fair.c 133 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. #include <linux/cpumask.h>
  25. #include <linux/slab.h>
  26. #include <linux/profile.h>
  27. #include <linux/interrupt.h>
  28. #include <trace/events/sched.h>
  29. #include "sched.h"
  30. /*
  31. * Targeted preemption latency for CPU-bound tasks:
  32. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  33. *
  34. * NOTE: this latency value is not the same as the concept of
  35. * 'timeslice length' - timeslices in CFS are of variable length
  36. * and have no persistent notion like in traditional, time-slice
  37. * based scheduling concepts.
  38. *
  39. * (to see the precise effective timeslice length of your workload,
  40. * run vmstat and monitor the context-switches (cs) field)
  41. */
  42. unsigned int sysctl_sched_latency = 6000000ULL;
  43. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  44. /*
  45. * The initial- and re-scaling of tunables is configurable
  46. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  47. *
  48. * Options are:
  49. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  50. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  51. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  52. */
  53. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  54. = SCHED_TUNABLESCALING_LOG;
  55. /*
  56. * Minimal preemption granularity for CPU-bound tasks:
  57. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  58. */
  59. unsigned int sysctl_sched_min_granularity = 750000ULL;
  60. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  61. /*
  62. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  63. */
  64. static unsigned int sched_nr_latency = 8;
  65. /*
  66. * After fork, child runs first. If set to 0 (default) then
  67. * parent will (try to) run first.
  68. */
  69. unsigned int sysctl_sched_child_runs_first __read_mostly;
  70. /*
  71. * SCHED_OTHER wake-up granularity.
  72. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  73. *
  74. * This option delays the preemption effects of decoupled workloads
  75. * and reduces their over-scheduling. Synchronous workloads will still
  76. * have immediate wakeup/sleep latencies.
  77. */
  78. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  79. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  80. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  81. /*
  82. * The exponential sliding window over which load is averaged for shares
  83. * distribution.
  84. * (default: 10msec)
  85. */
  86. unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
  87. #ifdef CONFIG_CFS_BANDWIDTH
  88. /*
  89. * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
  90. * each time a cfs_rq requests quota.
  91. *
  92. * Note: in the case that the slice exceeds the runtime remaining (either due
  93. * to consumption or the quota being specified to be smaller than the slice)
  94. * we will always only issue the remaining available time.
  95. *
  96. * default: 5 msec, units: microseconds
  97. */
  98. unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
  99. #endif
  100. /*
  101. * Increase the granularity value when there are more CPUs,
  102. * because with more CPUs the 'effective latency' as visible
  103. * to users decreases. But the relationship is not linear,
  104. * so pick a second-best guess by going with the log2 of the
  105. * number of CPUs.
  106. *
  107. * This idea comes from the SD scheduler of Con Kolivas:
  108. */
  109. static int get_update_sysctl_factor(void)
  110. {
  111. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  112. unsigned int factor;
  113. switch (sysctl_sched_tunable_scaling) {
  114. case SCHED_TUNABLESCALING_NONE:
  115. factor = 1;
  116. break;
  117. case SCHED_TUNABLESCALING_LINEAR:
  118. factor = cpus;
  119. break;
  120. case SCHED_TUNABLESCALING_LOG:
  121. default:
  122. factor = 1 + ilog2(cpus);
  123. break;
  124. }
  125. return factor;
  126. }
  127. static void update_sysctl(void)
  128. {
  129. unsigned int factor = get_update_sysctl_factor();
  130. #define SET_SYSCTL(name) \
  131. (sysctl_##name = (factor) * normalized_sysctl_##name)
  132. SET_SYSCTL(sched_min_granularity);
  133. SET_SYSCTL(sched_latency);
  134. SET_SYSCTL(sched_wakeup_granularity);
  135. #undef SET_SYSCTL
  136. }
  137. void sched_init_granularity(void)
  138. {
  139. update_sysctl();
  140. }
  141. #if BITS_PER_LONG == 32
  142. # define WMULT_CONST (~0UL)
  143. #else
  144. # define WMULT_CONST (1UL << 32)
  145. #endif
  146. #define WMULT_SHIFT 32
  147. /*
  148. * Shift right and round:
  149. */
  150. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  151. /*
  152. * delta *= weight / lw
  153. */
  154. static unsigned long
  155. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  156. struct load_weight *lw)
  157. {
  158. u64 tmp;
  159. /*
  160. * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
  161. * entities since MIN_SHARES = 2. Treat weight as 1 if less than
  162. * 2^SCHED_LOAD_RESOLUTION.
  163. */
  164. if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
  165. tmp = (u64)delta_exec * scale_load_down(weight);
  166. else
  167. tmp = (u64)delta_exec;
  168. if (!lw->inv_weight) {
  169. unsigned long w = scale_load_down(lw->weight);
  170. if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
  171. lw->inv_weight = 1;
  172. else if (unlikely(!w))
  173. lw->inv_weight = WMULT_CONST;
  174. else
  175. lw->inv_weight = WMULT_CONST / w;
  176. }
  177. /*
  178. * Check whether we'd overflow the 64-bit multiplication:
  179. */
  180. if (unlikely(tmp > WMULT_CONST))
  181. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  182. WMULT_SHIFT/2);
  183. else
  184. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  185. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  186. }
  187. const struct sched_class fair_sched_class;
  188. /**************************************************************
  189. * CFS operations on generic schedulable entities:
  190. */
  191. #ifdef CONFIG_FAIR_GROUP_SCHED
  192. /* cpu runqueue to which this cfs_rq is attached */
  193. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  194. {
  195. return cfs_rq->rq;
  196. }
  197. /* An entity is a task if it doesn't "own" a runqueue */
  198. #define entity_is_task(se) (!se->my_q)
  199. static inline struct task_struct *task_of(struct sched_entity *se)
  200. {
  201. #ifdef CONFIG_SCHED_DEBUG
  202. WARN_ON_ONCE(!entity_is_task(se));
  203. #endif
  204. return container_of(se, struct task_struct, se);
  205. }
  206. /* Walk up scheduling entities hierarchy */
  207. #define for_each_sched_entity(se) \
  208. for (; se; se = se->parent)
  209. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  210. {
  211. return p->se.cfs_rq;
  212. }
  213. /* runqueue on which this entity is (to be) queued */
  214. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  215. {
  216. return se->cfs_rq;
  217. }
  218. /* runqueue "owned" by this group */
  219. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  220. {
  221. return grp->my_q;
  222. }
  223. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  224. {
  225. if (!cfs_rq->on_list) {
  226. /*
  227. * Ensure we either appear before our parent (if already
  228. * enqueued) or force our parent to appear after us when it is
  229. * enqueued. The fact that we always enqueue bottom-up
  230. * reduces this to two cases.
  231. */
  232. if (cfs_rq->tg->parent &&
  233. cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
  234. list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
  235. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  236. } else {
  237. list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  238. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  239. }
  240. cfs_rq->on_list = 1;
  241. }
  242. }
  243. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  244. {
  245. if (cfs_rq->on_list) {
  246. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  247. cfs_rq->on_list = 0;
  248. }
  249. }
  250. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  251. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  252. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  253. /* Do the two (enqueued) entities belong to the same group ? */
  254. static inline int
  255. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  256. {
  257. if (se->cfs_rq == pse->cfs_rq)
  258. return 1;
  259. return 0;
  260. }
  261. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  262. {
  263. return se->parent;
  264. }
  265. /* return depth at which a sched entity is present in the hierarchy */
  266. static inline int depth_se(struct sched_entity *se)
  267. {
  268. int depth = 0;
  269. for_each_sched_entity(se)
  270. depth++;
  271. return depth;
  272. }
  273. static void
  274. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  275. {
  276. int se_depth, pse_depth;
  277. /*
  278. * preemption test can be made between sibling entities who are in the
  279. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  280. * both tasks until we find their ancestors who are siblings of common
  281. * parent.
  282. */
  283. /* First walk up until both entities are at same depth */
  284. se_depth = depth_se(*se);
  285. pse_depth = depth_se(*pse);
  286. while (se_depth > pse_depth) {
  287. se_depth--;
  288. *se = parent_entity(*se);
  289. }
  290. while (pse_depth > se_depth) {
  291. pse_depth--;
  292. *pse = parent_entity(*pse);
  293. }
  294. while (!is_same_group(*se, *pse)) {
  295. *se = parent_entity(*se);
  296. *pse = parent_entity(*pse);
  297. }
  298. }
  299. #else /* !CONFIG_FAIR_GROUP_SCHED */
  300. static inline struct task_struct *task_of(struct sched_entity *se)
  301. {
  302. return container_of(se, struct task_struct, se);
  303. }
  304. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  305. {
  306. return container_of(cfs_rq, struct rq, cfs);
  307. }
  308. #define entity_is_task(se) 1
  309. #define for_each_sched_entity(se) \
  310. for (; se; se = NULL)
  311. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  312. {
  313. return &task_rq(p)->cfs;
  314. }
  315. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  316. {
  317. struct task_struct *p = task_of(se);
  318. struct rq *rq = task_rq(p);
  319. return &rq->cfs;
  320. }
  321. /* runqueue "owned" by this group */
  322. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  323. {
  324. return NULL;
  325. }
  326. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  327. {
  328. }
  329. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  330. {
  331. }
  332. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  333. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  334. static inline int
  335. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  336. {
  337. return 1;
  338. }
  339. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  340. {
  341. return NULL;
  342. }
  343. static inline void
  344. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  345. {
  346. }
  347. #endif /* CONFIG_FAIR_GROUP_SCHED */
  348. static __always_inline
  349. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
  350. /**************************************************************
  351. * Scheduling class tree data structure manipulation methods:
  352. */
  353. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  354. {
  355. s64 delta = (s64)(vruntime - min_vruntime);
  356. if (delta > 0)
  357. min_vruntime = vruntime;
  358. return min_vruntime;
  359. }
  360. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  361. {
  362. s64 delta = (s64)(vruntime - min_vruntime);
  363. if (delta < 0)
  364. min_vruntime = vruntime;
  365. return min_vruntime;
  366. }
  367. static inline int entity_before(struct sched_entity *a,
  368. struct sched_entity *b)
  369. {
  370. return (s64)(a->vruntime - b->vruntime) < 0;
  371. }
  372. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  373. {
  374. u64 vruntime = cfs_rq->min_vruntime;
  375. if (cfs_rq->curr)
  376. vruntime = cfs_rq->curr->vruntime;
  377. if (cfs_rq->rb_leftmost) {
  378. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  379. struct sched_entity,
  380. run_node);
  381. if (!cfs_rq->curr)
  382. vruntime = se->vruntime;
  383. else
  384. vruntime = min_vruntime(vruntime, se->vruntime);
  385. }
  386. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  387. #ifndef CONFIG_64BIT
  388. smp_wmb();
  389. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  390. #endif
  391. }
  392. /*
  393. * Enqueue an entity into the rb-tree:
  394. */
  395. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  396. {
  397. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  398. struct rb_node *parent = NULL;
  399. struct sched_entity *entry;
  400. int leftmost = 1;
  401. /*
  402. * Find the right place in the rbtree:
  403. */
  404. while (*link) {
  405. parent = *link;
  406. entry = rb_entry(parent, struct sched_entity, run_node);
  407. /*
  408. * We dont care about collisions. Nodes with
  409. * the same key stay together.
  410. */
  411. if (entity_before(se, entry)) {
  412. link = &parent->rb_left;
  413. } else {
  414. link = &parent->rb_right;
  415. leftmost = 0;
  416. }
  417. }
  418. /*
  419. * Maintain a cache of leftmost tree entries (it is frequently
  420. * used):
  421. */
  422. if (leftmost)
  423. cfs_rq->rb_leftmost = &se->run_node;
  424. rb_link_node(&se->run_node, parent, link);
  425. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  426. }
  427. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  428. {
  429. if (cfs_rq->rb_leftmost == &se->run_node) {
  430. struct rb_node *next_node;
  431. next_node = rb_next(&se->run_node);
  432. cfs_rq->rb_leftmost = next_node;
  433. }
  434. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  435. }
  436. struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
  437. {
  438. struct rb_node *left = cfs_rq->rb_leftmost;
  439. if (!left)
  440. return NULL;
  441. return rb_entry(left, struct sched_entity, run_node);
  442. }
  443. static struct sched_entity *__pick_next_entity(struct sched_entity *se)
  444. {
  445. struct rb_node *next = rb_next(&se->run_node);
  446. if (!next)
  447. return NULL;
  448. return rb_entry(next, struct sched_entity, run_node);
  449. }
  450. #ifdef CONFIG_SCHED_DEBUG
  451. struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  452. {
  453. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  454. if (!last)
  455. return NULL;
  456. return rb_entry(last, struct sched_entity, run_node);
  457. }
  458. /**************************************************************
  459. * Scheduling class statistics methods:
  460. */
  461. int sched_proc_update_handler(struct ctl_table *table, int write,
  462. void __user *buffer, size_t *lenp,
  463. loff_t *ppos)
  464. {
  465. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  466. int factor = get_update_sysctl_factor();
  467. if (ret || !write)
  468. return ret;
  469. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  470. sysctl_sched_min_granularity);
  471. #define WRT_SYSCTL(name) \
  472. (normalized_sysctl_##name = sysctl_##name / (factor))
  473. WRT_SYSCTL(sched_min_granularity);
  474. WRT_SYSCTL(sched_latency);
  475. WRT_SYSCTL(sched_wakeup_granularity);
  476. #undef WRT_SYSCTL
  477. return 0;
  478. }
  479. #endif
  480. /*
  481. * delta /= w
  482. */
  483. static inline unsigned long
  484. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  485. {
  486. if (unlikely(se->load.weight != NICE_0_LOAD))
  487. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  488. return delta;
  489. }
  490. /*
  491. * The idea is to set a period in which each task runs once.
  492. *
  493. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  494. * this period because otherwise the slices get too small.
  495. *
  496. * p = (nr <= nl) ? l : l*nr/nl
  497. */
  498. static u64 __sched_period(unsigned long nr_running)
  499. {
  500. u64 period = sysctl_sched_latency;
  501. unsigned long nr_latency = sched_nr_latency;
  502. if (unlikely(nr_running > nr_latency)) {
  503. period = sysctl_sched_min_granularity;
  504. period *= nr_running;
  505. }
  506. return period;
  507. }
  508. /*
  509. * We calculate the wall-time slice from the period by taking a part
  510. * proportional to the weight.
  511. *
  512. * s = p*P[w/rw]
  513. */
  514. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  515. {
  516. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  517. for_each_sched_entity(se) {
  518. struct load_weight *load;
  519. struct load_weight lw;
  520. cfs_rq = cfs_rq_of(se);
  521. load = &cfs_rq->load;
  522. if (unlikely(!se->on_rq)) {
  523. lw = cfs_rq->load;
  524. update_load_add(&lw, se->load.weight);
  525. load = &lw;
  526. }
  527. slice = calc_delta_mine(slice, se->load.weight, load);
  528. }
  529. return slice;
  530. }
  531. /*
  532. * We calculate the vruntime slice of a to be inserted task
  533. *
  534. * vs = s/w
  535. */
  536. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  537. {
  538. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  539. }
  540. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
  541. static void update_cfs_shares(struct cfs_rq *cfs_rq);
  542. /*
  543. * Update the current task's runtime statistics. Skip current tasks that
  544. * are not in our scheduling class.
  545. */
  546. static inline void
  547. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  548. unsigned long delta_exec)
  549. {
  550. unsigned long delta_exec_weighted;
  551. schedstat_set(curr->statistics.exec_max,
  552. max((u64)delta_exec, curr->statistics.exec_max));
  553. curr->sum_exec_runtime += delta_exec;
  554. schedstat_add(cfs_rq, exec_clock, delta_exec);
  555. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  556. curr->vruntime += delta_exec_weighted;
  557. update_min_vruntime(cfs_rq);
  558. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  559. cfs_rq->load_unacc_exec_time += delta_exec;
  560. #endif
  561. }
  562. static void update_curr(struct cfs_rq *cfs_rq)
  563. {
  564. struct sched_entity *curr = cfs_rq->curr;
  565. u64 now = rq_of(cfs_rq)->clock_task;
  566. unsigned long delta_exec;
  567. if (unlikely(!curr))
  568. return;
  569. /*
  570. * Get the amount of time the current task was running
  571. * since the last time we changed load (this cannot
  572. * overflow on 32 bits):
  573. */
  574. delta_exec = (unsigned long)(now - curr->exec_start);
  575. if (!delta_exec)
  576. return;
  577. __update_curr(cfs_rq, curr, delta_exec);
  578. curr->exec_start = now;
  579. if (entity_is_task(curr)) {
  580. struct task_struct *curtask = task_of(curr);
  581. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  582. cpuacct_charge(curtask, delta_exec);
  583. account_group_exec_runtime(curtask, delta_exec);
  584. }
  585. account_cfs_rq_runtime(cfs_rq, delta_exec);
  586. }
  587. static inline void
  588. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  589. {
  590. schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
  591. }
  592. /*
  593. * Task is being enqueued - update stats:
  594. */
  595. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  596. {
  597. /*
  598. * Are we enqueueing a waiting task? (for current tasks
  599. * a dequeue/enqueue event is a NOP)
  600. */
  601. if (se != cfs_rq->curr)
  602. update_stats_wait_start(cfs_rq, se);
  603. }
  604. static void
  605. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  606. {
  607. schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
  608. rq_of(cfs_rq)->clock - se->statistics.wait_start));
  609. schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
  610. schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
  611. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  612. #ifdef CONFIG_SCHEDSTATS
  613. if (entity_is_task(se)) {
  614. trace_sched_stat_wait(task_of(se),
  615. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  616. }
  617. #endif
  618. schedstat_set(se->statistics.wait_start, 0);
  619. }
  620. static inline void
  621. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  622. {
  623. /*
  624. * Mark the end of the wait period if dequeueing a
  625. * waiting task:
  626. */
  627. if (se != cfs_rq->curr)
  628. update_stats_wait_end(cfs_rq, se);
  629. }
  630. /*
  631. * We are picking a new current task - update its stats:
  632. */
  633. static inline void
  634. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  635. {
  636. /*
  637. * We are starting a new run period:
  638. */
  639. se->exec_start = rq_of(cfs_rq)->clock_task;
  640. }
  641. /**************************************************
  642. * Scheduling class queueing methods:
  643. */
  644. static void
  645. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  646. {
  647. update_load_add(&cfs_rq->load, se->load.weight);
  648. if (!parent_entity(se))
  649. update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
  650. #ifdef CONFIG_SMP
  651. if (entity_is_task(se))
  652. list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
  653. #endif
  654. cfs_rq->nr_running++;
  655. }
  656. static void
  657. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  658. {
  659. update_load_sub(&cfs_rq->load, se->load.weight);
  660. if (!parent_entity(se))
  661. update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
  662. if (entity_is_task(se))
  663. list_del_init(&se->group_node);
  664. cfs_rq->nr_running--;
  665. }
  666. #ifdef CONFIG_FAIR_GROUP_SCHED
  667. /* we need this in update_cfs_load and load-balance functions below */
  668. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
  669. # ifdef CONFIG_SMP
  670. static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
  671. int global_update)
  672. {
  673. struct task_group *tg = cfs_rq->tg;
  674. long load_avg;
  675. load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
  676. load_avg -= cfs_rq->load_contribution;
  677. if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
  678. atomic_add(load_avg, &tg->load_weight);
  679. cfs_rq->load_contribution += load_avg;
  680. }
  681. }
  682. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  683. {
  684. u64 period = sysctl_sched_shares_window;
  685. u64 now, delta;
  686. unsigned long load = cfs_rq->load.weight;
  687. if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
  688. return;
  689. now = rq_of(cfs_rq)->clock_task;
  690. delta = now - cfs_rq->load_stamp;
  691. /* truncate load history at 4 idle periods */
  692. if (cfs_rq->load_stamp > cfs_rq->load_last &&
  693. now - cfs_rq->load_last > 4 * period) {
  694. cfs_rq->load_period = 0;
  695. cfs_rq->load_avg = 0;
  696. delta = period - 1;
  697. }
  698. cfs_rq->load_stamp = now;
  699. cfs_rq->load_unacc_exec_time = 0;
  700. cfs_rq->load_period += delta;
  701. if (load) {
  702. cfs_rq->load_last = now;
  703. cfs_rq->load_avg += delta * load;
  704. }
  705. /* consider updating load contribution on each fold or truncate */
  706. if (global_update || cfs_rq->load_period > period
  707. || !cfs_rq->load_period)
  708. update_cfs_rq_load_contribution(cfs_rq, global_update);
  709. while (cfs_rq->load_period > period) {
  710. /*
  711. * Inline assembly required to prevent the compiler
  712. * optimising this loop into a divmod call.
  713. * See __iter_div_u64_rem() for another example of this.
  714. */
  715. asm("" : "+rm" (cfs_rq->load_period));
  716. cfs_rq->load_period /= 2;
  717. cfs_rq->load_avg /= 2;
  718. }
  719. if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
  720. list_del_leaf_cfs_rq(cfs_rq);
  721. }
  722. static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
  723. {
  724. long tg_weight;
  725. /*
  726. * Use this CPU's actual weight instead of the last load_contribution
  727. * to gain a more accurate current total weight. See
  728. * update_cfs_rq_load_contribution().
  729. */
  730. tg_weight = atomic_read(&tg->load_weight);
  731. tg_weight -= cfs_rq->load_contribution;
  732. tg_weight += cfs_rq->load.weight;
  733. return tg_weight;
  734. }
  735. static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  736. {
  737. long tg_weight, load, shares;
  738. tg_weight = calc_tg_weight(tg, cfs_rq);
  739. load = cfs_rq->load.weight;
  740. shares = (tg->shares * load);
  741. if (tg_weight)
  742. shares /= tg_weight;
  743. if (shares < MIN_SHARES)
  744. shares = MIN_SHARES;
  745. if (shares > tg->shares)
  746. shares = tg->shares;
  747. return shares;
  748. }
  749. static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  750. {
  751. if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
  752. update_cfs_load(cfs_rq, 0);
  753. update_cfs_shares(cfs_rq);
  754. }
  755. }
  756. # else /* CONFIG_SMP */
  757. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  758. {
  759. }
  760. static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  761. {
  762. return tg->shares;
  763. }
  764. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  765. {
  766. }
  767. # endif /* CONFIG_SMP */
  768. static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
  769. unsigned long weight)
  770. {
  771. if (se->on_rq) {
  772. /* commit outstanding execution time */
  773. if (cfs_rq->curr == se)
  774. update_curr(cfs_rq);
  775. account_entity_dequeue(cfs_rq, se);
  776. }
  777. update_load_set(&se->load, weight);
  778. if (se->on_rq)
  779. account_entity_enqueue(cfs_rq, se);
  780. }
  781. static void update_cfs_shares(struct cfs_rq *cfs_rq)
  782. {
  783. struct task_group *tg;
  784. struct sched_entity *se;
  785. long shares;
  786. tg = cfs_rq->tg;
  787. se = tg->se[cpu_of(rq_of(cfs_rq))];
  788. if (!se || throttled_hierarchy(cfs_rq))
  789. return;
  790. #ifndef CONFIG_SMP
  791. if (likely(se->load.weight == tg->shares))
  792. return;
  793. #endif
  794. shares = calc_cfs_shares(cfs_rq, tg);
  795. reweight_entity(cfs_rq_of(se), se, shares);
  796. }
  797. #else /* CONFIG_FAIR_GROUP_SCHED */
  798. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  799. {
  800. }
  801. static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
  802. {
  803. }
  804. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  805. {
  806. }
  807. #endif /* CONFIG_FAIR_GROUP_SCHED */
  808. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  809. {
  810. #ifdef CONFIG_SCHEDSTATS
  811. struct task_struct *tsk = NULL;
  812. if (entity_is_task(se))
  813. tsk = task_of(se);
  814. if (se->statistics.sleep_start) {
  815. u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
  816. if ((s64)delta < 0)
  817. delta = 0;
  818. if (unlikely(delta > se->statistics.sleep_max))
  819. se->statistics.sleep_max = delta;
  820. se->statistics.sleep_start = 0;
  821. se->statistics.sum_sleep_runtime += delta;
  822. if (tsk) {
  823. account_scheduler_latency(tsk, delta >> 10, 1);
  824. trace_sched_stat_sleep(tsk, delta);
  825. }
  826. }
  827. if (se->statistics.block_start) {
  828. u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
  829. if ((s64)delta < 0)
  830. delta = 0;
  831. if (unlikely(delta > se->statistics.block_max))
  832. se->statistics.block_max = delta;
  833. se->statistics.block_start = 0;
  834. se->statistics.sum_sleep_runtime += delta;
  835. if (tsk) {
  836. if (tsk->in_iowait) {
  837. se->statistics.iowait_sum += delta;
  838. se->statistics.iowait_count++;
  839. trace_sched_stat_iowait(tsk, delta);
  840. }
  841. trace_sched_stat_blocked(tsk, delta);
  842. /*
  843. * Blocking time is in units of nanosecs, so shift by
  844. * 20 to get a milliseconds-range estimation of the
  845. * amount of time that the task spent sleeping:
  846. */
  847. if (unlikely(prof_on == SLEEP_PROFILING)) {
  848. profile_hits(SLEEP_PROFILING,
  849. (void *)get_wchan(tsk),
  850. delta >> 20);
  851. }
  852. account_scheduler_latency(tsk, delta >> 10, 0);
  853. }
  854. }
  855. #endif
  856. }
  857. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  858. {
  859. #ifdef CONFIG_SCHED_DEBUG
  860. s64 d = se->vruntime - cfs_rq->min_vruntime;
  861. if (d < 0)
  862. d = -d;
  863. if (d > 3*sysctl_sched_latency)
  864. schedstat_inc(cfs_rq, nr_spread_over);
  865. #endif
  866. }
  867. static void
  868. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  869. {
  870. u64 vruntime = cfs_rq->min_vruntime;
  871. /*
  872. * The 'current' period is already promised to the current tasks,
  873. * however the extra weight of the new task will slow them down a
  874. * little, place the new task so that it fits in the slot that
  875. * stays open at the end.
  876. */
  877. if (initial && sched_feat(START_DEBIT))
  878. vruntime += sched_vslice(cfs_rq, se);
  879. /* sleeps up to a single latency don't count. */
  880. if (!initial) {
  881. unsigned long thresh = sysctl_sched_latency;
  882. /*
  883. * Halve their sleep time's effect, to allow
  884. * for a gentler effect of sleepers:
  885. */
  886. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  887. thresh >>= 1;
  888. vruntime -= thresh;
  889. }
  890. /* ensure we never gain time by being placed backwards. */
  891. vruntime = max_vruntime(se->vruntime, vruntime);
  892. se->vruntime = vruntime;
  893. }
  894. static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
  895. static void
  896. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  897. {
  898. /*
  899. * Update the normalized vruntime before updating min_vruntime
  900. * through callig update_curr().
  901. */
  902. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
  903. se->vruntime += cfs_rq->min_vruntime;
  904. /*
  905. * Update run-time statistics of the 'current'.
  906. */
  907. update_curr(cfs_rq);
  908. update_cfs_load(cfs_rq, 0);
  909. account_entity_enqueue(cfs_rq, se);
  910. update_cfs_shares(cfs_rq);
  911. if (flags & ENQUEUE_WAKEUP) {
  912. place_entity(cfs_rq, se, 0);
  913. enqueue_sleeper(cfs_rq, se);
  914. }
  915. update_stats_enqueue(cfs_rq, se);
  916. check_spread(cfs_rq, se);
  917. if (se != cfs_rq->curr)
  918. __enqueue_entity(cfs_rq, se);
  919. se->on_rq = 1;
  920. if (cfs_rq->nr_running == 1) {
  921. list_add_leaf_cfs_rq(cfs_rq);
  922. check_enqueue_throttle(cfs_rq);
  923. }
  924. }
  925. static void __clear_buddies_last(struct sched_entity *se)
  926. {
  927. for_each_sched_entity(se) {
  928. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  929. if (cfs_rq->last == se)
  930. cfs_rq->last = NULL;
  931. else
  932. break;
  933. }
  934. }
  935. static void __clear_buddies_next(struct sched_entity *se)
  936. {
  937. for_each_sched_entity(se) {
  938. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  939. if (cfs_rq->next == se)
  940. cfs_rq->next = NULL;
  941. else
  942. break;
  943. }
  944. }
  945. static void __clear_buddies_skip(struct sched_entity *se)
  946. {
  947. for_each_sched_entity(se) {
  948. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  949. if (cfs_rq->skip == se)
  950. cfs_rq->skip = NULL;
  951. else
  952. break;
  953. }
  954. }
  955. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  956. {
  957. if (cfs_rq->last == se)
  958. __clear_buddies_last(se);
  959. if (cfs_rq->next == se)
  960. __clear_buddies_next(se);
  961. if (cfs_rq->skip == se)
  962. __clear_buddies_skip(se);
  963. }
  964. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  965. static void
  966. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  967. {
  968. /*
  969. * Update run-time statistics of the 'current'.
  970. */
  971. update_curr(cfs_rq);
  972. update_stats_dequeue(cfs_rq, se);
  973. if (flags & DEQUEUE_SLEEP) {
  974. #ifdef CONFIG_SCHEDSTATS
  975. if (entity_is_task(se)) {
  976. struct task_struct *tsk = task_of(se);
  977. if (tsk->state & TASK_INTERRUPTIBLE)
  978. se->statistics.sleep_start = rq_of(cfs_rq)->clock;
  979. if (tsk->state & TASK_UNINTERRUPTIBLE)
  980. se->statistics.block_start = rq_of(cfs_rq)->clock;
  981. }
  982. #endif
  983. }
  984. clear_buddies(cfs_rq, se);
  985. if (se != cfs_rq->curr)
  986. __dequeue_entity(cfs_rq, se);
  987. se->on_rq = 0;
  988. update_cfs_load(cfs_rq, 0);
  989. account_entity_dequeue(cfs_rq, se);
  990. /*
  991. * Normalize the entity after updating the min_vruntime because the
  992. * update can refer to the ->curr item and we need to reflect this
  993. * movement in our normalized position.
  994. */
  995. if (!(flags & DEQUEUE_SLEEP))
  996. se->vruntime -= cfs_rq->min_vruntime;
  997. /* return excess runtime on last dequeue */
  998. return_cfs_rq_runtime(cfs_rq);
  999. update_min_vruntime(cfs_rq);
  1000. update_cfs_shares(cfs_rq);
  1001. }
  1002. /*
  1003. * Preempt the current task with a newly woken task if needed:
  1004. */
  1005. static void
  1006. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  1007. {
  1008. unsigned long ideal_runtime, delta_exec;
  1009. struct sched_entity *se;
  1010. s64 delta;
  1011. ideal_runtime = sched_slice(cfs_rq, curr);
  1012. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  1013. if (delta_exec > ideal_runtime) {
  1014. resched_task(rq_of(cfs_rq)->curr);
  1015. /*
  1016. * The current task ran long enough, ensure it doesn't get
  1017. * re-elected due to buddy favours.
  1018. */
  1019. clear_buddies(cfs_rq, curr);
  1020. return;
  1021. }
  1022. /*
  1023. * Ensure that a task that missed wakeup preemption by a
  1024. * narrow margin doesn't have to wait for a full slice.
  1025. * This also mitigates buddy induced latencies under load.
  1026. */
  1027. if (delta_exec < sysctl_sched_min_granularity)
  1028. return;
  1029. se = __pick_first_entity(cfs_rq);
  1030. delta = curr->vruntime - se->vruntime;
  1031. if (delta < 0)
  1032. return;
  1033. if (delta > ideal_runtime)
  1034. resched_task(rq_of(cfs_rq)->curr);
  1035. }
  1036. static void
  1037. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  1038. {
  1039. /* 'current' is not kept within the tree. */
  1040. if (se->on_rq) {
  1041. /*
  1042. * Any task has to be enqueued before it get to execute on
  1043. * a CPU. So account for the time it spent waiting on the
  1044. * runqueue.
  1045. */
  1046. update_stats_wait_end(cfs_rq, se);
  1047. __dequeue_entity(cfs_rq, se);
  1048. }
  1049. update_stats_curr_start(cfs_rq, se);
  1050. cfs_rq->curr = se;
  1051. #ifdef CONFIG_SCHEDSTATS
  1052. /*
  1053. * Track our maximum slice length, if the CPU's load is at
  1054. * least twice that of our own weight (i.e. dont track it
  1055. * when there are only lesser-weight tasks around):
  1056. */
  1057. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  1058. se->statistics.slice_max = max(se->statistics.slice_max,
  1059. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  1060. }
  1061. #endif
  1062. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  1063. }
  1064. static int
  1065. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  1066. /*
  1067. * Pick the next process, keeping these things in mind, in this order:
  1068. * 1) keep things fair between processes/task groups
  1069. * 2) pick the "next" process, since someone really wants that to run
  1070. * 3) pick the "last" process, for cache locality
  1071. * 4) do not run the "skip" process, if something else is available
  1072. */
  1073. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  1074. {
  1075. struct sched_entity *se = __pick_first_entity(cfs_rq);
  1076. struct sched_entity *left = se;
  1077. /*
  1078. * Avoid running the skip buddy, if running something else can
  1079. * be done without getting too unfair.
  1080. */
  1081. if (cfs_rq->skip == se) {
  1082. struct sched_entity *second = __pick_next_entity(se);
  1083. if (second && wakeup_preempt_entity(second, left) < 1)
  1084. se = second;
  1085. }
  1086. /*
  1087. * Prefer last buddy, try to return the CPU to a preempted task.
  1088. */
  1089. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  1090. se = cfs_rq->last;
  1091. /*
  1092. * Someone really wants this to run. If it's not unfair, run it.
  1093. */
  1094. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  1095. se = cfs_rq->next;
  1096. clear_buddies(cfs_rq, se);
  1097. return se;
  1098. }
  1099. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  1100. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  1101. {
  1102. /*
  1103. * If still on the runqueue then deactivate_task()
  1104. * was not called and update_curr() has to be done:
  1105. */
  1106. if (prev->on_rq)
  1107. update_curr(cfs_rq);
  1108. /* throttle cfs_rqs exceeding runtime */
  1109. check_cfs_rq_runtime(cfs_rq);
  1110. check_spread(cfs_rq, prev);
  1111. if (prev->on_rq) {
  1112. update_stats_wait_start(cfs_rq, prev);
  1113. /* Put 'current' back into the tree. */
  1114. __enqueue_entity(cfs_rq, prev);
  1115. }
  1116. cfs_rq->curr = NULL;
  1117. }
  1118. static void
  1119. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  1120. {
  1121. /*
  1122. * Update run-time statistics of the 'current'.
  1123. */
  1124. update_curr(cfs_rq);
  1125. /*
  1126. * Update share accounting for long-running entities.
  1127. */
  1128. update_entity_shares_tick(cfs_rq);
  1129. #ifdef CONFIG_SCHED_HRTICK
  1130. /*
  1131. * queued ticks are scheduled to match the slice, so don't bother
  1132. * validating it and just reschedule.
  1133. */
  1134. if (queued) {
  1135. resched_task(rq_of(cfs_rq)->curr);
  1136. return;
  1137. }
  1138. /*
  1139. * don't let the period tick interfere with the hrtick preemption
  1140. */
  1141. if (!sched_feat(DOUBLE_TICK) &&
  1142. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  1143. return;
  1144. #endif
  1145. if (cfs_rq->nr_running > 1)
  1146. check_preempt_tick(cfs_rq, curr);
  1147. }
  1148. /**************************************************
  1149. * CFS bandwidth control machinery
  1150. */
  1151. #ifdef CONFIG_CFS_BANDWIDTH
  1152. #ifdef HAVE_JUMP_LABEL
  1153. static struct static_key __cfs_bandwidth_used;
  1154. static inline bool cfs_bandwidth_used(void)
  1155. {
  1156. return static_key_false(&__cfs_bandwidth_used);
  1157. }
  1158. void account_cfs_bandwidth_used(int enabled, int was_enabled)
  1159. {
  1160. /* only need to count groups transitioning between enabled/!enabled */
  1161. if (enabled && !was_enabled)
  1162. static_key_slow_inc(&__cfs_bandwidth_used);
  1163. else if (!enabled && was_enabled)
  1164. static_key_slow_dec(&__cfs_bandwidth_used);
  1165. }
  1166. #else /* HAVE_JUMP_LABEL */
  1167. static bool cfs_bandwidth_used(void)
  1168. {
  1169. return true;
  1170. }
  1171. void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
  1172. #endif /* HAVE_JUMP_LABEL */
  1173. /*
  1174. * default period for cfs group bandwidth.
  1175. * default: 0.1s, units: nanoseconds
  1176. */
  1177. static inline u64 default_cfs_period(void)
  1178. {
  1179. return 100000000ULL;
  1180. }
  1181. static inline u64 sched_cfs_bandwidth_slice(void)
  1182. {
  1183. return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
  1184. }
  1185. /*
  1186. * Replenish runtime according to assigned quota and update expiration time.
  1187. * We use sched_clock_cpu directly instead of rq->clock to avoid adding
  1188. * additional synchronization around rq->lock.
  1189. *
  1190. * requires cfs_b->lock
  1191. */
  1192. void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
  1193. {
  1194. u64 now;
  1195. if (cfs_b->quota == RUNTIME_INF)
  1196. return;
  1197. now = sched_clock_cpu(smp_processor_id());
  1198. cfs_b->runtime = cfs_b->quota;
  1199. cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
  1200. }
  1201. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  1202. {
  1203. return &tg->cfs_bandwidth;
  1204. }
  1205. /* returns 0 on failure to allocate runtime */
  1206. static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1207. {
  1208. struct task_group *tg = cfs_rq->tg;
  1209. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
  1210. u64 amount = 0, min_amount, expires;
  1211. /* note: this is a positive sum as runtime_remaining <= 0 */
  1212. min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
  1213. raw_spin_lock(&cfs_b->lock);
  1214. if (cfs_b->quota == RUNTIME_INF)
  1215. amount = min_amount;
  1216. else {
  1217. /*
  1218. * If the bandwidth pool has become inactive, then at least one
  1219. * period must have elapsed since the last consumption.
  1220. * Refresh the global state and ensure bandwidth timer becomes
  1221. * active.
  1222. */
  1223. if (!cfs_b->timer_active) {
  1224. __refill_cfs_bandwidth_runtime(cfs_b);
  1225. __start_cfs_bandwidth(cfs_b);
  1226. }
  1227. if (cfs_b->runtime > 0) {
  1228. amount = min(cfs_b->runtime, min_amount);
  1229. cfs_b->runtime -= amount;
  1230. cfs_b->idle = 0;
  1231. }
  1232. }
  1233. expires = cfs_b->runtime_expires;
  1234. raw_spin_unlock(&cfs_b->lock);
  1235. cfs_rq->runtime_remaining += amount;
  1236. /*
  1237. * we may have advanced our local expiration to account for allowed
  1238. * spread between our sched_clock and the one on which runtime was
  1239. * issued.
  1240. */
  1241. if ((s64)(expires - cfs_rq->runtime_expires) > 0)
  1242. cfs_rq->runtime_expires = expires;
  1243. return cfs_rq->runtime_remaining > 0;
  1244. }
  1245. /*
  1246. * Note: This depends on the synchronization provided by sched_clock and the
  1247. * fact that rq->clock snapshots this value.
  1248. */
  1249. static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1250. {
  1251. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1252. struct rq *rq = rq_of(cfs_rq);
  1253. /* if the deadline is ahead of our clock, nothing to do */
  1254. if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
  1255. return;
  1256. if (cfs_rq->runtime_remaining < 0)
  1257. return;
  1258. /*
  1259. * If the local deadline has passed we have to consider the
  1260. * possibility that our sched_clock is 'fast' and the global deadline
  1261. * has not truly expired.
  1262. *
  1263. * Fortunately we can check determine whether this the case by checking
  1264. * whether the global deadline has advanced.
  1265. */
  1266. if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
  1267. /* extend local deadline, drift is bounded above by 2 ticks */
  1268. cfs_rq->runtime_expires += TICK_NSEC;
  1269. } else {
  1270. /* global deadline is ahead, expiration has passed */
  1271. cfs_rq->runtime_remaining = 0;
  1272. }
  1273. }
  1274. static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  1275. unsigned long delta_exec)
  1276. {
  1277. /* dock delta_exec before expiring quota (as it could span periods) */
  1278. cfs_rq->runtime_remaining -= delta_exec;
  1279. expire_cfs_rq_runtime(cfs_rq);
  1280. if (likely(cfs_rq->runtime_remaining > 0))
  1281. return;
  1282. /*
  1283. * if we're unable to extend our runtime we resched so that the active
  1284. * hierarchy can be throttled
  1285. */
  1286. if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
  1287. resched_task(rq_of(cfs_rq)->curr);
  1288. }
  1289. static __always_inline
  1290. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
  1291. {
  1292. if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
  1293. return;
  1294. __account_cfs_rq_runtime(cfs_rq, delta_exec);
  1295. }
  1296. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  1297. {
  1298. return cfs_bandwidth_used() && cfs_rq->throttled;
  1299. }
  1300. /* check whether cfs_rq, or any parent, is throttled */
  1301. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  1302. {
  1303. return cfs_bandwidth_used() && cfs_rq->throttle_count;
  1304. }
  1305. /*
  1306. * Ensure that neither of the group entities corresponding to src_cpu or
  1307. * dest_cpu are members of a throttled hierarchy when performing group
  1308. * load-balance operations.
  1309. */
  1310. static inline int throttled_lb_pair(struct task_group *tg,
  1311. int src_cpu, int dest_cpu)
  1312. {
  1313. struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
  1314. src_cfs_rq = tg->cfs_rq[src_cpu];
  1315. dest_cfs_rq = tg->cfs_rq[dest_cpu];
  1316. return throttled_hierarchy(src_cfs_rq) ||
  1317. throttled_hierarchy(dest_cfs_rq);
  1318. }
  1319. /* updated child weight may affect parent so we have to do this bottom up */
  1320. static int tg_unthrottle_up(struct task_group *tg, void *data)
  1321. {
  1322. struct rq *rq = data;
  1323. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  1324. cfs_rq->throttle_count--;
  1325. #ifdef CONFIG_SMP
  1326. if (!cfs_rq->throttle_count) {
  1327. u64 delta = rq->clock_task - cfs_rq->load_stamp;
  1328. /* leaving throttled state, advance shares averaging windows */
  1329. cfs_rq->load_stamp += delta;
  1330. cfs_rq->load_last += delta;
  1331. /* update entity weight now that we are on_rq again */
  1332. update_cfs_shares(cfs_rq);
  1333. }
  1334. #endif
  1335. return 0;
  1336. }
  1337. static int tg_throttle_down(struct task_group *tg, void *data)
  1338. {
  1339. struct rq *rq = data;
  1340. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  1341. /* group is entering throttled state, record last load */
  1342. if (!cfs_rq->throttle_count)
  1343. update_cfs_load(cfs_rq, 0);
  1344. cfs_rq->throttle_count++;
  1345. return 0;
  1346. }
  1347. static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
  1348. {
  1349. struct rq *rq = rq_of(cfs_rq);
  1350. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1351. struct sched_entity *se;
  1352. long task_delta, dequeue = 1;
  1353. se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
  1354. /* account load preceding throttle */
  1355. rcu_read_lock();
  1356. walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
  1357. rcu_read_unlock();
  1358. task_delta = cfs_rq->h_nr_running;
  1359. for_each_sched_entity(se) {
  1360. struct cfs_rq *qcfs_rq = cfs_rq_of(se);
  1361. /* throttled entity or throttle-on-deactivate */
  1362. if (!se->on_rq)
  1363. break;
  1364. if (dequeue)
  1365. dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
  1366. qcfs_rq->h_nr_running -= task_delta;
  1367. if (qcfs_rq->load.weight)
  1368. dequeue = 0;
  1369. }
  1370. if (!se)
  1371. rq->nr_running -= task_delta;
  1372. cfs_rq->throttled = 1;
  1373. cfs_rq->throttled_timestamp = rq->clock;
  1374. raw_spin_lock(&cfs_b->lock);
  1375. list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
  1376. raw_spin_unlock(&cfs_b->lock);
  1377. }
  1378. void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
  1379. {
  1380. struct rq *rq = rq_of(cfs_rq);
  1381. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1382. struct sched_entity *se;
  1383. int enqueue = 1;
  1384. long task_delta;
  1385. se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
  1386. cfs_rq->throttled = 0;
  1387. raw_spin_lock(&cfs_b->lock);
  1388. cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
  1389. list_del_rcu(&cfs_rq->throttled_list);
  1390. raw_spin_unlock(&cfs_b->lock);
  1391. cfs_rq->throttled_timestamp = 0;
  1392. update_rq_clock(rq);
  1393. /* update hierarchical throttle state */
  1394. walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
  1395. if (!cfs_rq->load.weight)
  1396. return;
  1397. task_delta = cfs_rq->h_nr_running;
  1398. for_each_sched_entity(se) {
  1399. if (se->on_rq)
  1400. enqueue = 0;
  1401. cfs_rq = cfs_rq_of(se);
  1402. if (enqueue)
  1403. enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
  1404. cfs_rq->h_nr_running += task_delta;
  1405. if (cfs_rq_throttled(cfs_rq))
  1406. break;
  1407. }
  1408. if (!se)
  1409. rq->nr_running += task_delta;
  1410. /* determine whether we need to wake up potentially idle cpu */
  1411. if (rq->curr == rq->idle && rq->cfs.nr_running)
  1412. resched_task(rq->curr);
  1413. }
  1414. static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
  1415. u64 remaining, u64 expires)
  1416. {
  1417. struct cfs_rq *cfs_rq;
  1418. u64 runtime = remaining;
  1419. rcu_read_lock();
  1420. list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
  1421. throttled_list) {
  1422. struct rq *rq = rq_of(cfs_rq);
  1423. raw_spin_lock(&rq->lock);
  1424. if (!cfs_rq_throttled(cfs_rq))
  1425. goto next;
  1426. runtime = -cfs_rq->runtime_remaining + 1;
  1427. if (runtime > remaining)
  1428. runtime = remaining;
  1429. remaining -= runtime;
  1430. cfs_rq->runtime_remaining += runtime;
  1431. cfs_rq->runtime_expires = expires;
  1432. /* we check whether we're throttled above */
  1433. if (cfs_rq->runtime_remaining > 0)
  1434. unthrottle_cfs_rq(cfs_rq);
  1435. next:
  1436. raw_spin_unlock(&rq->lock);
  1437. if (!remaining)
  1438. break;
  1439. }
  1440. rcu_read_unlock();
  1441. return remaining;
  1442. }
  1443. /*
  1444. * Responsible for refilling a task_group's bandwidth and unthrottling its
  1445. * cfs_rqs as appropriate. If there has been no activity within the last
  1446. * period the timer is deactivated until scheduling resumes; cfs_b->idle is
  1447. * used to track this state.
  1448. */
  1449. static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
  1450. {
  1451. u64 runtime, runtime_expires;
  1452. int idle = 1, throttled;
  1453. raw_spin_lock(&cfs_b->lock);
  1454. /* no need to continue the timer with no bandwidth constraint */
  1455. if (cfs_b->quota == RUNTIME_INF)
  1456. goto out_unlock;
  1457. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  1458. /* idle depends on !throttled (for the case of a large deficit) */
  1459. idle = cfs_b->idle && !throttled;
  1460. cfs_b->nr_periods += overrun;
  1461. /* if we're going inactive then everything else can be deferred */
  1462. if (idle)
  1463. goto out_unlock;
  1464. __refill_cfs_bandwidth_runtime(cfs_b);
  1465. if (!throttled) {
  1466. /* mark as potentially idle for the upcoming period */
  1467. cfs_b->idle = 1;
  1468. goto out_unlock;
  1469. }
  1470. /* account preceding periods in which throttling occurred */
  1471. cfs_b->nr_throttled += overrun;
  1472. /*
  1473. * There are throttled entities so we must first use the new bandwidth
  1474. * to unthrottle them before making it generally available. This
  1475. * ensures that all existing debts will be paid before a new cfs_rq is
  1476. * allowed to run.
  1477. */
  1478. runtime = cfs_b->runtime;
  1479. runtime_expires = cfs_b->runtime_expires;
  1480. cfs_b->runtime = 0;
  1481. /*
  1482. * This check is repeated as we are holding onto the new bandwidth
  1483. * while we unthrottle. This can potentially race with an unthrottled
  1484. * group trying to acquire new bandwidth from the global pool.
  1485. */
  1486. while (throttled && runtime > 0) {
  1487. raw_spin_unlock(&cfs_b->lock);
  1488. /* we can't nest cfs_b->lock while distributing bandwidth */
  1489. runtime = distribute_cfs_runtime(cfs_b, runtime,
  1490. runtime_expires);
  1491. raw_spin_lock(&cfs_b->lock);
  1492. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  1493. }
  1494. /* return (any) remaining runtime */
  1495. cfs_b->runtime = runtime;
  1496. /*
  1497. * While we are ensured activity in the period following an
  1498. * unthrottle, this also covers the case in which the new bandwidth is
  1499. * insufficient to cover the existing bandwidth deficit. (Forcing the
  1500. * timer to remain active while there are any throttled entities.)
  1501. */
  1502. cfs_b->idle = 0;
  1503. out_unlock:
  1504. if (idle)
  1505. cfs_b->timer_active = 0;
  1506. raw_spin_unlock(&cfs_b->lock);
  1507. return idle;
  1508. }
  1509. /* a cfs_rq won't donate quota below this amount */
  1510. static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
  1511. /* minimum remaining period time to redistribute slack quota */
  1512. static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
  1513. /* how long we wait to gather additional slack before distributing */
  1514. static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
  1515. /* are we near the end of the current quota period? */
  1516. static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
  1517. {
  1518. struct hrtimer *refresh_timer = &cfs_b->period_timer;
  1519. u64 remaining;
  1520. /* if the call-back is running a quota refresh is already occurring */
  1521. if (hrtimer_callback_running(refresh_timer))
  1522. return 1;
  1523. /* is a quota refresh about to occur? */
  1524. remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
  1525. if (remaining < min_expire)
  1526. return 1;
  1527. return 0;
  1528. }
  1529. static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
  1530. {
  1531. u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
  1532. /* if there's a quota refresh soon don't bother with slack */
  1533. if (runtime_refresh_within(cfs_b, min_left))
  1534. return;
  1535. start_bandwidth_timer(&cfs_b->slack_timer,
  1536. ns_to_ktime(cfs_bandwidth_slack_period));
  1537. }
  1538. /* we know any runtime found here is valid as update_curr() precedes return */
  1539. static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1540. {
  1541. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1542. s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
  1543. if (slack_runtime <= 0)
  1544. return;
  1545. raw_spin_lock(&cfs_b->lock);
  1546. if (cfs_b->quota != RUNTIME_INF &&
  1547. cfs_rq->runtime_expires == cfs_b->runtime_expires) {
  1548. cfs_b->runtime += slack_runtime;
  1549. /* we are under rq->lock, defer unthrottling using a timer */
  1550. if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
  1551. !list_empty(&cfs_b->throttled_cfs_rq))
  1552. start_cfs_slack_bandwidth(cfs_b);
  1553. }
  1554. raw_spin_unlock(&cfs_b->lock);
  1555. /* even if it's not valid for return we don't want to try again */
  1556. cfs_rq->runtime_remaining -= slack_runtime;
  1557. }
  1558. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1559. {
  1560. if (!cfs_bandwidth_used())
  1561. return;
  1562. if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
  1563. return;
  1564. __return_cfs_rq_runtime(cfs_rq);
  1565. }
  1566. /*
  1567. * This is done with a timer (instead of inline with bandwidth return) since
  1568. * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
  1569. */
  1570. static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
  1571. {
  1572. u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
  1573. u64 expires;
  1574. /* confirm we're still not at a refresh boundary */
  1575. if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
  1576. return;
  1577. raw_spin_lock(&cfs_b->lock);
  1578. if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
  1579. runtime = cfs_b->runtime;
  1580. cfs_b->runtime = 0;
  1581. }
  1582. expires = cfs_b->runtime_expires;
  1583. raw_spin_unlock(&cfs_b->lock);
  1584. if (!runtime)
  1585. return;
  1586. runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
  1587. raw_spin_lock(&cfs_b->lock);
  1588. if (expires == cfs_b->runtime_expires)
  1589. cfs_b->runtime = runtime;
  1590. raw_spin_unlock(&cfs_b->lock);
  1591. }
  1592. /*
  1593. * When a group wakes up we want to make sure that its quota is not already
  1594. * expired/exceeded, otherwise it may be allowed to steal additional ticks of
  1595. * runtime as update_curr() throttling can not not trigger until it's on-rq.
  1596. */
  1597. static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
  1598. {
  1599. if (!cfs_bandwidth_used())
  1600. return;
  1601. /* an active group must be handled by the update_curr()->put() path */
  1602. if (!cfs_rq->runtime_enabled || cfs_rq->curr)
  1603. return;
  1604. /* ensure the group is not already throttled */
  1605. if (cfs_rq_throttled(cfs_rq))
  1606. return;
  1607. /* update runtime allocation */
  1608. account_cfs_rq_runtime(cfs_rq, 0);
  1609. if (cfs_rq->runtime_remaining <= 0)
  1610. throttle_cfs_rq(cfs_rq);
  1611. }
  1612. /* conditionally throttle active cfs_rq's from put_prev_entity() */
  1613. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1614. {
  1615. if (!cfs_bandwidth_used())
  1616. return;
  1617. if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
  1618. return;
  1619. /*
  1620. * it's possible for a throttled entity to be forced into a running
  1621. * state (e.g. set_curr_task), in this case we're finished.
  1622. */
  1623. if (cfs_rq_throttled(cfs_rq))
  1624. return;
  1625. throttle_cfs_rq(cfs_rq);
  1626. }
  1627. static inline u64 default_cfs_period(void);
  1628. static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
  1629. static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
  1630. static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
  1631. {
  1632. struct cfs_bandwidth *cfs_b =
  1633. container_of(timer, struct cfs_bandwidth, slack_timer);
  1634. do_sched_cfs_slack_timer(cfs_b);
  1635. return HRTIMER_NORESTART;
  1636. }
  1637. static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
  1638. {
  1639. struct cfs_bandwidth *cfs_b =
  1640. container_of(timer, struct cfs_bandwidth, period_timer);
  1641. ktime_t now;
  1642. int overrun;
  1643. int idle = 0;
  1644. for (;;) {
  1645. now = hrtimer_cb_get_time(timer);
  1646. overrun = hrtimer_forward(timer, now, cfs_b->period);
  1647. if (!overrun)
  1648. break;
  1649. idle = do_sched_cfs_period_timer(cfs_b, overrun);
  1650. }
  1651. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  1652. }
  1653. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  1654. {
  1655. raw_spin_lock_init(&cfs_b->lock);
  1656. cfs_b->runtime = 0;
  1657. cfs_b->quota = RUNTIME_INF;
  1658. cfs_b->period = ns_to_ktime(default_cfs_period());
  1659. INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
  1660. hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1661. cfs_b->period_timer.function = sched_cfs_period_timer;
  1662. hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1663. cfs_b->slack_timer.function = sched_cfs_slack_timer;
  1664. }
  1665. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1666. {
  1667. cfs_rq->runtime_enabled = 0;
  1668. INIT_LIST_HEAD(&cfs_rq->throttled_list);
  1669. }
  1670. /* requires cfs_b->lock, may release to reprogram timer */
  1671. void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  1672. {
  1673. /*
  1674. * The timer may be active because we're trying to set a new bandwidth
  1675. * period or because we're racing with the tear-down path
  1676. * (timer_active==0 becomes visible before the hrtimer call-back
  1677. * terminates). In either case we ensure that it's re-programmed
  1678. */
  1679. while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
  1680. raw_spin_unlock(&cfs_b->lock);
  1681. /* ensure cfs_b->lock is available while we wait */
  1682. hrtimer_cancel(&cfs_b->period_timer);
  1683. raw_spin_lock(&cfs_b->lock);
  1684. /* if someone else restarted the timer then we're done */
  1685. if (cfs_b->timer_active)
  1686. return;
  1687. }
  1688. cfs_b->timer_active = 1;
  1689. start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
  1690. }
  1691. static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  1692. {
  1693. hrtimer_cancel(&cfs_b->period_timer);
  1694. hrtimer_cancel(&cfs_b->slack_timer);
  1695. }
  1696. void unthrottle_offline_cfs_rqs(struct rq *rq)
  1697. {
  1698. struct cfs_rq *cfs_rq;
  1699. for_each_leaf_cfs_rq(rq, cfs_rq) {
  1700. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1701. if (!cfs_rq->runtime_enabled)
  1702. continue;
  1703. /*
  1704. * clock_task is not advancing so we just need to make sure
  1705. * there's some valid quota amount
  1706. */
  1707. cfs_rq->runtime_remaining = cfs_b->quota;
  1708. if (cfs_rq_throttled(cfs_rq))
  1709. unthrottle_cfs_rq(cfs_rq);
  1710. }
  1711. }
  1712. #else /* CONFIG_CFS_BANDWIDTH */
  1713. static __always_inline
  1714. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec) {}
  1715. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  1716. static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
  1717. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  1718. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  1719. {
  1720. return 0;
  1721. }
  1722. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  1723. {
  1724. return 0;
  1725. }
  1726. static inline int throttled_lb_pair(struct task_group *tg,
  1727. int src_cpu, int dest_cpu)
  1728. {
  1729. return 0;
  1730. }
  1731. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  1732. #ifdef CONFIG_FAIR_GROUP_SCHED
  1733. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  1734. #endif
  1735. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  1736. {
  1737. return NULL;
  1738. }
  1739. static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  1740. void unthrottle_offline_cfs_rqs(struct rq *rq) {}
  1741. #endif /* CONFIG_CFS_BANDWIDTH */
  1742. /**************************************************
  1743. * CFS operations on tasks:
  1744. */
  1745. #ifdef CONFIG_SCHED_HRTICK
  1746. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1747. {
  1748. struct sched_entity *se = &p->se;
  1749. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1750. WARN_ON(task_rq(p) != rq);
  1751. if (cfs_rq->nr_running > 1) {
  1752. u64 slice = sched_slice(cfs_rq, se);
  1753. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  1754. s64 delta = slice - ran;
  1755. if (delta < 0) {
  1756. if (rq->curr == p)
  1757. resched_task(p);
  1758. return;
  1759. }
  1760. /*
  1761. * Don't schedule slices shorter than 10000ns, that just
  1762. * doesn't make sense. Rely on vruntime for fairness.
  1763. */
  1764. if (rq->curr != p)
  1765. delta = max_t(s64, 10000LL, delta);
  1766. hrtick_start(rq, delta);
  1767. }
  1768. }
  1769. /*
  1770. * called from enqueue/dequeue and updates the hrtick when the
  1771. * current task is from our class and nr_running is low enough
  1772. * to matter.
  1773. */
  1774. static void hrtick_update(struct rq *rq)
  1775. {
  1776. struct task_struct *curr = rq->curr;
  1777. if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
  1778. return;
  1779. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  1780. hrtick_start_fair(rq, curr);
  1781. }
  1782. #else /* !CONFIG_SCHED_HRTICK */
  1783. static inline void
  1784. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1785. {
  1786. }
  1787. static inline void hrtick_update(struct rq *rq)
  1788. {
  1789. }
  1790. #endif
  1791. /*
  1792. * The enqueue_task method is called before nr_running is
  1793. * increased. Here we update the fair scheduling stats and
  1794. * then put the task into the rbtree:
  1795. */
  1796. static void
  1797. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1798. {
  1799. struct cfs_rq *cfs_rq;
  1800. struct sched_entity *se = &p->se;
  1801. for_each_sched_entity(se) {
  1802. if (se->on_rq)
  1803. break;
  1804. cfs_rq = cfs_rq_of(se);
  1805. enqueue_entity(cfs_rq, se, flags);
  1806. /*
  1807. * end evaluation on encountering a throttled cfs_rq
  1808. *
  1809. * note: in the case of encountering a throttled cfs_rq we will
  1810. * post the final h_nr_running increment below.
  1811. */
  1812. if (cfs_rq_throttled(cfs_rq))
  1813. break;
  1814. cfs_rq->h_nr_running++;
  1815. flags = ENQUEUE_WAKEUP;
  1816. }
  1817. for_each_sched_entity(se) {
  1818. cfs_rq = cfs_rq_of(se);
  1819. cfs_rq->h_nr_running++;
  1820. if (cfs_rq_throttled(cfs_rq))
  1821. break;
  1822. update_cfs_load(cfs_rq, 0);
  1823. update_cfs_shares(cfs_rq);
  1824. }
  1825. if (!se)
  1826. inc_nr_running(rq);
  1827. hrtick_update(rq);
  1828. }
  1829. static void set_next_buddy(struct sched_entity *se);
  1830. /*
  1831. * The dequeue_task method is called before nr_running is
  1832. * decreased. We remove the task from the rbtree and
  1833. * update the fair scheduling stats:
  1834. */
  1835. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1836. {
  1837. struct cfs_rq *cfs_rq;
  1838. struct sched_entity *se = &p->se;
  1839. int task_sleep = flags & DEQUEUE_SLEEP;
  1840. for_each_sched_entity(se) {
  1841. cfs_rq = cfs_rq_of(se);
  1842. dequeue_entity(cfs_rq, se, flags);
  1843. /*
  1844. * end evaluation on encountering a throttled cfs_rq
  1845. *
  1846. * note: in the case of encountering a throttled cfs_rq we will
  1847. * post the final h_nr_running decrement below.
  1848. */
  1849. if (cfs_rq_throttled(cfs_rq))
  1850. break;
  1851. cfs_rq->h_nr_running--;
  1852. /* Don't dequeue parent if it has other entities besides us */
  1853. if (cfs_rq->load.weight) {
  1854. /*
  1855. * Bias pick_next to pick a task from this cfs_rq, as
  1856. * p is sleeping when it is within its sched_slice.
  1857. */
  1858. if (task_sleep && parent_entity(se))
  1859. set_next_buddy(parent_entity(se));
  1860. /* avoid re-evaluating load for this entity */
  1861. se = parent_entity(se);
  1862. break;
  1863. }
  1864. flags |= DEQUEUE_SLEEP;
  1865. }
  1866. for_each_sched_entity(se) {
  1867. cfs_rq = cfs_rq_of(se);
  1868. cfs_rq->h_nr_running--;
  1869. if (cfs_rq_throttled(cfs_rq))
  1870. break;
  1871. update_cfs_load(cfs_rq, 0);
  1872. update_cfs_shares(cfs_rq);
  1873. }
  1874. if (!se)
  1875. dec_nr_running(rq);
  1876. hrtick_update(rq);
  1877. }
  1878. #ifdef CONFIG_SMP
  1879. /* Used instead of source_load when we know the type == 0 */
  1880. static unsigned long weighted_cpuload(const int cpu)
  1881. {
  1882. return cpu_rq(cpu)->load.weight;
  1883. }
  1884. /*
  1885. * Return a low guess at the load of a migration-source cpu weighted
  1886. * according to the scheduling class and "nice" value.
  1887. *
  1888. * We want to under-estimate the load of migration sources, to
  1889. * balance conservatively.
  1890. */
  1891. static unsigned long source_load(int cpu, int type)
  1892. {
  1893. struct rq *rq = cpu_rq(cpu);
  1894. unsigned long total = weighted_cpuload(cpu);
  1895. if (type == 0 || !sched_feat(LB_BIAS))
  1896. return total;
  1897. return min(rq->cpu_load[type-1], total);
  1898. }
  1899. /*
  1900. * Return a high guess at the load of a migration-target cpu weighted
  1901. * according to the scheduling class and "nice" value.
  1902. */
  1903. static unsigned long target_load(int cpu, int type)
  1904. {
  1905. struct rq *rq = cpu_rq(cpu);
  1906. unsigned long total = weighted_cpuload(cpu);
  1907. if (type == 0 || !sched_feat(LB_BIAS))
  1908. return total;
  1909. return max(rq->cpu_load[type-1], total);
  1910. }
  1911. static unsigned long power_of(int cpu)
  1912. {
  1913. return cpu_rq(cpu)->cpu_power;
  1914. }
  1915. static unsigned long cpu_avg_load_per_task(int cpu)
  1916. {
  1917. struct rq *rq = cpu_rq(cpu);
  1918. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1919. if (nr_running)
  1920. return rq->load.weight / nr_running;
  1921. return 0;
  1922. }
  1923. static void task_waking_fair(struct task_struct *p)
  1924. {
  1925. struct sched_entity *se = &p->se;
  1926. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1927. u64 min_vruntime;
  1928. #ifndef CONFIG_64BIT
  1929. u64 min_vruntime_copy;
  1930. do {
  1931. min_vruntime_copy = cfs_rq->min_vruntime_copy;
  1932. smp_rmb();
  1933. min_vruntime = cfs_rq->min_vruntime;
  1934. } while (min_vruntime != min_vruntime_copy);
  1935. #else
  1936. min_vruntime = cfs_rq->min_vruntime;
  1937. #endif
  1938. se->vruntime -= min_vruntime;
  1939. }
  1940. #ifdef CONFIG_FAIR_GROUP_SCHED
  1941. /*
  1942. * effective_load() calculates the load change as seen from the root_task_group
  1943. *
  1944. * Adding load to a group doesn't make a group heavier, but can cause movement
  1945. * of group shares between cpus. Assuming the shares were perfectly aligned one
  1946. * can calculate the shift in shares.
  1947. *
  1948. * Calculate the effective load difference if @wl is added (subtracted) to @tg
  1949. * on this @cpu and results in a total addition (subtraction) of @wg to the
  1950. * total group weight.
  1951. *
  1952. * Given a runqueue weight distribution (rw_i) we can compute a shares
  1953. * distribution (s_i) using:
  1954. *
  1955. * s_i = rw_i / \Sum rw_j (1)
  1956. *
  1957. * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
  1958. * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
  1959. * shares distribution (s_i):
  1960. *
  1961. * rw_i = { 2, 4, 1, 0 }
  1962. * s_i = { 2/7, 4/7, 1/7, 0 }
  1963. *
  1964. * As per wake_affine() we're interested in the load of two CPUs (the CPU the
  1965. * task used to run on and the CPU the waker is running on), we need to
  1966. * compute the effect of waking a task on either CPU and, in case of a sync
  1967. * wakeup, compute the effect of the current task going to sleep.
  1968. *
  1969. * So for a change of @wl to the local @cpu with an overall group weight change
  1970. * of @wl we can compute the new shares distribution (s'_i) using:
  1971. *
  1972. * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
  1973. *
  1974. * Suppose we're interested in CPUs 0 and 1, and want to compute the load
  1975. * differences in waking a task to CPU 0. The additional task changes the
  1976. * weight and shares distributions like:
  1977. *
  1978. * rw'_i = { 3, 4, 1, 0 }
  1979. * s'_i = { 3/8, 4/8, 1/8, 0 }
  1980. *
  1981. * We can then compute the difference in effective weight by using:
  1982. *
  1983. * dw_i = S * (s'_i - s_i) (3)
  1984. *
  1985. * Where 'S' is the group weight as seen by its parent.
  1986. *
  1987. * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
  1988. * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
  1989. * 4/7) times the weight of the group.
  1990. */
  1991. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  1992. {
  1993. struct sched_entity *se = tg->se[cpu];
  1994. if (!tg->parent) /* the trivial, non-cgroup case */
  1995. return wl;
  1996. for_each_sched_entity(se) {
  1997. long w, W;
  1998. tg = se->my_q->tg;
  1999. /*
  2000. * W = @wg + \Sum rw_j
  2001. */
  2002. W = wg + calc_tg_weight(tg, se->my_q);
  2003. /*
  2004. * w = rw_i + @wl
  2005. */
  2006. w = se->my_q->load.weight + wl;
  2007. /*
  2008. * wl = S * s'_i; see (2)
  2009. */
  2010. if (W > 0 && w < W)
  2011. wl = (w * tg->shares) / W;
  2012. else
  2013. wl = tg->shares;
  2014. /*
  2015. * Per the above, wl is the new se->load.weight value; since
  2016. * those are clipped to [MIN_SHARES, ...) do so now. See
  2017. * calc_cfs_shares().
  2018. */
  2019. if (wl < MIN_SHARES)
  2020. wl = MIN_SHARES;
  2021. /*
  2022. * wl = dw_i = S * (s'_i - s_i); see (3)
  2023. */
  2024. wl -= se->load.weight;
  2025. /*
  2026. * Recursively apply this logic to all parent groups to compute
  2027. * the final effective load change on the root group. Since
  2028. * only the @tg group gets extra weight, all parent groups can
  2029. * only redistribute existing shares. @wl is the shift in shares
  2030. * resulting from this level per the above.
  2031. */
  2032. wg = 0;
  2033. }
  2034. return wl;
  2035. }
  2036. #else
  2037. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  2038. unsigned long wl, unsigned long wg)
  2039. {
  2040. return wl;
  2041. }
  2042. #endif
  2043. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  2044. {
  2045. s64 this_load, load;
  2046. int idx, this_cpu, prev_cpu;
  2047. unsigned long tl_per_task;
  2048. struct task_group *tg;
  2049. unsigned long weight;
  2050. int balanced;
  2051. idx = sd->wake_idx;
  2052. this_cpu = smp_processor_id();
  2053. prev_cpu = task_cpu(p);
  2054. load = source_load(prev_cpu, idx);
  2055. this_load = target_load(this_cpu, idx);
  2056. /*
  2057. * If sync wakeup then subtract the (maximum possible)
  2058. * effect of the currently running task from the load
  2059. * of the current CPU:
  2060. */
  2061. if (sync) {
  2062. tg = task_group(current);
  2063. weight = current->se.load.weight;
  2064. this_load += effective_load(tg, this_cpu, -weight, -weight);
  2065. load += effective_load(tg, prev_cpu, 0, -weight);
  2066. }
  2067. tg = task_group(p);
  2068. weight = p->se.load.weight;
  2069. /*
  2070. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  2071. * due to the sync cause above having dropped this_load to 0, we'll
  2072. * always have an imbalance, but there's really nothing you can do
  2073. * about that, so that's good too.
  2074. *
  2075. * Otherwise check if either cpus are near enough in load to allow this
  2076. * task to be woken on this_cpu.
  2077. */
  2078. if (this_load > 0) {
  2079. s64 this_eff_load, prev_eff_load;
  2080. this_eff_load = 100;
  2081. this_eff_load *= power_of(prev_cpu);
  2082. this_eff_load *= this_load +
  2083. effective_load(tg, this_cpu, weight, weight);
  2084. prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
  2085. prev_eff_load *= power_of(this_cpu);
  2086. prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
  2087. balanced = this_eff_load <= prev_eff_load;
  2088. } else
  2089. balanced = true;
  2090. /*
  2091. * If the currently running task will sleep within
  2092. * a reasonable amount of time then attract this newly
  2093. * woken task:
  2094. */
  2095. if (sync && balanced)
  2096. return 1;
  2097. schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
  2098. tl_per_task = cpu_avg_load_per_task(this_cpu);
  2099. if (balanced ||
  2100. (this_load <= load &&
  2101. this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
  2102. /*
  2103. * This domain has SD_WAKE_AFFINE and
  2104. * p is cache cold in this domain, and
  2105. * there is no bad imbalance.
  2106. */
  2107. schedstat_inc(sd, ttwu_move_affine);
  2108. schedstat_inc(p, se.statistics.nr_wakeups_affine);
  2109. return 1;
  2110. }
  2111. return 0;
  2112. }
  2113. /*
  2114. * find_idlest_group finds and returns the least busy CPU group within the
  2115. * domain.
  2116. */
  2117. static struct sched_group *
  2118. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  2119. int this_cpu, int load_idx)
  2120. {
  2121. struct sched_group *idlest = NULL, *group = sd->groups;
  2122. unsigned long min_load = ULONG_MAX, this_load = 0;
  2123. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  2124. do {
  2125. unsigned long load, avg_load;
  2126. int local_group;
  2127. int i;
  2128. /* Skip over this group if it has no CPUs allowed */
  2129. if (!cpumask_intersects(sched_group_cpus(group),
  2130. tsk_cpus_allowed(p)))
  2131. continue;
  2132. local_group = cpumask_test_cpu(this_cpu,
  2133. sched_group_cpus(group));
  2134. /* Tally up the load of all CPUs in the group */
  2135. avg_load = 0;
  2136. for_each_cpu(i, sched_group_cpus(group)) {
  2137. /* Bias balancing toward cpus of our domain */
  2138. if (local_group)
  2139. load = source_load(i, load_idx);
  2140. else
  2141. load = target_load(i, load_idx);
  2142. avg_load += load;
  2143. }
  2144. /* Adjust by relative CPU power of the group */
  2145. avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
  2146. if (local_group) {
  2147. this_load = avg_load;
  2148. } else if (avg_load < min_load) {
  2149. min_load = avg_load;
  2150. idlest = group;
  2151. }
  2152. } while (group = group->next, group != sd->groups);
  2153. if (!idlest || 100*this_load < imbalance*min_load)
  2154. return NULL;
  2155. return idlest;
  2156. }
  2157. /*
  2158. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  2159. */
  2160. static int
  2161. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  2162. {
  2163. unsigned long load, min_load = ULONG_MAX;
  2164. int idlest = -1;
  2165. int i;
  2166. /* Traverse only the allowed CPUs */
  2167. for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
  2168. load = weighted_cpuload(i);
  2169. if (load < min_load || (load == min_load && i == this_cpu)) {
  2170. min_load = load;
  2171. idlest = i;
  2172. }
  2173. }
  2174. return idlest;
  2175. }
  2176. /*
  2177. * Try and locate an idle CPU in the sched_domain.
  2178. */
  2179. static int select_idle_sibling(struct task_struct *p, int target)
  2180. {
  2181. int cpu = smp_processor_id();
  2182. int prev_cpu = task_cpu(p);
  2183. struct sched_domain *sd;
  2184. /*
  2185. * If the task is going to be woken-up on this cpu and if it is
  2186. * already idle, then it is the right target.
  2187. */
  2188. if (target == cpu && idle_cpu(cpu))
  2189. return cpu;
  2190. /*
  2191. * If the task is going to be woken-up on the cpu where it previously
  2192. * ran and if it is currently idle, then it the right target.
  2193. */
  2194. if (target == prev_cpu && idle_cpu(prev_cpu))
  2195. return prev_cpu;
  2196. /*
  2197. * Otherwise, check assigned siblings to find an elegible idle cpu.
  2198. */
  2199. sd = rcu_dereference(per_cpu(sd_llc, target));
  2200. for_each_lower_domain(sd) {
  2201. if (!cpumask_test_cpu(sd->idle_buddy, tsk_cpus_allowed(p)))
  2202. continue;
  2203. if (idle_cpu(sd->idle_buddy))
  2204. return sd->idle_buddy;
  2205. }
  2206. return target;
  2207. }
  2208. /*
  2209. * sched_balance_self: balance the current task (running on cpu) in domains
  2210. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  2211. * SD_BALANCE_EXEC.
  2212. *
  2213. * Balance, ie. select the least loaded group.
  2214. *
  2215. * Returns the target CPU number, or the same CPU if no balancing is needed.
  2216. *
  2217. * preempt must be disabled.
  2218. */
  2219. static int
  2220. select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
  2221. {
  2222. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  2223. int cpu = smp_processor_id();
  2224. int prev_cpu = task_cpu(p);
  2225. int new_cpu = cpu;
  2226. int want_affine = 0;
  2227. int want_sd = 1;
  2228. int sync = wake_flags & WF_SYNC;
  2229. if (p->nr_cpus_allowed == 1)
  2230. return prev_cpu;
  2231. if (sd_flag & SD_BALANCE_WAKE) {
  2232. if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
  2233. want_affine = 1;
  2234. new_cpu = prev_cpu;
  2235. }
  2236. rcu_read_lock();
  2237. for_each_domain(cpu, tmp) {
  2238. if (!(tmp->flags & SD_LOAD_BALANCE))
  2239. continue;
  2240. /*
  2241. * If power savings logic is enabled for a domain, see if we
  2242. * are not overloaded, if so, don't balance wider.
  2243. */
  2244. if (tmp->flags & (SD_PREFER_LOCAL)) {
  2245. unsigned long power = 0;
  2246. unsigned long nr_running = 0;
  2247. unsigned long capacity;
  2248. int i;
  2249. for_each_cpu(i, sched_domain_span(tmp)) {
  2250. power += power_of(i);
  2251. nr_running += cpu_rq(i)->cfs.nr_running;
  2252. }
  2253. capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
  2254. if (nr_running < capacity)
  2255. want_sd = 0;
  2256. }
  2257. /*
  2258. * If both cpu and prev_cpu are part of this domain,
  2259. * cpu is a valid SD_WAKE_AFFINE target.
  2260. */
  2261. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  2262. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  2263. affine_sd = tmp;
  2264. want_affine = 0;
  2265. }
  2266. if (!want_sd && !want_affine)
  2267. break;
  2268. if (!(tmp->flags & sd_flag))
  2269. continue;
  2270. if (want_sd)
  2271. sd = tmp;
  2272. }
  2273. if (affine_sd) {
  2274. if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
  2275. prev_cpu = cpu;
  2276. new_cpu = select_idle_sibling(p, prev_cpu);
  2277. goto unlock;
  2278. }
  2279. while (sd) {
  2280. int load_idx = sd->forkexec_idx;
  2281. struct sched_group *group;
  2282. int weight;
  2283. if (!(sd->flags & sd_flag)) {
  2284. sd = sd->child;
  2285. continue;
  2286. }
  2287. if (sd_flag & SD_BALANCE_WAKE)
  2288. load_idx = sd->wake_idx;
  2289. group = find_idlest_group(sd, p, cpu, load_idx);
  2290. if (!group) {
  2291. sd = sd->child;
  2292. continue;
  2293. }
  2294. new_cpu = find_idlest_cpu(group, p, cpu);
  2295. if (new_cpu == -1 || new_cpu == cpu) {
  2296. /* Now try balancing at a lower domain level of cpu */
  2297. sd = sd->child;
  2298. continue;
  2299. }
  2300. /* Now try balancing at a lower domain level of new_cpu */
  2301. cpu = new_cpu;
  2302. weight = sd->span_weight;
  2303. sd = NULL;
  2304. for_each_domain(cpu, tmp) {
  2305. if (weight <= tmp->span_weight)
  2306. break;
  2307. if (tmp->flags & sd_flag)
  2308. sd = tmp;
  2309. }
  2310. /* while loop will break here if sd == NULL */
  2311. }
  2312. unlock:
  2313. rcu_read_unlock();
  2314. return new_cpu;
  2315. }
  2316. #endif /* CONFIG_SMP */
  2317. static unsigned long
  2318. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  2319. {
  2320. unsigned long gran = sysctl_sched_wakeup_granularity;
  2321. /*
  2322. * Since its curr running now, convert the gran from real-time
  2323. * to virtual-time in his units.
  2324. *
  2325. * By using 'se' instead of 'curr' we penalize light tasks, so
  2326. * they get preempted easier. That is, if 'se' < 'curr' then
  2327. * the resulting gran will be larger, therefore penalizing the
  2328. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  2329. * be smaller, again penalizing the lighter task.
  2330. *
  2331. * This is especially important for buddies when the leftmost
  2332. * task is higher priority than the buddy.
  2333. */
  2334. return calc_delta_fair(gran, se);
  2335. }
  2336. /*
  2337. * Should 'se' preempt 'curr'.
  2338. *
  2339. * |s1
  2340. * |s2
  2341. * |s3
  2342. * g
  2343. * |<--->|c
  2344. *
  2345. * w(c, s1) = -1
  2346. * w(c, s2) = 0
  2347. * w(c, s3) = 1
  2348. *
  2349. */
  2350. static int
  2351. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  2352. {
  2353. s64 gran, vdiff = curr->vruntime - se->vruntime;
  2354. if (vdiff <= 0)
  2355. return -1;
  2356. gran = wakeup_gran(curr, se);
  2357. if (vdiff > gran)
  2358. return 1;
  2359. return 0;
  2360. }
  2361. static void set_last_buddy(struct sched_entity *se)
  2362. {
  2363. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  2364. return;
  2365. for_each_sched_entity(se)
  2366. cfs_rq_of(se)->last = se;
  2367. }
  2368. static void set_next_buddy(struct sched_entity *se)
  2369. {
  2370. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  2371. return;
  2372. for_each_sched_entity(se)
  2373. cfs_rq_of(se)->next = se;
  2374. }
  2375. static void set_skip_buddy(struct sched_entity *se)
  2376. {
  2377. for_each_sched_entity(se)
  2378. cfs_rq_of(se)->skip = se;
  2379. }
  2380. /*
  2381. * Preempt the current task with a newly woken task if needed:
  2382. */
  2383. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  2384. {
  2385. struct task_struct *curr = rq->curr;
  2386. struct sched_entity *se = &curr->se, *pse = &p->se;
  2387. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  2388. int scale = cfs_rq->nr_running >= sched_nr_latency;
  2389. int next_buddy_marked = 0;
  2390. if (unlikely(se == pse))
  2391. return;
  2392. /*
  2393. * This is possible from callers such as move_task(), in which we
  2394. * unconditionally check_prempt_curr() after an enqueue (which may have
  2395. * lead to a throttle). This both saves work and prevents false
  2396. * next-buddy nomination below.
  2397. */
  2398. if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
  2399. return;
  2400. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
  2401. set_next_buddy(pse);
  2402. next_buddy_marked = 1;
  2403. }
  2404. /*
  2405. * We can come here with TIF_NEED_RESCHED already set from new task
  2406. * wake up path.
  2407. *
  2408. * Note: this also catches the edge-case of curr being in a throttled
  2409. * group (e.g. via set_curr_task), since update_curr() (in the
  2410. * enqueue of curr) will have resulted in resched being set. This
  2411. * prevents us from potentially nominating it as a false LAST_BUDDY
  2412. * below.
  2413. */
  2414. if (test_tsk_need_resched(curr))
  2415. return;
  2416. /* Idle tasks are by definition preempted by non-idle tasks. */
  2417. if (unlikely(curr->policy == SCHED_IDLE) &&
  2418. likely(p->policy != SCHED_IDLE))
  2419. goto preempt;
  2420. /*
  2421. * Batch and idle tasks do not preempt non-idle tasks (their preemption
  2422. * is driven by the tick):
  2423. */
  2424. if (unlikely(p->policy != SCHED_NORMAL))
  2425. return;
  2426. find_matching_se(&se, &pse);
  2427. update_curr(cfs_rq_of(se));
  2428. BUG_ON(!pse);
  2429. if (wakeup_preempt_entity(se, pse) == 1) {
  2430. /*
  2431. * Bias pick_next to pick the sched entity that is
  2432. * triggering this preemption.
  2433. */
  2434. if (!next_buddy_marked)
  2435. set_next_buddy(pse);
  2436. goto preempt;
  2437. }
  2438. return;
  2439. preempt:
  2440. resched_task(curr);
  2441. /*
  2442. * Only set the backward buddy when the current task is still
  2443. * on the rq. This can happen when a wakeup gets interleaved
  2444. * with schedule on the ->pre_schedule() or idle_balance()
  2445. * point, either of which can * drop the rq lock.
  2446. *
  2447. * Also, during early boot the idle thread is in the fair class,
  2448. * for obvious reasons its a bad idea to schedule back to it.
  2449. */
  2450. if (unlikely(!se->on_rq || curr == rq->idle))
  2451. return;
  2452. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  2453. set_last_buddy(se);
  2454. }
  2455. static struct task_struct *pick_next_task_fair(struct rq *rq)
  2456. {
  2457. struct task_struct *p;
  2458. struct cfs_rq *cfs_rq = &rq->cfs;
  2459. struct sched_entity *se;
  2460. if (!cfs_rq->nr_running)
  2461. return NULL;
  2462. do {
  2463. se = pick_next_entity(cfs_rq);
  2464. set_next_entity(cfs_rq, se);
  2465. cfs_rq = group_cfs_rq(se);
  2466. } while (cfs_rq);
  2467. p = task_of(se);
  2468. if (hrtick_enabled(rq))
  2469. hrtick_start_fair(rq, p);
  2470. return p;
  2471. }
  2472. /*
  2473. * Account for a descheduled task:
  2474. */
  2475. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  2476. {
  2477. struct sched_entity *se = &prev->se;
  2478. struct cfs_rq *cfs_rq;
  2479. for_each_sched_entity(se) {
  2480. cfs_rq = cfs_rq_of(se);
  2481. put_prev_entity(cfs_rq, se);
  2482. }
  2483. }
  2484. /*
  2485. * sched_yield() is very simple
  2486. *
  2487. * The magic of dealing with the ->skip buddy is in pick_next_entity.
  2488. */
  2489. static void yield_task_fair(struct rq *rq)
  2490. {
  2491. struct task_struct *curr = rq->curr;
  2492. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  2493. struct sched_entity *se = &curr->se;
  2494. /*
  2495. * Are we the only task in the tree?
  2496. */
  2497. if (unlikely(rq->nr_running == 1))
  2498. return;
  2499. clear_buddies(cfs_rq, se);
  2500. if (curr->policy != SCHED_BATCH) {
  2501. update_rq_clock(rq);
  2502. /*
  2503. * Update run-time statistics of the 'current'.
  2504. */
  2505. update_curr(cfs_rq);
  2506. /*
  2507. * Tell update_rq_clock() that we've just updated,
  2508. * so we don't do microscopic update in schedule()
  2509. * and double the fastpath cost.
  2510. */
  2511. rq->skip_clock_update = 1;
  2512. }
  2513. set_skip_buddy(se);
  2514. }
  2515. static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
  2516. {
  2517. struct sched_entity *se = &p->se;
  2518. /* throttled hierarchies are not runnable */
  2519. if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
  2520. return false;
  2521. /* Tell the scheduler that we'd really like pse to run next. */
  2522. set_next_buddy(se);
  2523. yield_task_fair(rq);
  2524. return true;
  2525. }
  2526. #ifdef CONFIG_SMP
  2527. /**************************************************
  2528. * Fair scheduling class load-balancing methods:
  2529. */
  2530. static unsigned long __read_mostly max_load_balance_interval = HZ/10;
  2531. #define LBF_ALL_PINNED 0x01
  2532. #define LBF_NEED_BREAK 0x02
  2533. #define LBF_SOME_PINNED 0x04
  2534. struct lb_env {
  2535. struct sched_domain *sd;
  2536. struct rq *src_rq;
  2537. int src_cpu;
  2538. int dst_cpu;
  2539. struct rq *dst_rq;
  2540. struct cpumask *dst_grpmask;
  2541. int new_dst_cpu;
  2542. enum cpu_idle_type idle;
  2543. long imbalance;
  2544. /* The set of CPUs under consideration for load-balancing */
  2545. struct cpumask *cpus;
  2546. unsigned int flags;
  2547. unsigned int loop;
  2548. unsigned int loop_break;
  2549. unsigned int loop_max;
  2550. };
  2551. /*
  2552. * move_task - move a task from one runqueue to another runqueue.
  2553. * Both runqueues must be locked.
  2554. */
  2555. static void move_task(struct task_struct *p, struct lb_env *env)
  2556. {
  2557. deactivate_task(env->src_rq, p, 0);
  2558. set_task_cpu(p, env->dst_cpu);
  2559. activate_task(env->dst_rq, p, 0);
  2560. check_preempt_curr(env->dst_rq, p, 0);
  2561. }
  2562. /*
  2563. * Is this task likely cache-hot:
  2564. */
  2565. static int
  2566. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  2567. {
  2568. s64 delta;
  2569. if (p->sched_class != &fair_sched_class)
  2570. return 0;
  2571. if (unlikely(p->policy == SCHED_IDLE))
  2572. return 0;
  2573. /*
  2574. * Buddy candidates are cache hot:
  2575. */
  2576. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  2577. (&p->se == cfs_rq_of(&p->se)->next ||
  2578. &p->se == cfs_rq_of(&p->se)->last))
  2579. return 1;
  2580. if (sysctl_sched_migration_cost == -1)
  2581. return 1;
  2582. if (sysctl_sched_migration_cost == 0)
  2583. return 0;
  2584. delta = now - p->se.exec_start;
  2585. return delta < (s64)sysctl_sched_migration_cost;
  2586. }
  2587. /*
  2588. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2589. */
  2590. static
  2591. int can_migrate_task(struct task_struct *p, struct lb_env *env)
  2592. {
  2593. int tsk_cache_hot = 0;
  2594. /*
  2595. * We do not migrate tasks that are:
  2596. * 1) running (obviously), or
  2597. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2598. * 3) are cache-hot on their current CPU.
  2599. */
  2600. if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
  2601. int new_dst_cpu;
  2602. schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
  2603. /*
  2604. * Remember if this task can be migrated to any other cpu in
  2605. * our sched_group. We may want to revisit it if we couldn't
  2606. * meet load balance goals by pulling other tasks on src_cpu.
  2607. *
  2608. * Also avoid computing new_dst_cpu if we have already computed
  2609. * one in current iteration.
  2610. */
  2611. if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
  2612. return 0;
  2613. new_dst_cpu = cpumask_first_and(env->dst_grpmask,
  2614. tsk_cpus_allowed(p));
  2615. if (new_dst_cpu < nr_cpu_ids) {
  2616. env->flags |= LBF_SOME_PINNED;
  2617. env->new_dst_cpu = new_dst_cpu;
  2618. }
  2619. return 0;
  2620. }
  2621. /* Record that we found atleast one task that could run on dst_cpu */
  2622. env->flags &= ~LBF_ALL_PINNED;
  2623. if (task_running(env->src_rq, p)) {
  2624. schedstat_inc(p, se.statistics.nr_failed_migrations_running);
  2625. return 0;
  2626. }
  2627. /*
  2628. * Aggressive migration if:
  2629. * 1) task is cache cold, or
  2630. * 2) too many balance attempts have failed.
  2631. */
  2632. tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
  2633. if (!tsk_cache_hot ||
  2634. env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
  2635. #ifdef CONFIG_SCHEDSTATS
  2636. if (tsk_cache_hot) {
  2637. schedstat_inc(env->sd, lb_hot_gained[env->idle]);
  2638. schedstat_inc(p, se.statistics.nr_forced_migrations);
  2639. }
  2640. #endif
  2641. return 1;
  2642. }
  2643. if (tsk_cache_hot) {
  2644. schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
  2645. return 0;
  2646. }
  2647. return 1;
  2648. }
  2649. /*
  2650. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2651. * part of active balancing operations within "domain".
  2652. * Returns 1 if successful and 0 otherwise.
  2653. *
  2654. * Called with both runqueues locked.
  2655. */
  2656. static int move_one_task(struct lb_env *env)
  2657. {
  2658. struct task_struct *p, *n;
  2659. list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
  2660. if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
  2661. continue;
  2662. if (!can_migrate_task(p, env))
  2663. continue;
  2664. move_task(p, env);
  2665. /*
  2666. * Right now, this is only the second place move_task()
  2667. * is called, so we can safely collect move_task()
  2668. * stats here rather than inside move_task().
  2669. */
  2670. schedstat_inc(env->sd, lb_gained[env->idle]);
  2671. return 1;
  2672. }
  2673. return 0;
  2674. }
  2675. static unsigned long task_h_load(struct task_struct *p);
  2676. static const unsigned int sched_nr_migrate_break = 32;
  2677. /*
  2678. * move_tasks tries to move up to imbalance weighted load from busiest to
  2679. * this_rq, as part of a balancing operation within domain "sd".
  2680. * Returns 1 if successful and 0 otherwise.
  2681. *
  2682. * Called with both runqueues locked.
  2683. */
  2684. static int move_tasks(struct lb_env *env)
  2685. {
  2686. struct list_head *tasks = &env->src_rq->cfs_tasks;
  2687. struct task_struct *p;
  2688. unsigned long load;
  2689. int pulled = 0;
  2690. if (env->imbalance <= 0)
  2691. return 0;
  2692. while (!list_empty(tasks)) {
  2693. p = list_first_entry(tasks, struct task_struct, se.group_node);
  2694. env->loop++;
  2695. /* We've more or less seen every task there is, call it quits */
  2696. if (env->loop > env->loop_max)
  2697. break;
  2698. /* take a breather every nr_migrate tasks */
  2699. if (env->loop > env->loop_break) {
  2700. env->loop_break += sched_nr_migrate_break;
  2701. env->flags |= LBF_NEED_BREAK;
  2702. break;
  2703. }
  2704. if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
  2705. goto next;
  2706. load = task_h_load(p);
  2707. if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
  2708. goto next;
  2709. if ((load / 2) > env->imbalance)
  2710. goto next;
  2711. if (!can_migrate_task(p, env))
  2712. goto next;
  2713. move_task(p, env);
  2714. pulled++;
  2715. env->imbalance -= load;
  2716. #ifdef CONFIG_PREEMPT
  2717. /*
  2718. * NEWIDLE balancing is a source of latency, so preemptible
  2719. * kernels will stop after the first task is pulled to minimize
  2720. * the critical section.
  2721. */
  2722. if (env->idle == CPU_NEWLY_IDLE)
  2723. break;
  2724. #endif
  2725. /*
  2726. * We only want to steal up to the prescribed amount of
  2727. * weighted load.
  2728. */
  2729. if (env->imbalance <= 0)
  2730. break;
  2731. continue;
  2732. next:
  2733. list_move_tail(&p->se.group_node, tasks);
  2734. }
  2735. /*
  2736. * Right now, this is one of only two places move_task() is called,
  2737. * so we can safely collect move_task() stats here rather than
  2738. * inside move_task().
  2739. */
  2740. schedstat_add(env->sd, lb_gained[env->idle], pulled);
  2741. return pulled;
  2742. }
  2743. #ifdef CONFIG_FAIR_GROUP_SCHED
  2744. /*
  2745. * update tg->load_weight by folding this cpu's load_avg
  2746. */
  2747. static int update_shares_cpu(struct task_group *tg, int cpu)
  2748. {
  2749. struct cfs_rq *cfs_rq;
  2750. unsigned long flags;
  2751. struct rq *rq;
  2752. if (!tg->se[cpu])
  2753. return 0;
  2754. rq = cpu_rq(cpu);
  2755. cfs_rq = tg->cfs_rq[cpu];
  2756. raw_spin_lock_irqsave(&rq->lock, flags);
  2757. update_rq_clock(rq);
  2758. update_cfs_load(cfs_rq, 1);
  2759. /*
  2760. * We need to update shares after updating tg->load_weight in
  2761. * order to adjust the weight of groups with long running tasks.
  2762. */
  2763. update_cfs_shares(cfs_rq);
  2764. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2765. return 0;
  2766. }
  2767. static void update_shares(int cpu)
  2768. {
  2769. struct cfs_rq *cfs_rq;
  2770. struct rq *rq = cpu_rq(cpu);
  2771. rcu_read_lock();
  2772. /*
  2773. * Iterates the task_group tree in a bottom up fashion, see
  2774. * list_add_leaf_cfs_rq() for details.
  2775. */
  2776. for_each_leaf_cfs_rq(rq, cfs_rq) {
  2777. /* throttled entities do not contribute to load */
  2778. if (throttled_hierarchy(cfs_rq))
  2779. continue;
  2780. update_shares_cpu(cfs_rq->tg, cpu);
  2781. }
  2782. rcu_read_unlock();
  2783. }
  2784. /*
  2785. * Compute the cpu's hierarchical load factor for each task group.
  2786. * This needs to be done in a top-down fashion because the load of a child
  2787. * group is a fraction of its parents load.
  2788. */
  2789. static int tg_load_down(struct task_group *tg, void *data)
  2790. {
  2791. unsigned long load;
  2792. long cpu = (long)data;
  2793. if (!tg->parent) {
  2794. load = cpu_rq(cpu)->load.weight;
  2795. } else {
  2796. load = tg->parent->cfs_rq[cpu]->h_load;
  2797. load *= tg->se[cpu]->load.weight;
  2798. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  2799. }
  2800. tg->cfs_rq[cpu]->h_load = load;
  2801. return 0;
  2802. }
  2803. static void update_h_load(long cpu)
  2804. {
  2805. rcu_read_lock();
  2806. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  2807. rcu_read_unlock();
  2808. }
  2809. static unsigned long task_h_load(struct task_struct *p)
  2810. {
  2811. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  2812. unsigned long load;
  2813. load = p->se.load.weight;
  2814. load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
  2815. return load;
  2816. }
  2817. #else
  2818. static inline void update_shares(int cpu)
  2819. {
  2820. }
  2821. static inline void update_h_load(long cpu)
  2822. {
  2823. }
  2824. static unsigned long task_h_load(struct task_struct *p)
  2825. {
  2826. return p->se.load.weight;
  2827. }
  2828. #endif
  2829. /********** Helpers for find_busiest_group ************************/
  2830. /*
  2831. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2832. * during load balancing.
  2833. */
  2834. struct sd_lb_stats {
  2835. struct sched_group *busiest; /* Busiest group in this sd */
  2836. struct sched_group *this; /* Local group in this sd */
  2837. unsigned long total_load; /* Total load of all groups in sd */
  2838. unsigned long total_pwr; /* Total power of all groups in sd */
  2839. unsigned long avg_load; /* Average load across all groups in sd */
  2840. /** Statistics of this group */
  2841. unsigned long this_load;
  2842. unsigned long this_load_per_task;
  2843. unsigned long this_nr_running;
  2844. unsigned long this_has_capacity;
  2845. unsigned int this_idle_cpus;
  2846. /* Statistics of the busiest group */
  2847. unsigned int busiest_idle_cpus;
  2848. unsigned long max_load;
  2849. unsigned long busiest_load_per_task;
  2850. unsigned long busiest_nr_running;
  2851. unsigned long busiest_group_capacity;
  2852. unsigned long busiest_has_capacity;
  2853. unsigned int busiest_group_weight;
  2854. int group_imb; /* Is there imbalance in this sd */
  2855. };
  2856. /*
  2857. * sg_lb_stats - stats of a sched_group required for load_balancing
  2858. */
  2859. struct sg_lb_stats {
  2860. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2861. unsigned long group_load; /* Total load over the CPUs of the group */
  2862. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2863. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2864. unsigned long group_capacity;
  2865. unsigned long idle_cpus;
  2866. unsigned long group_weight;
  2867. int group_imb; /* Is there an imbalance in the group ? */
  2868. int group_has_capacity; /* Is there extra capacity in the group? */
  2869. };
  2870. /**
  2871. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2872. * @sd: The sched_domain whose load_idx is to be obtained.
  2873. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2874. */
  2875. static inline int get_sd_load_idx(struct sched_domain *sd,
  2876. enum cpu_idle_type idle)
  2877. {
  2878. int load_idx;
  2879. switch (idle) {
  2880. case CPU_NOT_IDLE:
  2881. load_idx = sd->busy_idx;
  2882. break;
  2883. case CPU_NEWLY_IDLE:
  2884. load_idx = sd->newidle_idx;
  2885. break;
  2886. default:
  2887. load_idx = sd->idle_idx;
  2888. break;
  2889. }
  2890. return load_idx;
  2891. }
  2892. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  2893. {
  2894. return SCHED_POWER_SCALE;
  2895. }
  2896. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  2897. {
  2898. return default_scale_freq_power(sd, cpu);
  2899. }
  2900. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  2901. {
  2902. unsigned long weight = sd->span_weight;
  2903. unsigned long smt_gain = sd->smt_gain;
  2904. smt_gain /= weight;
  2905. return smt_gain;
  2906. }
  2907. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  2908. {
  2909. return default_scale_smt_power(sd, cpu);
  2910. }
  2911. unsigned long scale_rt_power(int cpu)
  2912. {
  2913. struct rq *rq = cpu_rq(cpu);
  2914. u64 total, available, age_stamp, avg;
  2915. /*
  2916. * Since we're reading these variables without serialization make sure
  2917. * we read them once before doing sanity checks on them.
  2918. */
  2919. age_stamp = ACCESS_ONCE(rq->age_stamp);
  2920. avg = ACCESS_ONCE(rq->rt_avg);
  2921. total = sched_avg_period() + (rq->clock - age_stamp);
  2922. if (unlikely(total < avg)) {
  2923. /* Ensures that power won't end up being negative */
  2924. available = 0;
  2925. } else {
  2926. available = total - avg;
  2927. }
  2928. if (unlikely((s64)total < SCHED_POWER_SCALE))
  2929. total = SCHED_POWER_SCALE;
  2930. total >>= SCHED_POWER_SHIFT;
  2931. return div_u64(available, total);
  2932. }
  2933. static void update_cpu_power(struct sched_domain *sd, int cpu)
  2934. {
  2935. unsigned long weight = sd->span_weight;
  2936. unsigned long power = SCHED_POWER_SCALE;
  2937. struct sched_group *sdg = sd->groups;
  2938. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  2939. if (sched_feat(ARCH_POWER))
  2940. power *= arch_scale_smt_power(sd, cpu);
  2941. else
  2942. power *= default_scale_smt_power(sd, cpu);
  2943. power >>= SCHED_POWER_SHIFT;
  2944. }
  2945. sdg->sgp->power_orig = power;
  2946. if (sched_feat(ARCH_POWER))
  2947. power *= arch_scale_freq_power(sd, cpu);
  2948. else
  2949. power *= default_scale_freq_power(sd, cpu);
  2950. power >>= SCHED_POWER_SHIFT;
  2951. power *= scale_rt_power(cpu);
  2952. power >>= SCHED_POWER_SHIFT;
  2953. if (!power)
  2954. power = 1;
  2955. cpu_rq(cpu)->cpu_power = power;
  2956. sdg->sgp->power = power;
  2957. }
  2958. void update_group_power(struct sched_domain *sd, int cpu)
  2959. {
  2960. struct sched_domain *child = sd->child;
  2961. struct sched_group *group, *sdg = sd->groups;
  2962. unsigned long power;
  2963. unsigned long interval;
  2964. interval = msecs_to_jiffies(sd->balance_interval);
  2965. interval = clamp(interval, 1UL, max_load_balance_interval);
  2966. sdg->sgp->next_update = jiffies + interval;
  2967. if (!child) {
  2968. update_cpu_power(sd, cpu);
  2969. return;
  2970. }
  2971. power = 0;
  2972. if (child->flags & SD_OVERLAP) {
  2973. /*
  2974. * SD_OVERLAP domains cannot assume that child groups
  2975. * span the current group.
  2976. */
  2977. for_each_cpu(cpu, sched_group_cpus(sdg))
  2978. power += power_of(cpu);
  2979. } else {
  2980. /*
  2981. * !SD_OVERLAP domains can assume that child groups
  2982. * span the current group.
  2983. */
  2984. group = child->groups;
  2985. do {
  2986. power += group->sgp->power;
  2987. group = group->next;
  2988. } while (group != child->groups);
  2989. }
  2990. sdg->sgp->power_orig = sdg->sgp->power = power;
  2991. }
  2992. /*
  2993. * Try and fix up capacity for tiny siblings, this is needed when
  2994. * things like SD_ASYM_PACKING need f_b_g to select another sibling
  2995. * which on its own isn't powerful enough.
  2996. *
  2997. * See update_sd_pick_busiest() and check_asym_packing().
  2998. */
  2999. static inline int
  3000. fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
  3001. {
  3002. /*
  3003. * Only siblings can have significantly less than SCHED_POWER_SCALE
  3004. */
  3005. if (!(sd->flags & SD_SHARE_CPUPOWER))
  3006. return 0;
  3007. /*
  3008. * If ~90% of the cpu_power is still there, we're good.
  3009. */
  3010. if (group->sgp->power * 32 > group->sgp->power_orig * 29)
  3011. return 1;
  3012. return 0;
  3013. }
  3014. /**
  3015. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  3016. * @env: The load balancing environment.
  3017. * @group: sched_group whose statistics are to be updated.
  3018. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  3019. * @local_group: Does group contain this_cpu.
  3020. * @cpus: Set of cpus considered for load balancing.
  3021. * @balance: Should we balance.
  3022. * @sgs: variable to hold the statistics for this group.
  3023. */
  3024. static inline void update_sg_lb_stats(struct lb_env *env,
  3025. struct sched_group *group, int load_idx,
  3026. int local_group, int *balance, struct sg_lb_stats *sgs)
  3027. {
  3028. unsigned long nr_running, max_nr_running, min_nr_running;
  3029. unsigned long load, max_cpu_load, min_cpu_load;
  3030. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  3031. unsigned long avg_load_per_task = 0;
  3032. int i;
  3033. if (local_group)
  3034. balance_cpu = group_balance_cpu(group);
  3035. /* Tally up the load of all CPUs in the group */
  3036. max_cpu_load = 0;
  3037. min_cpu_load = ~0UL;
  3038. max_nr_running = 0;
  3039. min_nr_running = ~0UL;
  3040. for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
  3041. struct rq *rq = cpu_rq(i);
  3042. nr_running = rq->nr_running;
  3043. /* Bias balancing toward cpus of our domain */
  3044. if (local_group) {
  3045. if (idle_cpu(i) && !first_idle_cpu &&
  3046. cpumask_test_cpu(i, sched_group_mask(group))) {
  3047. first_idle_cpu = 1;
  3048. balance_cpu = i;
  3049. }
  3050. load = target_load(i, load_idx);
  3051. } else {
  3052. load = source_load(i, load_idx);
  3053. if (load > max_cpu_load)
  3054. max_cpu_load = load;
  3055. if (min_cpu_load > load)
  3056. min_cpu_load = load;
  3057. if (nr_running > max_nr_running)
  3058. max_nr_running = nr_running;
  3059. if (min_nr_running > nr_running)
  3060. min_nr_running = nr_running;
  3061. }
  3062. sgs->group_load += load;
  3063. sgs->sum_nr_running += nr_running;
  3064. sgs->sum_weighted_load += weighted_cpuload(i);
  3065. if (idle_cpu(i))
  3066. sgs->idle_cpus++;
  3067. }
  3068. /*
  3069. * First idle cpu or the first cpu(busiest) in this sched group
  3070. * is eligible for doing load balancing at this and above
  3071. * domains. In the newly idle case, we will allow all the cpu's
  3072. * to do the newly idle load balance.
  3073. */
  3074. if (local_group) {
  3075. if (env->idle != CPU_NEWLY_IDLE) {
  3076. if (balance_cpu != env->dst_cpu) {
  3077. *balance = 0;
  3078. return;
  3079. }
  3080. update_group_power(env->sd, env->dst_cpu);
  3081. } else if (time_after_eq(jiffies, group->sgp->next_update))
  3082. update_group_power(env->sd, env->dst_cpu);
  3083. }
  3084. /* Adjust by relative CPU power of the group */
  3085. sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
  3086. /*
  3087. * Consider the group unbalanced when the imbalance is larger
  3088. * than the average weight of a task.
  3089. *
  3090. * APZ: with cgroup the avg task weight can vary wildly and
  3091. * might not be a suitable number - should we keep a
  3092. * normalized nr_running number somewhere that negates
  3093. * the hierarchy?
  3094. */
  3095. if (sgs->sum_nr_running)
  3096. avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  3097. if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
  3098. (max_nr_running - min_nr_running) > 1)
  3099. sgs->group_imb = 1;
  3100. sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
  3101. SCHED_POWER_SCALE);
  3102. if (!sgs->group_capacity)
  3103. sgs->group_capacity = fix_small_capacity(env->sd, group);
  3104. sgs->group_weight = group->group_weight;
  3105. if (sgs->group_capacity > sgs->sum_nr_running)
  3106. sgs->group_has_capacity = 1;
  3107. }
  3108. /**
  3109. * update_sd_pick_busiest - return 1 on busiest group
  3110. * @env: The load balancing environment.
  3111. * @sds: sched_domain statistics
  3112. * @sg: sched_group candidate to be checked for being the busiest
  3113. * @sgs: sched_group statistics
  3114. *
  3115. * Determine if @sg is a busier group than the previously selected
  3116. * busiest group.
  3117. */
  3118. static bool update_sd_pick_busiest(struct lb_env *env,
  3119. struct sd_lb_stats *sds,
  3120. struct sched_group *sg,
  3121. struct sg_lb_stats *sgs)
  3122. {
  3123. if (sgs->avg_load <= sds->max_load)
  3124. return false;
  3125. if (sgs->sum_nr_running > sgs->group_capacity)
  3126. return true;
  3127. if (sgs->group_imb)
  3128. return true;
  3129. /*
  3130. * ASYM_PACKING needs to move all the work to the lowest
  3131. * numbered CPUs in the group, therefore mark all groups
  3132. * higher than ourself as busy.
  3133. */
  3134. if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
  3135. env->dst_cpu < group_first_cpu(sg)) {
  3136. if (!sds->busiest)
  3137. return true;
  3138. if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
  3139. return true;
  3140. }
  3141. return false;
  3142. }
  3143. /**
  3144. * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
  3145. * @env: The load balancing environment.
  3146. * @cpus: Set of cpus considered for load balancing.
  3147. * @balance: Should we balance.
  3148. * @sds: variable to hold the statistics for this sched_domain.
  3149. */
  3150. static inline void update_sd_lb_stats(struct lb_env *env,
  3151. int *balance, struct sd_lb_stats *sds)
  3152. {
  3153. struct sched_domain *child = env->sd->child;
  3154. struct sched_group *sg = env->sd->groups;
  3155. struct sg_lb_stats sgs;
  3156. int load_idx, prefer_sibling = 0;
  3157. if (child && child->flags & SD_PREFER_SIBLING)
  3158. prefer_sibling = 1;
  3159. load_idx = get_sd_load_idx(env->sd, env->idle);
  3160. do {
  3161. int local_group;
  3162. local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
  3163. memset(&sgs, 0, sizeof(sgs));
  3164. update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
  3165. if (local_group && !(*balance))
  3166. return;
  3167. sds->total_load += sgs.group_load;
  3168. sds->total_pwr += sg->sgp->power;
  3169. /*
  3170. * In case the child domain prefers tasks go to siblings
  3171. * first, lower the sg capacity to one so that we'll try
  3172. * and move all the excess tasks away. We lower the capacity
  3173. * of a group only if the local group has the capacity to fit
  3174. * these excess tasks, i.e. nr_running < group_capacity. The
  3175. * extra check prevents the case where you always pull from the
  3176. * heaviest group when it is already under-utilized (possible
  3177. * with a large weight task outweighs the tasks on the system).
  3178. */
  3179. if (prefer_sibling && !local_group && sds->this_has_capacity)
  3180. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  3181. if (local_group) {
  3182. sds->this_load = sgs.avg_load;
  3183. sds->this = sg;
  3184. sds->this_nr_running = sgs.sum_nr_running;
  3185. sds->this_load_per_task = sgs.sum_weighted_load;
  3186. sds->this_has_capacity = sgs.group_has_capacity;
  3187. sds->this_idle_cpus = sgs.idle_cpus;
  3188. } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
  3189. sds->max_load = sgs.avg_load;
  3190. sds->busiest = sg;
  3191. sds->busiest_nr_running = sgs.sum_nr_running;
  3192. sds->busiest_idle_cpus = sgs.idle_cpus;
  3193. sds->busiest_group_capacity = sgs.group_capacity;
  3194. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3195. sds->busiest_has_capacity = sgs.group_has_capacity;
  3196. sds->busiest_group_weight = sgs.group_weight;
  3197. sds->group_imb = sgs.group_imb;
  3198. }
  3199. sg = sg->next;
  3200. } while (sg != env->sd->groups);
  3201. }
  3202. /**
  3203. * check_asym_packing - Check to see if the group is packed into the
  3204. * sched doman.
  3205. *
  3206. * This is primarily intended to used at the sibling level. Some
  3207. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  3208. * case of POWER7, it can move to lower SMT modes only when higher
  3209. * threads are idle. When in lower SMT modes, the threads will
  3210. * perform better since they share less core resources. Hence when we
  3211. * have idle threads, we want them to be the higher ones.
  3212. *
  3213. * This packing function is run on idle threads. It checks to see if
  3214. * the busiest CPU in this domain (core in the P7 case) has a higher
  3215. * CPU number than the packing function is being run on. Here we are
  3216. * assuming lower CPU number will be equivalent to lower a SMT thread
  3217. * number.
  3218. *
  3219. * Returns 1 when packing is required and a task should be moved to
  3220. * this CPU. The amount of the imbalance is returned in *imbalance.
  3221. *
  3222. * @env: The load balancing environment.
  3223. * @sds: Statistics of the sched_domain which is to be packed
  3224. */
  3225. static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
  3226. {
  3227. int busiest_cpu;
  3228. if (!(env->sd->flags & SD_ASYM_PACKING))
  3229. return 0;
  3230. if (!sds->busiest)
  3231. return 0;
  3232. busiest_cpu = group_first_cpu(sds->busiest);
  3233. if (env->dst_cpu > busiest_cpu)
  3234. return 0;
  3235. env->imbalance = DIV_ROUND_CLOSEST(
  3236. sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
  3237. return 1;
  3238. }
  3239. /**
  3240. * fix_small_imbalance - Calculate the minor imbalance that exists
  3241. * amongst the groups of a sched_domain, during
  3242. * load balancing.
  3243. * @env: The load balancing environment.
  3244. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3245. */
  3246. static inline
  3247. void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
  3248. {
  3249. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3250. unsigned int imbn = 2;
  3251. unsigned long scaled_busy_load_per_task;
  3252. if (sds->this_nr_running) {
  3253. sds->this_load_per_task /= sds->this_nr_running;
  3254. if (sds->busiest_load_per_task >
  3255. sds->this_load_per_task)
  3256. imbn = 1;
  3257. } else {
  3258. sds->this_load_per_task =
  3259. cpu_avg_load_per_task(env->dst_cpu);
  3260. }
  3261. scaled_busy_load_per_task = sds->busiest_load_per_task
  3262. * SCHED_POWER_SCALE;
  3263. scaled_busy_load_per_task /= sds->busiest->sgp->power;
  3264. if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
  3265. (scaled_busy_load_per_task * imbn)) {
  3266. env->imbalance = sds->busiest_load_per_task;
  3267. return;
  3268. }
  3269. /*
  3270. * OK, we don't have enough imbalance to justify moving tasks,
  3271. * however we may be able to increase total CPU power used by
  3272. * moving them.
  3273. */
  3274. pwr_now += sds->busiest->sgp->power *
  3275. min(sds->busiest_load_per_task, sds->max_load);
  3276. pwr_now += sds->this->sgp->power *
  3277. min(sds->this_load_per_task, sds->this_load);
  3278. pwr_now /= SCHED_POWER_SCALE;
  3279. /* Amount of load we'd subtract */
  3280. tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
  3281. sds->busiest->sgp->power;
  3282. if (sds->max_load > tmp)
  3283. pwr_move += sds->busiest->sgp->power *
  3284. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3285. /* Amount of load we'd add */
  3286. if (sds->max_load * sds->busiest->sgp->power <
  3287. sds->busiest_load_per_task * SCHED_POWER_SCALE)
  3288. tmp = (sds->max_load * sds->busiest->sgp->power) /
  3289. sds->this->sgp->power;
  3290. else
  3291. tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
  3292. sds->this->sgp->power;
  3293. pwr_move += sds->this->sgp->power *
  3294. min(sds->this_load_per_task, sds->this_load + tmp);
  3295. pwr_move /= SCHED_POWER_SCALE;
  3296. /* Move if we gain throughput */
  3297. if (pwr_move > pwr_now)
  3298. env->imbalance = sds->busiest_load_per_task;
  3299. }
  3300. /**
  3301. * calculate_imbalance - Calculate the amount of imbalance present within the
  3302. * groups of a given sched_domain during load balance.
  3303. * @env: load balance environment
  3304. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3305. */
  3306. static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
  3307. {
  3308. unsigned long max_pull, load_above_capacity = ~0UL;
  3309. sds->busiest_load_per_task /= sds->busiest_nr_running;
  3310. if (sds->group_imb) {
  3311. sds->busiest_load_per_task =
  3312. min(sds->busiest_load_per_task, sds->avg_load);
  3313. }
  3314. /*
  3315. * In the presence of smp nice balancing, certain scenarios can have
  3316. * max load less than avg load(as we skip the groups at or below
  3317. * its cpu_power, while calculating max_load..)
  3318. */
  3319. if (sds->max_load < sds->avg_load) {
  3320. env->imbalance = 0;
  3321. return fix_small_imbalance(env, sds);
  3322. }
  3323. if (!sds->group_imb) {
  3324. /*
  3325. * Don't want to pull so many tasks that a group would go idle.
  3326. */
  3327. load_above_capacity = (sds->busiest_nr_running -
  3328. sds->busiest_group_capacity);
  3329. load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
  3330. load_above_capacity /= sds->busiest->sgp->power;
  3331. }
  3332. /*
  3333. * We're trying to get all the cpus to the average_load, so we don't
  3334. * want to push ourselves above the average load, nor do we wish to
  3335. * reduce the max loaded cpu below the average load. At the same time,
  3336. * we also don't want to reduce the group load below the group capacity
  3337. * (so that we can implement power-savings policies etc). Thus we look
  3338. * for the minimum possible imbalance.
  3339. * Be careful of negative numbers as they'll appear as very large values
  3340. * with unsigned longs.
  3341. */
  3342. max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
  3343. /* How much load to actually move to equalise the imbalance */
  3344. env->imbalance = min(max_pull * sds->busiest->sgp->power,
  3345. (sds->avg_load - sds->this_load) * sds->this->sgp->power)
  3346. / SCHED_POWER_SCALE;
  3347. /*
  3348. * if *imbalance is less than the average load per runnable task
  3349. * there is no guarantee that any tasks will be moved so we'll have
  3350. * a think about bumping its value to force at least one task to be
  3351. * moved
  3352. */
  3353. if (env->imbalance < sds->busiest_load_per_task)
  3354. return fix_small_imbalance(env, sds);
  3355. }
  3356. /******* find_busiest_group() helpers end here *********************/
  3357. /**
  3358. * find_busiest_group - Returns the busiest group within the sched_domain
  3359. * if there is an imbalance. If there isn't an imbalance, and
  3360. * the user has opted for power-savings, it returns a group whose
  3361. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3362. * such a group exists.
  3363. *
  3364. * Also calculates the amount of weighted load which should be moved
  3365. * to restore balance.
  3366. *
  3367. * @env: The load balancing environment.
  3368. * @balance: Pointer to a variable indicating if this_cpu
  3369. * is the appropriate cpu to perform load balancing at this_level.
  3370. *
  3371. * Returns: - the busiest group if imbalance exists.
  3372. * - If no imbalance and user has opted for power-savings balance,
  3373. * return the least loaded group whose CPUs can be
  3374. * put to idle by rebalancing its tasks onto our group.
  3375. */
  3376. static struct sched_group *
  3377. find_busiest_group(struct lb_env *env, int *balance)
  3378. {
  3379. struct sd_lb_stats sds;
  3380. memset(&sds, 0, sizeof(sds));
  3381. /*
  3382. * Compute the various statistics relavent for load balancing at
  3383. * this level.
  3384. */
  3385. update_sd_lb_stats(env, balance, &sds);
  3386. /*
  3387. * this_cpu is not the appropriate cpu to perform load balancing at
  3388. * this level.
  3389. */
  3390. if (!(*balance))
  3391. goto ret;
  3392. if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
  3393. check_asym_packing(env, &sds))
  3394. return sds.busiest;
  3395. /* There is no busy sibling group to pull tasks from */
  3396. if (!sds.busiest || sds.busiest_nr_running == 0)
  3397. goto out_balanced;
  3398. sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
  3399. /*
  3400. * If the busiest group is imbalanced the below checks don't
  3401. * work because they assumes all things are equal, which typically
  3402. * isn't true due to cpus_allowed constraints and the like.
  3403. */
  3404. if (sds.group_imb)
  3405. goto force_balance;
  3406. /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
  3407. if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
  3408. !sds.busiest_has_capacity)
  3409. goto force_balance;
  3410. /*
  3411. * If the local group is more busy than the selected busiest group
  3412. * don't try and pull any tasks.
  3413. */
  3414. if (sds.this_load >= sds.max_load)
  3415. goto out_balanced;
  3416. /*
  3417. * Don't pull any tasks if this group is already above the domain
  3418. * average load.
  3419. */
  3420. if (sds.this_load >= sds.avg_load)
  3421. goto out_balanced;
  3422. if (env->idle == CPU_IDLE) {
  3423. /*
  3424. * This cpu is idle. If the busiest group load doesn't
  3425. * have more tasks than the number of available cpu's and
  3426. * there is no imbalance between this and busiest group
  3427. * wrt to idle cpu's, it is balanced.
  3428. */
  3429. if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
  3430. sds.busiest_nr_running <= sds.busiest_group_weight)
  3431. goto out_balanced;
  3432. } else {
  3433. /*
  3434. * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
  3435. * imbalance_pct to be conservative.
  3436. */
  3437. if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
  3438. goto out_balanced;
  3439. }
  3440. force_balance:
  3441. /* Looks like there is an imbalance. Compute it */
  3442. calculate_imbalance(env, &sds);
  3443. return sds.busiest;
  3444. out_balanced:
  3445. ret:
  3446. env->imbalance = 0;
  3447. return NULL;
  3448. }
  3449. /*
  3450. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3451. */
  3452. static struct rq *find_busiest_queue(struct lb_env *env,
  3453. struct sched_group *group)
  3454. {
  3455. struct rq *busiest = NULL, *rq;
  3456. unsigned long max_load = 0;
  3457. int i;
  3458. for_each_cpu(i, sched_group_cpus(group)) {
  3459. unsigned long power = power_of(i);
  3460. unsigned long capacity = DIV_ROUND_CLOSEST(power,
  3461. SCHED_POWER_SCALE);
  3462. unsigned long wl;
  3463. if (!capacity)
  3464. capacity = fix_small_capacity(env->sd, group);
  3465. if (!cpumask_test_cpu(i, env->cpus))
  3466. continue;
  3467. rq = cpu_rq(i);
  3468. wl = weighted_cpuload(i);
  3469. /*
  3470. * When comparing with imbalance, use weighted_cpuload()
  3471. * which is not scaled with the cpu power.
  3472. */
  3473. if (capacity && rq->nr_running == 1 && wl > env->imbalance)
  3474. continue;
  3475. /*
  3476. * For the load comparisons with the other cpu's, consider
  3477. * the weighted_cpuload() scaled with the cpu power, so that
  3478. * the load can be moved away from the cpu that is potentially
  3479. * running at a lower capacity.
  3480. */
  3481. wl = (wl * SCHED_POWER_SCALE) / power;
  3482. if (wl > max_load) {
  3483. max_load = wl;
  3484. busiest = rq;
  3485. }
  3486. }
  3487. return busiest;
  3488. }
  3489. /*
  3490. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3491. * so long as it is large enough.
  3492. */
  3493. #define MAX_PINNED_INTERVAL 512
  3494. /* Working cpumask for load_balance and load_balance_newidle. */
  3495. DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3496. static int need_active_balance(struct lb_env *env)
  3497. {
  3498. struct sched_domain *sd = env->sd;
  3499. if (env->idle == CPU_NEWLY_IDLE) {
  3500. /*
  3501. * ASYM_PACKING needs to force migrate tasks from busy but
  3502. * higher numbered CPUs in order to pack all tasks in the
  3503. * lowest numbered CPUs.
  3504. */
  3505. if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
  3506. return 1;
  3507. }
  3508. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  3509. }
  3510. static int active_load_balance_cpu_stop(void *data);
  3511. /*
  3512. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3513. * tasks if there is an imbalance.
  3514. */
  3515. static int load_balance(int this_cpu, struct rq *this_rq,
  3516. struct sched_domain *sd, enum cpu_idle_type idle,
  3517. int *balance)
  3518. {
  3519. int ld_moved, cur_ld_moved, active_balance = 0;
  3520. int lb_iterations, max_lb_iterations;
  3521. struct sched_group *group;
  3522. struct rq *busiest;
  3523. unsigned long flags;
  3524. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3525. struct lb_env env = {
  3526. .sd = sd,
  3527. .dst_cpu = this_cpu,
  3528. .dst_rq = this_rq,
  3529. .dst_grpmask = sched_group_cpus(sd->groups),
  3530. .idle = idle,
  3531. .loop_break = sched_nr_migrate_break,
  3532. .cpus = cpus,
  3533. };
  3534. cpumask_copy(cpus, cpu_active_mask);
  3535. max_lb_iterations = cpumask_weight(env.dst_grpmask);
  3536. schedstat_inc(sd, lb_count[idle]);
  3537. redo:
  3538. group = find_busiest_group(&env, balance);
  3539. if (*balance == 0)
  3540. goto out_balanced;
  3541. if (!group) {
  3542. schedstat_inc(sd, lb_nobusyg[idle]);
  3543. goto out_balanced;
  3544. }
  3545. busiest = find_busiest_queue(&env, group);
  3546. if (!busiest) {
  3547. schedstat_inc(sd, lb_nobusyq[idle]);
  3548. goto out_balanced;
  3549. }
  3550. BUG_ON(busiest == this_rq);
  3551. schedstat_add(sd, lb_imbalance[idle], env.imbalance);
  3552. ld_moved = 0;
  3553. lb_iterations = 1;
  3554. if (busiest->nr_running > 1) {
  3555. /*
  3556. * Attempt to move tasks. If find_busiest_group has found
  3557. * an imbalance but busiest->nr_running <= 1, the group is
  3558. * still unbalanced. ld_moved simply stays zero, so it is
  3559. * correctly treated as an imbalance.
  3560. */
  3561. env.flags |= LBF_ALL_PINNED;
  3562. env.src_cpu = busiest->cpu;
  3563. env.src_rq = busiest;
  3564. env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
  3565. more_balance:
  3566. local_irq_save(flags);
  3567. double_rq_lock(this_rq, busiest);
  3568. if (!env.loop)
  3569. update_h_load(env.src_cpu);
  3570. /*
  3571. * cur_ld_moved - load moved in current iteration
  3572. * ld_moved - cumulative load moved across iterations
  3573. */
  3574. cur_ld_moved = move_tasks(&env);
  3575. ld_moved += cur_ld_moved;
  3576. double_rq_unlock(this_rq, busiest);
  3577. local_irq_restore(flags);
  3578. if (env.flags & LBF_NEED_BREAK) {
  3579. env.flags &= ~LBF_NEED_BREAK;
  3580. goto more_balance;
  3581. }
  3582. /*
  3583. * some other cpu did the load balance for us.
  3584. */
  3585. if (cur_ld_moved && env.dst_cpu != smp_processor_id())
  3586. resched_cpu(env.dst_cpu);
  3587. /*
  3588. * Revisit (affine) tasks on src_cpu that couldn't be moved to
  3589. * us and move them to an alternate dst_cpu in our sched_group
  3590. * where they can run. The upper limit on how many times we
  3591. * iterate on same src_cpu is dependent on number of cpus in our
  3592. * sched_group.
  3593. *
  3594. * This changes load balance semantics a bit on who can move
  3595. * load to a given_cpu. In addition to the given_cpu itself
  3596. * (or a ilb_cpu acting on its behalf where given_cpu is
  3597. * nohz-idle), we now have balance_cpu in a position to move
  3598. * load to given_cpu. In rare situations, this may cause
  3599. * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
  3600. * _independently_ and at _same_ time to move some load to
  3601. * given_cpu) causing exceess load to be moved to given_cpu.
  3602. * This however should not happen so much in practice and
  3603. * moreover subsequent load balance cycles should correct the
  3604. * excess load moved.
  3605. */
  3606. if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0 &&
  3607. lb_iterations++ < max_lb_iterations) {
  3608. this_rq = cpu_rq(env.new_dst_cpu);
  3609. env.dst_rq = this_rq;
  3610. env.dst_cpu = env.new_dst_cpu;
  3611. env.flags &= ~LBF_SOME_PINNED;
  3612. env.loop = 0;
  3613. env.loop_break = sched_nr_migrate_break;
  3614. /*
  3615. * Go back to "more_balance" rather than "redo" since we
  3616. * need to continue with same src_cpu.
  3617. */
  3618. goto more_balance;
  3619. }
  3620. /* All tasks on this runqueue were pinned by CPU affinity */
  3621. if (unlikely(env.flags & LBF_ALL_PINNED)) {
  3622. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3623. if (!cpumask_empty(cpus)) {
  3624. env.loop = 0;
  3625. env.loop_break = sched_nr_migrate_break;
  3626. goto redo;
  3627. }
  3628. goto out_balanced;
  3629. }
  3630. }
  3631. if (!ld_moved) {
  3632. schedstat_inc(sd, lb_failed[idle]);
  3633. /*
  3634. * Increment the failure counter only on periodic balance.
  3635. * We do not want newidle balance, which can be very
  3636. * frequent, pollute the failure counter causing
  3637. * excessive cache_hot migrations and active balances.
  3638. */
  3639. if (idle != CPU_NEWLY_IDLE)
  3640. sd->nr_balance_failed++;
  3641. if (need_active_balance(&env)) {
  3642. raw_spin_lock_irqsave(&busiest->lock, flags);
  3643. /* don't kick the active_load_balance_cpu_stop,
  3644. * if the curr task on busiest cpu can't be
  3645. * moved to this_cpu
  3646. */
  3647. if (!cpumask_test_cpu(this_cpu,
  3648. tsk_cpus_allowed(busiest->curr))) {
  3649. raw_spin_unlock_irqrestore(&busiest->lock,
  3650. flags);
  3651. env.flags |= LBF_ALL_PINNED;
  3652. goto out_one_pinned;
  3653. }
  3654. /*
  3655. * ->active_balance synchronizes accesses to
  3656. * ->active_balance_work. Once set, it's cleared
  3657. * only after active load balance is finished.
  3658. */
  3659. if (!busiest->active_balance) {
  3660. busiest->active_balance = 1;
  3661. busiest->push_cpu = this_cpu;
  3662. active_balance = 1;
  3663. }
  3664. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  3665. if (active_balance) {
  3666. stop_one_cpu_nowait(cpu_of(busiest),
  3667. active_load_balance_cpu_stop, busiest,
  3668. &busiest->active_balance_work);
  3669. }
  3670. /*
  3671. * We've kicked active balancing, reset the failure
  3672. * counter.
  3673. */
  3674. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3675. }
  3676. } else
  3677. sd->nr_balance_failed = 0;
  3678. if (likely(!active_balance)) {
  3679. /* We were unbalanced, so reset the balancing interval */
  3680. sd->balance_interval = sd->min_interval;
  3681. } else {
  3682. /*
  3683. * If we've begun active balancing, start to back off. This
  3684. * case may not be covered by the all_pinned logic if there
  3685. * is only 1 task on the busy runqueue (because we don't call
  3686. * move_tasks).
  3687. */
  3688. if (sd->balance_interval < sd->max_interval)
  3689. sd->balance_interval *= 2;
  3690. }
  3691. goto out;
  3692. out_balanced:
  3693. schedstat_inc(sd, lb_balanced[idle]);
  3694. sd->nr_balance_failed = 0;
  3695. out_one_pinned:
  3696. /* tune up the balancing interval */
  3697. if (((env.flags & LBF_ALL_PINNED) &&
  3698. sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3699. (sd->balance_interval < sd->max_interval))
  3700. sd->balance_interval *= 2;
  3701. ld_moved = 0;
  3702. out:
  3703. return ld_moved;
  3704. }
  3705. /*
  3706. * idle_balance is called by schedule() if this_cpu is about to become
  3707. * idle. Attempts to pull tasks from other CPUs.
  3708. */
  3709. void idle_balance(int this_cpu, struct rq *this_rq)
  3710. {
  3711. struct sched_domain *sd;
  3712. int pulled_task = 0;
  3713. unsigned long next_balance = jiffies + HZ;
  3714. this_rq->idle_stamp = this_rq->clock;
  3715. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  3716. return;
  3717. /*
  3718. * Drop the rq->lock, but keep IRQ/preempt disabled.
  3719. */
  3720. raw_spin_unlock(&this_rq->lock);
  3721. update_shares(this_cpu);
  3722. rcu_read_lock();
  3723. for_each_domain(this_cpu, sd) {
  3724. unsigned long interval;
  3725. int balance = 1;
  3726. if (!(sd->flags & SD_LOAD_BALANCE))
  3727. continue;
  3728. if (sd->flags & SD_BALANCE_NEWIDLE) {
  3729. /* If we've pulled tasks over stop searching: */
  3730. pulled_task = load_balance(this_cpu, this_rq,
  3731. sd, CPU_NEWLY_IDLE, &balance);
  3732. }
  3733. interval = msecs_to_jiffies(sd->balance_interval);
  3734. if (time_after(next_balance, sd->last_balance + interval))
  3735. next_balance = sd->last_balance + interval;
  3736. if (pulled_task) {
  3737. this_rq->idle_stamp = 0;
  3738. break;
  3739. }
  3740. }
  3741. rcu_read_unlock();
  3742. raw_spin_lock(&this_rq->lock);
  3743. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3744. /*
  3745. * We are going idle. next_balance may be set based on
  3746. * a busy processor. So reset next_balance.
  3747. */
  3748. this_rq->next_balance = next_balance;
  3749. }
  3750. }
  3751. /*
  3752. * active_load_balance_cpu_stop is run by cpu stopper. It pushes
  3753. * running tasks off the busiest CPU onto idle CPUs. It requires at
  3754. * least 1 task to be running on each physical CPU where possible, and
  3755. * avoids physical / logical imbalances.
  3756. */
  3757. static int active_load_balance_cpu_stop(void *data)
  3758. {
  3759. struct rq *busiest_rq = data;
  3760. int busiest_cpu = cpu_of(busiest_rq);
  3761. int target_cpu = busiest_rq->push_cpu;
  3762. struct rq *target_rq = cpu_rq(target_cpu);
  3763. struct sched_domain *sd;
  3764. raw_spin_lock_irq(&busiest_rq->lock);
  3765. /* make sure the requested cpu hasn't gone down in the meantime */
  3766. if (unlikely(busiest_cpu != smp_processor_id() ||
  3767. !busiest_rq->active_balance))
  3768. goto out_unlock;
  3769. /* Is there any task to move? */
  3770. if (busiest_rq->nr_running <= 1)
  3771. goto out_unlock;
  3772. /*
  3773. * This condition is "impossible", if it occurs
  3774. * we need to fix it. Originally reported by
  3775. * Bjorn Helgaas on a 128-cpu setup.
  3776. */
  3777. BUG_ON(busiest_rq == target_rq);
  3778. /* move a task from busiest_rq to target_rq */
  3779. double_lock_balance(busiest_rq, target_rq);
  3780. /* Search for an sd spanning us and the target CPU. */
  3781. rcu_read_lock();
  3782. for_each_domain(target_cpu, sd) {
  3783. if ((sd->flags & SD_LOAD_BALANCE) &&
  3784. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3785. break;
  3786. }
  3787. if (likely(sd)) {
  3788. struct lb_env env = {
  3789. .sd = sd,
  3790. .dst_cpu = target_cpu,
  3791. .dst_rq = target_rq,
  3792. .src_cpu = busiest_rq->cpu,
  3793. .src_rq = busiest_rq,
  3794. .idle = CPU_IDLE,
  3795. };
  3796. schedstat_inc(sd, alb_count);
  3797. if (move_one_task(&env))
  3798. schedstat_inc(sd, alb_pushed);
  3799. else
  3800. schedstat_inc(sd, alb_failed);
  3801. }
  3802. rcu_read_unlock();
  3803. double_unlock_balance(busiest_rq, target_rq);
  3804. out_unlock:
  3805. busiest_rq->active_balance = 0;
  3806. raw_spin_unlock_irq(&busiest_rq->lock);
  3807. return 0;
  3808. }
  3809. #ifdef CONFIG_NO_HZ
  3810. /*
  3811. * idle load balancing details
  3812. * - When one of the busy CPUs notice that there may be an idle rebalancing
  3813. * needed, they will kick the idle load balancer, which then does idle
  3814. * load balancing for all the idle CPUs.
  3815. */
  3816. static struct {
  3817. cpumask_var_t idle_cpus_mask;
  3818. atomic_t nr_cpus;
  3819. unsigned long next_balance; /* in jiffy units */
  3820. } nohz ____cacheline_aligned;
  3821. static inline int find_new_ilb(int call_cpu)
  3822. {
  3823. int ilb = cpumask_first(nohz.idle_cpus_mask);
  3824. if (ilb < nr_cpu_ids && idle_cpu(ilb))
  3825. return ilb;
  3826. return nr_cpu_ids;
  3827. }
  3828. /*
  3829. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  3830. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  3831. * CPU (if there is one).
  3832. */
  3833. static void nohz_balancer_kick(int cpu)
  3834. {
  3835. int ilb_cpu;
  3836. nohz.next_balance++;
  3837. ilb_cpu = find_new_ilb(cpu);
  3838. if (ilb_cpu >= nr_cpu_ids)
  3839. return;
  3840. if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
  3841. return;
  3842. /*
  3843. * Use smp_send_reschedule() instead of resched_cpu().
  3844. * This way we generate a sched IPI on the target cpu which
  3845. * is idle. And the softirq performing nohz idle load balance
  3846. * will be run before returning from the IPI.
  3847. */
  3848. smp_send_reschedule(ilb_cpu);
  3849. return;
  3850. }
  3851. static inline void clear_nohz_tick_stopped(int cpu)
  3852. {
  3853. if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
  3854. cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
  3855. atomic_dec(&nohz.nr_cpus);
  3856. clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
  3857. }
  3858. }
  3859. static inline void set_cpu_sd_state_busy(void)
  3860. {
  3861. struct sched_domain *sd;
  3862. int cpu = smp_processor_id();
  3863. if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
  3864. return;
  3865. clear_bit(NOHZ_IDLE, nohz_flags(cpu));
  3866. rcu_read_lock();
  3867. for_each_domain(cpu, sd)
  3868. atomic_inc(&sd->groups->sgp->nr_busy_cpus);
  3869. rcu_read_unlock();
  3870. }
  3871. void set_cpu_sd_state_idle(void)
  3872. {
  3873. struct sched_domain *sd;
  3874. int cpu = smp_processor_id();
  3875. if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
  3876. return;
  3877. set_bit(NOHZ_IDLE, nohz_flags(cpu));
  3878. rcu_read_lock();
  3879. for_each_domain(cpu, sd)
  3880. atomic_dec(&sd->groups->sgp->nr_busy_cpus);
  3881. rcu_read_unlock();
  3882. }
  3883. /*
  3884. * This routine will record that this cpu is going idle with tick stopped.
  3885. * This info will be used in performing idle load balancing in the future.
  3886. */
  3887. void select_nohz_load_balancer(int stop_tick)
  3888. {
  3889. int cpu = smp_processor_id();
  3890. /*
  3891. * If this cpu is going down, then nothing needs to be done.
  3892. */
  3893. if (!cpu_active(cpu))
  3894. return;
  3895. if (stop_tick) {
  3896. if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
  3897. return;
  3898. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  3899. atomic_inc(&nohz.nr_cpus);
  3900. set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
  3901. }
  3902. return;
  3903. }
  3904. static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
  3905. unsigned long action, void *hcpu)
  3906. {
  3907. switch (action & ~CPU_TASKS_FROZEN) {
  3908. case CPU_DYING:
  3909. clear_nohz_tick_stopped(smp_processor_id());
  3910. return NOTIFY_OK;
  3911. default:
  3912. return NOTIFY_DONE;
  3913. }
  3914. }
  3915. #endif
  3916. static DEFINE_SPINLOCK(balancing);
  3917. /*
  3918. * Scale the max load_balance interval with the number of CPUs in the system.
  3919. * This trades load-balance latency on larger machines for less cross talk.
  3920. */
  3921. void update_max_interval(void)
  3922. {
  3923. max_load_balance_interval = HZ*num_online_cpus()/10;
  3924. }
  3925. /*
  3926. * It checks each scheduling domain to see if it is due to be balanced,
  3927. * and initiates a balancing operation if so.
  3928. *
  3929. * Balancing parameters are set up in arch_init_sched_domains.
  3930. */
  3931. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3932. {
  3933. int balance = 1;
  3934. struct rq *rq = cpu_rq(cpu);
  3935. unsigned long interval;
  3936. struct sched_domain *sd;
  3937. /* Earliest time when we have to do rebalance again */
  3938. unsigned long next_balance = jiffies + 60*HZ;
  3939. int update_next_balance = 0;
  3940. int need_serialize;
  3941. update_shares(cpu);
  3942. rcu_read_lock();
  3943. for_each_domain(cpu, sd) {
  3944. if (!(sd->flags & SD_LOAD_BALANCE))
  3945. continue;
  3946. interval = sd->balance_interval;
  3947. if (idle != CPU_IDLE)
  3948. interval *= sd->busy_factor;
  3949. /* scale ms to jiffies */
  3950. interval = msecs_to_jiffies(interval);
  3951. interval = clamp(interval, 1UL, max_load_balance_interval);
  3952. need_serialize = sd->flags & SD_SERIALIZE;
  3953. if (need_serialize) {
  3954. if (!spin_trylock(&balancing))
  3955. goto out;
  3956. }
  3957. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3958. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3959. /*
  3960. * We've pulled tasks over so either we're no
  3961. * longer idle.
  3962. */
  3963. idle = CPU_NOT_IDLE;
  3964. }
  3965. sd->last_balance = jiffies;
  3966. }
  3967. if (need_serialize)
  3968. spin_unlock(&balancing);
  3969. out:
  3970. if (time_after(next_balance, sd->last_balance + interval)) {
  3971. next_balance = sd->last_balance + interval;
  3972. update_next_balance = 1;
  3973. }
  3974. /*
  3975. * Stop the load balance at this level. There is another
  3976. * CPU in our sched group which is doing load balancing more
  3977. * actively.
  3978. */
  3979. if (!balance)
  3980. break;
  3981. }
  3982. rcu_read_unlock();
  3983. /*
  3984. * next_balance will be updated only when there is a need.
  3985. * When the cpu is attached to null domain for ex, it will not be
  3986. * updated.
  3987. */
  3988. if (likely(update_next_balance))
  3989. rq->next_balance = next_balance;
  3990. }
  3991. #ifdef CONFIG_NO_HZ
  3992. /*
  3993. * In CONFIG_NO_HZ case, the idle balance kickee will do the
  3994. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3995. */
  3996. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
  3997. {
  3998. struct rq *this_rq = cpu_rq(this_cpu);
  3999. struct rq *rq;
  4000. int balance_cpu;
  4001. if (idle != CPU_IDLE ||
  4002. !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
  4003. goto end;
  4004. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  4005. if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
  4006. continue;
  4007. /*
  4008. * If this cpu gets work to do, stop the load balancing
  4009. * work being done for other cpus. Next load
  4010. * balancing owner will pick it up.
  4011. */
  4012. if (need_resched())
  4013. break;
  4014. raw_spin_lock_irq(&this_rq->lock);
  4015. update_rq_clock(this_rq);
  4016. update_idle_cpu_load(this_rq);
  4017. raw_spin_unlock_irq(&this_rq->lock);
  4018. rebalance_domains(balance_cpu, CPU_IDLE);
  4019. rq = cpu_rq(balance_cpu);
  4020. if (time_after(this_rq->next_balance, rq->next_balance))
  4021. this_rq->next_balance = rq->next_balance;
  4022. }
  4023. nohz.next_balance = this_rq->next_balance;
  4024. end:
  4025. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
  4026. }
  4027. /*
  4028. * Current heuristic for kicking the idle load balancer in the presence
  4029. * of an idle cpu is the system.
  4030. * - This rq has more than one task.
  4031. * - At any scheduler domain level, this cpu's scheduler group has multiple
  4032. * busy cpu's exceeding the group's power.
  4033. * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
  4034. * domain span are idle.
  4035. */
  4036. static inline int nohz_kick_needed(struct rq *rq, int cpu)
  4037. {
  4038. unsigned long now = jiffies;
  4039. struct sched_domain *sd;
  4040. if (unlikely(idle_cpu(cpu)))
  4041. return 0;
  4042. /*
  4043. * We may be recently in ticked or tickless idle mode. At the first
  4044. * busy tick after returning from idle, we will update the busy stats.
  4045. */
  4046. set_cpu_sd_state_busy();
  4047. clear_nohz_tick_stopped(cpu);
  4048. /*
  4049. * None are in tickless mode and hence no need for NOHZ idle load
  4050. * balancing.
  4051. */
  4052. if (likely(!atomic_read(&nohz.nr_cpus)))
  4053. return 0;
  4054. if (time_before(now, nohz.next_balance))
  4055. return 0;
  4056. if (rq->nr_running >= 2)
  4057. goto need_kick;
  4058. rcu_read_lock();
  4059. for_each_domain(cpu, sd) {
  4060. struct sched_group *sg = sd->groups;
  4061. struct sched_group_power *sgp = sg->sgp;
  4062. int nr_busy = atomic_read(&sgp->nr_busy_cpus);
  4063. if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
  4064. goto need_kick_unlock;
  4065. if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
  4066. && (cpumask_first_and(nohz.idle_cpus_mask,
  4067. sched_domain_span(sd)) < cpu))
  4068. goto need_kick_unlock;
  4069. if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
  4070. break;
  4071. }
  4072. rcu_read_unlock();
  4073. return 0;
  4074. need_kick_unlock:
  4075. rcu_read_unlock();
  4076. need_kick:
  4077. return 1;
  4078. }
  4079. #else
  4080. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
  4081. #endif
  4082. /*
  4083. * run_rebalance_domains is triggered when needed from the scheduler tick.
  4084. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  4085. */
  4086. static void run_rebalance_domains(struct softirq_action *h)
  4087. {
  4088. int this_cpu = smp_processor_id();
  4089. struct rq *this_rq = cpu_rq(this_cpu);
  4090. enum cpu_idle_type idle = this_rq->idle_balance ?
  4091. CPU_IDLE : CPU_NOT_IDLE;
  4092. rebalance_domains(this_cpu, idle);
  4093. /*
  4094. * If this cpu has a pending nohz_balance_kick, then do the
  4095. * balancing on behalf of the other idle cpus whose ticks are
  4096. * stopped.
  4097. */
  4098. nohz_idle_balance(this_cpu, idle);
  4099. }
  4100. static inline int on_null_domain(int cpu)
  4101. {
  4102. return !rcu_dereference_sched(cpu_rq(cpu)->sd);
  4103. }
  4104. /*
  4105. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4106. */
  4107. void trigger_load_balance(struct rq *rq, int cpu)
  4108. {
  4109. /* Don't need to rebalance while attached to NULL domain */
  4110. if (time_after_eq(jiffies, rq->next_balance) &&
  4111. likely(!on_null_domain(cpu)))
  4112. raise_softirq(SCHED_SOFTIRQ);
  4113. #ifdef CONFIG_NO_HZ
  4114. if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
  4115. nohz_balancer_kick(cpu);
  4116. #endif
  4117. }
  4118. static void rq_online_fair(struct rq *rq)
  4119. {
  4120. update_sysctl();
  4121. }
  4122. static void rq_offline_fair(struct rq *rq)
  4123. {
  4124. update_sysctl();
  4125. }
  4126. #endif /* CONFIG_SMP */
  4127. /*
  4128. * scheduler tick hitting a task of our scheduling class:
  4129. */
  4130. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  4131. {
  4132. struct cfs_rq *cfs_rq;
  4133. struct sched_entity *se = &curr->se;
  4134. for_each_sched_entity(se) {
  4135. cfs_rq = cfs_rq_of(se);
  4136. entity_tick(cfs_rq, se, queued);
  4137. }
  4138. }
  4139. /*
  4140. * called on fork with the child task as argument from the parent's context
  4141. * - child not yet on the tasklist
  4142. * - preemption disabled
  4143. */
  4144. static void task_fork_fair(struct task_struct *p)
  4145. {
  4146. struct cfs_rq *cfs_rq;
  4147. struct sched_entity *se = &p->se, *curr;
  4148. int this_cpu = smp_processor_id();
  4149. struct rq *rq = this_rq();
  4150. unsigned long flags;
  4151. raw_spin_lock_irqsave(&rq->lock, flags);
  4152. update_rq_clock(rq);
  4153. cfs_rq = task_cfs_rq(current);
  4154. curr = cfs_rq->curr;
  4155. if (unlikely(task_cpu(p) != this_cpu)) {
  4156. rcu_read_lock();
  4157. __set_task_cpu(p, this_cpu);
  4158. rcu_read_unlock();
  4159. }
  4160. update_curr(cfs_rq);
  4161. if (curr)
  4162. se->vruntime = curr->vruntime;
  4163. place_entity(cfs_rq, se, 1);
  4164. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  4165. /*
  4166. * Upon rescheduling, sched_class::put_prev_task() will place
  4167. * 'current' within the tree based on its new key value.
  4168. */
  4169. swap(curr->vruntime, se->vruntime);
  4170. resched_task(rq->curr);
  4171. }
  4172. se->vruntime -= cfs_rq->min_vruntime;
  4173. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4174. }
  4175. /*
  4176. * Priority of the task has changed. Check to see if we preempt
  4177. * the current task.
  4178. */
  4179. static void
  4180. prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
  4181. {
  4182. if (!p->se.on_rq)
  4183. return;
  4184. /*
  4185. * Reschedule if we are currently running on this runqueue and
  4186. * our priority decreased, or if we are not currently running on
  4187. * this runqueue and our priority is higher than the current's
  4188. */
  4189. if (rq->curr == p) {
  4190. if (p->prio > oldprio)
  4191. resched_task(rq->curr);
  4192. } else
  4193. check_preempt_curr(rq, p, 0);
  4194. }
  4195. static void switched_from_fair(struct rq *rq, struct task_struct *p)
  4196. {
  4197. struct sched_entity *se = &p->se;
  4198. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  4199. /*
  4200. * Ensure the task's vruntime is normalized, so that when its
  4201. * switched back to the fair class the enqueue_entity(.flags=0) will
  4202. * do the right thing.
  4203. *
  4204. * If it was on_rq, then the dequeue_entity(.flags=0) will already
  4205. * have normalized the vruntime, if it was !on_rq, then only when
  4206. * the task is sleeping will it still have non-normalized vruntime.
  4207. */
  4208. if (!se->on_rq && p->state != TASK_RUNNING) {
  4209. /*
  4210. * Fix up our vruntime so that the current sleep doesn't
  4211. * cause 'unlimited' sleep bonus.
  4212. */
  4213. place_entity(cfs_rq, se, 0);
  4214. se->vruntime -= cfs_rq->min_vruntime;
  4215. }
  4216. }
  4217. /*
  4218. * We switched to the sched_fair class.
  4219. */
  4220. static void switched_to_fair(struct rq *rq, struct task_struct *p)
  4221. {
  4222. if (!p->se.on_rq)
  4223. return;
  4224. /*
  4225. * We were most likely switched from sched_rt, so
  4226. * kick off the schedule if running, otherwise just see
  4227. * if we can still preempt the current task.
  4228. */
  4229. if (rq->curr == p)
  4230. resched_task(rq->curr);
  4231. else
  4232. check_preempt_curr(rq, p, 0);
  4233. }
  4234. /* Account for a task changing its policy or group.
  4235. *
  4236. * This routine is mostly called to set cfs_rq->curr field when a task
  4237. * migrates between groups/classes.
  4238. */
  4239. static void set_curr_task_fair(struct rq *rq)
  4240. {
  4241. struct sched_entity *se = &rq->curr->se;
  4242. for_each_sched_entity(se) {
  4243. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  4244. set_next_entity(cfs_rq, se);
  4245. /* ensure bandwidth has been allocated on our new cfs_rq */
  4246. account_cfs_rq_runtime(cfs_rq, 0);
  4247. }
  4248. }
  4249. void init_cfs_rq(struct cfs_rq *cfs_rq)
  4250. {
  4251. cfs_rq->tasks_timeline = RB_ROOT;
  4252. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  4253. #ifndef CONFIG_64BIT
  4254. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  4255. #endif
  4256. }
  4257. #ifdef CONFIG_FAIR_GROUP_SCHED
  4258. static void task_move_group_fair(struct task_struct *p, int on_rq)
  4259. {
  4260. /*
  4261. * If the task was not on the rq at the time of this cgroup movement
  4262. * it must have been asleep, sleeping tasks keep their ->vruntime
  4263. * absolute on their old rq until wakeup (needed for the fair sleeper
  4264. * bonus in place_entity()).
  4265. *
  4266. * If it was on the rq, we've just 'preempted' it, which does convert
  4267. * ->vruntime to a relative base.
  4268. *
  4269. * Make sure both cases convert their relative position when migrating
  4270. * to another cgroup's rq. This does somewhat interfere with the
  4271. * fair sleeper stuff for the first placement, but who cares.
  4272. */
  4273. /*
  4274. * When !on_rq, vruntime of the task has usually NOT been normalized.
  4275. * But there are some cases where it has already been normalized:
  4276. *
  4277. * - Moving a forked child which is waiting for being woken up by
  4278. * wake_up_new_task().
  4279. * - Moving a task which has been woken up by try_to_wake_up() and
  4280. * waiting for actually being woken up by sched_ttwu_pending().
  4281. *
  4282. * To prevent boost or penalty in the new cfs_rq caused by delta
  4283. * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
  4284. */
  4285. if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
  4286. on_rq = 1;
  4287. if (!on_rq)
  4288. p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
  4289. set_task_rq(p, task_cpu(p));
  4290. if (!on_rq)
  4291. p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
  4292. }
  4293. void free_fair_sched_group(struct task_group *tg)
  4294. {
  4295. int i;
  4296. destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
  4297. for_each_possible_cpu(i) {
  4298. if (tg->cfs_rq)
  4299. kfree(tg->cfs_rq[i]);
  4300. if (tg->se)
  4301. kfree(tg->se[i]);
  4302. }
  4303. kfree(tg->cfs_rq);
  4304. kfree(tg->se);
  4305. }
  4306. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  4307. {
  4308. struct cfs_rq *cfs_rq;
  4309. struct sched_entity *se;
  4310. int i;
  4311. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  4312. if (!tg->cfs_rq)
  4313. goto err;
  4314. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  4315. if (!tg->se)
  4316. goto err;
  4317. tg->shares = NICE_0_LOAD;
  4318. init_cfs_bandwidth(tg_cfs_bandwidth(tg));
  4319. for_each_possible_cpu(i) {
  4320. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  4321. GFP_KERNEL, cpu_to_node(i));
  4322. if (!cfs_rq)
  4323. goto err;
  4324. se = kzalloc_node(sizeof(struct sched_entity),
  4325. GFP_KERNEL, cpu_to_node(i));
  4326. if (!se)
  4327. goto err_free_rq;
  4328. init_cfs_rq(cfs_rq);
  4329. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  4330. }
  4331. return 1;
  4332. err_free_rq:
  4333. kfree(cfs_rq);
  4334. err:
  4335. return 0;
  4336. }
  4337. void unregister_fair_sched_group(struct task_group *tg, int cpu)
  4338. {
  4339. struct rq *rq = cpu_rq(cpu);
  4340. unsigned long flags;
  4341. /*
  4342. * Only empty task groups can be destroyed; so we can speculatively
  4343. * check on_list without danger of it being re-added.
  4344. */
  4345. if (!tg->cfs_rq[cpu]->on_list)
  4346. return;
  4347. raw_spin_lock_irqsave(&rq->lock, flags);
  4348. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  4349. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4350. }
  4351. void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  4352. struct sched_entity *se, int cpu,
  4353. struct sched_entity *parent)
  4354. {
  4355. struct rq *rq = cpu_rq(cpu);
  4356. cfs_rq->tg = tg;
  4357. cfs_rq->rq = rq;
  4358. #ifdef CONFIG_SMP
  4359. /* allow initial update_cfs_load() to truncate */
  4360. cfs_rq->load_stamp = 1;
  4361. #endif
  4362. init_cfs_rq_runtime(cfs_rq);
  4363. tg->cfs_rq[cpu] = cfs_rq;
  4364. tg->se[cpu] = se;
  4365. /* se could be NULL for root_task_group */
  4366. if (!se)
  4367. return;
  4368. if (!parent)
  4369. se->cfs_rq = &rq->cfs;
  4370. else
  4371. se->cfs_rq = parent->my_q;
  4372. se->my_q = cfs_rq;
  4373. update_load_set(&se->load, 0);
  4374. se->parent = parent;
  4375. }
  4376. static DEFINE_MUTEX(shares_mutex);
  4377. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  4378. {
  4379. int i;
  4380. unsigned long flags;
  4381. /*
  4382. * We can't change the weight of the root cgroup.
  4383. */
  4384. if (!tg->se[0])
  4385. return -EINVAL;
  4386. shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
  4387. mutex_lock(&shares_mutex);
  4388. if (tg->shares == shares)
  4389. goto done;
  4390. tg->shares = shares;
  4391. for_each_possible_cpu(i) {
  4392. struct rq *rq = cpu_rq(i);
  4393. struct sched_entity *se;
  4394. se = tg->se[i];
  4395. /* Propagate contribution to hierarchy */
  4396. raw_spin_lock_irqsave(&rq->lock, flags);
  4397. for_each_sched_entity(se)
  4398. update_cfs_shares(group_cfs_rq(se));
  4399. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4400. }
  4401. done:
  4402. mutex_unlock(&shares_mutex);
  4403. return 0;
  4404. }
  4405. #else /* CONFIG_FAIR_GROUP_SCHED */
  4406. void free_fair_sched_group(struct task_group *tg) { }
  4407. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  4408. {
  4409. return 1;
  4410. }
  4411. void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
  4412. #endif /* CONFIG_FAIR_GROUP_SCHED */
  4413. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  4414. {
  4415. struct sched_entity *se = &task->se;
  4416. unsigned int rr_interval = 0;
  4417. /*
  4418. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  4419. * idle runqueue:
  4420. */
  4421. if (rq->cfs.load.weight)
  4422. rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4423. return rr_interval;
  4424. }
  4425. /*
  4426. * All the scheduling class methods:
  4427. */
  4428. const struct sched_class fair_sched_class = {
  4429. .next = &idle_sched_class,
  4430. .enqueue_task = enqueue_task_fair,
  4431. .dequeue_task = dequeue_task_fair,
  4432. .yield_task = yield_task_fair,
  4433. .yield_to_task = yield_to_task_fair,
  4434. .check_preempt_curr = check_preempt_wakeup,
  4435. .pick_next_task = pick_next_task_fair,
  4436. .put_prev_task = put_prev_task_fair,
  4437. #ifdef CONFIG_SMP
  4438. .select_task_rq = select_task_rq_fair,
  4439. .rq_online = rq_online_fair,
  4440. .rq_offline = rq_offline_fair,
  4441. .task_waking = task_waking_fair,
  4442. #endif
  4443. .set_curr_task = set_curr_task_fair,
  4444. .task_tick = task_tick_fair,
  4445. .task_fork = task_fork_fair,
  4446. .prio_changed = prio_changed_fair,
  4447. .switched_from = switched_from_fair,
  4448. .switched_to = switched_to_fair,
  4449. .get_rr_interval = get_rr_interval_fair,
  4450. #ifdef CONFIG_FAIR_GROUP_SCHED
  4451. .task_move_group = task_move_group_fair,
  4452. #endif
  4453. };
  4454. #ifdef CONFIG_SCHED_DEBUG
  4455. void print_cfs_stats(struct seq_file *m, int cpu)
  4456. {
  4457. struct cfs_rq *cfs_rq;
  4458. rcu_read_lock();
  4459. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  4460. print_cfs_rq(m, cpu, cfs_rq);
  4461. rcu_read_unlock();
  4462. }
  4463. #endif
  4464. __init void init_sched_fair_class(void)
  4465. {
  4466. #ifdef CONFIG_SMP
  4467. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  4468. #ifdef CONFIG_NO_HZ
  4469. nohz.next_balance = jiffies;
  4470. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  4471. cpu_notifier(sched_ilb_notifier, 0);
  4472. #endif
  4473. #endif /* SMP */
  4474. }