.
  2416. */
  2417. if (write) {
  2418. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2419. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2420. }
  2421. trace_i915_gem_object_change_domain(obj,
  2422. old_read_domains,
  2423. old_write_domain);
  2424. return 0;
  2425. }
  2426. /* Throttle our rendering by waiting until the ring has completed our requests
  2427. * emitted over 20 msec ago.
  2428. *
  2429. * Note that if we were to use the current jiffies each time around the loop,
  2430. * we wouldn't escape the function with any frames outstanding if the time to
  2431. * render a frame was over 20ms.
  2432. *
  2433. * This should get us reasonable parallelism between CPU and GPU but also
  2434. * relatively low latency when blocking on a particular request to finish.
  2435. */
  2436. static int
  2437. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2438. {
  2439. struct drm_i915_private *dev_priv = dev->dev_private;
  2440. struct drm_i915_file_private *file_priv = file->driver_priv;
  2441. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2442. struct drm_i915_gem_request *request;
  2443. struct intel_ring_buffer *ring = NULL;
  2444. u32 seqno = 0;
  2445. int ret;
  2446. if (atomic_read(&dev_priv->mm.wedged))
  2447. return -EIO;
  2448. spin_lock(&file_priv->mm.lock);
  2449. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2450. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2451. break;
  2452. ring = request->ring;
  2453. seqno = request->seqno;
  2454. }
  2455. spin_unlock(&file_priv->mm.lock);
  2456. if (seqno == 0)
  2457. return 0;
  2458. ret = 0;
  2459. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  2460. /* And wait for the seqno passing without holding any locks and
  2461. * causing extra latency for others. This is safe as the irq
  2462. * generation is designed to be run atomically and so is
  2463. * lockless.
  2464. */
  2465. if (ring->irq_get(ring)) {
  2466. ret = wait_event_interruptible(ring->irq_queue,
  2467. i915_seqno_passed(ring->get_seqno(ring), seqno)
  2468. || atomic_read(&dev_priv->mm.wedged));
  2469. ring->irq_put(ring);
  2470. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  2471. ret = -EIO;
  2472. } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
  2473. seqno) ||
  2474. atomic_read(&dev_priv->mm.wedged), 3000)) {
  2475. ret = -EBUSY;
  2476. }
  2477. }
  2478. if (ret == 0)
  2479. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2480. return ret;
  2481. }
  2482. int
  2483. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2484. uint32_t alignment,
  2485. bool map_and_fenceable)
  2486. {
  2487. int ret;
  2488. BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  2489. if (obj->gtt_space != NULL) {
  2490. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2491. (map_and_fenceable && !obj->map_and_fenceable)) {
  2492. WARN(obj->pin_count,
  2493. "bo is already pinned with incorrect alignment:"
  2494. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2495. " obj->map_and_fenceable=%d\n",
  2496. obj->gtt_offset, alignment,
  2497. map_and_fenceable,
  2498. obj->map_and_fenceable);
  2499. ret = i915_gem_object_unbind(obj);
  2500. if (ret)
  2501. return ret;
  2502. }
  2503. }
  2504. if (obj->gtt_space == NULL) {
  2505. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2506. map_and_fenceable);
  2507. if (ret)
  2508. return ret;
  2509. }
  2510. if (!obj->has_global_gtt_mapping && map_and_fenceable)
  2511. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2512. obj->pin_count++;
  2513. obj->pin_mappable |= map_and_fenceable;
  2514. return 0;
  2515. }
  2516. void
  2517. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2518. {
  2519. BUG_ON(obj->pin_count == 0);
  2520. BUG_ON(obj->gtt_space == NULL);
  2521. if (--obj->pin_count == 0)
  2522. obj->pin_mappable = false;
  2523. }
  2524. int
  2525. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2526. struct drm_file *file)
  2527. {
  2528. struct drm_i915_gem_pin *args = data;
  2529. struct drm_i915_gem_object *obj;
  2530. int ret;
  2531. ret = i915_mutex_lock_interruptible(dev);
  2532. if (ret)
  2533. return ret;
  2534. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2535. if (&obj->base == NULL) {
  2536. ret = -ENOENT;
  2537. goto unlock;
  2538. }
  2539. if (obj->madv != I915_MADV_WILLNEED) {
  2540. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2541. ret = -EINVAL;
  2542. goto out;
  2543. }
  2544. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2545. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2546. args->handle);
  2547. ret = -EINVAL;
  2548. goto out;
  2549. }
  2550. obj->user_pin_count++;
  2551. obj->pin_filp = file;
  2552. if (obj->user_pin_count == 1) {
  2553. ret = i915_gem_object_pin(obj, args->alignment, true);
  2554. if (ret)
  2555. goto out;
  2556. }
  2557. /* XXX - flush the CPU caches for pinned objects
  2558. * as the X server doesn't manage domains yet
  2559. */
  2560. i915_gem_object_flush_cpu_write_domain(obj);
  2561. args->offset = obj->gtt_offset;
  2562. out:
  2563. drm_gem_object_unreference(&obj->base);
  2564. unlock:
  2565. mutex_unlock(&dev->struct_mutex);
  2566. return ret;
  2567. }
  2568. int
  2569. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2570. struct drm_file *file)
  2571. {
  2572. struct drm_i915_gem_pin *args = data;
  2573. struct drm_i915_gem_object *obj;
  2574. int ret;
  2575. ret = i915_mutex_lock_interruptible(dev);
  2576. if (ret)
  2577. return ret;
  2578. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2579. if (&obj->base == NULL) {
  2580. ret = -ENOENT;
  2581. goto unlock;
  2582. }
  2583. if (obj->pin_filp != file) {
  2584. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2585. args->handle);
  2586. ret = -EINVAL;
  2587. goto out;
  2588. }
  2589. obj->user_pin_count--;
  2590. if (obj->user_pin_count == 0) {
  2591. obj->pin_filp = NULL;
  2592. i915_gem_object_unpin(obj);
  2593. }
  2594. out:
  2595. drm_gem_object_unreference(&obj->base);
  2596. unlock:
  2597. mutex_unlock(&dev->struct_mutex);
  2598. return ret;
  2599. }
  2600. int
  2601. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2602. struct drm_file *file)
  2603. {
  2604. struct drm_i915_gem_busy *args = data;
  2605. struct drm_i915_gem_object *obj;
  2606. int ret;
  2607. ret = i915_mutex_lock_interruptible(dev);
  2608. if (ret)
  2609. return ret;
  2610. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2611. if (&obj->base == NULL) {
  2612. ret = -ENOENT;
  2613. goto unlock;
  2614. }
  2615. /* Count all active objects as busy, even if they are currently not used
  2616. * by the gpu. Users of this interface expect objects to eventually
  2617. * become non-busy without any further actions, therefore emit any
  2618. * necessary flushes here.
  2619. */
  2620. args->busy = obj->active;
  2621. if (args->busy) {
  2622. /* Unconditionally flush objects, even when the gpu still uses this
  2623. * object. Userspace calling this function indicates that it wants to
  2624. * use this buffer rather sooner than later, so issuing the required
  2625. * flush earlier is beneficial.
  2626. */
  2627. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2628. ret = i915_gem_flush_ring(obj->ring,
  2629. 0, obj->base.write_domain);
  2630. } else if (obj->ring->outstanding_lazy_request ==
  2631. obj->last_rendering_seqno) {
  2632. struct drm_i915_gem_request *request;
  2633. /* This ring is not being cleared by active usage,
  2634. * so emit a request to do so.
  2635. */
  2636. request = kzalloc(sizeof(*request), GFP_KERNEL);
  2637. if (request) {
  2638. ret = i915_add_request(obj->ring, NULL, request);
  2639. if (ret)
  2640. kfree(request);
  2641. } else
  2642. ret = -ENOMEM;
  2643. }
  2644. /* Update the active list for the hardware's current position.
  2645. * Otherwise this only updates on a delayed timer or when irqs
  2646. * are actually unmasked, and our working set ends up being
  2647. * larger than required.
  2648. */
  2649. i915_gem_retire_requests_ring(obj->ring);
  2650. args->busy = obj->active;
  2651. }
  2652. drm_gem_object_unreference(&obj->base);
  2653. unlock:
  2654. mutex_unlock(&dev->struct_mutex);
  2655. return ret;
  2656. }
  2657. int
  2658. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2659. struct drm_file *file_priv)
  2660. {
  2661. return i915_gem_ring_throttle(dev, file_priv);
  2662. }
  2663. int
  2664. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2665. struct drm_file *file_priv)
  2666. {
  2667. struct drm_i915_gem_madvise *args = data;
  2668. struct drm_i915_gem_object *obj;
  2669. int ret;
  2670. switch (args->madv) {
  2671. case I915_MADV_DONTNEED:
  2672. case I915_MADV_WILLNEED:
  2673. break;
  2674. default:
  2675. return -EINVAL;
  2676. }
  2677. ret = i915_mutex_lock_interruptible(dev);
  2678. if (ret)
  2679. return ret;
  2680. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  2681. if (&obj->base == NULL) {
  2682. ret = -ENOENT;
  2683. goto unlock;
  2684. }
  2685. if (obj->pin_count) {
  2686. ret = -EINVAL;
  2687. goto out;
  2688. }
  2689. if (obj->madv != __I915_MADV_PURGED)
  2690. obj->madv = args->madv;
  2691. /* if the object is no longer bound, discard its backing storage */
  2692. if (i915_gem_object_is_purgeable(obj) &&
  2693. obj->gtt_space == NULL)
  2694. i915_gem_object_truncate(obj);
  2695. args->retained = obj->madv != __I915_MADV_PURGED;
  2696. out:
  2697. drm_gem_object_unreference(&obj->base);
  2698. unlock:
  2699. mutex_unlock(&dev->struct_mutex);
  2700. return ret;
  2701. }
  2702. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  2703. size_t size)
  2704. {
  2705. struct drm_i915_private *dev_priv = dev->dev_private;
  2706. struct drm_i915_gem_object *obj;
  2707. struct address_space *mapping;
  2708. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  2709. if (obj == NULL)
  2710. return NULL;
  2711. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  2712. kfree(obj);
  2713. return NULL;
  2714. }
  2715. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  2716. mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
  2717. i915_gem_info_add_obj(dev_priv, size);
  2718. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2719. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2720. if (HAS_LLC(dev)) {
  2721. /* On some devices, we can have the GPU use the LLC (the CPU
  2722. * cache) for about a 10% performance improvement
  2723. * compared to uncached. Graphics requests other than
  2724. * display scanout are coherent with the CPU in
  2725. * accessing this cache. This means in this mode we
  2726. * don't need to clflush on the CPU side, and on the
  2727. * GPU side we only need to flush internal caches to
  2728. * get data visible to the CPU.
  2729. *
  2730. * However, we maintain the display planes as UC, and so
  2731. * need to rebind when first used as such.
  2732. */
  2733. obj->cache_level = I915_CACHE_LLC;
  2734. } else
  2735. obj->cache_level = I915_CACHE_NONE;
  2736. obj->base.driver_private = NULL;
  2737. obj->fence_reg = I915_FENCE_REG_NONE;
  2738. INIT_LIST_HEAD(&obj->mm_list);
  2739. INIT_LIST_HEAD(&obj->gtt_list);
  2740. INIT_LIST_HEAD(&obj->ring_list);
  2741. INIT_LIST_HEAD(&obj->exec_list);
  2742. INIT_LIST_HEAD(&obj->gpu_write_list);
  2743. obj->madv = I915_MADV_WILLNEED;
  2744. /* Avoid an unnecessary call to unbind on the first bind. */
  2745. obj->map_and_fenceable = true;
  2746. return obj;
  2747. }
  2748. int i915_gem_init_object(struct drm_gem_object *obj)
  2749. {
  2750. BUG();
  2751. return 0;
  2752. }
  2753. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  2754. {
  2755. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  2756. struct drm_device *dev = obj->base.dev;
  2757. drm_i915_private_t *dev_priv = dev->dev_private;
  2758. trace_i915_gem_object_destroy(obj);
  2759. if (obj->phys_obj)
  2760. i915_gem_detach_phys_object(dev, obj);
  2761. obj->pin_count = 0;
  2762. if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
  2763. bool was_interruptible;
  2764. was_interruptible = dev_priv->mm.interruptible;
  2765. dev_priv->mm.interruptible = false;
  2766. WARN_ON(i915_gem_object_unbind(obj));
  2767. dev_priv->mm.interruptible = was_interruptible;
  2768. }
  2769. if (obj->base.map_list.map)
  2770. drm_gem_free_mmap_offset(&obj->base);
  2771. drm_gem_object_release(&obj->base);
  2772. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  2773. kfree(obj->bit_17);
  2774. kfree(obj);
  2775. }
  2776. int
  2777. i915_gem_idle(struct drm_device *dev)
  2778. {
  2779. drm_i915_private_t *dev_priv = dev->dev_private;
  2780. int ret;
  2781. mutex_lock(&dev->struct_mutex);
  2782. if (dev_priv->mm.suspended) {
  2783. mutex_unlock(&dev->struct_mutex);
  2784. return 0;
  2785. }
  2786. ret = i915_gpu_idle(dev);
  2787. if (ret) {
  2788. mutex_unlock(&dev->struct_mutex);
  2789. return ret;
  2790. }
  2791. i915_gem_retire_requests(dev);
  2792. /* Under UMS, be paranoid and evict. */
  2793. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  2794. i915_gem_evict_everything(dev, false);
  2795. i915_gem_reset_fences(dev);
  2796. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  2797. * We need to replace this with a semaphore, or something.
  2798. * And not confound mm.suspended!
  2799. */
  2800. dev_priv->mm.suspended = 1;
  2801. del_timer_sync(&dev_priv->hangcheck_timer);
  2802. i915_kernel_lost_context(dev);
  2803. i915_gem_cleanup_ringbuffer(dev);
  2804. mutex_unlock(&dev->struct_mutex);
  2805. /* Cancel the retire work handler, which should be idle now. */
  2806. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  2807. return 0;
  2808. }
  2809. void i915_gem_init_swizzling(struct drm_device *dev)
  2810. {
  2811. drm_i915_private_t *dev_priv = dev->dev_private;
  2812. if (INTEL_INFO(dev)->gen < 5 ||
  2813. dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
  2814. return;
  2815. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  2816. DISP_TILE_SURFACE_SWIZZLING);
  2817. if (IS_GEN5(dev))
  2818. return;
  2819. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
  2820. if (IS_GEN6(dev))
  2821. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
  2822. else
  2823. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
  2824. }
  2825. void i915_gem_init_ppgtt(struct drm_device *dev)
  2826. {
  2827. drm_i915_private_t *dev_priv = dev->dev_private;
  2828. uint32_t pd_offset;
  2829. struct intel_ring_buffer *ring;
  2830. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  2831. uint32_t __iomem *pd_addr;
  2832. uint32_t pd_entry;
  2833. int i;
  2834. if (!dev_priv->mm.aliasing_ppgtt)
  2835. return;
  2836. pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
  2837. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  2838. dma_addr_t pt_addr;
  2839. if (dev_priv->mm.gtt->needs_dmar)
  2840. pt_addr = ppgtt->pt_dma_addr[i];
  2841. else
  2842. pt_addr = page_to_phys(ppgtt->pt_pages[i]);
  2843. pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
  2844. pd_entry |= GEN6_PDE_VALID;
  2845. writel(pd_entry, pd_addr + i);
  2846. }
  2847. readl(pd_addr);
  2848. pd_offset = ppgtt->pd_offset;
  2849. pd_offset /= 64; /* in cachelines, */
  2850. pd_offset <<= 16;
  2851. if (INTEL_INFO(dev)->gen == 6) {
  2852. uint32_t ecochk, gab_ctl, ecobits;
  2853. ecobits = I915_READ(GAC_ECO_BITS);
  2854. I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
  2855. gab_ctl = I915_READ(GAB_CTL);
  2856. I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
  2857. ecochk = I915_READ(GAM_ECOCHK);
  2858. I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
  2859. ECOCHK_PPGTT_CACHE64B);
  2860. I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  2861. } else if (INTEL_INFO(dev)->gen >= 7) {
  2862. I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
  2863. /* GFX_MODE is per-ring on gen7+ */
  2864. }
  2865. for (i = 0; i < I915_NUM_RINGS; i++) {
  2866. ring = &dev_priv->ring[i];
  2867. if (INTEL_INFO(dev)->gen >= 7)
  2868. I915_WRITE(RING_MODE_GEN7(ring),
  2869. _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  2870. I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
  2871. I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
  2872. }
  2873. }
  2874. int
  2875. i915_gem_init_hw(struct drm_device *dev)
  2876. {
  2877. drm_i915_private_t *dev_priv = dev->dev_private;
  2878. int ret;
  2879. i915_gem_init_swizzling(dev);
  2880. ret = intel_init_render_ring_buffer(dev);
  2881. if (ret)
  2882. return ret;
  2883. if (HAS_BSD(dev)) {
  2884. ret = intel_init_bsd_ring_buffer(dev);
  2885. if (ret)
  2886. goto cleanup_render_ring;
  2887. }
  2888. if (HAS_BLT(dev)) {
  2889. ret = intel_init_blt_ring_buffer(dev);
  2890. if (ret)
  2891. goto cleanup_bsd_ring;
  2892. }
  2893. dev_priv->next_seqno = 1;
  2894. i915_gem_init_ppgtt(dev);
  2895. return 0;
  2896. cleanup_bsd_ring:
  2897. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  2898. cleanup_render_ring:
  2899. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  2900. return ret;
  2901. }
  2902. static bool
  2903. intel_enable_ppgtt(struct drm_device *dev)
  2904. {
  2905. if (i915_enable_ppgtt >= 0)
  2906. return i915_enable_ppgtt;
  2907. #ifdef CONFIG_INTEL_IOMMU
  2908. /* Disable ppgtt on SNB if VT-d is on. */
  2909. if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
  2910. return false;
  2911. #endif
  2912. return true;
  2913. }
  2914. int i915_gem_init(struct drm_device *dev)
  2915. {
  2916. struct drm_i915_private *dev_priv = dev->dev_private;
  2917. unsigned long gtt_size, mappable_size;
  2918. int ret;
  2919. gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
  2920. mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
  2921. mutex_lock(&dev->struct_mutex);
  2922. if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
  2923. /* PPGTT pdes are stolen from global gtt ptes, so shrink the
  2924. * aperture accordingly when using aliasing ppgtt. */
  2925. gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
  2926. i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
  2927. ret = i915_gem_init_aliasing_ppgtt(dev);
  2928. if (ret) {
  2929. mutex_unlock(&dev->struct_mutex);
  2930. return ret;
  2931. }
  2932. } else {
  2933. /* Let GEM Manage all of the aperture.
  2934. *
  2935. * However, leave one page at the end still bound to the scratch
  2936. * page. There are a number of places where the hardware
  2937. * apparently prefetches past the end of the object, and we've
  2938. * seen multiple hangs with the GPU head pointer stuck in a
  2939. * batchbuffer bound at the last page of the aperture. One page
  2940. * should be enough to keep any prefetching inside of the
  2941. * aperture.
  2942. */
  2943. i915_gem_init_global_gtt(dev, 0, mappable_size,
  2944. gtt_size);
  2945. }
  2946. ret = i915_gem_init_hw(dev);
  2947. mutex_unlock(&dev->struct_mutex);
  2948. if (ret) {
  2949. i915_gem_cleanup_aliasing_ppgtt(dev);
  2950. return ret;
  2951. }
  2952. /* Allow hardware batchbuffers unless told otherwise. */
  2953. dev_priv->allow_batchbuffer = 1;
  2954. return 0;
  2955. }
  2956. void
  2957. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  2958. {
  2959. drm_i915_private_t *dev_priv = dev->dev_private;
  2960. int i;
  2961. for (i = 0; i < I915_NUM_RINGS; i++)
  2962. intel_cleanup_ring_buffer(&dev_priv->ring[i]);
  2963. }
  2964. int
  2965. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  2966. struct drm_file *file_priv)
  2967. {
  2968. drm_i915_private_t *dev_priv = dev->dev_private;
  2969. int ret, i;
  2970. if (drm_core_check_feature(dev, DRIVER_MODESET))
  2971. return 0;
  2972. if (atomic_read(&dev_priv->mm.wedged)) {
  2973. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  2974. atomic_set(&dev_priv->mm.wedged, 0);
  2975. }
  2976. mutex_lock(&dev->struct_mutex);
  2977. dev_priv->mm.suspended = 0;
  2978. ret = i915_gem_init_hw(dev);
  2979. if (ret != 0) {
  2980. mutex_unlock(&dev->struct_mutex);
  2981. return ret;
  2982. }
  2983. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  2984. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  2985. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  2986. for (i = 0; i < I915_NUM_RINGS; i++) {
  2987. BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
  2988. BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
  2989. }
  2990. mutex_unlock(&dev->struct_mutex);
  2991. ret = drm_irq_install(dev);
  2992. if (ret)
  2993. goto cleanup_ringbuffer;
  2994. return 0;
  2995. cleanup_ringbuffer:
  2996. mutex_lock(&dev->struct_mutex);
  2997. i915_gem_cleanup_ringbuffer(dev);
  2998. dev_priv->mm.suspended = 1;
  2999. mutex_unlock(&dev->struct_mutex);
  3000. return ret;
  3001. }
  3002. int
  3003. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3004. struct drm_file *file_priv)
  3005. {
  3006. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3007. return 0;
  3008. drm_irq_uninstall(dev);
  3009. return i915_gem_idle(dev);
  3010. }
  3011. void
  3012. i915_gem_lastclose(struct drm_device *dev)
  3013. {
  3014. int ret;
  3015. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3016. return;
  3017. ret = i915_gem_idle(dev);
  3018. if (ret)
  3019. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3020. }
  3021. static void
  3022. init_ring_lists(struct intel_ring_buffer *ring)
  3023. {
  3024. INIT_LIST_HEAD(&ring->active_list);
  3025. INIT_LIST_HEAD(&ring->request_list);
  3026. INIT_LIST_HEAD(&ring->gpu_write_list);
  3027. }
  3028. void
  3029. i915_gem_load(struct drm_device *dev)
  3030. {
  3031. int i;
  3032. drm_i915_private_t *dev_priv = dev->dev_private;
  3033. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3034. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3035. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3036. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3037. INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
  3038. for (i = 0; i < I915_NUM_RINGS; i++)
  3039. init_ring_lists(&dev_priv->ring[i]);
  3040. for (i = 0; i < I915_MAX_NUM_FENCES; i++)
  3041. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3042. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3043. i915_gem_retire_work_handler);
  3044. init_completion(&dev_priv->error_completion);
  3045. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3046. if (IS_GEN3(dev)) {
  3047. I915_WRITE(MI_ARB_STATE,
  3048. _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  3049. }
  3050. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3051. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3052. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3053. dev_priv->fence_reg_start = 3;
  3054. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3055. dev_priv->num_fence_regs = 16;
  3056. else
  3057. dev_priv->num_fence_regs = 8;
  3058. /* Initialize fence registers to zero */
  3059. i915_gem_reset_fences(dev);
  3060. i915_gem_detect_bit_6_swizzle(dev);
  3061. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3062. dev_priv->mm.interruptible = true;
  3063. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3064. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3065. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3066. }
  3067. /*
  3068. * Create a physically contiguous memory object for this object
  3069. * e.g. for cursor + overlay regs
  3070. */
  3071. static int i915_gem_init_phys_object(struct drm_device *dev,
  3072. int id, int size, int align)
  3073. {
  3074. drm_i915_private_t *dev_priv = dev->dev_private;
  3075. struct drm_i915_gem_phys_object *phys_obj;
  3076. int ret;
  3077. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3078. return 0;
  3079. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3080. if (!phys_obj)
  3081. return -ENOMEM;
  3082. phys_obj->id = id;
  3083. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3084. if (!phys_obj->handle) {
  3085. ret = -ENOMEM;
  3086. goto kfree_obj;
  3087. }
  3088. #ifdef CONFIG_X86
  3089. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3090. #endif
  3091. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3092. return 0;
  3093. kfree_obj:
  3094. kfree(phys_obj);
  3095. return ret;
  3096. }
  3097. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3098. {
  3099. drm_i915_private_t *dev_priv = dev->dev_private;
  3100. struct drm_i915_gem_phys_object *phys_obj;
  3101. if (!dev_priv->mm.phys_objs[id - 1])
  3102. return;
  3103. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3104. if (phys_obj->cur_obj) {
  3105. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3106. }
  3107. #ifdef CONFIG_X86
  3108. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3109. #endif
  3110. drm_pci_free(dev, phys_obj->handle);
  3111. kfree(phys_obj);
  3112. dev_priv->mm.phys_objs[id - 1] = NULL;
  3113. }
  3114. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3115. {
  3116. int i;
  3117. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3118. i915_gem_free_phys_object(dev, i);
  3119. }
  3120. void i915_gem_detach_phys_object(struct drm_device *dev,
  3121. struct drm_i915_gem_object *obj)
  3122. {
  3123. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3124. char *vaddr;
  3125. int i;
  3126. int page_count;
  3127. if (!obj->phys_obj)
  3128. return;
  3129. vaddr = obj->phys_obj->handle->vaddr;
  3130. page_count = obj->base.size / PAGE_SIZE;
  3131. for (i = 0; i < page_count; i++) {
  3132. struct page *page = shmem_read_mapping_page(mapping, i);
  3133. if (!IS_ERR(page)) {
  3134. char *dst = kmap_atomic(page);
  3135. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3136. kunmap_atomic(dst);
  3137. drm_clflush_pages(&page, 1);
  3138. set_page_dirty(page);
  3139. mark_page_accessed(page);
  3140. page_cache_release(page);
  3141. }
  3142. }
  3143. intel_gtt_chipset_flush();
  3144. obj->phys_obj->cur_obj = NULL;
  3145. obj->phys_obj = NULL;
  3146. }
  3147. int
  3148. i915_gem_attach_phys_object(struct drm_device *dev,
  3149. struct drm_i915_gem_object *obj,
  3150. int id,
  3151. int align)
  3152. {
  3153. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3154. drm_i915_private_t *dev_priv = dev->dev_private;
  3155. int ret = 0;
  3156. int page_count;
  3157. int i;
  3158. if (id > I915_MAX_PHYS_OBJECT)
  3159. return -EINVAL;
  3160. if (obj->phys_obj) {
  3161. if (obj->phys_obj->id == id)
  3162. return 0;
  3163. i915_gem_detach_phys_object(dev, obj);
  3164. }
  3165. /* create a new object */
  3166. if (!dev_priv->mm.phys_objs[id - 1]) {
  3167. ret = i915_gem_init_phys_object(dev, id,
  3168. obj->base.size, align);
  3169. if (ret) {
  3170. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3171. id, obj->base.size);
  3172. return ret;
  3173. }
  3174. }
  3175. /* bind to the object */
  3176. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3177. obj->phys_obj->cur_obj = obj;
  3178. page_count = obj->base.size / PAGE_SIZE;
  3179. for (i = 0; i < page_count; i++) {
  3180. struct page *page;
  3181. char *dst, *src;
  3182. page = shmem_read_mapping_page(mapping, i);
  3183. if (IS_ERR(page))
  3184. return PTR_ERR(page);
  3185. src = kmap_atomic(page);
  3186. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3187. memcpy(dst, src, PAGE_SIZE);
  3188. kunmap_atomic(src);
  3189. mark_page_accessed(page);
  3190. page_cache_release(page);
  3191. }
  3192. return 0;
  3193. }
  3194. static int
  3195. i915_gem_phys_pwrite(struct drm_device *dev,
  3196. struct drm_i915_gem_object *obj,
  3197. struct drm_i915_gem_pwrite *args,
  3198. struct drm_file *file_priv)
  3199. {
  3200. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3201. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3202. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3203. unsigned long unwritten;
  3204. /* The physical object once assigned is fixed for the lifetime
  3205. * of the obj, so we can safely drop the lock and continue
  3206. * to access vaddr.
  3207. */
  3208. mutex_unlock(&dev->struct_mutex);
  3209. unwritten = copy_from_user(vaddr, user_data, args->size);
  3210. mutex_lock(&dev->struct_mutex);
  3211. if (unwritten)
  3212. return -EFAULT;
  3213. }
  3214. intel_gtt_chipset_flush();
  3215. return 0;
  3216. }
  3217. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3218. {
  3219. struct drm_i915_file_private *file_priv = file->driver_priv;
  3220. /* Clean up our request list when the client is going away, so that
  3221. * later retire_requests won't dereference our soon-to-be-gone
  3222. * file_priv.
  3223. */
  3224. spin_lock(&file_priv->mm.lock);
  3225. while (!list_empty(&file_priv->mm.request_list)) {
  3226. struct drm_i915_gem_request *request;
  3227. request = list_first_entry(&file_priv->mm.request_list,
  3228. struct drm_i915_gem_request,
  3229. client_list);
  3230. list_del(&request->client_list);
  3231. request->file_priv = NULL;
  3232. }
  3233. spin_unlock(&file_priv->mm.lock);
  3234. }
  3235. static int
  3236. i915_gpu_is_active(struct drm_device *dev)
  3237. {
  3238. drm_i915_private_t *dev_priv = dev->dev_private;
  3239. int lists_empty;
  3240. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  3241. list_empty(&dev_priv->mm.active_list);
  3242. return !lists_empty;
  3243. }
  3244. static int
  3245. i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
  3246. {
  3247. struct drm_i915_private *dev_priv =
  3248. container_of(shrinker,
  3249. struct drm_i915_private,
  3250. mm.inactive_shrinker);
  3251. struct drm_device *dev = dev_priv->dev;
  3252. struct drm_i915_gem_object *obj, *next;
  3253. int nr_to_scan = sc->nr_to_scan;
  3254. int cnt;
  3255. if (!mutex_trylock(&dev->struct_mutex))
  3256. return 0;
  3257. /* "fast-path" to count number of available objects */
  3258. if (nr_to_scan == 0) {
  3259. cnt = 0;
  3260. list_for_each_entry(obj,
  3261. &dev_priv->mm.inactive_list,
  3262. mm_list)
  3263. cnt++;
  3264. mutex_unlock(&dev->struct_mutex);
  3265. return cnt / 100 * sysctl_vfs_cache_pressure;
  3266. }
  3267. rescan:
  3268. /* first scan for clean buffers */
  3269. i915_gem_retire_requests(dev);
  3270. list_for_each_entry_safe(obj, next,
  3271. &dev_priv->mm.inactive_list,
  3272. mm_list) {
  3273. if (i915_gem_object_is_purgeable(obj)) {
  3274. if (i915_gem_object_unbind(obj) == 0 &&
  3275. --nr_to_scan == 0)
  3276. break;
  3277. }
  3278. }
  3279. /* second pass, evict/count anything still on the inactive list */
  3280. cnt = 0;
  3281. list_for_each_entry_safe(obj, next,
  3282. &dev_priv->mm.inactive_list,
  3283. mm_list) {
  3284. if (nr_to_scan &&
  3285. i915_gem_object_unbind(obj) == 0)
  3286. nr_to_scan--;
  3287. else
  3288. cnt++;
  3289. }
  3290. if (nr_to_scan && i915_gpu_is_active(dev)) {
  3291. /*
  3292. * We are desperate for pages, so as a last resort, wait
  3293. * for the GPU to finish and discard whatever we can.
  3294. * This has a dramatic impact to reduce the number of
  3295. * OOM-killer events whilst running the GPU aggressively.
  3296. */
  3297. if (i915_gpu_idle(dev) == 0)
  3298. goto rescan;
  3299. }
  3300. mutex_unlock(&dev->struct_mutex);
  3301. return cnt / 100 * sysctl_vfs_cache_pressure;
  3302. }