perf_event.c 145 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392
  1. /*
  2. * Performance events core code:
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  7. * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  8. *
  9. * For licensing details see kernel-base/COPYING
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/mm.h>
  13. #include <linux/cpu.h>
  14. #include <linux/smp.h>
  15. #include <linux/file.h>
  16. #include <linux/poll.h>
  17. #include <linux/slab.h>
  18. #include <linux/hash.h>
  19. #include <linux/sysfs.h>
  20. #include <linux/dcache.h>
  21. #include <linux/percpu.h>
  22. #include <linux/ptrace.h>
  23. #include <linux/vmstat.h>
  24. #include <linux/vmalloc.h>
  25. #include <linux/hardirq.h>
  26. #include <linux/rculist.h>
  27. #include <linux/uaccess.h>
  28. #include <linux/syscalls.h>
  29. #include <linux/anon_inodes.h>
  30. #include <linux/kernel_stat.h>
  31. #include <linux/perf_event.h>
  32. #include <linux/ftrace_event.h>
  33. #include <linux/hw_breakpoint.h>
  34. #include <asm/irq_regs.h>
  35. atomic_t perf_task_events __read_mostly;
  36. static atomic_t nr_mmap_events __read_mostly;
  37. static atomic_t nr_comm_events __read_mostly;
  38. static atomic_t nr_task_events __read_mostly;
  39. static LIST_HEAD(pmus);
  40. static DEFINE_MUTEX(pmus_lock);
  41. static struct srcu_struct pmus_srcu;
  42. /*
  43. * perf event paranoia level:
  44. * -1 - not paranoid at all
  45. * 0 - disallow raw tracepoint access for unpriv
  46. * 1 - disallow cpu events for unpriv
  47. * 2 - disallow kernel profiling for unpriv
  48. */
  49. int sysctl_perf_event_paranoid __read_mostly = 1;
  50. int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
  51. /*
  52. * max perf event sample rate
  53. */
  54. int sysctl_perf_event_sample_rate __read_mostly = 100000;
  55. static atomic64_t perf_event_id;
  56. void __weak perf_event_print_debug(void) { }
  57. extern __weak const char *perf_pmu_name(void)
  58. {
  59. return "pmu";
  60. }
  61. void perf_pmu_disable(struct pmu *pmu)
  62. {
  63. int *count = this_cpu_ptr(pmu->pmu_disable_count);
  64. if (!(*count)++)
  65. pmu->pmu_disable(pmu);
  66. }
  67. void perf_pmu_enable(struct pmu *pmu)
  68. {
  69. int *count = this_cpu_ptr(pmu->pmu_disable_count);
  70. if (!--(*count))
  71. pmu->pmu_enable(pmu);
  72. }
  73. static DEFINE_PER_CPU(struct list_head, rotation_list);
  74. /*
  75. * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
  76. * because they're strictly cpu affine and rotate_start is called with IRQs
  77. * disabled, while rotate_context is called from IRQ context.
  78. */
  79. static void perf_pmu_rotate_start(struct pmu *pmu)
  80. {
  81. struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
  82. struct list_head *head = &__get_cpu_var(rotation_list);
  83. WARN_ON(!irqs_disabled());
  84. if (list_empty(&cpuctx->rotation_list))
  85. list_add(&cpuctx->rotation_list, head);
  86. }
  87. static void get_ctx(struct perf_event_context *ctx)
  88. {
  89. WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
  90. }
  91. static void free_ctx(struct rcu_head *head)
  92. {
  93. struct perf_event_context *ctx;
  94. ctx = container_of(head, struct perf_event_context, rcu_head);
  95. kfree(ctx);
  96. }
  97. static void put_ctx(struct perf_event_context *ctx)
  98. {
  99. if (atomic_dec_and_test(&ctx->refcount)) {
  100. if (ctx->parent_ctx)
  101. put_ctx(ctx->parent_ctx);
  102. if (ctx->task)
  103. put_task_struct(ctx->task);
  104. call_rcu(&ctx->rcu_head, free_ctx);
  105. }
  106. }
  107. static void unclone_ctx(struct perf_event_context *ctx)
  108. {
  109. if (ctx->parent_ctx) {
  110. put_ctx(ctx->parent_ctx);
  111. ctx->parent_ctx = NULL;
  112. }
  113. }
  114. /*
  115. * If we inherit events we want to return the parent event id
  116. * to userspace.
  117. */
  118. static u64 primary_event_id(struct perf_event *event)
  119. {
  120. u64 id = event->id;
  121. if (event->parent)
  122. id = event->parent->id;
  123. return id;
  124. }
  125. /*
  126. * Get the perf_event_context for a task and lock it.
  127. * This has to cope with with the fact that until it is locked,
  128. * the context could get moved to another task.
  129. */
  130. static struct perf_event_context *
  131. perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
  132. {
  133. struct perf_event_context *ctx;
  134. rcu_read_lock();
  135. retry:
  136. ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
  137. if (ctx) {
  138. /*
  139. * If this context is a clone of another, it might
  140. * get swapped for another underneath us by
  141. * perf_event_task_sched_out, though the
  142. * rcu_read_lock() protects us from any context
  143. * getting freed. Lock the context and check if it
  144. * got swapped before we could get the lock, and retry
  145. * if so. If we locked the right context, then it
  146. * can't get swapped on us any more.
  147. */
  148. raw_spin_lock_irqsave(&ctx->lock, *flags);
  149. if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
  150. raw_spin_unlock_irqrestore(&ctx->lock, *flags);
  151. goto retry;
  152. }
  153. if (!atomic_inc_not_zero(&ctx->refcount)) {
  154. raw_spin_unlock_irqrestore(&ctx->lock, *flags);
  155. ctx = NULL;
  156. }
  157. }
  158. rcu_read_unlock();
  159. return ctx;
  160. }
  161. /*
  162. * Get the context for a task and increment its pin_count so it
  163. * can't get swapped to another task. This also increments its
  164. * reference count so that the context can't get freed.
  165. */
  166. static struct perf_event_context *
  167. perf_pin_task_context(struct task_struct *task, int ctxn)
  168. {
  169. struct perf_event_context *ctx;
  170. unsigned long flags;
  171. ctx = perf_lock_task_context(task, ctxn, &flags);
  172. if (ctx) {
  173. ++ctx->pin_count;
  174. raw_spin_unlock_irqrestore(&ctx->lock, flags);
  175. }
  176. return ctx;
  177. }
  178. static void perf_unpin_context(struct perf_event_context *ctx)
  179. {
  180. unsigned long flags;
  181. raw_spin_lock_irqsave(&ctx->lock, flags);
  182. --ctx->pin_count;
  183. raw_spin_unlock_irqrestore(&ctx->lock, flags);
  184. put_ctx(ctx);
  185. }
  186. static inline u64 perf_clock(void)
  187. {
  188. return local_clock();
  189. }
  190. /*
  191. * Update the record of the current time in a context.
  192. */
  193. static void update_context_time(struct perf_event_context *ctx)
  194. {
  195. u64 now = perf_clock();
  196. ctx->time += now - ctx->timestamp;
  197. ctx->timestamp = now;
  198. }
  199. /*
  200. * Update the total_time_enabled and total_time_running fields for a event.
  201. */
  202. static void update_event_times(struct perf_event *event)
  203. {
  204. struct perf_event_context *ctx = event->ctx;
  205. u64 run_end;
  206. if (event->state < PERF_EVENT_STATE_INACTIVE ||
  207. event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
  208. return;
  209. if (ctx->is_active)
  210. run_end = ctx->time;
  211. else
  212. run_end = event->tstamp_stopped;
  213. event->total_time_enabled = run_end - event->tstamp_enabled;
  214. if (event->state == PERF_EVENT_STATE_INACTIVE)
  215. run_end = event->tstamp_stopped;
  216. else
  217. run_end = ctx->time;
  218. event->total_time_running = run_end - event->tstamp_running;
  219. }
  220. /*
  221. * Update total_time_enabled and total_time_running for all events in a group.
  222. */
  223. static void update_group_times(struct perf_event *leader)
  224. {
  225. struct perf_event *event;
  226. update_event_times(leader);
  227. list_for_each_entry(event, &leader->sibling_list, group_entry)
  228. update_event_times(event);
  229. }
  230. static struct list_head *
  231. ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
  232. {
  233. if (event->attr.pinned)
  234. return &ctx->pinned_groups;
  235. else
  236. return &ctx->flexible_groups;
  237. }
  238. /*
  239. * Add a event from the lists for its context.
  240. * Must be called with ctx->mutex and ctx->lock held.
  241. */
  242. static void
  243. list_add_event(struct perf_event *event, struct perf_event_context *ctx)
  244. {
  245. WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
  246. event->attach_state |= PERF_ATTACH_CONTEXT;
  247. /*
  248. * If we're a stand alone event or group leader, we go to the context
  249. * list, group events are kept attached to the group so that
  250. * perf_group_detach can, at all times, locate all siblings.
  251. */
  252. if (event->group_leader == event) {
  253. struct list_head *list;
  254. if (is_software_event(event))
  255. event->group_flags |= PERF_GROUP_SOFTWARE;
  256. list = ctx_group_list(event, ctx);
  257. list_add_tail(&event->group_entry, list);
  258. }
  259. list_add_rcu(&event->event_entry, &ctx->event_list);
  260. if (!ctx->nr_events)
  261. perf_pmu_rotate_start(ctx->pmu);
  262. ctx->nr_events++;
  263. if (event->attr.inherit_stat)
  264. ctx->nr_stat++;
  265. }
  266. static void perf_group_attach(struct perf_event *event)
  267. {
  268. struct perf_event *group_leader = event->group_leader;
  269. /*
  270. * We can have double attach due to group movement in perf_event_open.
  271. */
  272. if (event->attach_state & PERF_ATTACH_GROUP)
  273. return;
  274. event->attach_state |= PERF_ATTACH_GROUP;
  275. if (group_leader == event)
  276. return;
  277. if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
  278. !is_software_event(event))
  279. group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
  280. list_add_tail(&event->group_entry, &group_leader->sibling_list);
  281. group_leader->nr_siblings++;
  282. }
  283. /*
  284. * Remove a event from the lists for its context.
  285. * Must be called with ctx->mutex and ctx->lock held.
  286. */
  287. static void
  288. list_del_event(struct perf_event *event, struct perf_event_context *ctx)
  289. {
  290. /*
  291. * We can have double detach due to exit/hot-unplug + close.
  292. */
  293. if (!(event->attach_state & PERF_ATTACH_CONTEXT))
  294. return;
  295. event->attach_state &= ~PERF_ATTACH_CONTEXT;
  296. ctx->nr_events--;
  297. if (event->attr.inherit_stat)
  298. ctx->nr_stat--;
  299. list_del_rcu(&event->event_entry);
  300. if (event->group_leader == event)
  301. list_del_init(&event->group_entry);
  302. update_group_times(event);
  303. /*
  304. * If event was in error state, then keep it
  305. * that way, otherwise bogus counts will be
  306. * returned on read(). The only way to get out
  307. * of error state is by explicit re-enabling
  308. * of the event
  309. */
  310. if (event->state > PERF_EVENT_STATE_OFF)
  311. event->state = PERF_EVENT_STATE_OFF;
  312. }
  313. static void perf_group_detach(struct perf_event *event)
  314. {
  315. struct perf_event *sibling, *tmp;
  316. struct list_head *list = NULL;
  317. /*
  318. * We can have double detach due to exit/hot-unplug + close.
  319. */
  320. if (!(event->attach_state & PERF_ATTACH_GROUP))
  321. return;
  322. event->attach_state &= ~PERF_ATTACH_GROUP;
  323. /*
  324. * If this is a sibling, remove it from its group.
  325. */
  326. if (event->group_leader != event) {
  327. list_del_init(&event->group_entry);
  328. event->group_leader->nr_siblings--;
  329. return;
  330. }
  331. if (!list_empty(&event->group_entry))
  332. list = &event->group_entry;
  333. /*
  334. * If this was a group event with sibling events then
  335. * upgrade the siblings to singleton events by adding them
  336. * to whatever list we are on.
  337. */
  338. list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
  339. if (list)
  340. list_move_tail(&sibling->group_entry, list);
  341. sibling->group_leader = sibling;
  342. /* Inherit group flags from the previous leader */
  343. sibling->group_flags = event->group_flags;
  344. }
  345. }
  346. static inline int
  347. event_filter_match(struct perf_event *event)
  348. {
  349. return event->cpu == -1 || event->cpu == smp_processor_id();
  350. }
  351. static void
  352. event_sched_out(struct perf_event *event,
  353. struct perf_cpu_context *cpuctx,
  354. struct perf_event_context *ctx)
  355. {
  356. u64 delta;
  357. /*
  358. * An event which could not be activated because of
  359. * filter mismatch still needs to have its timings
  360. * maintained, otherwise bogus information is return
  361. * via read() for time_enabled, time_running:
  362. */
  363. if (event->state == PERF_EVENT_STATE_INACTIVE
  364. && !event_filter_match(event)) {
  365. delta = ctx->time - event->tstamp_stopped;
  366. event->tstamp_running += delta;
  367. event->tstamp_stopped = ctx->time;
  368. }
  369. if (event->state != PERF_EVENT_STATE_ACTIVE)
  370. return;
  371. event->state = PERF_EVENT_STATE_INACTIVE;
  372. if (event->pending_disable) {
  373. event->pending_disable = 0;
  374. event->state = PERF_EVENT_STATE_OFF;
  375. }
  376. event->tstamp_stopped = ctx->time;
  377. event->pmu->del(event, 0);
  378. event->oncpu = -1;
  379. if (!is_software_event(event))
  380. cpuctx->active_oncpu--;
  381. ctx->nr_active--;
  382. if (event->attr.exclusive || !cpuctx->active_oncpu)
  383. cpuctx->exclusive = 0;
  384. }
  385. static void
  386. group_sched_out(struct perf_event *group_event,
  387. struct perf_cpu_context *cpuctx,
  388. struct perf_event_context *ctx)
  389. {
  390. struct perf_event *event;
  391. int state = group_event->state;
  392. event_sched_out(group_event, cpuctx, ctx);
  393. /*
  394. * Schedule out siblings (if any):
  395. */
  396. list_for_each_entry(event, &group_event->sibling_list, group_entry)
  397. event_sched_out(event, cpuctx, ctx);
  398. if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
  399. cpuctx->exclusive = 0;
  400. }
  401. static inline struct perf_cpu_context *
  402. __get_cpu_context(struct perf_event_context *ctx)
  403. {
  404. return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
  405. }
  406. /*
  407. * Cross CPU call to remove a performance event
  408. *
  409. * We disable the event on the hardware level first. After that we
  410. * remove it from the context list.
  411. */
  412. static void __perf_event_remove_from_context(void *info)
  413. {
  414. struct perf_event *event = info;
  415. struct perf_event_context *ctx = event->ctx;
  416. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  417. /*
  418. * If this is a task context, we need to check whether it is
  419. * the current task context of this cpu. If not it has been
  420. * scheduled out before the smp call arrived.
  421. */
  422. if (ctx->task && cpuctx->task_ctx != ctx)
  423. return;
  424. raw_spin_lock(&ctx->lock);
  425. event_sched_out(event, cpuctx, ctx);
  426. list_del_event(event, ctx);
  427. raw_spin_unlock(&ctx->lock);
  428. }
  429. /*
  430. * Remove the event from a task's (or a CPU's) list of events.
  431. *
  432. * Must be called with ctx->mutex held.
  433. *
  434. * CPU events are removed with a smp call. For task events we only
  435. * call when the task is on a CPU.
  436. *
  437. * If event->ctx is a cloned context, callers must make sure that
  438. * every task struct that event->ctx->task could possibly point to
  439. * remains valid. This is OK when called from perf_release since
  440. * that only calls us on the top-level context, which can't be a clone.
  441. * When called from perf_event_exit_task, it's OK because the
  442. * context has been detached from its task.
  443. */
  444. static void perf_event_remove_from_context(struct perf_event *event)
  445. {
  446. struct perf_event_context *ctx = event->ctx;
  447. struct task_struct *task = ctx->task;
  448. if (!task) {
  449. /*
  450. * Per cpu events are removed via an smp call and
  451. * the removal is always successful.
  452. */
  453. smp_call_function_single(event->cpu,
  454. __perf_event_remove_from_context,
  455. event, 1);
  456. return;
  457. }
  458. retry:
  459. task_oncpu_function_call(task, __perf_event_remove_from_context,
  460. event);
  461. raw_spin_lock_irq(&ctx->lock);
  462. /*
  463. * If the context is active we need to retry the smp call.
  464. */
  465. if (ctx->nr_active && !list_empty(&event->group_entry)) {
  466. raw_spin_unlock_irq(&ctx->lock);
  467. goto retry;
  468. }
  469. /*
  470. * The lock prevents that this context is scheduled in so we
  471. * can remove the event safely, if the call above did not
  472. * succeed.
  473. */
  474. if (!list_empty(&event->group_entry))
  475. list_del_event(event, ctx);
  476. raw_spin_unlock_irq(&ctx->lock);
  477. }
  478. /*
  479. * Cross CPU call to disable a performance event
  480. */
  481. static void __perf_event_disable(void *info)
  482. {
  483. struct perf_event *event = info;
  484. struct perf_event_context *ctx = event->ctx;
  485. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  486. /*
  487. * If this is a per-task event, need to check whether this
  488. * event's task is the current task on this cpu.
  489. */
  490. if (ctx->task && cpuctx->task_ctx != ctx)
  491. return;
  492. raw_spin_lock(&ctx->lock);
  493. /*
  494. * If the event is on, turn it off.
  495. * If it is in error state, leave it in error state.
  496. */
  497. if (event->state >= PERF_EVENT_STATE_INACTIVE) {
  498. update_context_time(ctx);
  499. update_group_times(event);
  500. if (event == event->group_leader)
  501. group_sched_out(event, cpuctx, ctx);
  502. else
  503. event_sched_out(event, cpuctx, ctx);
  504. event->state = PERF_EVENT_STATE_OFF;
  505. }
  506. raw_spin_unlock(&ctx->lock);
  507. }
  508. /*
  509. * Disable a event.
  510. *
  511. * If event->ctx is a cloned context, callers must make sure that
  512. * every task struct that event->ctx->task could possibly point to
  513. * remains valid. This condition is satisifed when called through
  514. * perf_event_for_each_child or perf_event_for_each because they
  515. * hold the top-level event's child_mutex, so any descendant that
  516. * goes to exit will block in sync_child_event.
  517. * When called from perf_pending_event it's OK because event->ctx
  518. * is the current context on this CPU and preemption is disabled,
  519. * hence we can't get into perf_event_task_sched_out for this context.
  520. */
  521. void perf_event_disable(struct perf_event *event)
  522. {
  523. struct perf_event_context *ctx = event->ctx;
  524. struct task_struct *task = ctx->task;
  525. if (!task) {
  526. /*
  527. * Disable the event on the cpu that it's on
  528. */
  529. smp_call_function_single(event->cpu, __perf_event_disable,
  530. event, 1);
  531. return;
  532. }
  533. retry:
  534. task_oncpu_function_call(task, __perf_event_disable, event);
  535. raw_spin_lock_irq(&ctx->lock);
  536. /*
  537. * If the event is still active, we need to retry the cross-call.
  538. */
  539. if (event->state == PERF_EVENT_STATE_ACTIVE) {
  540. raw_spin_unlock_irq(&ctx->lock);
  541. goto retry;
  542. }
  543. /*
  544. * Since we have the lock this context can't be scheduled
  545. * in, so we can change the state safely.
  546. */
  547. if (event->state == PERF_EVENT_STATE_INACTIVE) {
  548. update_group_times(event);
  549. event->state = PERF_EVENT_STATE_OFF;
  550. }
  551. raw_spin_unlock_irq(&ctx->lock);
  552. }
  553. static int
  554. event_sched_in(struct perf_event *event,
  555. struct perf_cpu_context *cpuctx,
  556. struct perf_event_context *ctx)
  557. {
  558. if (event->state <= PERF_EVENT_STATE_OFF)
  559. return 0;
  560. event->state = PERF_EVENT_STATE_ACTIVE;
  561. event->oncpu = smp_processor_id();
  562. /*
  563. * The new state must be visible before we turn it on in the hardware:
  564. */
  565. smp_wmb();
  566. if (event->pmu->add(event, PERF_EF_START)) {
  567. event->state = PERF_EVENT_STATE_INACTIVE;
  568. event->oncpu = -1;
  569. return -EAGAIN;
  570. }
  571. event->tstamp_running += ctx->time - event->tstamp_stopped;
  572. event->shadow_ctx_time = ctx->time - ctx->timestamp;
  573. if (!is_software_event(event))
  574. cpuctx->active_oncpu++;
  575. ctx->nr_active++;
  576. if (event->attr.exclusive)
  577. cpuctx->exclusive = 1;
  578. return 0;
  579. }
  580. static int
  581. group_sched_in(struct perf_event *group_event,
  582. struct perf_cpu_context *cpuctx,
  583. struct perf_event_context *ctx)
  584. {
  585. struct perf_event *event, *partial_group = NULL;
  586. struct pmu *pmu = group_event->pmu;
  587. u64 now = ctx->time;
  588. bool simulate = false;
  589. if (group_event->state == PERF_EVENT_STATE_OFF)
  590. return 0;
  591. pmu->start_txn(pmu);
  592. if (event_sched_in(group_event, cpuctx, ctx)) {
  593. pmu->cancel_txn(pmu);
  594. return -EAGAIN;
  595. }
  596. /*
  597. * Schedule in siblings as one group (if any):
  598. */
  599. list_for_each_entry(event, &group_event->sibling_list, group_entry) {
  600. if (event_sched_in(event, cpuctx, ctx)) {
  601. partial_group = event;
  602. goto group_error;
  603. }
  604. }
  605. if (!pmu->commit_txn(pmu))
  606. return 0;
  607. group_error:
  608. /*
  609. * Groups can be scheduled in as one unit only, so undo any
  610. * partial group before returning:
  611. * The events up to the failed event are scheduled out normally,
  612. * tstamp_stopped will be updated.
  613. *
  614. * The failed events and the remaining siblings need to have
  615. * their timings updated as if they had gone thru event_sched_in()
  616. * and event_sched_out(). This is required to get consistent timings
  617. * across the group. This also takes care of the case where the group
  618. * could never be scheduled by ensuring tstamp_stopped is set to mark
  619. * the time the event was actually stopped, such that time delta
  620. * calculation in update_event_times() is correct.
  621. */
  622. list_for_each_entry(event, &group_event->sibling_list, group_entry) {
  623. if (event == partial_group)
  624. simulate = true;
  625. if (simulate) {
  626. event->tstamp_running += now - event->tstamp_stopped;
  627. event->tstamp_stopped = now;
  628. } else {
  629. event_sched_out(event, cpuctx, ctx);
  630. }
  631. }
  632. event_sched_out(group_event, cpuctx, ctx);
  633. pmu->cancel_txn(pmu);
  634. return -EAGAIN;
  635. }
  636. /*
  637. * Work out whether we can put this event group on the CPU now.
  638. */
  639. static int group_can_go_on(struct perf_event *event,
  640. struct perf_cpu_context *cpuctx,
  641. int can_add_hw)
  642. {
  643. /*
  644. * Groups consisting entirely of software events can always go on.
  645. */
  646. if (event->group_flags & PERF_GROUP_SOFTWARE)
  647. return 1;
  648. /*
  649. * If an exclusive group is already on, no other hardware
  650. * events can go on.
  651. */
  652. if (cpuctx->exclusive)
  653. return 0;
  654. /*
  655. * If this group is exclusive and there are already
  656. * events on the CPU, it can't go on.
  657. */
  658. if (event->attr.exclusive && cpuctx->active_oncpu)
  659. return 0;
  660. /*
  661. * Otherwise, try to add it if all previous groups were able
  662. * to go on.
  663. */
  664. return can_add_hw;
  665. }
  666. static void add_event_to_ctx(struct perf_event *event,
  667. struct perf_event_context *ctx)
  668. {
  669. list_add_event(event, ctx);
  670. perf_group_attach(event);
  671. event->tstamp_enabled = ctx->time;
  672. event->tstamp_running = ctx->time;
  673. event->tstamp_stopped = ctx->time;
  674. }
  675. /*
  676. * Cross CPU call to install and enable a performance event
  677. *
  678. * Must be called with ctx->mutex held
  679. */
  680. static void __perf_install_in_context(void *info)
  681. {
  682. struct perf_event *event = info;
  683. struct perf_event_context *ctx = event->ctx;
  684. struct perf_event *leader = event->group_leader;
  685. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  686. int err;
  687. /*
  688. * If this is a task context, we need to check whether it is
  689. * the current task context of this cpu. If not it has been
  690. * scheduled out before the smp call arrived.
  691. * Or possibly this is the right context but it isn't
  692. * on this cpu because it had no events.
  693. */
  694. if (ctx->task && cpuctx->task_ctx != ctx) {
  695. if (cpuctx->task_ctx || ctx->task != current)
  696. return;
  697. cpuctx->task_ctx = ctx;
  698. }
  699. raw_spin_lock(&ctx->lock);
  700. ctx->is_active = 1;
  701. update_context_time(ctx);
  702. add_event_to_ctx(event, ctx);
  703. if (event->cpu != -1 && event->cpu != smp_processor_id())
  704. goto unlock;
  705. /*
  706. * Don't put the event on if it is disabled or if
  707. * it is in a group and the group isn't on.
  708. */
  709. if (event->state != PERF_EVENT_STATE_INACTIVE ||
  710. (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
  711. goto unlock;
  712. /*
  713. * An exclusive event can't go on if there are already active
  714. * hardware events, and no hardware event can go on if there
  715. * is already an exclusive event on.
  716. */
  717. if (!group_can_go_on(event, cpuctx, 1))
  718. err = -EEXIST;
  719. else
  720. err = event_sched_in(event, cpuctx, ctx);
  721. if (err) {
  722. /*
  723. * This event couldn't go on. If it is in a group
  724. * then we have to pull the whole group off.
  725. * If the event group is pinned then put it in error state.
  726. */
  727. if (leader != event)
  728. group_sched_out(leader, cpuctx, ctx);
  729. if (leader->attr.pinned) {
  730. update_group_times(leader);
  731. leader->state = PERF_EVENT_STATE_ERROR;
  732. }
  733. }
  734. unlock:
  735. raw_spin_unlock(&ctx->lock);
  736. }
  737. /*
  738. * Attach a performance event to a context
  739. *
  740. * First we add the event to the list with the hardware enable bit
  741. * in event->hw_config cleared.
  742. *
  743. * If the event is attached to a task which is on a CPU we use a smp
  744. * call to enable it in the task context. The task might have been
  745. * scheduled away, but we check this in the smp call again.
  746. *
  747. * Must be called with ctx->mutex held.
  748. */
  749. static void
  750. perf_install_in_context(struct perf_event_context *ctx,
  751. struct perf_event *event,
  752. int cpu)
  753. {
  754. struct task_struct *task = ctx->task;
  755. event->ctx = ctx;
  756. if (!task) {
  757. /*
  758. * Per cpu events are installed via an smp call and
  759. * the install is always successful.
  760. */
  761. smp_call_function_single(cpu, __perf_install_in_context,
  762. event, 1);
  763. return;
  764. }
  765. retry:
  766. task_oncpu_function_call(task, __perf_install_in_context,
  767. event);
  768. raw_spin_lock_irq(&ctx->lock);
  769. /*
  770. * we need to retry the smp call.
  771. */
  772. if (ctx->is_active && list_empty(&event->group_entry)) {
  773. raw_spin_unlock_irq(&ctx->lock);
  774. goto retry;
  775. }
  776. /*
  777. * The lock prevents that this context is scheduled in so we
  778. * can add the event safely, if it the call above did not
  779. * succeed.
  780. */
  781. if (list_empty(&event->group_entry))
  782. add_event_to_ctx(event, ctx);
  783. raw_spin_unlock_irq(&ctx->lock);
  784. }
  785. /*
  786. * Put a event into inactive state and update time fields.
  787. * Enabling the leader of a group effectively enables all
  788. * the group members that aren't explicitly disabled, so we
  789. * have to update their ->tstamp_enabled also.
  790. * Note: this works for group members as well as group leaders
  791. * since the non-leader members' sibling_lists will be empty.
  792. */
  793. static void __perf_event_mark_enabled(struct perf_event *event,
  794. struct perf_event_context *ctx)
  795. {
  796. struct perf_event *sub;
  797. event->state = PERF_EVENT_STATE_INACTIVE;
  798. event->tstamp_enabled = ctx->time - event->total_time_enabled;
  799. list_for_each_entry(sub, &event->sibling_list, group_entry) {
  800. if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
  801. sub->tstamp_enabled =
  802. ctx->time - sub->total_time_enabled;
  803. }
  804. }
  805. }
  806. /*
  807. * Cross CPU call to enable a performance event
  808. */
  809. static void __perf_event_enable(void *info)
  810. {
  811. struct perf_event *event = info;
  812. struct perf_event_context *ctx = event->ctx;
  813. struct perf_event *leader = event->group_leader;
  814. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  815. int err;
  816. /*
  817. * If this is a per-task event, need to check whether this
  818. * event's task is the current task on this cpu.
  819. */
  820. if (ctx->task && cpuctx->task_ctx != ctx) {
  821. if (cpuctx->task_ctx || ctx->task != current)
  822. return;
  823. cpuctx->task_ctx = ctx;
  824. }
  825. raw_spin_lock(&ctx->lock);
  826. ctx->is_active = 1;
  827. update_context_time(ctx);
  828. if (event->state >= PERF_EVENT_STATE_INACTIVE)
  829. goto unlock;
  830. __perf_event_mark_enabled(event, ctx);
  831. if (event->cpu != -1 && event->cpu != smp_processor_id())
  832. goto unlock;
  833. /*
  834. * If the event is in a group and isn't the group leader,
  835. * then don't put it on unless the group is on.
  836. */
  837. if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
  838. goto unlock;
  839. if (!group_can_go_on(event, cpuctx, 1)) {
  840. err = -EEXIST;
  841. } else {
  842. if (event == leader)
  843. err = group_sched_in(event, cpuctx, ctx);
  844. else
  845. err = event_sched_in(event, cpuctx, ctx);
  846. }
  847. if (err) {
  848. /*
  849. * If this event can't go on and it's part of a
  850. * group, then the whole group has to come off.
  851. */
  852. if (leader != event)
  853. group_sched_out(leader, cpuctx, ctx);
  854. if (leader->attr.pinned) {
  855. update_group_times(leader);
  856. leader->state = PERF_EVENT_STATE_ERROR;
  857. }
  858. }
  859. unlock:
  860. raw_spin_unlock(&ctx->lock);
  861. }
  862. /*
  863. * Enable a event.
  864. *
  865. * If event->ctx is a cloned context, callers must make sure that
  866. * every task struct that event->ctx->task could possibly point to
  867. * remains valid. This condition is satisfied when called through
  868. * perf_event_for_each_child or perf_event_for_each as described
  869. * for perf_event_disable.
  870. */
  871. void perf_event_enable(struct perf_event *event)
  872. {
  873. struct perf_event_context *ctx = event->ctx;
  874. struct task_struct *task = ctx->task;
  875. if (!task) {
  876. /*
  877. * Enable the event on the cpu that it's on
  878. */
  879. smp_call_function_single(event->cpu, __perf_event_enable,
  880. event, 1);
  881. return;
  882. }
  883. raw_spin_lock_irq(&ctx->lock);
  884. if (event->state >= PERF_EVENT_STATE_INACTIVE)
  885. goto out;
  886. /*
  887. * If the event is in error state, clear that first.
  888. * That way, if we see the event in error state below, we
  889. * know that it has gone back into error state, as distinct
  890. * from the task having been scheduled away before the
  891. * cross-call arrived.
  892. */
  893. if (event->state == PERF_EVENT_STATE_ERROR)
  894. event->state = PERF_EVENT_STATE_OFF;
  895. retry:
  896. raw_spin_unlock_irq(&ctx->lock);
  897. task_oncpu_function_call(task, __perf_event_enable, event);
  898. raw_spin_lock_irq(&ctx->lock);
  899. /*
  900. * If the context is active and the event is still off,
  901. * we need to retry the cross-call.
  902. */
  903. if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
  904. goto retry;
  905. /*
  906. * Since we have the lock this context can't be scheduled
  907. * in, so we can change the state safely.
  908. */
  909. if (event->state == PERF_EVENT_STATE_OFF)
  910. __perf_event_mark_enabled(event, ctx);
  911. out:
  912. raw_spin_unlock_irq(&ctx->lock);
  913. }
  914. static int perf_event_refresh(struct perf_event *event, int refresh)
  915. {
  916. /*
  917. * not supported on inherited events
  918. */
  919. if (event->attr.inherit)
  920. return -EINVAL;
  921. atomic_add(refresh, &event->event_limit);
  922. perf_event_enable(event);
  923. return 0;
  924. }
  925. enum event_type_t {
  926. EVENT_FLEXIBLE = 0x1,
  927. EVENT_PINNED = 0x2,
  928. EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
  929. };
  930. static void ctx_sched_out(struct perf_event_context *ctx,
  931. struct perf_cpu_context *cpuctx,
  932. enum event_type_t event_type)
  933. {
  934. struct perf_event *event;
  935. raw_spin_lock(&ctx->lock);
  936. perf_pmu_disable(ctx->pmu);
  937. ctx->is_active = 0;
  938. if (likely(!ctx->nr_events))
  939. goto out;
  940. update_context_time(ctx);
  941. if (!ctx->nr_active)
  942. goto out;
  943. if (event_type & EVENT_PINNED) {
  944. list_for_each_entry(event, &ctx->pinned_groups, group_entry)
  945. group_sched_out(event, cpuctx, ctx);
  946. }
  947. if (event_type & EVENT_FLEXIBLE) {
  948. list_for_each_entry(event, &ctx->flexible_groups, group_entry)
  949. group_sched_out(event, cpuctx, ctx);
  950. }
  951. out:
  952. perf_pmu_enable(ctx->pmu);
  953. raw_spin_unlock(&ctx->lock);
  954. }
  955. /*
  956. * Test whether two contexts are equivalent, i.e. whether they
  957. * have both been cloned from the same version of the same context
  958. * and they both have the same number of enabled events.
  959. * If the number of enabled events is the same, then the set
  960. * of enabled events should be the same, because these are both
  961. * inherited contexts, therefore we can't access individual events
  962. * in them directly with an fd; we can only enable/disable all
  963. * events via prctl, or enable/disable all events in a family
  964. * via ioctl, which will have the same effect on both contexts.
  965. */
  966. static int context_equiv(struct perf_event_context *ctx1,
  967. struct perf_event_context *ctx2)
  968. {
  969. return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
  970. && ctx1->parent_gen == ctx2->parent_gen
  971. && !ctx1->pin_count && !ctx2->pin_count;
  972. }
  973. static void __perf_event_sync_stat(struct perf_event *event,
  974. struct perf_event *next_event)
  975. {
  976. u64 value;
  977. if (!event->attr.inherit_stat)
  978. return;
  979. /*
  980. * Update the event value, we cannot use perf_event_read()
  981. * because we're in the middle of a context switch and have IRQs
  982. * disabled, which upsets smp_call_function_single(), however
  983. * we know the event must be on the current CPU, therefore we
  984. * don't need to use it.
  985. */
  986. switch (event->state) {
  987. case PERF_EVENT_STATE_ACTIVE:
  988. event->pmu->read(event);
  989. /* fall-through */
  990. case PERF_EVENT_STATE_INACTIVE:
  991. update_event_times(event);
  992. break;
  993. default:
  994. break;
  995. }
  996. /*
  997. * In order to keep per-task stats reliable we need to flip the event
  998. * values when we flip the contexts.
  999. */
  1000. value = local64_read(&next_event->count);
  1001. value = local64_xchg(&event->count, value);
  1002. local64_set(&next_event->count, value);
  1003. swap(event->total_time_enabled, next_event->total_time_enabled);
  1004. swap(event->total_time_running, next_event->total_time_running);
  1005. /*
  1006. * Since we swizzled the values, update the user visible data too.
  1007. */
  1008. perf_event_update_userpage(event);
  1009. perf_event_update_userpage(next_event);
  1010. }
  1011. #define list_next_entry(pos, member) \
  1012. list_entry(pos->member.next, typeof(*pos), member)
  1013. static void perf_event_sync_stat(struct perf_event_context *ctx,
  1014. struct perf_event_context *next_ctx)
  1015. {
  1016. struct perf_event *event, *next_event;
  1017. if (!ctx->nr_stat)
  1018. return;
  1019. update_context_time(ctx);
  1020. event = list_first_entry(&ctx->event_list,
  1021. struct perf_event, event_entry);
  1022. next_event = list_first_entry(&next_ctx->event_list,
  1023. struct perf_event, event_entry);
  1024. while (&event->event_entry != &ctx->event_list &&
  1025. &next_event->event_entry != &next_ctx->event_list) {
  1026. __perf_event_sync_stat(event, next_event);
  1027. event = list_next_entry(event, event_entry);
  1028. next_event = list_next_entry(next_event, event_entry);
  1029. }
  1030. }
  1031. void perf_event_context_sched_out(struct task_struct *task, int ctxn,
  1032. struct task_struct *next)
  1033. {
  1034. struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
  1035. struct perf_event_context *next_ctx;
  1036. struct perf_event_context *parent;
  1037. struct perf_cpu_context *cpuctx;
  1038. int do_switch = 1;
  1039. if (likely(!ctx))
  1040. return;
  1041. cpuctx = __get_cpu_context(ctx);
  1042. if (!cpuctx->task_ctx)
  1043. return;
  1044. rcu_read_lock();
  1045. parent = rcu_dereference(ctx->parent_ctx);
  1046. next_ctx = next->perf_event_ctxp[ctxn];
  1047. if (parent && next_ctx &&
  1048. rcu_dereference(next_ctx->parent_ctx) == parent) {
  1049. /*
  1050. * Looks like the two contexts are clones, so we might be
  1051. * able to optimize the context switch. We lock both
  1052. * contexts and check that they are clones under the
  1053. * lock (including re-checking that neither has been
  1054. * uncloned in the meantime). It doesn't matter which
  1055. * order we take the locks because no other cpu could
  1056. * be trying to lock both of these tasks.
  1057. */
  1058. raw_spin_lock(&ctx->lock);
  1059. raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
  1060. if (context_equiv(ctx, next_ctx)) {
  1061. /*
  1062. * XXX do we need a memory barrier of sorts
  1063. * wrt to rcu_dereference() of perf_event_ctxp
  1064. */
  1065. task->perf_event_ctxp[ctxn] = next_ctx;
  1066. next->perf_event_ctxp[ctxn] = ctx;
  1067. ctx->task = next;
  1068. next_ctx->task = task;
  1069. do_switch = 0;
  1070. perf_event_sync_stat(ctx, next_ctx);
  1071. }
  1072. raw_spin_unlock(&next_ctx->lock);
  1073. raw_spin_unlock(&ctx->lock);
  1074. }
  1075. rcu_read_unlock();
  1076. if (do_switch) {
  1077. ctx_sched_out(ctx, cpuctx, EVENT_ALL);
  1078. cpuctx->task_ctx = NULL;
  1079. }
  1080. }
  1081. #define for_each_task_context_nr(ctxn) \
  1082. for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
  1083. /*
  1084. * Called from scheduler to remove the events of the current task,
  1085. * with interrupts disabled.
  1086. *
  1087. * We stop each event and update the event value in event->count.
  1088. *
  1089. * This does not protect us against NMI, but disable()
  1090. * sets the disabled bit in the control field of event _before_
  1091. * accessing the event control register. If a NMI hits, then it will
  1092. * not restart the event.
  1093. */
  1094. void __perf_event_task_sched_out(struct task_struct *task,
  1095. struct task_struct *next)
  1096. {
  1097. int ctxn;
  1098. for_each_task_context_nr(ctxn)
  1099. perf_event_context_sched_out(task, ctxn, next);
  1100. }
  1101. static void task_ctx_sched_out(struct perf_event_context *ctx,
  1102. enum event_type_t event_type)
  1103. {
  1104. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  1105. if (!cpuctx->task_ctx)
  1106. return;
  1107. if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
  1108. return;
  1109. ctx_sched_out(ctx, cpuctx, event_type);
  1110. cpuctx->task_ctx = NULL;
  1111. }
  1112. /*
  1113. * Called with IRQs disabled
  1114. */
  1115. static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
  1116. enum event_type_t event_type)
  1117. {
  1118. ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
  1119. }
  1120. static void
  1121. ctx_pinned_sched_in(struct perf_event_context *ctx,
  1122. struct perf_cpu_context *cpuctx)
  1123. {
  1124. struct perf_event *event;
  1125. list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
  1126. if (event->state <= PERF_EVENT_STATE_OFF)
  1127. continue;
  1128. if (event->cpu != -1 && event->cpu != smp_processor_id())
  1129. continue;
  1130. if (group_can_go_on(event, cpuctx, 1))
  1131. group_sched_in(event, cpuctx, ctx);
  1132. /*
  1133. * If this pinned group hasn't been scheduled,
  1134. * put it in error state.
  1135. */
  1136. if (event->state == PERF_EVENT_STATE_INACTIVE) {
  1137. update_group_times(event);
  1138. event->state = PERF_EVENT_STATE_ERROR;
  1139. }
  1140. }
  1141. }
  1142. static void
  1143. ctx_flexible_sched_in(struct perf_event_context *ctx,
  1144. struct perf_cpu_context *cpuctx)
  1145. {
  1146. struct perf_event *event;
  1147. int can_add_hw = 1;
  1148. list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
  1149. /* Ignore events in OFF or ERROR state */
  1150. if (event->state <= PERF_EVENT_STATE_OFF)
  1151. continue;
  1152. /*
  1153. * Listen to the 'cpu' scheduling filter constraint
  1154. * of events:
  1155. */
  1156. if (event->cpu != -1 && event->cpu != smp_processor_id())
  1157. continue;
  1158. if (group_can_go_on(event, cpuctx, can_add_hw)) {
  1159. if (group_sched_in(event, cpuctx, ctx))
  1160. can_add_hw = 0;
  1161. }
  1162. }
  1163. }
  1164. static void
  1165. ctx_sched_in(struct perf_event_context *ctx,
  1166. struct perf_cpu_context *cpuctx,
  1167. enum event_type_t event_type)
  1168. {
  1169. raw_spin_lock(&ctx->lock);
  1170. ctx->is_active = 1;
  1171. if (likely(!ctx->nr_events))
  1172. goto out;
  1173. ctx->timestamp = perf_clock();
  1174. /*
  1175. * First go through the list and put on any pinned groups
  1176. * in order to give them the best chance of going on.
  1177. */
  1178. if (event_type & EVENT_PINNED)
  1179. ctx_pinned_sched_in(ctx, cpuctx);
  1180. /* Then walk through the lower prio flexible groups */
  1181. if (event_type & EVENT_FLEXIBLE)
  1182. ctx_flexible_sched_in(ctx, cpuctx);
  1183. out:
  1184. raw_spin_unlock(&ctx->lock);
  1185. }
  1186. static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
  1187. enum event_type_t event_type)
  1188. {
  1189. struct perf_event_context *ctx = &cpuctx->ctx;
  1190. ctx_sched_in(ctx, cpuctx, event_type);
  1191. }
  1192. static void task_ctx_sched_in(struct perf_event_context *ctx,
  1193. enum event_type_t event_type)
  1194. {
  1195. struct perf_cpu_context *cpuctx;
  1196. cpuctx = __get_cpu_context(ctx);
  1197. if (cpuctx->task_ctx == ctx)
  1198. return;
  1199. ctx_sched_in(ctx, cpuctx, event_type);
  1200. cpuctx->task_ctx = ctx;
  1201. }
  1202. void perf_event_context_sched_in(struct perf_event_context *ctx)
  1203. {
  1204. struct perf_cpu_context *cpuctx;
  1205. cpuctx = __get_cpu_context(ctx);
  1206. if (cpuctx->task_ctx == ctx)
  1207. return;
  1208. perf_pmu_disable(ctx->pmu);
  1209. /*
  1210. * We want to keep the following priority order:
  1211. * cpu pinned (that don't need to move), task pinned,
  1212. * cpu flexible, task flexible.
  1213. */
  1214. cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
  1215. ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
  1216. cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
  1217. ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
  1218. cpuctx->task_ctx = ctx;
  1219. /*
  1220. * Since these rotations are per-cpu, we need to ensure the
  1221. * cpu-context we got scheduled on is actually rotating.
  1222. */
  1223. perf_pmu_rotate_start(ctx->pmu);
  1224. perf_pmu_enable(ctx->pmu);
  1225. }
  1226. /*
  1227. * Called from scheduler to add the events of the current task
  1228. * with interrupts disabled.
  1229. *
  1230. * We restore the event value and then enable it.
  1231. *
  1232. * This does not protect us against NMI, but enable()
  1233. * sets the enabled bit in the control field of event _before_
  1234. * accessing the event control register. If a NMI hits, then it will
  1235. * keep the event running.
  1236. */
  1237. void __perf_event_task_sched_in(struct task_struct *task)
  1238. {
  1239. struct perf_event_context *ctx;
  1240. int ctxn;
  1241. for_each_task_context_nr(ctxn) {
  1242. ctx = task->perf_event_ctxp[ctxn];
  1243. if (likely(!ctx))
  1244. continue;
  1245. perf_event_context_sched_in(ctx);
  1246. }
  1247. }
  1248. #define MAX_INTERRUPTS (~0ULL)
  1249. static void perf_log_throttle(struct perf_event *event, int enable);
  1250. static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
  1251. {
  1252. u64 frequency = event->attr.sample_freq;
  1253. u64 sec = NSEC_PER_SEC;
  1254. u64 divisor, dividend;
  1255. int count_fls, nsec_fls, frequency_fls, sec_fls;
  1256. count_fls = fls64(count);
  1257. nsec_fls = fls64(nsec);
  1258. frequency_fls = fls64(frequency);
  1259. sec_fls = 30;
  1260. /*
  1261. * We got @count in @nsec, with a target of sample_freq HZ
  1262. * the target period becomes:
  1263. *
  1264. * @count * 10^9
  1265. * period = -------------------
  1266. * @nsec * sample_freq
  1267. *
  1268. */
  1269. /*
  1270. * Reduce accuracy by one bit such that @a and @b converge
  1271. * to a similar magnitude.
  1272. */
  1273. #define REDUCE_FLS(a, b) \
  1274. do { \
  1275. if (a##_fls > b##_fls) { \
  1276. a >>= 1; \
  1277. a##_fls--; \
  1278. } else { \
  1279. b >>= 1; \
  1280. b##_fls--; \
  1281. } \
  1282. } while (0)
  1283. /*
  1284. * Reduce accuracy until either term fits in a u64, then proceed with
  1285. * the other, so that finally we can do a u64/u64 division.
  1286. */
  1287. while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
  1288. REDUCE_FLS(nsec, frequency);
  1289. REDUCE_FLS(sec, count);
  1290. }
  1291. if (count_fls + sec_fls > 64) {
  1292. divisor = nsec * frequency;
  1293. while (count_fls + sec_fls > 64) {
  1294. REDUCE_FLS(count, sec);
  1295. divisor >>= 1;
  1296. }
  1297. dividend = count * sec;
  1298. } else {
  1299. dividend = count * sec;
  1300. while (nsec_fls + frequency_fls > 64) {
  1301. REDUCE_FLS(nsec, frequency);
  1302. dividend >>= 1;
  1303. }
  1304. divisor = nsec * frequency;
  1305. }
  1306. if (!divisor)
  1307. return dividend;
  1308. return div64_u64(dividend, divisor);
  1309. }
  1310. static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
  1311. {
  1312. struct hw_perf_event *hwc = &event->hw;
  1313. s64 period, sample_period;
  1314. s64 delta;
  1315. period = perf_calculate_period(event, nsec, count);
  1316. delta = (s64)(period - hwc->sample_period);
  1317. delta = (delta + 7) / 8; /* low pass filter */
  1318. sample_period = hwc->sample_period + delta;
  1319. if (!sample_period)
  1320. sample_period = 1;
  1321. hwc->sample_period = sample_period;
  1322. if (local64_read(&hwc->period_left) > 8*sample_period) {
  1323. event->pmu->stop(event, PERF_EF_UPDATE);
  1324. local64_set(&hwc->period_left, 0);
  1325. event->pmu->start(event, PERF_EF_RELOAD);
  1326. }
  1327. }
  1328. static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
  1329. {
  1330. struct perf_event *event;
  1331. struct hw_perf_event *hwc;
  1332. u64 interrupts, now;
  1333. s64 delta;
  1334. raw_spin_lock(&ctx->lock);
  1335. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  1336. if (event->state != PERF_EVENT_STATE_ACTIVE)
  1337. continue;
  1338. if (event->cpu != -1 && event->cpu != smp_processor_id())
  1339. continue;
  1340. hwc = &event->hw;
  1341. interrupts = hwc->interrupts;
  1342. hwc->interrupts = 0;
  1343. /*
  1344. * unthrottle events on the tick
  1345. */
  1346. if (interrupts == MAX_INTERRUPTS) {
  1347. perf_log_throttle(event, 1);
  1348. event->pmu->start(event, 0);
  1349. }
  1350. if (!event->attr.freq || !event->attr.sample_freq)
  1351. continue;
  1352. event->pmu->read(event);
  1353. now = local64_read(&event->count);
  1354. delta = now - hwc->freq_count_stamp;
  1355. hwc->freq_count_stamp = now;
  1356. if (delta > 0)
  1357. perf_adjust_period(event, period, delta);
  1358. }
  1359. raw_spin_unlock(&ctx->lock);
  1360. }
  1361. /*
  1362. * Round-robin a context's events:
  1363. */
  1364. static void rotate_ctx(struct perf_event_context *ctx)
  1365. {
  1366. raw_spin_lock(&ctx->lock);
  1367. /*
  1368. * Rotate the first entry last of non-pinned groups. Rotation might be
  1369. * disabled by the inheritance code.
  1370. */
  1371. if (!ctx->rotate_disable)
  1372. list_rotate_left(&ctx->flexible_groups);
  1373. raw_spin_unlock(&ctx->lock);
  1374. }
  1375. /*
  1376. * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
  1377. * because they're strictly cpu affine and rotate_start is called with IRQs
  1378. * disabled, while rotate_context is called from IRQ context.
  1379. */
  1380. static void perf_rotate_context(struct perf_cpu_context *cpuctx)
  1381. {
  1382. u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
  1383. struct perf_event_context *ctx = NULL;
  1384. int rotate = 0, remove = 1;
  1385. if (cpuctx->ctx.nr_events) {
  1386. remove = 0;
  1387. if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
  1388. rotate = 1;
  1389. }
  1390. ctx = cpuctx->task_ctx;
  1391. if (ctx && ctx->nr_events) {
  1392. remove = 0;
  1393. if (ctx->nr_events != ctx->nr_active)
  1394. rotate = 1;
  1395. }
  1396. perf_pmu_disable(cpuctx->ctx.pmu);
  1397. perf_ctx_adjust_freq(&cpuctx->ctx, interval);
  1398. if (ctx)
  1399. perf_ctx_adjust_freq(ctx, interval);
  1400. if (!rotate)
  1401. goto done;
  1402. cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
  1403. if (ctx)
  1404. task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
  1405. rotate_ctx(&cpuctx->ctx);
  1406. if (ctx)
  1407. rotate_ctx(ctx);
  1408. cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
  1409. if (ctx)
  1410. task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
  1411. done:
  1412. if (remove)
  1413. list_del_init(&cpuctx->rotation_list);
  1414. perf_pmu_enable(cpuctx->ctx.pmu);
  1415. }
  1416. void perf_event_task_tick(void)
  1417. {
  1418. struct list_head *head = &__get_cpu_var(rotation_list);
  1419. struct perf_cpu_context *cpuctx, *tmp;
  1420. WARN_ON(!irqs_disabled());
  1421. list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
  1422. if (cpuctx->jiffies_interval == 1 ||
  1423. !(jiffies % cpuctx->jiffies_interval))
  1424. perf_rotate_context(cpuctx);
  1425. }
  1426. }
  1427. static int event_enable_on_exec(struct perf_event *event,
  1428. struct perf_event_context *ctx)
  1429. {
  1430. if (!event->attr.enable_on_exec)
  1431. return 0;
  1432. event->attr.enable_on_exec = 0;
  1433. if (event->state >= PERF_EVENT_STATE_INACTIVE)
  1434. return 0;
  1435. __perf_event_mark_enabled(event, ctx);
  1436. return 1;
  1437. }
  1438. /*
  1439. * Enable all of a task's events that have been marked enable-on-exec.
  1440. * This expects task == current.
  1441. */
  1442. static void perf_event_enable_on_exec(struct perf_event_context *ctx)
  1443. {
  1444. struct perf_event *event;
  1445. unsigned long flags;
  1446. int enabled = 0;
  1447. int ret;
  1448. local_irq_save(flags);
  1449. if (!ctx || !ctx->nr_events)
  1450. goto out;
  1451. task_ctx_sched_out(ctx, EVENT_ALL);
  1452. raw_spin_lock(&ctx->lock);
  1453. list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
  1454. ret = event_enable_on_exec(event, ctx);
  1455. if (ret)
  1456. enabled = 1;
  1457. }
  1458. list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
  1459. ret = event_enable_on_exec(event, ctx);
  1460. if (ret)
  1461. enabled = 1;
  1462. }
  1463. /*
  1464. * Unclone this context if we enabled any event.
  1465. */
  1466. if (enabled)
  1467. unclone_ctx(ctx);
  1468. raw_spin_unlock(&ctx->lock);
  1469. perf_event_context_sched_in(ctx);
  1470. out:
  1471. local_irq_restore(flags);
  1472. }
  1473. /*
  1474. * Cross CPU call to read the hardware event
  1475. */
  1476. static void __perf_event_read(void *info)
  1477. {
  1478. struct perf_event *event = info;
  1479. struct perf_event_context *ctx = event->ctx;
  1480. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  1481. /*
  1482. * If this is a task context, we need to check whether it is
  1483. * the current task context of this cpu. If not it has been
  1484. * scheduled out before the smp call arrived. In that case
  1485. * event->count would have been updated to a recent sample
  1486. * when the event was scheduled out.
  1487. */
  1488. if (ctx->task && cpuctx->task_ctx != ctx)
  1489. return;
  1490. raw_spin_lock(&ctx->lock);
  1491. update_context_time(ctx);
  1492. update_event_times(event);
  1493. raw_spin_unlock(&ctx->lock);
  1494. event->pmu->read(event);
  1495. }
  1496. static inline u64 perf_event_count(struct perf_event *event)
  1497. {
  1498. return local64_read(&event->count) + atomic64_read(&event->child_count);
  1499. }
  1500. static u64 perf_event_read(struct perf_event *event)
  1501. {
  1502. /*
  1503. * If event is enabled and currently active on a CPU, update the
  1504. * value in the event structure:
  1505. */
  1506. if (event->state == PERF_EVENT_STATE_ACTIVE) {
  1507. smp_call_function_single(event->oncpu,
  1508. __perf_event_read, event, 1);
  1509. } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
  1510. struct perf_event_context *ctx = event->ctx;
  1511. unsigned long flags;
  1512. raw_spin_lock_irqsave(&ctx->lock, flags);
  1513. /*
  1514. * may read while context is not active
  1515. * (e.g., thread is blocked), in that case
  1516. * we cannot update context time
  1517. */
  1518. if (ctx->is_active)
  1519. update_context_time(ctx);
  1520. update_event_times(event);
  1521. raw_spin_unlock_irqrestore(&ctx->lock, flags);
  1522. }
  1523. return perf_event_count(event);
  1524. }
  1525. /*
  1526. * Callchain support
  1527. */
  1528. struct callchain_cpus_entries {
  1529. struct rcu_head rcu_head;
  1530. struct perf_callchain_entry *cpu_entries[0];
  1531. };
  1532. static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
  1533. static atomic_t nr_callchain_events;
  1534. static DEFINE_MUTEX(callchain_mutex);
  1535. struct callchain_cpus_entries *callchain_cpus_entries;
  1536. __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
  1537. struct pt_regs *regs)
  1538. {
  1539. }
  1540. __weak void perf_callchain_user(struct perf_callchain_entry *entry,
  1541. struct pt_regs *regs)
  1542. {
  1543. }
  1544. static void release_callchain_buffers_rcu(struct rcu_head *head)
  1545. {
  1546. struct callchain_cpus_entries *entries;
  1547. int cpu;
  1548. entries = container_of(head, struct callchain_cpus_entries, rcu_head);
  1549. for_each_possible_cpu(cpu)
  1550. kfree(entries->cpu_entries[cpu]);
  1551. kfree(entries);
  1552. }
  1553. static void release_callchain_buffers(void)
  1554. {
  1555. struct callchain_cpus_entries *entries;
  1556. entries = callchain_cpus_entries;
  1557. rcu_assign_pointer(callchain_cpus_entries, NULL);
  1558. call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
  1559. }
  1560. static int alloc_callchain_buffers(void)
  1561. {
  1562. int cpu;
  1563. int size;
  1564. struct callchain_cpus_entries *entries;
  1565. /*
  1566. * We can't use the percpu allocation API for data that can be
  1567. * accessed from NMI. Use a temporary manual per cpu allocation
  1568. * until that gets sorted out.
  1569. */
  1570. size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
  1571. num_possible_cpus();
  1572. entries = kzalloc(size, GFP_KERNEL);
  1573. if (!entries)
  1574. return -ENOMEM;
  1575. size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
  1576. for_each_possible_cpu(cpu) {
  1577. entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
  1578. cpu_to_node(cpu));
  1579. if (!entries->cpu_entries[cpu])
  1580. goto fail;
  1581. }
  1582. rcu_assign_pointer(callchain_cpus_entries, entries);
  1583. return 0;
  1584. fail:
  1585. for_each_possible_cpu(cpu)
  1586. kfree(entries->cpu_entries[cpu]);
  1587. kfree(entries);
  1588. return -ENOMEM;
  1589. }
  1590. static int get_callchain_buffers(void)
  1591. {
  1592. int err = 0;
  1593. int count;
  1594. mutex_lock(&callchain_mutex);
  1595. count = atomic_inc_return(&nr_callchain_events);
  1596. if (WARN_ON_ONCE(count < 1)) {
  1597. err = -EINVAL;
  1598. goto exit;
  1599. }
  1600. if (count > 1) {
  1601. /* If the allocation failed, give up */
  1602. if (!callchain_cpus_entries)
  1603. err = -ENOMEM;
  1604. goto exit;
  1605. }
  1606. err = alloc_callchain_buffers();
  1607. if (err)
  1608. release_callchain_buffers();
  1609. exit:
  1610. mutex_unlock(&callchain_mutex);
  1611. return err;
  1612. }
  1613. static void put_callchain_buffers(void)
  1614. {
  1615. if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
  1616. release_callchain_buffers();
  1617. mutex_unlock(&callchain_mutex);
  1618. }
  1619. }
  1620. static int get_recursion_context(int *recursion)
  1621. {
  1622. int rctx;
  1623. if (in_nmi())
  1624. rctx = 3;
  1625. else if (in_irq())
  1626. rctx = 2;
  1627. else if (in_softirq())
  1628. rctx = 1;
  1629. else
  1630. rctx = 0;
  1631. if (recursion[rctx])
  1632. return -1;
  1633. recursion[rctx]++;
  1634. barrier();
  1635. return rctx;
  1636. }
  1637. static inline void put_recursion_context(int *recursion, int rctx)
  1638. {
  1639. barrier();
  1640. recursion[rctx]--;
  1641. }
  1642. static struct perf_callchain_entry *get_callchain_entry(int *rctx)
  1643. {
  1644. int cpu;
  1645. struct callchain_cpus_entries *entries;
  1646. *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
  1647. if (*rctx == -1)
  1648. return NULL;
  1649. entries = rcu_dereference(callchain_cpus_entries);
  1650. if (!entries)
  1651. return NULL;
  1652. cpu = smp_processor_id();
  1653. return &entries->cpu_entries[cpu][*rctx];
  1654. }
  1655. static void
  1656. put_callchain_entry(int rctx)
  1657. {
  1658. put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
  1659. }
  1660. static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
  1661. {
  1662. int rctx;
  1663. struct perf_callchain_entry *entry;
  1664. entry = get_callchain_entry(&rctx);
  1665. if (rctx == -1)
  1666. return NULL;
  1667. if (!entry)
  1668. goto exit_put;
  1669. entry->nr = 0;
  1670. if (!user_mode(regs)) {
  1671. perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
  1672. perf_callchain_kernel(entry, regs);
  1673. if (current->mm)
  1674. regs = task_pt_regs(current);
  1675. else
  1676. regs = NULL;
  1677. }
  1678. if (regs) {
  1679. perf_callchain_store(entry, PERF_CONTEXT_USER);
  1680. perf_callchain_user(entry, regs);
  1681. }
  1682. exit_put:
  1683. put_callchain_entry(rctx);
  1684. return entry;
  1685. }
  1686. /*
  1687. * Initialize the perf_event context in a task_struct:
  1688. */
  1689. static void __perf_event_init_context(struct perf_event_context *ctx)
  1690. {
  1691. raw_spin_lock_init(&ctx->lock);
  1692. mutex_init(&ctx->mutex);
  1693. INIT_LIST_HEAD(&ctx->pinned_groups);
  1694. INIT_LIST_HEAD(&ctx->flexible_groups);
  1695. INIT_LIST_HEAD(&ctx->event_list);
  1696. atomic_set(&ctx->refcount, 1);
  1697. }
  1698. static struct perf_event_context *
  1699. alloc_perf_context(struct pmu *pmu, struct task_struct *task)
  1700. {
  1701. struct perf_event_context *ctx;
  1702. ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
  1703. if (!ctx)
  1704. return NULL;
  1705. __perf_event_init_context(ctx);
  1706. if (task) {
  1707. ctx->task = task;
  1708. get_task_struct(task);
  1709. }
  1710. ctx->pmu = pmu;
  1711. return ctx;
  1712. }
  1713. static struct task_struct *
  1714. find_lively_task_by_vpid(pid_t vpid)
  1715. {
  1716. struct task_struct *task;
  1717. int err;
  1718. rcu_read_lock();
  1719. if (!vpid)
  1720. task = current;
  1721. else
  1722. task = find_task_by_vpid(vpid);
  1723. if (task)
  1724. get_task_struct(task);
  1725. rcu_read_unlock();
  1726. if (!task)
  1727. return ERR_PTR(-ESRCH);
  1728. /*
  1729. * Can't attach events to a dying task.
  1730. */
  1731. err = -ESRCH;
  1732. if (task->flags & PF_EXITING)
  1733. goto errout;
  1734. /* Reuse ptrace permission checks for now. */
  1735. err = -EACCES;
  1736. if (!ptrace_may_access(task, PTRACE_MODE_READ))
  1737. goto errout;
  1738. return task;
  1739. errout:
  1740. put_task_struct(task);
  1741. return ERR_PTR(err);
  1742. }
  1743. static struct perf_event_context *
  1744. find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
  1745. {
  1746. struct perf_event_context *ctx;
  1747. struct perf_cpu_context *cpuctx;
  1748. unsigned long flags;
  1749. int ctxn, err;
  1750. if (!task && cpu != -1) {
  1751. /* Must be root to operate on a CPU event: */
  1752. if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
  1753. return ERR_PTR(-EACCES);
  1754. if (cpu < 0 || cpu >= nr_cpumask_bits)
  1755. return ERR_PTR(-EINVAL);
  1756. /*
  1757. * We could be clever and allow to attach a event to an
  1758. * offline CPU and activate it when the CPU comes up, but
  1759. * that's for later.
  1760. */
  1761. if (!cpu_online(cpu))
  1762. return ERR_PTR(-ENODEV);
  1763. cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
  1764. ctx = &cpuctx->ctx;
  1765. get_ctx(ctx);
  1766. return ctx;
  1767. }
  1768. err = -EINVAL;
  1769. ctxn = pmu->task_ctx_nr;
  1770. if (ctxn < 0)
  1771. goto errout;
  1772. retry:
  1773. ctx = perf_lock_task_context(task, ctxn, &flags);
  1774. if (ctx) {
  1775. unclone_ctx(ctx);
  1776. raw_spin_unlock_irqrestore(&ctx->lock, flags);
  1777. }
  1778. if (!ctx) {
  1779. ctx = alloc_perf_context(pmu, task);
  1780. err = -ENOMEM;
  1781. if (!ctx)
  1782. goto errout;
  1783. get_ctx(ctx);
  1784. if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
  1785. /*
  1786. * We raced with some other task; use
  1787. * the context they set.
  1788. */
  1789. put_task_struct(task);
  1790. kfree(ctx);
  1791. goto retry;
  1792. }
  1793. }
  1794. return ctx;
  1795. errout:
  1796. return ERR_PTR(err);
  1797. }
  1798. static void perf_event_free_filter(struct perf_event *event);
  1799. static void free_event_rcu(struct rcu_head *head)
  1800. {
  1801. struct perf_event *event;
  1802. event = container_of(head, struct perf_event, rcu_head);
  1803. if (event->ns)
  1804. put_pid_ns(event->ns);
  1805. perf_event_free_filter(event);
  1806. kfree(event);
  1807. }
  1808. static void perf_buffer_put(struct perf_buffer *buffer);
  1809. static void free_event(struct perf_event *event)
  1810. {
  1811. irq_work_sync(&event->pending);
  1812. if (!event->parent) {
  1813. if (event->attach_state & PERF_ATTACH_TASK)
  1814. jump_label_dec(&perf_task_events);
  1815. if (event->attr.mmap || event->attr.mmap_data)
  1816. atomic_dec(&nr_mmap_events);
  1817. if (event->attr.comm)
  1818. atomic_dec(&nr_comm_events);
  1819. if (event->attr.task)
  1820. atomic_dec(&nr_task_events);
  1821. if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
  1822. put_callchain_buffers();
  1823. }
  1824. if (event->buffer) {
  1825. perf_buffer_put(event->buffer);
  1826. event->buffer = NULL;
  1827. }
  1828. if (event->destroy)
  1829. event->destroy(event);
  1830. if (event->ctx)
  1831. put_ctx(event->ctx);
  1832. call_rcu(&event->rcu_head, free_event_rcu);
  1833. }
  1834. int perf_event_release_kernel(struct perf_event *event)
  1835. {
  1836. struct perf_event_context *ctx = event->ctx;
  1837. /*
  1838. * Remove from the PMU, can't get re-enabled since we got
  1839. * here because the last ref went.
  1840. */
  1841. perf_event_disable(event);
  1842. WARN_ON_ONCE(ctx->parent_ctx);
  1843. /*
  1844. * There are two ways this annotation is useful:
  1845. *
  1846. * 1) there is a lock recursion from perf_event_exit_task
  1847. * see the comment there.
  1848. *
  1849. * 2) there is a lock-inversion with mmap_sem through
  1850. * perf_event_read_group(), which takes faults while
  1851. * holding ctx->mutex, however this is called after
  1852. * the last filedesc died, so there is no possibility
  1853. * to trigger the AB-BA case.
  1854. */
  1855. mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
  1856. raw_spin_lock_irq(&ctx->lock);
  1857. perf_group_detach(event);
  1858. list_del_event(event, ctx);
  1859. raw_spin_unlock_irq(&ctx->lock);
  1860. mutex_unlock(&ctx->mutex);
  1861. free_event(event);
  1862. return 0;
  1863. }
  1864. EXPORT_SYMBOL_GPL(perf_event_release_kernel);
  1865. /*
  1866. * Called when the last reference to the file is gone.
  1867. */
  1868. static int perf_release(struct inode *inode, struct file *file)
  1869. {
  1870. struct perf_event *event = file->private_data;
  1871. struct task_struct *owner;
  1872. file->private_data = NULL;
  1873. rcu_read_lock();
  1874. owner = ACCESS_ONCE(event->owner);
  1875. /*
  1876. * Matches the smp_wmb() in perf_event_exit_task(). If we observe
  1877. * !owner it means the list deletion is complete and we can indeed
  1878. * free this event, otherwise we need to serialize on
  1879. * owner->perf_event_mutex.
  1880. */
  1881. smp_read_barrier_depends();
  1882. if (owner) {
  1883. /*
  1884. * Since delayed_put_task_struct() also drops the last
  1885. * task reference we can safely take a new reference
  1886. * while holding the rcu_read_lock().
  1887. */
  1888. get_task_struct(owner);
  1889. }
  1890. rcu_read_unlock();
  1891. if (owner) {
  1892. mutex_lock(&owner->perf_event_mutex);
  1893. /*
  1894. * We have to re-check the event->owner field, if it is cleared
  1895. * we raced with perf_event_exit_task(), acquiring the mutex
  1896. * ensured they're done, and we can proceed with freeing the
  1897. * event.
  1898. */
  1899. if (event->owner)
  1900. list_del_init(&event->owner_entry);
  1901. mutex_unlock(&owner->perf_event_mutex);
  1902. put_task_struct(owner);
  1903. }
  1904. return perf_event_release_kernel(event);
  1905. }
  1906. static int perf_event_read_size(struct perf_event *event)
  1907. {
  1908. int entry = sizeof(u64); /* value */
  1909. int size = 0;
  1910. int nr = 1;
  1911. if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  1912. size += sizeof(u64);
  1913. if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  1914. size += sizeof(u64);
  1915. if (event->attr.read_format & PERF_FORMAT_ID)
  1916. entry += sizeof(u64);
  1917. if (event->attr.read_format & PERF_FORMAT_GROUP) {
  1918. nr += event->group_leader->nr_siblings;
  1919. size += sizeof(u64);
  1920. }
  1921. size += entry * nr;
  1922. return size;
  1923. }
  1924. u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
  1925. {
  1926. struct perf_event *child;
  1927. u64 total = 0;
  1928. *enabled = 0;
  1929. *running = 0;
  1930. mutex_lock(&event->child_mutex);
  1931. total += perf_event_read(event);
  1932. *enabled += event->total_time_enabled +
  1933. atomic64_read(&event->child_total_time_enabled);
  1934. *running += event->total_time_running +
  1935. atomic64_read(&event->child_total_time_running);
  1936. list_for_each_entry(child, &event->child_list, child_list) {
  1937. total += perf_event_read(child);
  1938. *enabled += child->total_time_enabled;
  1939. *running += child->total_time_running;
  1940. }
  1941. mutex_unlock(&event->child_mutex);
  1942. return total;
  1943. }
  1944. EXPORT_SYMBOL_GPL(perf_event_read_value);
  1945. static int perf_event_read_group(struct perf_event *event,
  1946. u64 read_format, char __user *buf)
  1947. {
  1948. struct perf_event *leader = event->group_leader, *sub;
  1949. int n = 0, size = 0, ret = -EFAULT;
  1950. struct perf_event_context *ctx = leader->ctx;
  1951. u64 values[5];
  1952. u64 count, enabled, running;
  1953. mutex_lock(&ctx->mutex);
  1954. count = perf_event_read_value(leader, &enabled, &running);
  1955. values[n++] = 1 + leader->nr_siblings;
  1956. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  1957. values[n++] = enabled;
  1958. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  1959. values[n++] = running;
  1960. values[n++] = count;
  1961. if (read_format & PERF_FORMAT_ID)
  1962. values[n++] = primary_event_id(leader);
  1963. size = n * sizeof(u64);
  1964. if (copy_to_user(buf, values, size))
  1965. goto unlock;
  1966. ret = size;
  1967. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  1968. n = 0;
  1969. values[n++] = perf_event_read_value(sub, &enabled, &running);
  1970. if (read_format & PERF_FORMAT_ID)
  1971. values[n++] = primary_event_id(sub);
  1972. size = n * sizeof(u64);
  1973. if (copy_to_user(buf + ret, values, size)) {
  1974. ret = -EFAULT;
  1975. goto unlock;
  1976. }
  1977. ret += size;
  1978. }
  1979. unlock:
  1980. mutex_unlock(&ctx->mutex);
  1981. return ret;
  1982. }
  1983. static int perf_event_read_one(struct perf_event *event,
  1984. u64 read_format, char __user *buf)
  1985. {
  1986. u64 enabled, running;
  1987. u64 values[4];
  1988. int n = 0;
  1989. values[n++] = perf_event_read_value(event, &enabled, &running);
  1990. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  1991. values[n++] = enabled;
  1992. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  1993. values[n++] = running;
  1994. if (read_format & PERF_FORMAT_ID)
  1995. values[n++] = primary_event_id(event);
  1996. if (copy_to_user(buf, values, n * sizeof(u64)))
  1997. return -EFAULT;
  1998. return n * sizeof(u64);
  1999. }
  2000. /*
  2001. * Read the performance event - simple non blocking version for now
  2002. */
  2003. static ssize_t
  2004. perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
  2005. {
  2006. u64 read_format = event->attr.read_format;
  2007. int ret;
  2008. /*
  2009. * Return end-of-file for a read on a event that is in
  2010. * error state (i.e. because it was pinned but it couldn't be
  2011. * scheduled on to the CPU at some point).
  2012. */
  2013. if (event->state == PERF_EVENT_STATE_ERROR)
  2014. return 0;
  2015. if (count < perf_event_read_size(event))
  2016. return -ENOSPC;
  2017. WARN_ON_ONCE(event->ctx->parent_ctx);
  2018. if (read_format & PERF_FORMAT_GROUP)
  2019. ret = perf_event_read_group(event, read_format, buf);
  2020. else
  2021. ret = perf_event_read_one(event, read_format, buf);
  2022. return ret;
  2023. }
  2024. static ssize_t
  2025. perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
  2026. {
  2027. struct perf_event *event = file->private_data;
  2028. return perf_read_hw(event, buf, count);
  2029. }
  2030. static unsigned int perf_poll(struct file *file, poll_table *wait)
  2031. {
  2032. struct perf_event *event = file->private_data;
  2033. struct perf_buffer *buffer;
  2034. unsigned int events = POLL_HUP;
  2035. rcu_read_lock();
  2036. buffer = rcu_dereference(event->buffer);
  2037. if (buffer)
  2038. events = atomic_xchg(&buffer->poll, 0);
  2039. rcu_read_unlock();
  2040. poll_wait(file, &event->waitq, wait);
  2041. return events;
  2042. }
  2043. static void perf_event_reset(struct perf_event *event)
  2044. {
  2045. (void)perf_event_read(event);
  2046. local64_set(&event->count, 0);
  2047. perf_event_update_userpage(event);
  2048. }
  2049. /*
  2050. * Holding the top-level event's child_mutex means that any
  2051. * descendant process that has inherited this event will block
  2052. * in sync_child_event if it goes to exit, thus satisfying the
  2053. * task existence requirements of perf_event_enable/disable.
  2054. */
  2055. static void perf_event_for_each_child(struct perf_event *event,
  2056. void (*func)(struct perf_event *))
  2057. {
  2058. struct perf_event *child;
  2059. WARN_ON_ONCE(event->ctx->parent_ctx);
  2060. mutex_lock(&event->child_mutex);
  2061. func(event);
  2062. list_for_each_entry(child, &event->child_list, child_list)
  2063. func(child);
  2064. mutex_unlock(&event->child_mutex);
  2065. }
  2066. static void perf_event_for_each(struct perf_event *event,
  2067. void (*func)(struct perf_event *))
  2068. {
  2069. struct perf_event_context *ctx = event->ctx;
  2070. struct perf_event *sibling;
  2071. WARN_ON_ONCE(ctx->parent_ctx);
  2072. mutex_lock(&ctx->mutex);
  2073. event = event->group_leader;
  2074. perf_event_for_each_child(event, func);
  2075. func(event);
  2076. list_for_each_entry(sibling, &event->sibling_list, group_entry)
  2077. perf_event_for_each_child(event, func);
  2078. mutex_unlock(&ctx->mutex);
  2079. }
  2080. static int perf_event_period(struct perf_event *event, u64 __user *arg)
  2081. {
  2082. struct perf_event_context *ctx = event->ctx;
  2083. int ret = 0;
  2084. u64 value;
  2085. if (!event->attr.sample_period)
  2086. return -EINVAL;
  2087. if (copy_from_user(&value, arg, sizeof(value)))
  2088. return -EFAULT;
  2089. if (!value)
  2090. return -EINVAL;
  2091. raw_spin_lock_irq(&ctx->lock);
  2092. if (event->attr.freq) {
  2093. if (value > sysctl_perf_event_sample_rate) {
  2094. ret = -EINVAL;
  2095. goto unlock;
  2096. }
  2097. event->attr.sample_freq = value;
  2098. } else {
  2099. event->attr.sample_period = value;
  2100. event->hw.sample_period = value;
  2101. }
  2102. unlock:
  2103. raw_spin_unlock_irq(&ctx->lock);
  2104. return ret;
  2105. }
  2106. static const struct file_operations perf_fops;
  2107. static struct perf_event *perf_fget_light(int fd, int *fput_needed)
  2108. {
  2109. struct file *file;
  2110. file = fget_light(fd, fput_needed);
  2111. if (!file)
  2112. return ERR_PTR(-EBADF);
  2113. if (file->f_op != &perf_fops) {
  2114. fput_light(file, *fput_needed);
  2115. *fput_needed = 0;
  2116. return ERR_PTR(-EBADF);
  2117. }
  2118. return file->private_data;
  2119. }
  2120. static int perf_event_set_output(struct perf_event *event,
  2121. struct perf_event *output_event);
  2122. static int perf_event_set_filter(struct perf_event *event, void __user *arg);
  2123. static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  2124. {
  2125. struct perf_event *event = file->private_data;
  2126. void (*func)(struct perf_event *);
  2127. u32 flags = arg;
  2128. switch (cmd) {
  2129. case PERF_EVENT_IOC_ENABLE:
  2130. func = perf_event_enable;
  2131. break;
  2132. case PERF_EVENT_IOC_DISABLE:
  2133. func = perf_event_disable;
  2134. break;
  2135. case PERF_EVENT_IOC_RESET:
  2136. func = perf_event_reset;
  2137. break;
  2138. case PERF_EVENT_IOC_REFRESH:
  2139. return perf_event_refresh(event, arg);
  2140. case PERF_EVENT_IOC_PERIOD:
  2141. return perf_event_period(event, (u64 __user *)arg);
  2142. case PERF_EVENT_IOC_SET_OUTPUT:
  2143. {
  2144. struct perf_event *output_event = NULL;
  2145. int fput_needed = 0;
  2146. int ret;
  2147. if (arg != -1) {
  2148. output_event = perf_fget_light(arg, &fput_needed);
  2149. if (IS_ERR(output_event))
  2150. return PTR_ERR(output_event);
  2151. }
  2152. ret = perf_event_set_output(event, output_event);
  2153. if (output_event)
  2154. fput_light(output_event->filp, fput_needed);
  2155. return ret;
  2156. }
  2157. case PERF_EVENT_IOC_SET_FILTER:
  2158. return perf_event_set_filter(event, (void __user *)arg);
  2159. default:
  2160. return -ENOTTY;
  2161. }
  2162. if (flags & PERF_IOC_FLAG_GROUP)
  2163. perf_event_for_each(event, func);
  2164. else
  2165. perf_event_for_each_child(event, func);
  2166. return 0;
  2167. }
  2168. int perf_event_task_enable(void)
  2169. {
  2170. struct perf_event *event;
  2171. mutex_lock(&current->perf_event_mutex);
  2172. list_for_each_entry(event, &current->perf_event_list, owner_entry)
  2173. perf_event_for_each_child(event, perf_event_enable);
  2174. mutex_unlock(&current->perf_event_mutex);
  2175. return 0;
  2176. }
  2177. int perf_event_task_disable(void)
  2178. {
  2179. struct perf_event *event;
  2180. mutex_lock(&current->perf_event_mutex);
  2181. list_for_each_entry(event, &current->perf_event_list, owner_entry)
  2182. perf_event_for_each_child(event, perf_event_disable);
  2183. mutex_unlock(&current->perf_event_mutex);
  2184. return 0;
  2185. }
  2186. #ifndef PERF_EVENT_INDEX_OFFSET
  2187. # define PERF_EVENT_INDEX_OFFSET 0
  2188. #endif
  2189. static int perf_event_index(struct perf_event *event)
  2190. {
  2191. if (event->hw.state & PERF_HES_STOPPED)
  2192. return 0;
  2193. if (event->state != PERF_EVENT_STATE_ACTIVE)
  2194. return 0;
  2195. return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
  2196. }
  2197. /*
  2198. * Callers need to ensure there can be no nesting of this function, otherwise
  2199. * the seqlock logic goes bad. We can not serialize this because the arch
  2200. * code calls this from NMI context.
  2201. */
  2202. void perf_event_update_userpage(struct perf_event *event)
  2203. {
  2204. struct perf_event_mmap_page *userpg;
  2205. struct perf_buffer *buffer;
  2206. rcu_read_lock();
  2207. buffer = rcu_dereference(event->buffer);
  2208. if (!buffer)
  2209. goto unlock;
  2210. userpg = buffer->user_page;
  2211. /*
  2212. * Disable preemption so as to not let the corresponding user-space
  2213. * spin too long if we get preempted.
  2214. */
  2215. preempt_disable();
  2216. ++userpg->lock;
  2217. barrier();
  2218. userpg->index = perf_event_index(event);
  2219. userpg->offset = perf_event_count(event);
  2220. if (event->state == PERF_EVENT_STATE_ACTIVE)
  2221. userpg->offset -= local64_read(&event->hw.prev_count);
  2222. userpg->time_enabled = event->total_time_enabled +
  2223. atomic64_read(&event->child_total_time_enabled);
  2224. userpg->time_running = event->total_time_running +
  2225. atomic64_read(&event->child_total_time_running);
  2226. barrier();
  2227. ++userpg->lock;
  2228. preempt_enable();
  2229. unlock:
  2230. rcu_read_unlock();
  2231. }
  2232. static unsigned long perf_data_size(struct perf_buffer *buffer);
  2233. static void
  2234. perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
  2235. {
  2236. long max_size = perf_data_size(buffer);
  2237. if (watermark)
  2238. buffer->watermark = min(max_size, watermark);
  2239. if (!buffer->watermark)
  2240. buffer->watermark = max_size / 2;
  2241. if (flags & PERF_BUFFER_WRITABLE)
  2242. buffer->writable = 1;
  2243. atomic_set(&buffer->refcount, 1);
  2244. }
  2245. #ifndef CONFIG_PERF_USE_VMALLOC
  2246. /*
  2247. * Back perf_mmap() with regular GFP_KERNEL-0 pages.
  2248. */
  2249. static struct page *
  2250. perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
  2251. {
  2252. if (pgoff > buffer->nr_pages)
  2253. return NULL;
  2254. if (pgoff == 0)
  2255. return virt_to_page(buffer->user_page);
  2256. return virt_to_page(buffer->data_pages[pgoff - 1]);
  2257. }
  2258. static void *perf_mmap_alloc_page(int cpu)
  2259. {
  2260. struct page *page;
  2261. int node;
  2262. node = (cpu == -1) ? cpu : cpu_to_node(cpu);
  2263. page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
  2264. if (!page)
  2265. return NULL;
  2266. return page_address(page);
  2267. }
  2268. static struct perf_buffer *
  2269. perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
  2270. {
  2271. struct perf_buffer *buffer;
  2272. unsigned long size;
  2273. int i;
  2274. size = sizeof(struct perf_buffer);
  2275. size += nr_pages * sizeof(void *);
  2276. buffer = kzalloc(size, GFP_KERNEL);
  2277. if (!buffer)
  2278. goto fail;
  2279. buffer->user_page = perf_mmap_alloc_page(cpu);
  2280. if (!buffer->user_page)
  2281. goto fail_user_page;
  2282. for (i = 0; i < nr_pages; i++) {
  2283. buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
  2284. if (!buffer->data_pages[i])
  2285. goto fail_data_pages;
  2286. }
  2287. buffer->nr_pages = nr_pages;
  2288. perf_buffer_init(buffer, watermark, flags);
  2289. return buffer;
  2290. fail_data_pages:
  2291. for (i--; i >= 0; i--)
  2292. free_page((unsigned long)buffer->data_pages[i]);
  2293. free_page((unsigned long)buffer->user_page);
  2294. fail_user_page:
  2295. kfree(buffer);
  2296. fail:
  2297. return NULL;
  2298. }
  2299. static void perf_mmap_free_page(unsigned long addr)
  2300. {
  2301. struct page *page = virt_to_page((void *)addr);
  2302. page->mapping = NULL;
  2303. __free_page(page);
  2304. }
  2305. static void perf_buffer_free(struct perf_buffer *buffer)
  2306. {
  2307. int i;
  2308. perf_mmap_free_page((unsigned long)buffer->user_page);
  2309. for (i = 0; i < buffer->nr_pages; i++)
  2310. perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
  2311. kfree(buffer);
  2312. }
  2313. static inline int page_order(struct perf_buffer *buffer)
  2314. {
  2315. return 0;
  2316. }
  2317. #else
  2318. /*
  2319. * Back perf_mmap() with vmalloc memory.
  2320. *
  2321. * Required for architectures that have d-cache aliasing issues.
  2322. */
  2323. static inline int page_order(struct perf_buffer *buffer)
  2324. {
  2325. return buffer->page_order;
  2326. }
  2327. static struct page *
  2328. perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
  2329. {
  2330. if (pgoff > (1UL << page_order(buffer)))
  2331. return NULL;
  2332. return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
  2333. }
  2334. static void perf_mmap_unmark_page(void *addr)
  2335. {
  2336. struct page *page = vmalloc_to_page(addr);
  2337. page->mapping = NULL;
  2338. }
  2339. static void perf_buffer_free_work(struct work_struct *work)
  2340. {
  2341. struct perf_buffer *buffer;
  2342. void *base;
  2343. int i, nr;
  2344. buffer = container_of(work, struct perf_buffer, work);
  2345. nr = 1 << page_order(buffer);
  2346. base = buffer->user_page;
  2347. for (i = 0; i < nr + 1; i++)
  2348. perf_mmap_unmark_page(base + (i * PAGE_SIZE));
  2349. vfree(base);
  2350. kfree(buffer);
  2351. }
  2352. static void perf_buffer_free(struct perf_buffer *buffer)
  2353. {
  2354. schedule_work(&buffer->work);
  2355. }
  2356. static struct perf_buffer *
  2357. perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
  2358. {
  2359. struct perf_buffer *buffer;
  2360. unsigned long size;
  2361. void *all_buf;
  2362. size = sizeof(struct perf_buffer);
  2363. size += sizeof(void *);
  2364. buffer = kzalloc(size, GFP_KERNEL);
  2365. if (!buffer)
  2366. goto fail;
  2367. INIT_WORK(&buffer->work, perf_buffer_free_work);
  2368. all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
  2369. if (!all_buf)
  2370. goto fail_all_buf;
  2371. buffer->user_page = all_buf;
  2372. buffer->data_pages[0] = all_buf + PAGE_SIZE;
  2373. buffer->page_order = ilog2(nr_pages);
  2374. buffer->nr_pages = 1;
  2375. perf_buffer_init(buffer, watermark, flags);
  2376. return buffer;
  2377. fail_all_buf:
  2378. kfree(buffer);
  2379. fail:
  2380. return NULL;
  2381. }
  2382. #endif
  2383. static unsigned long perf_data_size(struct perf_buffer *buffer)
  2384. {
  2385. return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
  2386. }
  2387. static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  2388. {
  2389. struct perf_event *event = vma->vm_file->private_data;
  2390. struct perf_buffer *buffer;
  2391. int ret = VM_FAULT_SIGBUS;
  2392. if (vmf->flags & FAULT_FLAG_MKWRITE) {
  2393. if (vmf->pgoff == 0)
  2394. ret = 0;
  2395. return ret;
  2396. }
  2397. rcu_read_lock();
  2398. buffer = rcu_dereference(event->buffer);
  2399. if (!buffer)
  2400. goto unlock;
  2401. if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
  2402. goto unlock;
  2403. vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
  2404. if (!vmf->page)
  2405. goto unlock;
  2406. get_page(vmf->page);
  2407. vmf->page->mapping = vma->vm_file->f_mapping;
  2408. vmf->page->index = vmf->pgoff;
  2409. ret = 0;
  2410. unlock:
  2411. rcu_read_unlock();
  2412. return ret;
  2413. }
  2414. static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
  2415. {
  2416. struct perf_buffer *buffer;
  2417. buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
  2418. perf_buffer_free(buffer);
  2419. }
  2420. static struct perf_buffer *perf_buffer_get(struct perf_event *event)
  2421. {
  2422. struct perf_buffer *buffer;
  2423. rcu_read_lock();
  2424. buffer = rcu_dereference(event->buffer);
  2425. if (buffer) {
  2426. if (!atomic_inc_not_zero(&buffer->refcount))
  2427. buffer = NULL;
  2428. }
  2429. rcu_read_unlock();
  2430. return buffer;
  2431. }
  2432. static void perf_buffer_put(struct perf_buffer *buffer)
  2433. {
  2434. if (!atomic_dec_and_test(&buffer->refcount))
  2435. return;
  2436. call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
  2437. }
  2438. static void perf_mmap_open(struct vm_area_struct *vma)
  2439. {
  2440. struct perf_event *event = vma->vm_file->private_data;
  2441. atomic_inc(&event->mmap_count);
  2442. }
  2443. static void perf_mmap_close(struct vm_area_struct *vma)
  2444. {
  2445. struct perf_event *event = vma->vm_file->private_data;
  2446. if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
  2447. unsigned long size = perf_data_size(event->buffer);
  2448. struct user_struct *user = event->mmap_user;
  2449. struct perf_buffer *buffer = event->buffer;
  2450. atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
  2451. vma->vm_mm->locked_vm -= event->mmap_locked;
  2452. rcu_assign_pointer(event->buffer, NULL);
  2453. mutex_unlock(&event->mmap_mutex);
  2454. perf_buffer_put(buffer);
  2455. free_uid(user);
  2456. }
  2457. }
  2458. static const struct vm_operations_struct perf_mmap_vmops = {
  2459. .open = perf_mmap_open,
  2460. .close = perf_mmap_close,
  2461. .fault = perf_mmap_fault,
  2462. .page_mkwrite = perf_mmap_fault,
  2463. };
  2464. static int perf_mmap(struct file *file, struct vm_area_struct *vma)
  2465. {
  2466. struct perf_event *event = file->private_data;
  2467. unsigned long user_locked, user_lock_limit;
  2468. struct user_struct *user = current_user();
  2469. unsigned long locked, lock_limit;
  2470. struct perf_buffer *buffer;
  2471. unsigned long vma_size;
  2472. unsigned long nr_pages;
  2473. long user_extra, extra;
  2474. int ret = 0, flags = 0;
  2475. /*
  2476. * Don't allow mmap() of inherited per-task counters. This would
  2477. * create a performance issue due to all children writing to the
  2478. * same buffer.
  2479. */
  2480. if (event->cpu == -1 && event->attr.inherit)
  2481. return -EINVAL;
  2482. if (!(vma->vm_flags & VM_SHARED))
  2483. return -EINVAL;
  2484. vma_size = vma->vm_end - vma->vm_start;
  2485. nr_pages = (vma_size / PAGE_SIZE) - 1;
  2486. /*
  2487. * If we have buffer pages ensure they're a power-of-two number, so we
  2488. * can do bitmasks instead of modulo.
  2489. */
  2490. if (nr_pages != 0 && !is_power_of_2(nr_pages))
  2491. return -EINVAL;
  2492. if (vma_size != PAGE_SIZE * (1 + nr_pages))
  2493. return -EINVAL;
  2494. if (vma->vm_pgoff != 0)
  2495. return -EINVAL;
  2496. WARN_ON_ONCE(event->ctx->parent_ctx);
  2497. mutex_lock(&event->mmap_mutex);
  2498. if (event->buffer) {
  2499. if (event->buffer->nr_pages == nr_pages)
  2500. atomic_inc(&event->buffer->refcount);
  2501. else
  2502. ret = -EINVAL;
  2503. goto unlock;
  2504. }
  2505. user_extra = nr_pages + 1;
  2506. user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
  2507. /*
  2508. * Increase the limit linearly with more CPUs:
  2509. */
  2510. user_lock_limit *= num_online_cpus();
  2511. user_locked = atomic_long_read(&user->locked_vm) + user_extra;
  2512. extra = 0;
  2513. if (user_locked > user_lock_limit)
  2514. extra = user_locked - user_lock_limit;
  2515. lock_limit = rlimit(RLIMIT_MEMLOCK);
  2516. lock_limit >>= PAGE_SHIFT;
  2517. locked = vma->vm_mm->locked_vm + extra;
  2518. if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
  2519. !capable(CAP_IPC_LOCK)) {
  2520. ret = -EPERM;
  2521. goto unlock;
  2522. }
  2523. WARN_ON(event->buffer);
  2524. if (vma->vm_flags & VM_WRITE)
  2525. flags |= PERF_BUFFER_WRITABLE;
  2526. buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
  2527. event->cpu, flags);
  2528. if (!buffer) {
  2529. ret = -ENOMEM;
  2530. goto unlock;
  2531. }
  2532. rcu_assign_pointer(event->buffer, buffer);
  2533. atomic_long_add(user_extra, &user->locked_vm);
  2534. event->mmap_locked = extra;
  2535. event->mmap_user = get_current_user();
  2536. vma->vm_mm->locked_vm += event->mmap_locked;
  2537. unlock:
  2538. if (!ret)
  2539. atomic_inc(&event->mmap_count);
  2540. mutex_unlock(&event->mmap_mutex);
  2541. vma->vm_flags |= VM_RESERVED;
  2542. vma->vm_ops = &perf_mmap_vmops;
  2543. return ret;
  2544. }
  2545. static int perf_fasync(int fd, struct file *filp, int on)
  2546. {
  2547. struct inode *inode = filp->f_path.dentry->d_inode;
  2548. struct perf_event *event = filp->private_data;
  2549. int retval;
  2550. mutex_lock(&inode->i_mutex);
  2551. retval = fasync_helper(fd, filp, on, &event->fasync);
  2552. mutex_unlock(&inode->i_mutex);
  2553. if (retval < 0)
  2554. return retval;
  2555. return 0;
  2556. }
  2557. static const struct file_operations perf_fops = {
  2558. .llseek = no_llseek,
  2559. .release = perf_release,
  2560. .read = perf_read,
  2561. .poll = perf_poll,
  2562. .unlocked_ioctl = perf_ioctl,
  2563. .compat_ioctl = perf_ioctl,
  2564. .mmap = perf_mmap,
  2565. .fasync = perf_fasync,
  2566. };
  2567. /*
  2568. * Perf event wakeup
  2569. *
  2570. * If there's data, ensure we set the poll() state and publish everything
  2571. * to user-space before waking everybody up.
  2572. */
  2573. void perf_event_wakeup(struct perf_event *event)
  2574. {
  2575. wake_up_all(&event->waitq);
  2576. if (event->pending_kill) {
  2577. kill_fasync(&event->fasync, SIGIO, event->pending_kill);
  2578. event->pending_kill = 0;
  2579. }
  2580. }
  2581. static void perf_pending_event(struct irq_work *entry)
  2582. {
  2583. struct perf_event *event = container_of(entry,
  2584. struct perf_event, pending);
  2585. if (event->pending_disable) {
  2586. event->pending_disable = 0;
  2587. __perf_event_disable(event);
  2588. }
  2589. if (event->pending_wakeup) {
  2590. event->pending_wakeup = 0;
  2591. perf_event_wakeup(event);
  2592. }
  2593. }
  2594. /*
  2595. * We assume there is only KVM supporting the callbacks.
  2596. * Later on, we might change it to a list if there is
  2597. * another virtualization implementation supporting the callbacks.
  2598. */
  2599. struct perf_guest_info_callbacks *perf_guest_cbs;
  2600. int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
  2601. {
  2602. perf_guest_cbs = cbs;
  2603. return 0;
  2604. }
  2605. EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
  2606. int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
  2607. {
  2608. perf_guest_cbs = NULL;
  2609. return 0;
  2610. }
  2611. EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
  2612. /*
  2613. * Output
  2614. */
  2615. static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
  2616. unsigned long offset, unsigned long head)
  2617. {
  2618. unsigned long mask;
  2619. if (!buffer->writable)
  2620. return true;
  2621. mask = perf_data_size(buffer) - 1;
  2622. offset = (offset - tail) & mask;
  2623. head = (head - tail) & mask;
  2624. if ((int)(head - offset) < 0)
  2625. return false;
  2626. return true;
  2627. }
  2628. static void perf_output_wakeup(struct perf_output_handle *handle)
  2629. {
  2630. atomic_set(&handle->buffer->poll, POLL_IN);
  2631. if (handle->nmi) {
  2632. handle->event->pending_wakeup = 1;
  2633. irq_work_queue(&handle->event->pending);
  2634. } else
  2635. perf_event_wakeup(handle->event);
  2636. }
  2637. /*
  2638. * We need to ensure a later event_id doesn't publish a head when a former
  2639. * event isn't done writing. However since we need to deal with NMIs we
  2640. * cannot fully serialize things.
  2641. *
  2642. * We only publish the head (and generate a wakeup) when the outer-most
  2643. * event completes.
  2644. */
  2645. static void perf_output_get_handle(struct perf_output_handle *handle)
  2646. {
  2647. struct perf_buffer *buffer = handle->buffer;
  2648. preempt_disable();
  2649. local_inc(&buffer->nest);
  2650. handle->wakeup = local_read(&buffer->wakeup);
  2651. }
  2652. static void perf_output_put_handle(struct perf_output_handle *handle)
  2653. {
  2654. struct perf_buffer *buffer = handle->buffer;
  2655. unsigned long head;
  2656. again:
  2657. head = local_read(&buffer->head);
  2658. /*
  2659. * IRQ/NMI can happen here, which means we can miss a head update.
  2660. */
  2661. if (!local_dec_and_test(&buffer->nest))
  2662. goto out;
  2663. /*
  2664. * Publish the known good head. Rely on the full barrier implied
  2665. * by atomic_dec_and_test() order the buffer->head read and this
  2666. * write.
  2667. */
  2668. buffer->user_page->data_head = head;
  2669. /*
  2670. * Now check if we missed an update, rely on the (compiler)
  2671. * barrier in atomic_dec_and_test() to re-read buffer->head.
  2672. */
  2673. if (unlikely(head != local_read(&buffer->head))) {
  2674. local_inc(&buffer->nest);
  2675. goto again;
  2676. }
  2677. if (handle->wakeup != local_read(&buffer->wakeup))
  2678. perf_output_wakeup(handle);
  2679. out:
  2680. preempt_enable();
  2681. }
  2682. __always_inline void perf_output_copy(struct perf_output_handle *handle,
  2683. const void *buf, unsigned int len)
  2684. {
  2685. do {
  2686. unsigned long size = min_t(unsigned long, handle->size, len);
  2687. memcpy(handle->addr, buf, size);
  2688. len -= size;
  2689. handle->addr += size;
  2690. buf += size;
  2691. handle->size -= size;
  2692. if (!handle->size) {
  2693. struct perf_buffer *buffer = handle->buffer;
  2694. handle->page++;
  2695. handle->page &= buffer->nr_pages - 1;
  2696. handle->addr = buffer->data_pages[handle->page];
  2697. handle->size = PAGE_SIZE << page_order(buffer);
  2698. }
  2699. } while (len);
  2700. }
  2701. int perf_output_begin(struct perf_output_handle *handle,
  2702. struct perf_event *event, unsigned int size,
  2703. int nmi, int sample)
  2704. {
  2705. struct perf_buffer *buffer;
  2706. unsigned long tail, offset, head;
  2707. int have_lost;
  2708. struct {
  2709. struct perf_event_header header;
  2710. u64 id;
  2711. u64 lost;
  2712. } lost_event;
  2713. rcu_read_lock();
  2714. /*
  2715. * For inherited events we send all the output towards the parent.
  2716. */
  2717. if (event->parent)
  2718. event = event->parent;
  2719. buffer = rcu_dereference(event->buffer);
  2720. if (!buffer)
  2721. goto out;
  2722. handle->buffer = buffer;
  2723. handle->event = event;
  2724. handle->nmi = nmi;
  2725. handle->sample = sample;
  2726. if (!buffer->nr_pages)
  2727. goto out;
  2728. have_lost = local_read(&buffer->lost);
  2729. if (have_lost)
  2730. size += sizeof(lost_event);
  2731. perf_output_get_handle(handle);
  2732. do {
  2733. /*
  2734. * Userspace could choose to issue a mb() before updating the
  2735. * tail pointer. So that all reads will be completed before the
  2736. * write is issued.
  2737. */
  2738. tail = ACCESS_ONCE(buffer->user_page->data_tail);
  2739. smp_rmb();
  2740. offset = head = local_read(&buffer->head);
  2741. head += size;
  2742. if (unlikely(!perf_output_space(buffer, tail, offset, head)))
  2743. goto fail;
  2744. } while (local_cmpxchg(&buffer->head, offset, head) != offset);
  2745. if (head - local_read(&buffer->wakeup) > buffer->watermark)
  2746. local_add(buffer->watermark, &buffer->wakeup);
  2747. handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
  2748. handle->page &= buffer->nr_pages - 1;
  2749. handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
  2750. handle->addr = buffer->data_pages[handle->page];
  2751. handle->addr += handle->size;
  2752. handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
  2753. if (have_lost) {
  2754. lost_event.header.type = PERF_RECORD_LOST;
  2755. lost_event.header.misc = 0;
  2756. lost_event.header.size = sizeof(lost_event);
  2757. lost_event.id = event->id;
  2758. lost_event.lost = local_xchg(&buffer->lost, 0);
  2759. perf_output_put(handle, lost_event);
  2760. }
  2761. return 0;
  2762. fail:
  2763. local_inc(&buffer->lost);
  2764. perf_output_put_handle(handle);
  2765. out:
  2766. rcu_read_unlock();
  2767. return -ENOSPC;
  2768. }
  2769. void perf_output_end(struct perf_output_handle *handle)
  2770. {
  2771. struct perf_event *event = handle->event;
  2772. struct perf_buffer *buffer = handle->buffer;
  2773. int wakeup_events = event->attr.wakeup_events;
  2774. if (handle->sample && wakeup_events) {
  2775. int events = local_inc_return(&buffer->events);
  2776. if (events >= wakeup_events) {
  2777. local_sub(wakeup_events, &buffer->events);
  2778. local_inc(&buffer->wakeup);
  2779. }
  2780. }
  2781. perf_output_put_handle(handle);
  2782. rcu_read_unlock();
  2783. }
  2784. static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
  2785. {
  2786. /*
  2787. * only top level events have the pid namespace they were created in
  2788. */
  2789. if (event->parent)
  2790. event = event->parent;
  2791. return task_tgid_nr_ns(p, event->ns);
  2792. }
  2793. static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
  2794. {
  2795. /*
  2796. * only top level events have the pid namespace they were created in
  2797. */
  2798. if (event->parent)
  2799. event = event->parent;
  2800. return task_pid_nr_ns(p, event->ns);
  2801. }
  2802. static void perf_output_read_one(struct perf_output_handle *handle,
  2803. struct perf_event *event,
  2804. u64 enabled, u64 running)
  2805. {
  2806. u64 read_format = event->attr.read_format;
  2807. u64 values[4];
  2808. int n = 0;
  2809. values[n++] = perf_event_count(event);
  2810. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
  2811. values[n++] = enabled +
  2812. atomic64_read(&event->child_total_time_enabled);
  2813. }
  2814. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
  2815. values[n++] = running +
  2816. atomic64_read(&event->child_total_time_running);
  2817. }
  2818. if (read_format & PERF_FORMAT_ID)
  2819. values[n++] = primary_event_id(event);
  2820. perf_output_copy(handle, values, n * sizeof(u64));
  2821. }
  2822. /*
  2823. * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
  2824. */
  2825. static void perf_output_read_group(struct perf_output_handle *handle,
  2826. struct perf_event *event,
  2827. u64 enabled, u64 running)
  2828. {
  2829. struct perf_event *leader = event->group_leader, *sub;
  2830. u64 read_format = event->attr.read_format;
  2831. u64 values[5];
  2832. int n = 0;
  2833. values[n++] = 1 + leader->nr_siblings;
  2834. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  2835. values[n++] = enabled;
  2836. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  2837. values[n++] = running;
  2838. if (leader != event)
  2839. leader->pmu->read(leader);
  2840. values[n++] = perf_event_count(leader);
  2841. if (read_format & PERF_FORMAT_ID)
  2842. values[n++] = primary_event_id(leader);
  2843. perf_output_copy(handle, values, n * sizeof(u64));
  2844. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  2845. n = 0;
  2846. if (sub != event)
  2847. sub->pmu->read(sub);
  2848. values[n++] = perf_event_count(sub);
  2849. if (read_format & PERF_FORMAT_ID)
  2850. values[n++] = primary_event_id(sub);
  2851. perf_output_copy(handle, values, n * sizeof(u64));
  2852. }
  2853. }
  2854. #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
  2855. PERF_FORMAT_TOTAL_TIME_RUNNING)
  2856. static void perf_output_read(struct perf_output_handle *handle,
  2857. struct perf_event *event)
  2858. {
  2859. u64 enabled = 0, running = 0, now, ctx_time;
  2860. u64 read_format = event->attr.read_format;
  2861. /*
  2862. * compute total_time_enabled, total_time_running
  2863. * based on snapshot values taken when the event
  2864. * was last scheduled in.
  2865. *
  2866. * we cannot simply called update_context_time()
  2867. * because of locking issue as we are called in
  2868. * NMI context
  2869. */
  2870. if (read_format & PERF_FORMAT_TOTAL_TIMES) {
  2871. now = perf_clock();
  2872. ctx_time = event->shadow_ctx_time + now;
  2873. enabled = ctx_time - event->tstamp_enabled;
  2874. running = ctx_time - event->tstamp_running;
  2875. }
  2876. if (event->attr.read_format & PERF_FORMAT_GROUP)
  2877. perf_output_read_group(handle, event, enabled, running);
  2878. else
  2879. perf_output_read_one(handle, event, enabled, running);
  2880. }
  2881. void perf_output_sample(struct perf_output_handle *handle,
  2882. struct perf_event_header *header,
  2883. struct perf_sample_data *data,
  2884. struct perf_event *event)
  2885. {
  2886. u64 sample_type = data->type;
  2887. perf_output_put(handle, *header);
  2888. if (sample_type & PERF_SAMPLE_IP)
  2889. perf_output_put(handle, data->ip);
  2890. if (sample_type & PERF_SAMPLE_TID)
  2891. perf_output_put(handle, data->tid_entry);
  2892. if (sample_type & PERF_SAMPLE_TIME)
  2893. perf_output_put(handle, data->time);
  2894. if (sample_type & PERF_SAMPLE_ADDR)
  2895. perf_output_put(handle, data->addr);
  2896. if (sample_type & PERF_SAMPLE_ID)
  2897. perf_output_put(handle, data->id);
  2898. if (sample_type & PERF_SAMPLE_STREAM_ID)
  2899. perf_output_put(handle, data->stream_id);
  2900. if (sample_type & PERF_SAMPLE_CPU)
  2901. perf_output_put(handle, data->cpu_entry);
  2902. if (sample_type & PERF_SAMPLE_PERIOD)
  2903. perf_output_put(handle, data->period);
  2904. if (sample_type & PERF_SAMPLE_READ)
  2905. perf_output_read(handle, event);
  2906. if (sample_type & PERF_SAMPLE_CALLCHAIN) {
  2907. if (data->callchain) {
  2908. int size = 1;
  2909. if (data->callchain)
  2910. size += data->callchain->nr;
  2911. size *= sizeof(u64);
  2912. perf_output_copy(handle, data->callchain, size);
  2913. } else {
  2914. u64 nr = 0;
  2915. perf_output_put(handle, nr);
  2916. }
  2917. }
  2918. if (sample_type & PERF_SAMPLE_RAW) {
  2919. if (data->raw) {
  2920. perf_output_put(handle, data->raw->size);
  2921. perf_output_copy(handle, data->raw->data,
  2922. data->raw->size);
  2923. } else {
  2924. struct {
  2925. u32 size;
  2926. u32 data;
  2927. } raw = {
  2928. .size = sizeof(u32),
  2929. .data = 0,
  2930. };
  2931. perf_output_put(handle, raw);
  2932. }
  2933. }
  2934. }
  2935. void perf_prepare_sample(struct perf_event_header *header,
  2936. struct perf_sample_data *data,
  2937. struct perf_event *event,
  2938. struct pt_regs *regs)
  2939. {
  2940. u64 sample_type = event->attr.sample_type;
  2941. data->type = sample_type;
  2942. header->type = PERF_RECORD_SAMPLE;
  2943. header->size = sizeof(*header);
  2944. header->misc = 0;
  2945. header->misc |= perf_misc_flags(regs);
  2946. if (sample_type & PERF_SAMPLE_IP) {
  2947. data->ip = perf_instruction_pointer(regs);
  2948. header->size += sizeof(data->ip);
  2949. }
  2950. if (sample_type & PERF_SAMPLE_TID) {
  2951. /* namespace issues */
  2952. data->tid_entry.pid = perf_event_pid(event, current);
  2953. data->tid_entry.tid = perf_event_tid(event, current);
  2954. header->size += sizeof(data->tid_entry);
  2955. }
  2956. if (sample_type & PERF_SAMPLE_TIME) {
  2957. data->time = perf_clock();
  2958. header->size += sizeof(data->time);
  2959. }
  2960. if (sample_type & PERF_SAMPLE_ADDR)
  2961. header->size += sizeof(data->addr);
  2962. if (sample_type & PERF_SAMPLE_ID) {
  2963. data->id = primary_event_id(event);
  2964. header->size += sizeof(data->id);
  2965. }
  2966. if (sample_type & PERF_SAMPLE_STREAM_ID) {
  2967. data->stream_id = event->id;
  2968. header->size += sizeof(data->stream_id);
  2969. }
  2970. if (sample_type & PERF_SAMPLE_CPU) {
  2971. data->cpu_entry.cpu = raw_smp_processor_id();
  2972. data->cpu_entry.reserved = 0;
  2973. header->size += sizeof(data->cpu_entry);
  2974. }
  2975. if (sample_type & PERF_SAMPLE_PERIOD)
  2976. header->size += sizeof(data->period);
  2977. if (sample_type & PERF_SAMPLE_READ)
  2978. header->size += perf_event_read_size(event);
  2979. if (sample_type & PERF_SAMPLE_CALLCHAIN) {
  2980. int size = 1;
  2981. data->callchain = perf_callchain(regs);
  2982. if (data->callchain)
  2983. size += data->callchain->nr;
  2984. header->size += size * sizeof(u64);
  2985. }
  2986. if (sample_type & PERF_SAMPLE_RAW) {
  2987. int size = sizeof(u32);
  2988. if (data->raw)
  2989. size += data->raw->size;
  2990. else
  2991. size += sizeof(u32);
  2992. WARN_ON_ONCE(size & (sizeof(u64)-1));
  2993. header->size += size;
  2994. }
  2995. }
  2996. static void perf_event_output(struct perf_event *event, int nmi,
  2997. struct perf_sample_data *data,
  2998. struct pt_regs *regs)
  2999. {
  3000. struct perf_output_handle handle;
  3001. struct perf_event_header header;
  3002. /* protect the callchain buffers */
  3003. rcu_read_lock();
  3004. perf_prepare_sample(&header, data, event, regs);
  3005. if (perf_output_begin(&handle, event, header.size, nmi, 1))
  3006. goto exit;
  3007. perf_output_sample(&handle, &header, data, event);
  3008. perf_output_end(&handle);
  3009. exit:
  3010. rcu_read_unlock();
  3011. }
  3012. /*
  3013. * read event_id
  3014. */
  3015. struct perf_read_event {
  3016. struct perf_event_header header;
  3017. u32 pid;
  3018. u32 tid;
  3019. };
  3020. static void
  3021. perf_event_read_event(struct perf_event *event,
  3022. struct task_struct *task)
  3023. {
  3024. struct perf_output_handle handle;
  3025. struct perf_read_event read_event = {
  3026. .header = {
  3027. .type = PERF_RECORD_READ,
  3028. .misc = 0,
  3029. .size = sizeof(read_event) + perf_event_read_size(event),
  3030. },
  3031. .pid = perf_event_pid(event, task),
  3032. .tid = perf_event_tid(event, task),
  3033. };
  3034. int ret;
  3035. ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
  3036. if (ret)
  3037. return;
  3038. perf_output_put(&handle, read_event);
  3039. perf_output_read(&handle, event);
  3040. perf_output_end(&handle);
  3041. }
  3042. /*
  3043. * task tracking -- fork/exit
  3044. *
  3045. * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
  3046. */
  3047. struct perf_task_event {
  3048. struct task_struct *task;
  3049. struct perf_event_context *task_ctx;
  3050. struct {
  3051. struct perf_event_header header;
  3052. u32 pid;
  3053. u32 ppid;
  3054. u32 tid;
  3055. u32 ptid;
  3056. u64 time;
  3057. } event_id;
  3058. };
  3059. static void perf_event_task_output(struct perf_event *event,
  3060. struct perf_task_event *task_event)
  3061. {
  3062. struct perf_output_handle handle;
  3063. struct task_struct *task = task_event->task;
  3064. int size, ret;
  3065. size = task_event->event_id.header.size;
  3066. ret = perf_output_begin(&handle, event, size, 0, 0);
  3067. if (ret)
  3068. return;
  3069. task_event->event_id.pid = perf_event_pid(event, task);
  3070. task_event->event_id.ppid = perf_event_pid(event, current);
  3071. task_event->event_id.tid = perf_event_tid(event, task);
  3072. task_event->event_id.ptid = perf_event_tid(event, current);
  3073. perf_output_put(&handle, task_event->event_id);
  3074. perf_output_end(&handle);
  3075. }
  3076. static int perf_event_task_match(struct perf_event *event)
  3077. {
  3078. if (event->state < PERF_EVENT_STATE_INACTIVE)
  3079. return 0;
  3080. if (event->cpu != -1 && event->cpu != smp_processor_id())
  3081. return 0;
  3082. if (event->attr.comm || event->attr.mmap ||
  3083. event->attr.mmap_data || event->attr.task)
  3084. return 1;
  3085. return 0;
  3086. }
  3087. static void perf_event_task_ctx(struct perf_event_context *ctx,
  3088. struct perf_task_event *task_event)
  3089. {
  3090. struct perf_event *event;
  3091. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  3092. if (perf_event_task_match(event))
  3093. perf_event_task_output(event, task_event);
  3094. }
  3095. }
  3096. static void perf_event_task_event(struct perf_task_event *task_event)
  3097. {
  3098. struct perf_cpu_context *cpuctx;
  3099. struct perf_event_context *ctx;
  3100. struct pmu *pmu;
  3101. int ctxn;
  3102. rcu_read_lock();
  3103. list_for_each_entry_rcu(pmu, &pmus, entry) {
  3104. cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
  3105. perf_event_task_ctx(&cpuctx->ctx, task_event);
  3106. ctx = task_event->task_ctx;
  3107. if (!ctx) {
  3108. ctxn = pmu->task_ctx_nr;
  3109. if (ctxn < 0)
  3110. goto next;
  3111. ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
  3112. }
  3113. if (ctx)
  3114. perf_event_task_ctx(ctx, task_event);
  3115. next:
  3116. put_cpu_ptr(pmu->pmu_cpu_context);
  3117. }
  3118. rcu_read_unlock();
  3119. }
  3120. static void perf_event_task(struct task_struct *task,
  3121. struct perf_event_context *task_ctx,
  3122. int new)
  3123. {
  3124. struct perf_task_event task_event;
  3125. if (!atomic_read(&nr_comm_events) &&
  3126. !atomic_read(&nr_mmap_events) &&
  3127. !atomic_read(&nr_task_events))
  3128. return;
  3129. task_event = (struct perf_task_event){
  3130. .task = task,
  3131. .task_ctx = task_ctx,
  3132. .event_id = {
  3133. .header = {
  3134. .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
  3135. .misc = 0,
  3136. .size = sizeof(task_event.event_id),
  3137. },
  3138. /* .pid */
  3139. /* .ppid */
  3140. /* .tid */
  3141. /* .ptid */
  3142. .time = perf_clock(),
  3143. },
  3144. };
  3145. perf_event_task_event(&task_event);
  3146. }
  3147. void perf_event_fork(struct task_struct *task)
  3148. {
  3149. perf_event_task(task, NULL, 1);
  3150. }
  3151. /*
  3152. * comm tracking
  3153. */
  3154. struct perf_comm_event {
  3155. struct task_struct *task;
  3156. char *comm;
  3157. int comm_size;
  3158. struct {
  3159. struct perf_event_header header;
  3160. u32 pid;
  3161. u32 tid;
  3162. } event_id;
  3163. };
  3164. static void perf_event_comm_output(struct perf_event *event,
  3165. struct perf_comm_event *comm_event)
  3166. {
  3167. struct perf_output_handle handle;
  3168. int size = comm_event->event_id.header.size;
  3169. int ret = perf_output_begin(&handle, event, size, 0, 0);
  3170. if (ret)
  3171. return;
  3172. comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
  3173. comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
  3174. perf_output_put(&handle, comm_event->event_id);
  3175. perf_output_copy(&handle, comm_event->comm,
  3176. comm_event->comm_size);
  3177. perf_output_end(&handle);
  3178. }
  3179. static int perf_event_comm_match(struct perf_event *event)
  3180. {
  3181. if (event->state < PERF_EVENT_STATE_INACTIVE)
  3182. return 0;
  3183. if (event->cpu != -1 && event->cpu != smp_processor_id())
  3184. return 0;
  3185. if (event->attr.comm)
  3186. return 1;
  3187. return 0;
  3188. }
  3189. static void perf_event_comm_ctx(struct perf_event_context *ctx,
  3190. struct perf_comm_event *comm_event)
  3191. {
  3192. struct perf_event *event;
  3193. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  3194. if (perf_event_comm_match(event))
  3195. perf_event_comm_output(event, comm_event);
  3196. }
  3197. }
  3198. static void perf_event_comm_event(struct perf_comm_event *comm_event)
  3199. {
  3200. struct perf_cpu_context *cpuctx;
  3201. struct perf_event_context *ctx;
  3202. char comm[TASK_COMM_LEN];
  3203. unsigned int size;
  3204. struct pmu *pmu;
  3205. int ctxn;
  3206. memset(comm, 0, sizeof(comm));
  3207. strlcpy(comm, comm_event->task->comm, sizeof(comm));
  3208. size = ALIGN(strlen(comm)+1, sizeof(u64));
  3209. comm_event->comm = comm;
  3210. comm_event->comm_size = size;
  3211. comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
  3212. rcu_read_lock();
  3213. list_for_each_entry_rcu(pmu, &pmus, entry) {
  3214. cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
  3215. perf_event_comm_ctx(&cpuctx->ctx, comm_event);
  3216. ctxn = pmu->task_ctx_nr;
  3217. if (ctxn < 0)
  3218. goto next;
  3219. ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
  3220. if (ctx)
  3221. perf_event_comm_ctx(ctx, comm_event);
  3222. next:
  3223. put_cpu_ptr(pmu->pmu_cpu_context);
  3224. }
  3225. rcu_read_unlock();
  3226. }
  3227. void perf_event_comm(struct task_struct *task)
  3228. {
  3229. struct perf_comm_event comm_event;
  3230. struct perf_event_context *ctx;
  3231. int ctxn;
  3232. for_each_task_context_nr(ctxn) {
  3233. ctx = task->perf_event_ctxp[ctxn];
  3234. if (!ctx)
  3235. continue;
  3236. perf_event_enable_on_exec(ctx);
  3237. }
  3238. if (!atomic_read(&nr_comm_events))
  3239. return;
  3240. comm_event = (struct perf_comm_event){
  3241. .task = task,
  3242. /* .comm */
  3243. /* .comm_size */
  3244. .event_id = {
  3245. .header = {
  3246. .type = PERF_RECORD_COMM,
  3247. .misc = 0,
  3248. /* .size */
  3249. },
  3250. /* .pid */
  3251. /* .tid */
  3252. },
  3253. };
  3254. perf_event_comm_event(&comm_event);
  3255. }
  3256. /*
  3257. * mmap tracking
  3258. */
  3259. struct perf_mmap_event {
  3260. struct vm_area_struct *vma;
  3261. const char *file_name;
  3262. int file_size;
  3263. struct {
  3264. struct perf_event_header header;
  3265. u32 pid;
  3266. u32 tid;
  3267. u64 start;
  3268. u64 len;
  3269. u64 pgoff;
  3270. } event_id;
  3271. };
  3272. static void perf_event_mmap_output(struct perf_event *event,
  3273. struct perf_mmap_event *mmap_event)
  3274. {
  3275. struct perf_output_handle handle;
  3276. int size = mmap_event->event_id.header.size;
  3277. int ret = perf_output_begin(&handle, event, size, 0, 0);
  3278. if (ret)
  3279. return;
  3280. mmap_event->event_id.pid = perf_event_pid(event, current);
  3281. mmap_event->event_id.tid = perf_event_tid(event, current);
  3282. perf_output_put(&handle, mmap_event->event_id);
  3283. perf_output_copy(&handle, mmap_event->file_name,
  3284. mmap_event->file_size);
  3285. perf_output_end(&handle);
  3286. }
  3287. static int perf_event_mmap_match(struct perf_event *event,
  3288. struct perf_mmap_event *mmap_event,
  3289. int executable)
  3290. {
  3291. if (event->state < PERF_EVENT_STATE_INACTIVE)
  3292. return 0;
  3293. if (event->cpu != -1 && event->cpu != smp_processor_id())
  3294. return 0;
  3295. if ((!executable && event->attr.mmap_data) ||
  3296. (executable && event->attr.mmap))
  3297. return 1;
  3298. return 0;
  3299. }
  3300. static void perf_event_mmap_ctx(struct perf_event_context *ctx,
  3301. struct perf_mmap_event *mmap_event,
  3302. int executable)
  3303. {
  3304. struct perf_event *event;
  3305. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  3306. if (perf_event_mmap_match(event, mmap_event, executable))
  3307. perf_event_mmap_output(event, mmap_event);
  3308. }
  3309. }
  3310. static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
  3311. {
  3312. struct perf_cpu_context *cpuctx;
  3313. struct perf_event_context *ctx;
  3314. struct vm_area_struct *vma = mmap_event->vma;
  3315. struct file *file = vma->vm_file;
  3316. unsigned int size;
  3317. char tmp[16];
  3318. char *buf = NULL;
  3319. const char *name;
  3320. struct pmu *pmu;
  3321. int ctxn;
  3322. memset(tmp, 0, sizeof(tmp));
  3323. if (file) {
  3324. /*
  3325. * d_path works from the end of the buffer backwards, so we
  3326. * need to add enough zero bytes after the string to handle
  3327. * the 64bit alignment we do later.
  3328. */
  3329. buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
  3330. if (!buf) {
  3331. name = strncpy(tmp, "//enomem", sizeof(tmp));
  3332. goto got_name;
  3333. }
  3334. name = d_path(&file->f_path, buf, PATH_MAX);
  3335. if (IS_ERR(name)) {
  3336. name = strncpy(tmp, "//toolong", sizeof(tmp));
  3337. goto got_name;
  3338. }
  3339. } else {
  3340. if (arch_vma_name(mmap_event->vma)) {
  3341. name = strncpy(tmp, arch_vma_name(mmap_event->vma),
  3342. sizeof(tmp));
  3343. goto got_name;
  3344. }
  3345. if (!vma->vm_mm) {
  3346. name = strncpy(tmp, "[vdso]", sizeof(tmp));
  3347. goto got_name;
  3348. } else if (vma->vm_start <= vma->vm_mm->start_brk &&
  3349. vma->vm_end >= vma->vm_mm->brk) {
  3350. name = strncpy(tmp, "[heap]", sizeof(tmp));
  3351. goto got_name;
  3352. } else if (vma->vm_start <= vma->vm_mm->start_stack &&
  3353. vma->vm_end >= vma->vm_mm->start_stack) {
  3354. name = strncpy(tmp, "[stack]", sizeof(tmp));
  3355. goto got_name;
  3356. }
  3357. name = strncpy(tmp, "//anon", sizeof(tmp));
  3358. goto got_name;
  3359. }
  3360. got_name:
  3361. size = ALIGN(strlen(name)+1, sizeof(u64));
  3362. mmap_event->file_name = name;
  3363. mmap_event->file_size = size;
  3364. mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
  3365. rcu_read_lock();
  3366. list_for_each_entry_rcu(pmu, &pmus, entry) {
  3367. cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
  3368. perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
  3369. vma->vm_flags & VM_EXEC);
  3370. ctxn = pmu->task_ctx_nr;
  3371. if (ctxn < 0)
  3372. goto next;
  3373. ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
  3374. if (ctx) {
  3375. perf_event_mmap_ctx(ctx, mmap_event,
  3376. vma->vm_flags & VM_EXEC);
  3377. }
  3378. next:
  3379. put_cpu_ptr(pmu->pmu_cpu_context);
  3380. }
  3381. rcu_read_unlock();
  3382. kfree(buf);
  3383. }
  3384. void perf_event_mmap(struct vm_area_struct *vma)
  3385. {
  3386. struct perf_mmap_event mmap_event;
  3387. if (!atomic_read(&nr_mmap_events))
  3388. return;
  3389. mmap_event = (struct perf_mmap_event){
  3390. .vma = vma,
  3391. /* .file_name */
  3392. /* .file_size */
  3393. .event_id = {
  3394. .header = {
  3395. .type = PERF_RECORD_MMAP,
  3396. .misc = PERF_RECORD_MISC_USER,
  3397. /* .size */
  3398. },
  3399. /* .pid */
  3400. /* .tid */
  3401. .start = vma->vm_start,
  3402. .len = vma->vm_end - vma->vm_start,
  3403. .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
  3404. },
  3405. };
  3406. perf_event_mmap_event(&mmap_event);
  3407. }
  3408. /*
  3409. * IRQ throttle logging
  3410. */
  3411. static void perf_log_throttle(struct perf_event *event, int enable)
  3412. {
  3413. struct perf_output_handle handle;
  3414. int ret;
  3415. struct {
  3416. struct perf_event_header header;
  3417. u64 time;
  3418. u64 id;
  3419. u64 stream_id;
  3420. } throttle_event = {
  3421. .header = {
  3422. .type = PERF_RECORD_THROTTLE,
  3423. .misc = 0,
  3424. .size = sizeof(throttle_event),
  3425. },
  3426. .time = perf_clock(),
  3427. .id = primary_event_id(event),
  3428. .stream_id = event->id,
  3429. };
  3430. if (enable)
  3431. throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
  3432. ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
  3433. if (ret)
  3434. return;
  3435. perf_output_put(&handle, throttle_event);
  3436. perf_output_end(&handle);
  3437. }
  3438. /*
  3439. * Generic event overflow handling, sampling.
  3440. */
  3441. static int __perf_event_overflow(struct perf_event *event, int nmi,
  3442. int throttle, struct perf_sample_data *data,
  3443. struct pt_regs *regs)
  3444. {
  3445. int events = atomic_read(&event->event_limit);
  3446. struct hw_perf_event *hwc = &event->hw;
  3447. int ret = 0;
  3448. if (!throttle) {
  3449. hwc->interrupts++;
  3450. } else {
  3451. if (hwc->interrupts != MAX_INTERRUPTS) {
  3452. hwc->interrupts++;
  3453. if (HZ * hwc->interrupts >
  3454. (u64)sysctl_perf_event_sample_rate) {
  3455. hwc->interrupts = MAX_INTERRUPTS;
  3456. perf_log_throttle(event, 0);
  3457. ret = 1;
  3458. }
  3459. } else {
  3460. /*
  3461. * Keep re-disabling events even though on the previous
  3462. * pass we disabled it - just in case we raced with a
  3463. * sched-in and the event got enabled again:
  3464. */
  3465. ret = 1;
  3466. }
  3467. }
  3468. if (event->attr.freq) {
  3469. u64 now = perf_clock();
  3470. s64 delta = now - hwc->freq_time_stamp;
  3471. hwc->freq_time_stamp = now;
  3472. if (delta > 0 && delta < 2*TICK_NSEC)
  3473. perf_adjust_period(event, delta, hwc->last_period);
  3474. }
  3475. /*
  3476. * XXX event_limit might not quite work as expected on inherited
  3477. * events
  3478. */
  3479. event->pending_kill = POLL_IN;
  3480. if (events && atomic_dec_and_test(&event->event_limit)) {
  3481. ret = 1;
  3482. event->pending_kill = POLL_HUP;
  3483. if (nmi) {
  3484. event->pending_disable = 1;
  3485. irq_work_queue(&event->pending);
  3486. } else
  3487. perf_event_disable(event);
  3488. }
  3489. if (event->overflow_handler)
  3490. event->overflow_handler(event, nmi, data, regs);
  3491. else
  3492. perf_event_output(event, nmi, data, regs);
  3493. return ret;
  3494. }
  3495. int perf_event_overflow(struct perf_event *event, int nmi,
  3496. struct perf_sample_data *data,
  3497. struct pt_regs *regs)
  3498. {
  3499. return __perf_event_overflow(event, nmi, 1, data, regs);
  3500. }
  3501. /*
  3502. * Generic software event infrastructure
  3503. */
  3504. struct swevent_htable {
  3505. struct swevent_hlist *swevent_hlist;
  3506. struct mutex hlist_mutex;
  3507. int hlist_refcount;
  3508. /* Recursion avoidance in each contexts */
  3509. int recursion[PERF_NR_CONTEXTS];
  3510. };
  3511. static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
  3512. /*
  3513. * We directly increment event->count and keep a second value in
  3514. * event->hw.period_left to count intervals. This period event
  3515. * is kept in the range [-sample_period, 0] so that we can use the
  3516. * sign as trigger.
  3517. */
  3518. static u64 perf_swevent_set_period(struct perf_event *event)
  3519. {
  3520. struct hw_perf_event *hwc = &event->hw;
  3521. u64 period = hwc->last_period;
  3522. u64 nr, offset;
  3523. s64 old, val;
  3524. hwc->last_period = hwc->sample_period;
  3525. again:
  3526. old = val = local64_read(&hwc->period_left);
  3527. if (val < 0)
  3528. return 0;
  3529. nr = div64_u64(period + val, period);
  3530. offset = nr * period;
  3531. val -= offset;
  3532. if (local64_cmpxchg(&hwc->period_left, old, val) != old)
  3533. goto again;
  3534. return nr;
  3535. }
  3536. static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
  3537. int nmi, struct perf_sample_data *data,
  3538. struct pt_regs *regs)
  3539. {
  3540. struct hw_perf_event *hwc = &event->hw;
  3541. int throttle = 0;
  3542. data->period = event->hw.last_period;
  3543. if (!overflow)
  3544. overflow = perf_swevent_set_period(event);
  3545. if (hwc->interrupts == MAX_INTERRUPTS)
  3546. return;
  3547. for (; overflow; overflow--) {
  3548. if (__perf_event_overflow(event, nmi, throttle,
  3549. data, regs)) {
  3550. /*
  3551. * We inhibit the overflow from happening when
  3552. * hwc->interrupts == MAX_INTERRUPTS.
  3553. */
  3554. break;
  3555. }
  3556. throttle = 1;
  3557. }
  3558. }
  3559. static void perf_swevent_event(struct perf_event *event, u64 nr,
  3560. int nmi, struct perf_sample_data *data,
  3561. struct pt_regs *regs)
  3562. {
  3563. struct hw_perf_event *hwc = &event->hw;
  3564. local64_add(nr, &event->count);
  3565. if (!regs)
  3566. return;
  3567. if (!hwc->sample_period)
  3568. return;
  3569. if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
  3570. return perf_swevent_overflow(event, 1, nmi, data, regs);
  3571. if (local64_add_negative(nr, &hwc->period_left))
  3572. return;
  3573. perf_swevent_overflow(event, 0, nmi, data, regs);
  3574. }
  3575. static int perf_exclude_event(struct perf_event *event,
  3576. struct pt_regs *regs)
  3577. {
  3578. if (event->hw.state & PERF_HES_STOPPED)
  3579. return 0;
  3580. if (regs) {
  3581. if (event->attr.exclude_user && user_mode(regs))
  3582. return 1;
  3583. if (event->attr.exclude_kernel && !user_mode(regs))
  3584. return 1;
  3585. }
  3586. return 0;
  3587. }
  3588. static int perf_swevent_match(struct perf_event *event,
  3589. enum perf_type_id type,
  3590. u32 event_id,
  3591. struct perf_sample_data *data,
  3592. struct pt_regs *regs)
  3593. {
  3594. if (event->attr.type != type)
  3595. return 0;
  3596. if (event->attr.config != event_id)
  3597. return 0;
  3598. if (perf_exclude_event(event, regs))
  3599. return 0;
  3600. return 1;
  3601. }
  3602. static inline u64 swevent_hash(u64 type, u32 event_id)
  3603. {
  3604. u64 val = event_id | (type << 32);
  3605. return hash_64(val, SWEVENT_HLIST_BITS);
  3606. }
  3607. static inline struct hlist_head *
  3608. __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
  3609. {
  3610. u64 hash = swevent_hash(type, event_id);
  3611. return &hlist->heads[hash];
  3612. }
  3613. /* For the read side: events when they trigger */
  3614. static inline struct hlist_head *
  3615. find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
  3616. {
  3617. struct swevent_hlist *hlist;
  3618. hlist = rcu_dereference(swhash->swevent_hlist);
  3619. if (!hlist)
  3620. return NULL;
  3621. return __find_swevent_head(hlist, type, event_id);
  3622. }
  3623. /* For the event head insertion and removal in the hlist */
  3624. static inline struct hlist_head *
  3625. find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
  3626. {
  3627. struct swevent_hlist *hlist;
  3628. u32 event_id = event->attr.config;
  3629. u64 type = event->attr.type;
  3630. /*
  3631. * Event scheduling is always serialized against hlist allocation
  3632. * and release. Which makes the protected version suitable here.
  3633. * The context lock guarantees that.
  3634. */
  3635. hlist = rcu_dereference_protected(swhash->swevent_hlist,
  3636. lockdep_is_held(&event->ctx->lock));
  3637. if (!hlist)
  3638. return NULL;
  3639. return __find_swevent_head(hlist, type, event_id);
  3640. }
  3641. static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
  3642. u64 nr, int nmi,
  3643. struct perf_sample_data *data,
  3644. struct pt_regs *regs)
  3645. {
  3646. struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
  3647. struct perf_event *event;
  3648. struct hlist_node *node;
  3649. struct hlist_head *head;
  3650. rcu_read_lock();
  3651. head = find_swevent_head_rcu(swhash, type, event_id);
  3652. if (!head)
  3653. goto end;
  3654. hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
  3655. if (perf_swevent_match(event, type, event_id, data, regs))
  3656. perf_swevent_event(event, nr, nmi, data, regs);
  3657. }
  3658. end:
  3659. rcu_read_unlock();
  3660. }
  3661. int perf_swevent_get_recursion_context(void)
  3662. {
  3663. struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
  3664. return get_recursion_context(swhash->recursion);
  3665. }
  3666. EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
  3667. void inline perf_swevent_put_recursion_context(int rctx)
  3668. {
  3669. struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
  3670. put_recursion_context(swhash->recursion, rctx);
  3671. }
  3672. void __perf_sw_event(u32 event_id, u64 nr, int nmi,
  3673. struct pt_regs *regs, u64 addr)
  3674. {
  3675. struct perf_sample_data data;
  3676. int rctx;
  3677. preempt_disable_notrace();
  3678. rctx = perf_swevent_get_recursion_context();
  3679. if (rctx < 0)
  3680. return;
  3681. perf_sample_data_init(&data, addr);
  3682. do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
  3683. perf_swevent_put_recursion_context(rctx);
  3684. preempt_enable_notrace();
  3685. }
  3686. static void perf_swevent_read(struct perf_event *event)
  3687. {
  3688. }
  3689. static int perf_swevent_add(struct perf_event *event, int flags)
  3690. {
  3691. struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
  3692. struct hw_perf_event *hwc = &event->hw;
  3693. struct hlist_head *head;
  3694. if (hwc->sample_period) {
  3695. hwc->last_period = hwc->sample_period;
  3696. perf_swevent_set_period(event);
  3697. }
  3698. hwc->state = !(flags & PERF_EF_START);
  3699. head = find_swevent_head(swhash, event);
  3700. if (WARN_ON_ONCE(!head))
  3701. return -EINVAL;
  3702. hlist_add_head_rcu(&event->hlist_entry, head);
  3703. return 0;
  3704. }
  3705. static void perf_swevent_del(struct perf_event *event, int flags)
  3706. {
  3707. hlist_del_rcu(&event->hlist_entry);
  3708. }
  3709. static void perf_swevent_start(struct perf_event *event, int flags)
  3710. {
  3711. event->hw.state = 0;
  3712. }
  3713. static void perf_swevent_stop(struct perf_event *event, int flags)
  3714. {
  3715. event->hw.state = PERF_HES_STOPPED;
  3716. }
  3717. /* Deref the hlist from the update side */
  3718. static inline struct swevent_hlist *
  3719. swevent_hlist_deref(struct swevent_htable *swhash)
  3720. {
  3721. return rcu_dereference_protected(swhash->swevent_hlist,
  3722. lockdep_is_held(&swhash->hlist_mutex));
  3723. }
  3724. static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
  3725. {
  3726. struct swevent_hlist *hlist;
  3727. hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
  3728. kfree(hlist);
  3729. }
  3730. static void swevent_hlist_release(struct swevent_htable *swhash)
  3731. {
  3732. struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
  3733. if (!hlist)
  3734. return;
  3735. rcu_assign_pointer(swhash->swevent_hlist, NULL);
  3736. call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
  3737. }
  3738. static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
  3739. {
  3740. struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
  3741. mutex_lock(&swhash->hlist_mutex);
  3742. if (!--swhash->hlist_refcount)
  3743. swevent_hlist_release(swhash);
  3744. mutex_unlock(&swhash->hlist_mutex);
  3745. }
  3746. static void swevent_hlist_put(struct perf_event *event)
  3747. {
  3748. int cpu;
  3749. if (event->cpu != -1) {
  3750. swevent_hlist_put_cpu(event, event->cpu);
  3751. return;
  3752. }
  3753. for_each_possible_cpu(cpu)
  3754. swevent_hlist_put_cpu(event, cpu);
  3755. }
  3756. static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
  3757. {
  3758. struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
  3759. int err = 0;
  3760. mutex_lock(&swhash->hlist_mutex);
  3761. if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
  3762. struct swevent_hlist *hlist;
  3763. hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
  3764. if (!hlist) {
  3765. err = -ENOMEM;
  3766. goto exit;
  3767. }
  3768. rcu_assign_pointer(swhash->swevent_hlist, hlist);
  3769. }
  3770. swhash->hlist_refcount++;
  3771. exit:
  3772. mutex_unlock(&swhash->hlist_mutex);
  3773. return err;
  3774. }
  3775. static int swevent_hlist_get(struct perf_event *event)
  3776. {
  3777. int err;
  3778. int cpu, failed_cpu;
  3779. if (event->cpu != -1)
  3780. return swevent_hlist_get_cpu(event, event->cpu);
  3781. get_online_cpus();
  3782. for_each_possible_cpu(cpu) {
  3783. err = swevent_hlist_get_cpu(event, cpu);
  3784. if (err) {
  3785. failed_cpu = cpu;
  3786. goto fail;
  3787. }
  3788. }
  3789. put_online_cpus();
  3790. return 0;
  3791. fail:
  3792. for_each_possible_cpu(cpu) {
  3793. if (cpu == failed_cpu)
  3794. break;
  3795. swevent_hlist_put_cpu(event, cpu);
  3796. }
  3797. put_online_cpus();
  3798. return err;
  3799. }
  3800. atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
  3801. static void sw_perf_event_destroy(struct perf_event *event)
  3802. {
  3803. u64 event_id = event->attr.config;
  3804. WARN_ON(event->parent);
  3805. jump_label_dec(&perf_swevent_enabled[event_id]);
  3806. swevent_hlist_put(event);
  3807. }
  3808. static int perf_swevent_init(struct perf_event *event)
  3809. {
  3810. int event_id = event->attr.config;
  3811. if (event->attr.type != PERF_TYPE_SOFTWARE)
  3812. return -ENOENT;
  3813. switch (event_id) {
  3814. case PERF_COUNT_SW_CPU_CLOCK:
  3815. case PERF_COUNT_SW_TASK_CLOCK:
  3816. return -ENOENT;
  3817. default:
  3818. break;
  3819. }
  3820. if (event_id > PERF_COUNT_SW_MAX)
  3821. return -ENOENT;
  3822. if (!event->parent) {
  3823. int err;
  3824. err = swevent_hlist_get(event);
  3825. if (err)
  3826. return err;
  3827. jump_label_inc(&perf_swevent_enabled[event_id]);
  3828. event->destroy = sw_perf_event_destroy;
  3829. }
  3830. return 0;
  3831. }
  3832. static struct pmu perf_swevent = {
  3833. .task_ctx_nr = perf_sw_context,
  3834. .event_init = perf_swevent_init,
  3835. .add = perf_swevent_add,
  3836. .del = perf_swevent_del,
  3837. .start = perf_swevent_start,
  3838. .stop = perf_swevent_stop,
  3839. .read = perf_swevent_read,
  3840. };
  3841. #ifdef CONFIG_EVENT_TRACING
  3842. static int perf_tp_filter_match(struct perf_event *event,
  3843. struct perf_sample_data *data)
  3844. {
  3845. void *record = data->raw->data;
  3846. if (likely(!event->filter) || filter_match_preds(event->filter, record))
  3847. return 1;
  3848. return 0;
  3849. }
  3850. static int perf_tp_event_match(struct perf_event *event,
  3851. struct perf_sample_data *data,
  3852. struct pt_regs *regs)
  3853. {
  3854. /*
  3855. * All tracepoints are from kernel-space.
  3856. */
  3857. if (event->attr.exclude_kernel)
  3858. return 0;
  3859. if (!perf_tp_filter_match(event, data))
  3860. return 0;
  3861. return 1;
  3862. }
  3863. void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
  3864. struct pt_regs *regs, struct hlist_head *head, int rctx)
  3865. {
  3866. struct perf_sample_data data;
  3867. struct perf_event *event;
  3868. struct hlist_node *node;
  3869. struct perf_raw_record raw = {
  3870. .size = entry_size,
  3871. .data = record,
  3872. };
  3873. perf_sample_data_init(&data, addr);
  3874. data.raw = &raw;
  3875. hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
  3876. if (perf_tp_event_match(event, &data, regs))
  3877. perf_swevent_event(event, count, 1, &data, regs);
  3878. }
  3879. perf_swevent_put_recursion_context(rctx);
  3880. }
  3881. EXPORT_SYMBOL_GPL(perf_tp_event);
  3882. static void tp_perf_event_destroy(struct perf_event *event)
  3883. {
  3884. perf_trace_destroy(event);
  3885. }
  3886. static int perf_tp_event_init(struct perf_event *event)
  3887. {
  3888. int err;
  3889. if (event->attr.type != PERF_TYPE_TRACEPOINT)
  3890. return -ENOENT;
  3891. /*
  3892. * Raw tracepoint data is a severe data leak, only allow root to
  3893. * have these.
  3894. */
  3895. if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
  3896. perf_paranoid_tracepoint_raw() &&
  3897. !capable(CAP_SYS_ADMIN))
  3898. return -EPERM;
  3899. err = perf_trace_init(event);
  3900. if (err)
  3901. return err;
  3902. event->destroy = tp_perf_event_destroy;
  3903. return 0;
  3904. }
  3905. static struct pmu perf_tracepoint = {
  3906. .task_ctx_nr = perf_sw_context,
  3907. .event_init = perf_tp_event_init,
  3908. .add = perf_trace_add,
  3909. .del = perf_trace_del,
  3910. .start = perf_swevent_start,
  3911. .stop = perf_swevent_stop,
  3912. .read = perf_swevent_read,
  3913. };
  3914. static inline void perf_tp_register(void)
  3915. {
  3916. perf_pmu_register(&perf_tracepoint);
  3917. }
  3918. static int perf_event_set_filter(struct perf_event *event, void __user *arg)
  3919. {
  3920. char *filter_str;
  3921. int ret;
  3922. if (event->attr.type != PERF_TYPE_TRACEPOINT)
  3923. return -EINVAL;
  3924. filter_str = strndup_user(arg, PAGE_SIZE);
  3925. if (IS_ERR(filter_str))
  3926. return PTR_ERR(filter_str);
  3927. ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
  3928. kfree(filter_str);
  3929. return ret;
  3930. }
  3931. static void perf_event_free_filter(struct perf_event *event)
  3932. {
  3933. ftrace_profile_free_filter(event);
  3934. }
  3935. #else
  3936. static inline void perf_tp_register(void)
  3937. {
  3938. }
  3939. static int perf_event_set_filter(struct perf_event *event, void __user *arg)
  3940. {
  3941. return -ENOENT;
  3942. }
  3943. static void perf_event_free_filter(struct perf_event *event)
  3944. {
  3945. }
  3946. #endif /* CONFIG_EVENT_TRACING */
  3947. #ifdef CONFIG_HAVE_HW_BREAKPOINT
  3948. void perf_bp_event(struct perf_event *bp, void *data)
  3949. {
  3950. struct perf_sample_data sample;
  3951. struct pt_regs *regs = data;
  3952. perf_sample_data_init(&sample, bp->attr.bp_addr);
  3953. if (!bp->hw.state && !perf_exclude_event(bp, regs))
  3954. perf_swevent_event(bp, 1, 1, &sample, regs);
  3955. }
  3956. #endif
  3957. /*
  3958. * hrtimer based swevent callback
  3959. */
  3960. static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
  3961. {
  3962. enum hrtimer_restart ret = HRTIMER_RESTART;
  3963. struct perf_sample_data data;
  3964. struct pt_regs *regs;
  3965. struct perf_event *event;
  3966. u64 period;
  3967. event = container_of(hrtimer, struct perf_event, hw.hrtimer);
  3968. event->pmu->read(event);
  3969. perf_sample_data_init(&data, 0);
  3970. data.period = event->hw.last_period;
  3971. regs = get_irq_regs();
  3972. if (regs && !perf_exclude_event(event, regs)) {
  3973. if (!(event->attr.exclude_idle && current->pid == 0))
  3974. if (perf_event_overflow(event, 0, &data, regs))
  3975. ret = HRTIMER_NORESTART;
  3976. }
  3977. period = max_t(u64, 10000, event->hw.sample_period);
  3978. hrtimer_forward_now(hrtimer, ns_to_ktime(period));
  3979. return ret;
  3980. }
  3981. static void perf_swevent_start_hrtimer(struct perf_event *event)
  3982. {
  3983. struct hw_perf_event *hwc = &event->hw;
  3984. hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  3985. hwc->hrtimer.function = perf_swevent_hrtimer;
  3986. if (hwc->sample_period) {
  3987. s64 period = local64_read(&hwc->period_left);
  3988. if (period) {
  3989. if (period < 0)
  3990. period = 10000;
  3991. local64_set(&hwc->period_left, 0);
  3992. } else {
  3993. period = max_t(u64, 10000, hwc->sample_period);
  3994. }
  3995. __hrtimer_start_range_ns(&hwc->hrtimer,
  3996. ns_to_ktime(period), 0,
  3997. HRTIMER_MODE_REL_PINNED, 0);
  3998. }
  3999. }
  4000. static void perf_swevent_cancel_hrtimer(struct perf_event *event)
  4001. {
  4002. struct hw_perf_event *hwc = &event->hw;
  4003. if (hwc->sample_period) {
  4004. ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
  4005. local64_set(&hwc->period_left, ktime_to_ns(remaining));
  4006. hrtimer_cancel(&hwc->hrtimer);
  4007. }
  4008. }
  4009. /*
  4010. * Software event: cpu wall time clock
  4011. */
  4012. static void cpu_clock_event_update(struct perf_event *event)
  4013. {
  4014. s64 prev;
  4015. u64 now;
  4016. now = local_clock();
  4017. prev = local64_xchg(&event->hw.prev_count, now);
  4018. local64_add(now - prev, &event->count);
  4019. }
  4020. static void cpu_clock_event_start(struct perf_event *event, int flags)
  4021. {
  4022. local64_set(&event->hw.prev_count, local_clock());
  4023. perf_swevent_start_hrtimer(event);
  4024. }
  4025. static void cpu_clock_event_stop(struct perf_event *event, int flags)
  4026. {
  4027. perf_swevent_cancel_hrtimer(event);
  4028. cpu_clock_event_update(event);
  4029. }
  4030. static int cpu_clock_event_add(struct perf_event *event, int flags)
  4031. {
  4032. if (flags & PERF_EF_START)
  4033. cpu_clock_event_start(event, flags);
  4034. return 0;
  4035. }
  4036. static void cpu_clock_event_del(struct perf_event *event, int flags)
  4037. {
  4038. cpu_clock_event_stop(event, flags);
  4039. }
  4040. static void cpu_clock_event_read(struct perf_event *event)
  4041. {
  4042. cpu_clock_event_update(event);
  4043. }
  4044. static int cpu_clock_event_init(struct perf_event *event)
  4045. {
  4046. if (event->attr.type != PERF_TYPE_SOFTWARE)
  4047. return -ENOENT;
  4048. if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
  4049. return -ENOENT;
  4050. return 0;
  4051. }
  4052. static struct pmu perf_cpu_clock = {
  4053. .task_ctx_nr = perf_sw_context,
  4054. .event_init = cpu_clock_event_init,
  4055. .add = cpu_clock_event_add,
  4056. .del = cpu_clock_event_del,
  4057. .start = cpu_clock_event_start,
  4058. .stop = cpu_clock_event_stop,
  4059. .read = cpu_clock_event_read,
  4060. };
  4061. /*
  4062. * Software event: task time clock
  4063. */
  4064. static void task_clock_event_update(struct perf_event *event, u64 now)
  4065. {
  4066. u64 prev;
  4067. s64 delta;
  4068. prev = local64_xchg(&event->hw.prev_count, now);
  4069. delta = now - prev;
  4070. local64_add(delta, &event->count);
  4071. }
  4072. static void task_clock_event_start(struct perf_event *event, int flags)
  4073. {
  4074. local64_set(&event->hw.prev_count, event->ctx->time);
  4075. perf_swevent_start_hrtimer(event);
  4076. }
  4077. static void task_clock_event_stop(struct perf_event *event, int flags)
  4078. {
  4079. perf_swevent_cancel_hrtimer(event);
  4080. task_clock_event_update(event, event->ctx->time);
  4081. }
  4082. static int task_clock_event_add(struct perf_event *event, int flags)
  4083. {
  4084. if (flags & PERF_EF_START)
  4085. task_clock_event_start(event, flags);
  4086. return 0;
  4087. }
  4088. static void task_clock_event_del(struct perf_event *event, int flags)
  4089. {
  4090. task_clock_event_stop(event, PERF_EF_UPDATE);
  4091. }
  4092. static void task_clock_event_read(struct perf_event *event)
  4093. {
  4094. u64 time;
  4095. if (!in_nmi()) {
  4096. update_context_time(event->ctx);
  4097. time = event->ctx->time;
  4098. } else {
  4099. u64 now = perf_clock();
  4100. u64 delta = now - event->ctx->timestamp;
  4101. time = event->ctx->time + delta;
  4102. }
  4103. task_clock_event_update(event, time);
  4104. }
  4105. static int task_clock_event_init(struct perf_event *event)
  4106. {
  4107. if (event->attr.type != PERF_TYPE_SOFTWARE)
  4108. return -ENOENT;
  4109. if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
  4110. return -ENOENT;
  4111. return 0;
  4112. }
  4113. static struct pmu perf_task_clock = {
  4114. .task_ctx_nr = perf_sw_context,
  4115. .event_init = task_clock_event_init,
  4116. .add = task_clock_event_add,
  4117. .del = task_clock_event_del,
  4118. .start = task_clock_event_start,
  4119. .stop = task_clock_event_stop,
  4120. .read = task_clock_event_read,
  4121. };
  4122. static void perf_pmu_nop_void(struct pmu *pmu)
  4123. {
  4124. }
  4125. static int perf_pmu_nop_int(struct pmu *pmu)
  4126. {
  4127. return 0;
  4128. }
  4129. static void perf_pmu_start_txn(struct pmu *pmu)
  4130. {
  4131. perf_pmu_disable(pmu);
  4132. }
  4133. static int perf_pmu_commit_txn(struct pmu *pmu)
  4134. {
  4135. perf_pmu_enable(pmu);
  4136. return 0;
  4137. }
  4138. static void perf_pmu_cancel_txn(struct pmu *pmu)
  4139. {
  4140. perf_pmu_enable(pmu);
  4141. }
  4142. /*
  4143. * Ensures all contexts with the same task_ctx_nr have the same
  4144. * pmu_cpu_context too.
  4145. */
  4146. static void *find_pmu_context(int ctxn)
  4147. {
  4148. struct pmu *pmu;
  4149. if (ctxn < 0)
  4150. return NULL;
  4151. list_for_each_entry(pmu, &pmus, entry) {
  4152. if (pmu->task_ctx_nr == ctxn)
  4153. return pmu->pmu_cpu_context;
  4154. }
  4155. return NULL;
  4156. }
  4157. static void free_pmu_context(void * __percpu cpu_context)
  4158. {
  4159. struct pmu *pmu;
  4160. mutex_lock(&pmus_lock);
  4161. /*
  4162. * Like a real lame refcount.
  4163. */
  4164. list_for_each_entry(pmu, &pmus, entry) {
  4165. if (pmu->pmu_cpu_context == cpu_context)
  4166. goto out;
  4167. }
  4168. free_percpu(cpu_context);
  4169. out:
  4170. mutex_unlock(&pmus_lock);
  4171. }
  4172. int perf_pmu_register(struct pmu *pmu)
  4173. {
  4174. int cpu, ret;
  4175. mutex_lock(&pmus_lock);
  4176. ret = -ENOMEM;
  4177. pmu->pmu_disable_count = alloc_percpu(int);
  4178. if (!pmu->pmu_disable_count)
  4179. goto unlock;
  4180. pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
  4181. if (pmu->pmu_cpu_context)
  4182. goto got_cpu_context;
  4183. pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
  4184. if (!pmu->pmu_cpu_context)
  4185. goto free_pdc;
  4186. for_each_possible_cpu(cpu) {
  4187. struct perf_cpu_context *cpuctx;
  4188. cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
  4189. __perf_event_init_context(&cpuctx->ctx);
  4190. cpuctx->ctx.type = cpu_context;
  4191. cpuctx->ctx.pmu = pmu;
  4192. cpuctx->jiffies_interval = 1;
  4193. INIT_LIST_HEAD(&cpuctx->rotation_list);
  4194. }
  4195. got_cpu_context:
  4196. if (!pmu->start_txn) {
  4197. if (pmu->pmu_enable) {
  4198. /*
  4199. * If we have pmu_enable/pmu_disable calls, install
  4200. * transaction stubs that use that to try and batch
  4201. * hardware accesses.
  4202. */
  4203. pmu->start_txn = perf_pmu_start_txn;
  4204. pmu->commit_txn = perf_pmu_commit_txn;
  4205. pmu->cancel_txn = perf_pmu_cancel_txn;
  4206. } else {
  4207. pmu->start_txn = perf_pmu_nop_void;
  4208. pmu->commit_txn = perf_pmu_nop_int;
  4209. pmu->cancel_txn = perf_pmu_nop_void;
  4210. }
  4211. }
  4212. if (!pmu->pmu_enable) {
  4213. pmu->pmu_enable = perf_pmu_nop_void;
  4214. pmu->pmu_disable = perf_pmu_nop_void;
  4215. }
  4216. list_add_rcu(&pmu->entry, &pmus);
  4217. ret = 0;
  4218. unlock:
  4219. mutex_unlock(&pmus_lock);
  4220. return ret;
  4221. free_pdc:
  4222. free_percpu(pmu->pmu_disable_count);
  4223. goto unlock;
  4224. }
  4225. void perf_pmu_unregister(struct pmu *pmu)
  4226. {
  4227. mutex_lock(&pmus_lock);
  4228. list_del_rcu(&pmu->entry);
  4229. mutex_unlock(&pmus_lock);
  4230. /*
  4231. * We dereference the pmu list under both SRCU and regular RCU, so
  4232. * synchronize against both of those.
  4233. */
  4234. synchronize_srcu(&pmus_srcu);
  4235. synchronize_rcu();
  4236. free_percpu(pmu->pmu_disable_count);
  4237. free_pmu_context(pmu->pmu_cpu_context);
  4238. }
  4239. struct pmu *perf_init_event(struct perf_event *event)
  4240. {
  4241. struct pmu *pmu = NULL;
  4242. int idx;
  4243. idx = srcu_read_lock(&pmus_srcu);
  4244. list_for_each_entry_rcu(pmu, &pmus, entry) {
  4245. int ret = pmu->event_init(event);
  4246. if (!ret)
  4247. goto unlock;
  4248. if (ret != -ENOENT) {
  4249. pmu = ERR_PTR(ret);
  4250. goto unlock;
  4251. }
  4252. }
  4253. pmu = ERR_PTR(-ENOENT);
  4254. unlock:
  4255. srcu_read_unlock(&pmus_srcu, idx);
  4256. return pmu;
  4257. }
  4258. /*
  4259. * Allocate and initialize a event structure
  4260. */
  4261. static struct perf_event *
  4262. perf_event_alloc(struct perf_event_attr *attr, int cpu,
  4263. struct task_struct *task,
  4264. struct perf_event *group_leader,
  4265. struct perf_event *parent_event,
  4266. perf_overflow_handler_t overflow_handler)
  4267. {
  4268. struct pmu *pmu;
  4269. struct perf_event *event;
  4270. struct hw_perf_event *hwc;
  4271. long err;
  4272. event = kzalloc(sizeof(*event), GFP_KERNEL);
  4273. if (!event)
  4274. return ERR_PTR(-ENOMEM);
  4275. /*
  4276. * Single events are their own group leaders, with an
  4277. * empty sibling list:
  4278. */
  4279. if (!group_leader)
  4280. group_leader = event;
  4281. mutex_init(&event->child_mutex);
  4282. INIT_LIST_HEAD(&event->child_list);
  4283. INIT_LIST_HEAD(&event->group_entry);
  4284. INIT_LIST_HEAD(&event->event_entry);
  4285. INIT_LIST_HEAD(&event->sibling_list);
  4286. init_waitqueue_head(&event->waitq);
  4287. init_irq_work(&event->pending, perf_pending_event);
  4288. mutex_init(&event->mmap_mutex);
  4289. event->cpu = cpu;
  4290. event->attr = *attr;
  4291. event->group_leader = group_leader;
  4292. event->pmu = NULL;
  4293. event->oncpu = -1;
  4294. event->parent = parent_event;
  4295. event->ns = get_pid_ns(current->nsproxy->pid_ns);
  4296. event->id = atomic64_inc_return(&perf_event_id);
  4297. event->state = PERF_EVENT_STATE_INACTIVE;
  4298. if (task) {
  4299. event->attach_state = PERF_ATTACH_TASK;
  4300. #ifdef CONFIG_HAVE_HW_BREAKPOINT
  4301. /*
  4302. * hw_breakpoint is a bit difficult here..
  4303. */
  4304. if (attr->type == PERF_TYPE_BREAKPOINT)
  4305. event->hw.bp_target = task;
  4306. #endif
  4307. }
  4308. if (!overflow_handler && parent_event)
  4309. overflow_handler = parent_event->overflow_handler;
  4310. event->overflow_handler = overflow_handler;
  4311. if (attr->disabled)
  4312. event->state = PERF_EVENT_STATE_OFF;
  4313. pmu = NULL;
  4314. hwc = &event->hw;
  4315. hwc->sample_period = attr->sample_period;
  4316. if (attr->freq && attr->sample_freq)
  4317. hwc->sample_period = 1;
  4318. hwc->last_period = hwc->sample_period;
  4319. local64_set(&hwc->period_left, hwc->sample_period);
  4320. /*
  4321. * we currently do not support PERF_FORMAT_GROUP on inherited events
  4322. */
  4323. if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
  4324. goto done;
  4325. pmu = perf_init_event(event);
  4326. done:
  4327. err = 0;
  4328. if (!pmu)
  4329. err = -EINVAL;
  4330. else if (IS_ERR(pmu))
  4331. err = PTR_ERR(pmu);
  4332. if (err) {
  4333. if (event->ns)
  4334. put_pid_ns(event->ns);
  4335. kfree(event);
  4336. return ERR_PTR(err);
  4337. }
  4338. event->pmu = pmu;
  4339. if (!event->parent) {
  4340. if (event->attach_state & PERF_ATTACH_TASK)
  4341. jump_label_inc(&perf_task_events);
  4342. if (event->attr.mmap || event->attr.mmap_data)
  4343. atomic_inc(&nr_mmap_events);
  4344. if (event->attr.comm)
  4345. atomic_inc(&nr_comm_events);
  4346. if (event->attr.task)
  4347. atomic_inc(&nr_task_events);
  4348. if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
  4349. err = get_callchain_buffers();
  4350. if (err) {
  4351. free_event(event);
  4352. return ERR_PTR(err);
  4353. }
  4354. }
  4355. }
  4356. return event;
  4357. }
  4358. static int perf_copy_attr(struct perf_event_attr __user *uattr,
  4359. struct perf_event_attr *attr)
  4360. {
  4361. u32 size;
  4362. int ret;
  4363. if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
  4364. return -EFAULT;
  4365. /*
  4366. * zero the full structure, so that a short copy will be nice.
  4367. */
  4368. memset(attr, 0, sizeof(*attr));
  4369. ret = get_user(size, &uattr->size);
  4370. if (ret)
  4371. return ret;
  4372. if (size > PAGE_SIZE) /* silly large */
  4373. goto err_size;
  4374. if (!size) /* abi compat */
  4375. size = PERF_ATTR_SIZE_VER0;
  4376. if (size < PERF_ATTR_SIZE_VER0)
  4377. goto err_size;
  4378. /*
  4379. * If we're handed a bigger struct than we know of,
  4380. * ensure all the unknown bits are 0 - i.e. new
  4381. * user-space does not rely on any kernel feature
  4382. * extensions we dont know about yet.
  4383. */
  4384. if (size > sizeof(*attr)) {
  4385. unsigned char __user *addr;
  4386. unsigned char __user *end;
  4387. unsigned char val;
  4388. addr = (void __user *)uattr + sizeof(*attr);
  4389. end = (void __user *)uattr + size;
  4390. for (; addr < end; addr++) {
  4391. ret = get_user(val, addr);
  4392. if (ret)
  4393. return ret;
  4394. if (val)
  4395. goto err_size;
  4396. }
  4397. size = sizeof(*attr);
  4398. }
  4399. ret = copy_from_user(attr, uattr, size);
  4400. if (ret)
  4401. return -EFAULT;
  4402. /*
  4403. * If the type exists, the corresponding creation will verify
  4404. * the attr->config.
  4405. */
  4406. if (attr->type >= PERF_TYPE_MAX)
  4407. return -EINVAL;
  4408. if (attr->__reserved_1)
  4409. return -EINVAL;
  4410. if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
  4411. return -EINVAL;
  4412. if (attr->read_format & ~(PERF_FORMAT_MAX-1))
  4413. return -EINVAL;
  4414. out:
  4415. return ret;
  4416. err_size:
  4417. put_user(sizeof(*attr), &uattr->size);
  4418. ret = -E2BIG;
  4419. goto out;
  4420. }
  4421. static int
  4422. perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
  4423. {
  4424. struct perf_buffer *buffer = NULL, *old_buffer = NULL;
  4425. int ret = -EINVAL;
  4426. if (!output_event)
  4427. goto set;
  4428. /* don't allow circular references */
  4429. if (event == output_event)
  4430. goto out;
  4431. /*
  4432. * Don't allow cross-cpu buffers
  4433. */
  4434. if (output_event->cpu != event->cpu)
  4435. goto out;
  4436. /*
  4437. * If its not a per-cpu buffer, it must be the same task.
  4438. */
  4439. if (output_event->cpu == -1 && output_event->ctx != event->ctx)
  4440. goto out;
  4441. set:
  4442. mutex_lock(&event->mmap_mutex);
  4443. /* Can't redirect output if we've got an active mmap() */
  4444. if (atomic_read(&event->mmap_count))
  4445. goto unlock;
  4446. if (output_event) {
  4447. /* get the buffer we want to redirect to */
  4448. buffer = perf_buffer_get(output_event);
  4449. if (!buffer)
  4450. goto unlock;
  4451. }
  4452. old_buffer = event->buffer;
  4453. rcu_assign_pointer(event->buffer, buffer);
  4454. ret = 0;
  4455. unlock:
  4456. mutex_unlock(&event->mmap_mutex);
  4457. if (old_buffer)
  4458. perf_buffer_put(old_buffer);
  4459. out:
  4460. return ret;
  4461. }
  4462. /**
  4463. * sys_perf_event_open - open a performance event, associate it to a task/cpu
  4464. *
  4465. * @attr_uptr: event_id type attributes for monitoring/sampling
  4466. * @pid: target pid
  4467. * @cpu: target cpu
  4468. * @group_fd: group leader event fd
  4469. */
  4470. SYSCALL_DEFINE5(perf_event_open,
  4471. struct perf_event_attr __user *, attr_uptr,
  4472. pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
  4473. {
  4474. struct perf_event *group_leader = NULL, *output_event = NULL;
  4475. struct perf_event *event, *sibling;
  4476. struct perf_event_attr attr;
  4477. struct perf_event_context *ctx;
  4478. struct file *event_file = NULL;
  4479. struct file *group_file = NULL;
  4480. struct task_struct *task = NULL;
  4481. struct pmu *pmu;
  4482. int event_fd;
  4483. int move_group = 0;
  4484. int fput_needed = 0;
  4485. int err;
  4486. /* for future expandability... */
  4487. if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
  4488. return -EINVAL;
  4489. err = perf_copy_attr(attr_uptr, &attr);
  4490. if (err)
  4491. return err;
  4492. if (!attr.exclude_kernel) {
  4493. if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
  4494. return -EACCES;
  4495. }
  4496. if (attr.freq) {
  4497. if (attr.sample_freq > sysctl_perf_event_sample_rate)
  4498. return -EINVAL;
  4499. }
  4500. event_fd = get_unused_fd_flags(O_RDWR);
  4501. if (event_fd < 0)
  4502. return event_fd;
  4503. if (group_fd != -1) {
  4504. group_leader = perf_fget_light(group_fd, &fput_needed);
  4505. if (IS_ERR(group_leader)) {
  4506. err = PTR_ERR(group_leader);
  4507. goto err_fd;
  4508. }
  4509. group_file = group_leader->filp;
  4510. if (flags & PERF_FLAG_FD_OUTPUT)
  4511. output_event = group_leader;
  4512. if (flags & PERF_FLAG_FD_NO_GROUP)
  4513. group_leader = NULL;
  4514. }
  4515. if (pid != -1) {
  4516. task = find_lively_task_by_vpid(pid);
  4517. if (IS_ERR(task)) {
  4518. err = PTR_ERR(task);
  4519. goto err_group_fd;
  4520. }
  4521. }
  4522. event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
  4523. if (IS_ERR(event)) {
  4524. err = PTR_ERR(event);
  4525. goto err_task;
  4526. }
  4527. /*
  4528. * Special case software events and allow them to be part of
  4529. * any hardware group.
  4530. */
  4531. pmu = event->pmu;
  4532. if (group_leader &&
  4533. (is_software_event(event) != is_software_event(group_leader))) {
  4534. if (is_software_event(event)) {
  4535. /*
  4536. * If event and group_leader are not both a software
  4537. * event, and event is, then group leader is not.
  4538. *
  4539. * Allow the addition of software events to !software
  4540. * groups, this is safe because software events never
  4541. * fail to schedule.
  4542. */
  4543. pmu = group_leader->pmu;
  4544. } else if (is_software_event(group_leader) &&
  4545. (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
  4546. /*
  4547. * In case the group is a pure software group, and we
  4548. * try to add a hardware event, move the whole group to
  4549. * the hardware context.
  4550. */
  4551. move_group = 1;
  4552. }
  4553. }
  4554. /*
  4555. * Get the target context (task or percpu):
  4556. */
  4557. ctx = find_get_context(pmu, task, cpu);
  4558. if (IS_ERR(ctx)) {
  4559. err = PTR_ERR(ctx);
  4560. goto err_alloc;
  4561. }
  4562. /*
  4563. * Look up the group leader (we will attach this event to it):
  4564. */
  4565. if (group_leader) {
  4566. err = -EINVAL;
  4567. /*
  4568. * Do not allow a recursive hierarchy (this new sibling
  4569. * becoming part of another group-sibling):
  4570. */
  4571. if (group_leader->group_leader != group_leader)
  4572. goto err_context;
  4573. /*
  4574. * Do not allow to attach to a group in a different
  4575. * task or CPU context:
  4576. */
  4577. if (move_group) {
  4578. if (group_leader->ctx->type != ctx->type)
  4579. goto err_context;
  4580. } else {
  4581. if (group_leader->ctx != ctx)
  4582. goto err_context;
  4583. }
  4584. /*
  4585. * Only a group leader can be exclusive or pinned
  4586. */
  4587. if (attr.exclusive || attr.pinned)
  4588. goto err_context;
  4589. }
  4590. if (output_event) {
  4591. err = perf_event_set_output(event, output_event);
  4592. if (err)
  4593. goto err_context;
  4594. }
  4595. event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
  4596. if (IS_ERR(event_file)) {
  4597. err = PTR_ERR(event_file);
  4598. goto err_context;
  4599. }
  4600. if (move_group) {
  4601. struct perf_event_context *gctx = group_leader->ctx;
  4602. mutex_lock(&gctx->mutex);
  4603. perf_event_remove_from_context(group_leader);
  4604. list_for_each_entry(sibling, &group_leader->sibling_list,
  4605. group_entry) {
  4606. perf_event_remove_from_context(sibling);
  4607. put_ctx(gctx);
  4608. }
  4609. mutex_unlock(&gctx->mutex);
  4610. put_ctx(gctx);
  4611. }
  4612. event->filp = event_file;
  4613. WARN_ON_ONCE(ctx->parent_ctx);
  4614. mutex_lock(&ctx->mutex);
  4615. if (move_group) {
  4616. perf_install_in_context(ctx, group_leader, cpu);
  4617. get_ctx(ctx);
  4618. list_for_each_entry(sibling, &group_leader->sibling_list,
  4619. group_entry) {
  4620. perf_install_in_context(ctx, sibling, cpu);
  4621. get_ctx(ctx);
  4622. }
  4623. }
  4624. perf_install_in_context(ctx, event, cpu);
  4625. ++ctx->generation;
  4626. mutex_unlock(&ctx->mutex);
  4627. event->owner = current;
  4628. mutex_lock(&current->perf_event_mutex);
  4629. list_add_tail(&event->owner_entry, &current->perf_event_list);
  4630. mutex_unlock(&current->perf_event_mutex);
  4631. /*
  4632. * Drop the reference on the group_event after placing the
  4633. * new event on the sibling_list. This ensures destruction
  4634. * of the group leader will find the pointer to itself in
  4635. * perf_group_detach().
  4636. */
  4637. fput_light(group_file, fput_needed);
  4638. fd_install(event_fd, event_file);
  4639. return event_fd;
  4640. err_context:
  4641. put_ctx(ctx);
  4642. err_alloc:
  4643. free_event(event);
  4644. err_task:
  4645. if (task)
  4646. put_task_struct(task);
  4647. err_group_fd:
  4648. fput_light(group_file, fput_needed);
  4649. err_fd:
  4650. put_unused_fd(event_fd);
  4651. return err;
  4652. }
  4653. /**
  4654. * perf_event_create_kernel_counter
  4655. *
  4656. * @attr: attributes of the counter to create
  4657. * @cpu: cpu in which the counter is bound
  4658. * @task: task to profile (NULL for percpu)
  4659. */
  4660. struct perf_event *
  4661. perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
  4662. struct task_struct *task,
  4663. perf_overflow_handler_t overflow_handler)
  4664. {
  4665. struct perf_event_context *ctx;
  4666. struct perf_event *event;
  4667. int err;
  4668. /*
  4669. * Get the target context (task or percpu):
  4670. */
  4671. event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
  4672. if (IS_ERR(event)) {
  4673. err = PTR_ERR(event);
  4674. goto err;
  4675. }
  4676. ctx = find_get_context(event->pmu, task, cpu);
  4677. if (IS_ERR(ctx)) {
  4678. err = PTR_ERR(ctx);
  4679. goto err_free;
  4680. }
  4681. event->filp = NULL;
  4682. WARN_ON_ONCE(ctx->parent_ctx);
  4683. mutex_lock(&ctx->mutex);
  4684. perf_install_in_context(ctx, event, cpu);
  4685. ++ctx->generation;
  4686. mutex_unlock(&ctx->mutex);
  4687. return event;
  4688. err_free:
  4689. free_event(event);
  4690. err:
  4691. return ERR_PTR(err);
  4692. }
  4693. EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
  4694. static void sync_child_event(struct perf_event *child_event,
  4695. struct task_struct *child)
  4696. {
  4697. struct perf_event *parent_event = child_event->parent;
  4698. u64 child_val;
  4699. if (child_event->attr.inherit_stat)
  4700. perf_event_read_event(child_event, child);
  4701. child_val = perf_event_count(child_event);
  4702. /*
  4703. * Add back the child's count to the parent's count:
  4704. */
  4705. atomic64_add(child_val, &parent_event->child_count);
  4706. atomic64_add(child_event->total_time_enabled,
  4707. &parent_event->child_total_time_enabled);
  4708. atomic64_add(child_event->total_time_running,
  4709. &parent_event->child_total_time_running);
  4710. /*
  4711. * Remove this event from the parent's list
  4712. */
  4713. WARN_ON_ONCE(parent_event->ctx->parent_ctx);
  4714. mutex_lock(&parent_event->child_mutex);
  4715. list_del_init(&child_event->child_list);
  4716. mutex_unlock(&parent_event->child_mutex);
  4717. /*
  4718. * Release the parent event, if this was the last
  4719. * reference to it.
  4720. */
  4721. fput(parent_event->filp);
  4722. }
  4723. static void
  4724. __perf_event_exit_task(struct perf_event *child_event,
  4725. struct perf_event_context *child_ctx,
  4726. struct task_struct *child)
  4727. {
  4728. struct perf_event *parent_event;
  4729. perf_event_remove_from_context(child_event);
  4730. parent_event = child_event->parent;
  4731. /*
  4732. * It can happen that parent exits first, and has events
  4733. * that are still around due to the child reference. These
  4734. * events need to be zapped - but otherwise linger.
  4735. */
  4736. if (parent_event) {
  4737. sync_child_event(child_event, child);
  4738. free_event(child_event);
  4739. }
  4740. }
  4741. static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
  4742. {
  4743. struct perf_event *child_event, *tmp;
  4744. struct perf_event_context *child_ctx;
  4745. unsigned long flags;
  4746. if (likely(!child->perf_event_ctxp[ctxn])) {
  4747. perf_event_task(child, NULL, 0);
  4748. return;
  4749. }
  4750. local_irq_save(flags);
  4751. /*
  4752. * We can't reschedule here because interrupts are disabled,
  4753. * and either child is current or it is a task that can't be
  4754. * scheduled, so we are now safe from rescheduling changing
  4755. * our context.
  4756. */
  4757. child_ctx = child->perf_event_ctxp[ctxn];
  4758. task_ctx_sched_out(child_ctx, EVENT_ALL);
  4759. /*
  4760. * Take the context lock here so that if find_get_context is
  4761. * reading child->perf_event_ctxp, we wait until it has
  4762. * incremented the context's refcount before we do put_ctx below.
  4763. */
  4764. raw_spin_lock(&child_ctx->lock);
  4765. child->perf_event_ctxp[ctxn] = NULL;
  4766. /*
  4767. * If this context is a clone; unclone it so it can't get
  4768. * swapped to another process while we're removing all
  4769. * the events from it.
  4770. */
  4771. unclone_ctx(child_ctx);
  4772. update_context_time(child_ctx);
  4773. raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
  4774. /*
  4775. * Report the task dead after unscheduling the events so that we
  4776. * won't get any samples after PERF_RECORD_EXIT. We can however still
  4777. * get a few PERF_RECORD_READ events.
  4778. */
  4779. perf_event_task(child, child_ctx, 0);
  4780. /*
  4781. * We can recurse on the same lock type through:
  4782. *
  4783. * __perf_event_exit_task()
  4784. * sync_child_event()
  4785. * fput(parent_event->filp)
  4786. * perf_release()
  4787. * mutex_lock(&ctx->mutex)
  4788. *
  4789. * But since its the parent context it won't be the same instance.
  4790. */
  4791. mutex_lock(&child_ctx->mutex);
  4792. again:
  4793. list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
  4794. group_entry)
  4795. __perf_event_exit_task(child_event, child_ctx, child);
  4796. list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
  4797. group_entry)
  4798. __perf_event_exit_task(child_event, child_ctx, child);
  4799. /*
  4800. * If the last event was a group event, it will have appended all
  4801. * its siblings to the list, but we obtained 'tmp' before that which
  4802. * will still point to the list head terminating the iteration.
  4803. */
  4804. if (!list_empty(&child_ctx->pinned_groups) ||
  4805. !list_empty(&child_ctx->flexible_groups))
  4806. goto again;
  4807. mutex_unlock(&child_ctx->mutex);
  4808. put_ctx(child_ctx);
  4809. }
  4810. /*
  4811. * When a child task exits, feed back event values to parent events.
  4812. */
  4813. void perf_event_exit_task(struct task_struct *child)
  4814. {
  4815. struct perf_event *event, *tmp;
  4816. int ctxn;
  4817. mutex_lock(&child->perf_event_mutex);
  4818. list_for_each_entry_safe(event, tmp, &child->perf_event_list,
  4819. owner_entry) {
  4820. list_del_init(&event->owner_entry);
  4821. /*
  4822. * Ensure the list deletion is visible before we clear
  4823. * the owner, closes a race against perf_release() where
  4824. * we need to serialize on the owner->perf_event_mutex.
  4825. */
  4826. smp_wmb();
  4827. event->owner = NULL;
  4828. }
  4829. mutex_unlock(&child->perf_event_mutex);
  4830. for_each_task_context_nr(ctxn)
  4831. perf_event_exit_task_context(child, ctxn);
  4832. }
  4833. static void perf_free_event(struct perf_event *event,
  4834. struct perf_event_context *ctx)
  4835. {
  4836. struct perf_event *parent = event->parent;
  4837. if (WARN_ON_ONCE(!parent))
  4838. return;
  4839. mutex_lock(&parent->child_mutex);
  4840. list_del_init(&event->child_list);
  4841. mutex_unlock(&parent->child_mutex);
  4842. fput(parent->filp);
  4843. perf_group_detach(event);
  4844. list_del_event(event, ctx);
  4845. free_event(event);
  4846. }
  4847. /*
  4848. * free an unexposed, unused context as created by inheritance by
  4849. * perf_event_init_task below, used by fork() in case of fail.
  4850. */
  4851. void perf_event_free_task(struct task_struct *task)
  4852. {
  4853. struct perf_event_context *ctx;
  4854. struct perf_event *event, *tmp;
  4855. int ctxn;
  4856. for_each_task_context_nr(ctxn) {
  4857. ctx = task->perf_event_ctxp[ctxn];
  4858. if (!ctx)
  4859. continue;
  4860. mutex_lock(&ctx->mutex);
  4861. again:
  4862. list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
  4863. group_entry)
  4864. perf_free_event(event, ctx);
  4865. list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
  4866. group_entry)
  4867. perf_free_event(event, ctx);
  4868. if (!list_empty(&ctx->pinned_groups) ||
  4869. !list_empty(&ctx->flexible_groups))
  4870. goto again;
  4871. mutex_unlock(&ctx->mutex);
  4872. put_ctx(ctx);
  4873. }
  4874. }
  4875. void perf_event_delayed_put(struct task_struct *task)
  4876. {
  4877. int ctxn;
  4878. for_each_task_context_nr(ctxn)
  4879. WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
  4880. }
  4881. /*
  4882. * inherit a event from parent task to child task:
  4883. */
  4884. static struct perf_event *
  4885. inherit_event(struct perf_event *parent_event,
  4886. struct task_struct *parent,
  4887. struct perf_event_context *parent_ctx,
  4888. struct task_struct *child,
  4889. struct perf_event *group_leader,
  4890. struct perf_event_context *child_ctx)
  4891. {
  4892. struct perf_event *child_event;
  4893. unsigned long flags;
  4894. /*
  4895. * Instead of creating recursive hierarchies of events,
  4896. * we link inherited events back to the original parent,
  4897. * which has a filp for sure, which we use as the reference
  4898. * count:
  4899. */
  4900. if (parent_event->parent)
  4901. parent_event = parent_event->parent;
  4902. child_event = perf_event_alloc(&parent_event->attr,
  4903. parent_event->cpu,
  4904. child,
  4905. group_leader, parent_event,
  4906. NULL);
  4907. if (IS_ERR(child_event))
  4908. return child_event;
  4909. get_ctx(child_ctx);
  4910. /*
  4911. * Make the child state follow the state of the parent event,
  4912. * not its attr.disabled bit. We hold the parent's mutex,
  4913. * so we won't race with perf_event_{en, dis}able_family.
  4914. */
  4915. if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
  4916. child_event->state = PERF_EVENT_STATE_INACTIVE;
  4917. else
  4918. child_event->state = PERF_EVENT_STATE_OFF;
  4919. if (parent_event->attr.freq) {
  4920. u64 sample_period = parent_event->hw.sample_period;
  4921. struct hw_perf_event *hwc = &child_event->hw;
  4922. hwc->sample_period = sample_period;
  4923. hwc->last_period = sample_period;
  4924. local64_set(&hwc->period_left, sample_period);
  4925. }
  4926. child_event->ctx = child_ctx;
  4927. child_event->overflow_handler = parent_event->overflow_handler;
  4928. /*
  4929. * Link it up in the child's context:
  4930. */
  4931. raw_spin_lock_irqsave(&child_ctx->lock, flags);
  4932. add_event_to_ctx(child_event, child_ctx);
  4933. raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
  4934. /*
  4935. * Get a reference to the parent filp - we will fput it
  4936. * when the child event exits. This is safe to do because
  4937. * we are in the parent and we know that the filp still
  4938. * exists and has a nonzero count:
  4939. */
  4940. atomic_long_inc(&parent_event->filp->f_count);
  4941. /*
  4942. * Link this into the parent event's child list
  4943. */
  4944. WARN_ON_ONCE(parent_event->ctx->parent_ctx);
  4945. mutex_lock(&parent_event->child_mutex);
  4946. list_add_tail(&child_event->child_list, &parent_event->child_list);
  4947. mutex_unlock(&parent_event->child_mutex);
  4948. return child_event;
  4949. }
  4950. static int inherit_group(struct perf_event *parent_event,
  4951. struct task_struct *parent,
  4952. struct perf_event_context *parent_ctx,
  4953. struct task_struct *child,
  4954. struct perf_event_context *child_ctx)
  4955. {
  4956. struct perf_event *leader;
  4957. struct perf_event *sub;
  4958. struct perf_event *child_ctr;
  4959. leader = inherit_event(parent_event, parent, parent_ctx,
  4960. child, NULL, child_ctx);
  4961. if (IS_ERR(leader))
  4962. return PTR_ERR(leader);
  4963. list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
  4964. child_ctr = inherit_event(sub, parent, parent_ctx,
  4965. child, leader, child_ctx);
  4966. if (IS_ERR(child_ctr))
  4967. return PTR_ERR(child_ctr);
  4968. }
  4969. return 0;
  4970. }
  4971. static int
  4972. inherit_task_group(struct perf_event *event, struct task_struct *parent,
  4973. struct perf_event_context *parent_ctx,
  4974. struct task_struct *child, int ctxn,
  4975. int *inherited_all)
  4976. {
  4977. int ret;
  4978. struct perf_event_context *child_ctx;
  4979. if (!event->attr.inherit) {
  4980. *inherited_all = 0;
  4981. return 0;
  4982. }
  4983. child_ctx = child->perf_event_ctxp[ctxn];
  4984. if (!child_ctx) {
  4985. /*
  4986. * This is executed from the parent task context, so
  4987. * inherit events that have been marked for cloning.
  4988. * First allocate and initialize a context for the
  4989. * child.
  4990. */
  4991. child_ctx = alloc_perf_context(event->pmu, child);
  4992. if (!child_ctx)
  4993. return -ENOMEM;
  4994. child->perf_event_ctxp[ctxn] = child_ctx;
  4995. }
  4996. ret = inherit_group(event, parent, parent_ctx,
  4997. child, child_ctx);
  4998. if (ret)
  4999. *inherited_all = 0;
  5000. return ret;
  5001. }
  5002. /*
  5003. * Initialize the perf_event context in task_struct
  5004. */
  5005. int perf_event_init_context(struct task_struct *child, int ctxn)
  5006. {
  5007. struct perf_event_context *child_ctx, *parent_ctx;
  5008. struct perf_event_context *cloned_ctx;
  5009. struct perf_event *event;
  5010. struct task_struct *parent = current;
  5011. int inherited_all = 1;
  5012. unsigned long flags;
  5013. int ret = 0;
  5014. child->perf_event_ctxp[ctxn] = NULL;
  5015. mutex_init(&child->perf_event_mutex);
  5016. INIT_LIST_HEAD(&child->perf_event_list);
  5017. if (likely(!parent->perf_event_ctxp[ctxn]))
  5018. return 0;
  5019. /*
  5020. * If the parent's context is a clone, pin it so it won't get
  5021. * swapped under us.
  5022. */
  5023. parent_ctx = perf_pin_task_context(parent, ctxn);
  5024. /*
  5025. * No need to check if parent_ctx != NULL here; since we saw
  5026. * it non-NULL earlier, the only reason for it to become NULL
  5027. * is if we exit, and since we're currently in the middle of
  5028. * a fork we can't be exiting at the same time.
  5029. */
  5030. /*
  5031. * Lock the parent list. No need to lock the child - not PID
  5032. * hashed yet and not running, so nobody can access it.
  5033. */
  5034. mutex_lock(&parent_ctx->mutex);
  5035. /*
  5036. * We dont have to disable NMIs - we are only looking at
  5037. * the list, not manipulating it:
  5038. */
  5039. list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
  5040. ret = inherit_task_group(event, parent, parent_ctx,
  5041. child, ctxn, &inherited_all);
  5042. if (ret)
  5043. break;
  5044. }
  5045. /*
  5046. * We can't hold ctx->lock when iterating the ->flexible_group list due
  5047. * to allocations, but we need to prevent rotation because
  5048. * rotate_ctx() will change the list from interrupt context.
  5049. */
  5050. raw_spin_lock_irqsave(&parent_ctx->lock, flags);
  5051. parent_ctx->rotate_disable = 1;
  5052. raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
  5053. list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
  5054. ret = inherit_task_group(event, parent, parent_ctx,
  5055. child, ctxn, &inherited_all);
  5056. if (ret)
  5057. break;
  5058. }
  5059. raw_spin_lock_irqsave(&parent_ctx->lock, flags);
  5060. parent_ctx->rotate_disable = 0;
  5061. raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
  5062. child_ctx = child->perf_event_ctxp[ctxn];
  5063. if (child_ctx && inherited_all) {
  5064. /*
  5065. * Mark the child context as a clone of the parent
  5066. * context, or of whatever the parent is a clone of.
  5067. * Note that if the parent is a clone, it could get
  5068. * uncloned at any point, but that doesn't matter
  5069. * because the list of events and the generation
  5070. * count can't have changed since we took the mutex.
  5071. */
  5072. cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
  5073. if (cloned_ctx) {
  5074. child_ctx->parent_ctx = cloned_ctx;
  5075. child_ctx->parent_gen = parent_ctx->parent_gen;
  5076. } else {
  5077. child_ctx->parent_ctx = parent_ctx;
  5078. child_ctx->parent_gen = parent_ctx->generation;
  5079. }
  5080. get_ctx(child_ctx->parent_ctx);
  5081. }
  5082. mutex_unlock(&parent_ctx->mutex);
  5083. perf_unpin_context(parent_ctx);
  5084. return ret;
  5085. }
  5086. /*
  5087. * Initialize the perf_event context in task_struct
  5088. */
  5089. int perf_event_init_task(struct task_struct *child)
  5090. {
  5091. int ctxn, ret;
  5092. for_each_task_context_nr(ctxn) {
  5093. ret = perf_event_init_context(child, ctxn);
  5094. if (ret)
  5095. return ret;
  5096. }
  5097. return 0;
  5098. }
  5099. static void __init perf_event_init_all_cpus(void)
  5100. {
  5101. struct swevent_htable *swhash;
  5102. int cpu;
  5103. for_each_possible_cpu(cpu) {
  5104. swhash = &per_cpu(swevent_htable, cpu);
  5105. mutex_init(&swhash->hlist_mutex);
  5106. INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
  5107. }
  5108. }
  5109. static void __cpuinit perf_event_init_cpu(int cpu)
  5110. {
  5111. struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
  5112. mutex_lock(&swhash->hlist_mutex);
  5113. if (swhash->hlist_refcount > 0) {
  5114. struct swevent_hlist *hlist;
  5115. hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
  5116. WARN_ON(!hlist);
  5117. rcu_assign_pointer(swhash->swevent_hlist, hlist);
  5118. }
  5119. mutex_unlock(&swhash->hlist_mutex);
  5120. }
  5121. #ifdef CONFIG_HOTPLUG_CPU
  5122. static void perf_pmu_rotate_stop(struct pmu *pmu)
  5123. {
  5124. struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
  5125. WARN_ON(!irqs_disabled());
  5126. list_del_init(&cpuctx->rotation_list);
  5127. }
  5128. static void __perf_event_exit_context(void *__info)
  5129. {
  5130. struct perf_event_context *ctx = __info;
  5131. struct perf_event *event, *tmp;
  5132. perf_pmu_rotate_stop(ctx->pmu);
  5133. list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
  5134. __perf_event_remove_from_context(event);
  5135. list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
  5136. __perf_event_remove_from_context(event);
  5137. }
  5138. static void perf_event_exit_cpu_context(int cpu)
  5139. {
  5140. struct perf_event_context *ctx;
  5141. struct pmu *pmu;
  5142. int idx;
  5143. idx = srcu_read_lock(&pmus_srcu);
  5144. list_for_each_entry_rcu(pmu, &pmus, entry) {
  5145. ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
  5146. mutex_lock(&ctx->mutex);
  5147. smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
  5148. mutex_unlock(&ctx->mutex);
  5149. }
  5150. srcu_read_unlock(&pmus_srcu, idx);
  5151. }
  5152. static void perf_event_exit_cpu(int cpu)
  5153. {
  5154. struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
  5155. mutex_lock(&swhash->hlist_mutex);
  5156. swevent_hlist_release(swhash);
  5157. mutex_unlock(&swhash->hlist_mutex);
  5158. perf_event_exit_cpu_context(cpu);
  5159. }
  5160. #else
  5161. static inline void perf_event_exit_cpu(int cpu) { }
  5162. #endif
  5163. static int __cpuinit
  5164. perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
  5165. {
  5166. unsigned int cpu = (long)hcpu;
  5167. switch (action & ~CPU_TASKS_FROZEN) {
  5168. case CPU_UP_PREPARE:
  5169. case CPU_DOWN_FAILED:
  5170. perf_event_init_cpu(cpu);
  5171. break;
  5172. case CPU_UP_CANCELED:
  5173. case CPU_DOWN_PREPARE:
  5174. perf_event_exit_cpu(cpu);
  5175. break;
  5176. default:
  5177. break;
  5178. }
  5179. return NOTIFY_OK;
  5180. }
  5181. void __init perf_event_init(void)
  5182. {
  5183. int ret;
  5184. perf_event_init_all_cpus();
  5185. init_srcu_struct(&pmus_srcu);
  5186. perf_pmu_register(&perf_swevent);
  5187. perf_pmu_register(&perf_cpu_clock);
  5188. perf_pmu_register(&perf_task_clock);
  5189. perf_tp_register();
  5190. perf_cpu_notifier(perf_cpu_notify);
  5191. ret = init_hw_breakpoint();
  5192. WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
  5193. }