amd_iommu.c 85 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743
  1. /*
  2. * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
  3. * Author: Joerg Roedel <joerg.roedel@amd.com>
  4. * Leo Duran <leo.duran@amd.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/ratelimit.h>
  20. #include <linux/pci.h>
  21. #include <linux/pci-ats.h>
  22. #include <linux/bitmap.h>
  23. #include <linux/slab.h>
  24. #include <linux/debugfs.h>
  25. #include <linux/scatterlist.h>
  26. #include <linux/dma-mapping.h>
  27. #include <linux/iommu-helper.h>
  28. #include <linux/iommu.h>
  29. #include <linux/delay.h>
  30. #include <linux/amd-iommu.h>
  31. #include <linux/notifier.h>
  32. #include <linux/export.h>
  33. #include <asm/msidef.h>
  34. #include <asm/proto.h>
  35. #include <asm/iommu.h>
  36. #include <asm/gart.h>
  37. #include <asm/dma.h>
  38. #include "amd_iommu_proto.h"
  39. #include "amd_iommu_types.h"
  40. #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
  41. #define LOOP_TIMEOUT 100000
  42. /*
  43. * This bitmap is used to advertise the page sizes our hardware support
  44. * to the IOMMU core, which will then use this information to split
  45. * physically contiguous memory regions it is mapping into page sizes
  46. * that we support.
  47. *
  48. * Traditionally the IOMMU core just handed us the mappings directly,
  49. * after making sure the size is an order of a 4KiB page and that the
  50. * mapping has natural alignment.
  51. *
  52. * To retain this behavior, we currently advertise that we support
  53. * all page sizes that are an order of 4KiB.
  54. *
  55. * If at some point we'd like to utilize the IOMMU core's new behavior,
  56. * we could change this to advertise the real page sizes we support.
  57. */
  58. #define AMD_IOMMU_PGSIZES (~0xFFFUL)
  59. static DEFINE_RWLOCK(amd_iommu_devtable_lock);
  60. /* A list of preallocated protection domains */
  61. static LIST_HEAD(iommu_pd_list);
  62. static DEFINE_SPINLOCK(iommu_pd_list_lock);
  63. /* List of all available dev_data structures */
  64. static LIST_HEAD(dev_data_list);
  65. static DEFINE_SPINLOCK(dev_data_list_lock);
  66. /*
  67. * Domain for untranslated devices - only allocated
  68. * if iommu=pt passed on kernel cmd line.
  69. */
  70. static struct protection_domain *pt_domain;
  71. static struct iommu_ops amd_iommu_ops;
  72. static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
  73. int amd_iommu_max_glx_val = -1;
  74. static struct dma_map_ops amd_iommu_dma_ops;
  75. /*
  76. * general struct to manage commands send to an IOMMU
  77. */
  78. struct iommu_cmd {
  79. u32 data[4];
  80. };
  81. static void update_domain(struct protection_domain *domain);
  82. static int __init alloc_passthrough_domain(void);
  83. /****************************************************************************
  84. *
  85. * Helper functions
  86. *
  87. ****************************************************************************/
  88. static struct iommu_dev_data *alloc_dev_data(u16 devid)
  89. {
  90. struct iommu_dev_data *dev_data;
  91. unsigned long flags;
  92. dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
  93. if (!dev_data)
  94. return NULL;
  95. dev_data->devid = devid;
  96. atomic_set(&dev_data->bind, 0);
  97. spin_lock_irqsave(&dev_data_list_lock, flags);
  98. list_add_tail(&dev_data->dev_data_list, &dev_data_list);
  99. spin_unlock_irqrestore(&dev_data_list_lock, flags);
  100. return dev_data;
  101. }
  102. static void free_dev_data(struct iommu_dev_data *dev_data)
  103. {
  104. unsigned long flags;
  105. spin_lock_irqsave(&dev_data_list_lock, flags);
  106. list_del(&dev_data->dev_data_list);
  107. spin_unlock_irqrestore(&dev_data_list_lock, flags);
  108. kfree(dev_data);
  109. }
  110. static struct iommu_dev_data *search_dev_data(u16 devid)
  111. {
  112. struct iommu_dev_data *dev_data;
  113. unsigned long flags;
  114. spin_lock_irqsave(&dev_data_list_lock, flags);
  115. list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
  116. if (dev_data->devid == devid)
  117. goto out_unlock;
  118. }
  119. dev_data = NULL;
  120. out_unlock:
  121. spin_unlock_irqrestore(&dev_data_list_lock, flags);
  122. return dev_data;
  123. }
  124. static struct iommu_dev_data *find_dev_data(u16 devid)
  125. {
  126. struct iommu_dev_data *dev_data;
  127. dev_data = search_dev_data(devid);
  128. if (dev_data == NULL)
  129. dev_data = alloc_dev_data(devid);
  130. return dev_data;
  131. }
  132. static inline u16 get_device_id(struct device *dev)
  133. {
  134. struct pci_dev *pdev = to_pci_dev(dev);
  135. return calc_devid(pdev->bus->number, pdev->devfn);
  136. }
  137. static struct iommu_dev_data *get_dev_data(struct device *dev)
  138. {
  139. return dev->archdata.iommu;
  140. }
  141. static bool pci_iommuv2_capable(struct pci_dev *pdev)
  142. {
  143. static const int caps[] = {
  144. PCI_EXT_CAP_ID_ATS,
  145. PCI_EXT_CAP_ID_PRI,
  146. PCI_EXT_CAP_ID_PASID,
  147. };
  148. int i, pos;
  149. for (i = 0; i < 3; ++i) {
  150. pos = pci_find_ext_capability(pdev, caps[i]);
  151. if (pos == 0)
  152. return false;
  153. }
  154. return true;
  155. }
  156. static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
  157. {
  158. struct iommu_dev_data *dev_data;
  159. dev_data = get_dev_data(&pdev->dev);
  160. return dev_data->errata & (1 << erratum) ? true : false;
  161. }
  162. /*
  163. * In this function the list of preallocated protection domains is traversed to
  164. * find the domain for a specific device
  165. */
  166. static struct dma_ops_domain *find_protection_domain(u16 devid)
  167. {
  168. struct dma_ops_domain *entry, *ret = NULL;
  169. unsigned long flags;
  170. u16 alias = amd_iommu_alias_table[devid];
  171. if (list_empty(&iommu_pd_list))
  172. return NULL;
  173. spin_lock_irqsave(&iommu_pd_list_lock, flags);
  174. list_for_each_entry(entry, &iommu_pd_list, list) {
  175. if (entry->target_dev == devid ||
  176. entry->target_dev == alias) {
  177. ret = entry;
  178. break;
  179. }
  180. }
  181. spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
  182. return ret;
  183. }
  184. /*
  185. * This function checks if the driver got a valid device from the caller to
  186. * avoid dereferencing invalid pointers.
  187. */
  188. static bool check_device(struct device *dev)
  189. {
  190. u16 devid;
  191. if (!dev || !dev->dma_mask)
  192. return false;
  193. /* No device or no PCI device */
  194. if (dev->bus != &pci_bus_type)
  195. return false;
  196. devid = get_device_id(dev);
  197. /* Out of our scope? */
  198. if (devid > amd_iommu_last_bdf)
  199. return false;
  200. if (amd_iommu_rlookup_table[devid] == NULL)
  201. return false;
  202. return true;
  203. }
  204. static void swap_pci_ref(struct pci_dev **from, struct pci_dev *to)
  205. {
  206. pci_dev_put(*from);
  207. *from = to;
  208. }
  209. #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
  210. static int iommu_init_device(struct device *dev)
  211. {
  212. struct pci_dev *dma_pdev, *pdev = to_pci_dev(dev);
  213. struct iommu_dev_data *dev_data;
  214. struct iommu_group *group;
  215. u16 alias;
  216. int ret;
  217. if (dev->archdata.iommu)
  218. return 0;
  219. dev_data = find_dev_data(get_device_id(dev));
  220. if (!dev_data)
  221. return -ENOMEM;
  222. alias = amd_iommu_alias_table[dev_data->devid];
  223. if (alias != dev_data->devid) {
  224. struct iommu_dev_data *alias_data;
  225. alias_data = find_dev_data(alias);
  226. if (alias_data == NULL) {
  227. pr_err("AMD-Vi: Warning: Unhandled device %s\n",
  228. dev_name(dev));
  229. free_dev_data(dev_data);
  230. return -ENOTSUPP;
  231. }
  232. dev_data->alias_data = alias_data;
  233. dma_pdev = pci_get_bus_and_slot(alias >> 8, alias & 0xff);
  234. } else
  235. dma_pdev = pci_dev_get(pdev);
  236. /* Account for quirked devices */
  237. swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));
  238. /*
  239. * If it's a multifunction device that does not support our
  240. * required ACS flags, add to the same group as function 0.
  241. */
  242. if (dma_pdev->multifunction &&
  243. !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS))
  244. swap_pci_ref(&dma_pdev,
  245. pci_get_slot(dma_pdev->bus,
  246. PCI_DEVFN(PCI_SLOT(dma_pdev->devfn),
  247. 0)));
  248. /*
  249. * Devices on the root bus go through the iommu. If that's not us,
  250. * find the next upstream device and test ACS up to the root bus.
  251. * Finding the next device may require skipping virtual buses.
  252. */
  253. while (!pci_is_root_bus(dma_pdev->bus)) {
  254. struct pci_bus *bus = dma_pdev->bus;
  255. while (!bus->self) {
  256. if (!pci_is_root_bus(bus))
  257. bus = bus->parent;
  258. else
  259. goto root_bus;
  260. }
  261. if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
  262. break;
  263. swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
  264. }
  265. root_bus:
  266. group = iommu_group_get(&dma_pdev->dev);
  267. pci_dev_put(dma_pdev);
  268. if (!group) {
  269. group = iommu_group_alloc();
  270. if (IS_ERR(group))
  271. return PTR_ERR(group);
  272. }
  273. ret = iommu_group_add_device(group, dev);
  274. iommu_group_put(group);
  275. if (ret)
  276. return ret;
  277. if (pci_iommuv2_capable(pdev)) {
  278. struct amd_iommu *iommu;
  279. iommu = amd_iommu_rlookup_table[dev_data->devid];
  280. dev_data->iommu_v2 = iommu->is_iommu_v2;
  281. }
  282. dev->archdata.iommu = dev_data;
  283. return 0;
  284. }
  285. static void iommu_ignore_device(struct device *dev)
  286. {
  287. u16 devid, alias;
  288. devid = get_device_id(dev);
  289. alias = amd_iommu_alias_table[devid];
  290. memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
  291. memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
  292. amd_iommu_rlookup_table[devid] = NULL;
  293. amd_iommu_rlookup_table[alias] = NULL;
  294. }
  295. static void iommu_uninit_device(struct device *dev)
  296. {
  297. iommu_group_remove_device(dev);
  298. /*
  299. * Nothing to do here - we keep dev_data around for unplugged devices
  300. * and reuse it when the device is re-plugged - not doing so would
  301. * introduce a ton of races.
  302. */
  303. }
  304. void __init amd_iommu_uninit_devices(void)
  305. {
  306. struct iommu_dev_data *dev_data, *n;
  307. struct pci_dev *pdev = NULL;
  308. for_each_pci_dev(pdev) {
  309. if (!check_device(&pdev->dev))
  310. continue;
  311. iommu_uninit_device(&pdev->dev);
  312. }
  313. /* Free all of our dev_data structures */
  314. list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
  315. free_dev_data(dev_data);
  316. }
  317. int __init amd_iommu_init_devices(void)
  318. {
  319. struct pci_dev *pdev = NULL;
  320. int ret = 0;
  321. for_each_pci_dev(pdev) {
  322. if (!check_device(&pdev->dev))
  323. continue;
  324. ret = iommu_init_device(&pdev->dev);
  325. if (ret == -ENOTSUPP)
  326. iommu_ignore_device(&pdev->dev);
  327. else if (ret)
  328. goto out_free;
  329. }
  330. return 0;
  331. out_free:
  332. amd_iommu_uninit_devices();
  333. return ret;
  334. }
  335. #ifdef CONFIG_AMD_IOMMU_STATS
  336. /*
  337. * Initialization code for statistics collection
  338. */
  339. DECLARE_STATS_COUNTER(compl_wait);
  340. DECLARE_STATS_COUNTER(cnt_map_single);
  341. DECLARE_STATS_COUNTER(cnt_unmap_single);
  342. DECLARE_STATS_COUNTER(cnt_map_sg);
  343. DECLARE_STATS_COUNTER(cnt_unmap_sg);
  344. DECLARE_STATS_COUNTER(cnt_alloc_coherent);
  345. DECLARE_STATS_COUNTER(cnt_free_coherent);
  346. DECLARE_STATS_COUNTER(cross_page);
  347. DECLARE_STATS_COUNTER(domain_flush_single);
  348. DECLARE_STATS_COUNTER(domain_flush_all);
  349. DECLARE_STATS_COUNTER(alloced_io_mem);
  350. DECLARE_STATS_COUNTER(total_map_requests);
  351. DECLARE_STATS_COUNTER(complete_ppr);
  352. DECLARE_STATS_COUNTER(invalidate_iotlb);
  353. DECLARE_STATS_COUNTER(invalidate_iotlb_all);
  354. DECLARE_STATS_COUNTER(pri_requests);
  355. static struct dentry *stats_dir;
  356. static struct dentry *de_fflush;
  357. static void amd_iommu_stats_add(struct __iommu_counter *cnt)
  358. {
  359. if (stats_dir == NULL)
  360. return;
  361. cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
  362. &cnt->value);
  363. }
  364. static void amd_iommu_stats_init(void)
  365. {
  366. stats_dir = debugfs_create_dir("amd-iommu", NULL);
  367. if (stats_dir == NULL)
  368. return;
  369. de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
  370. &amd_iommu_unmap_flush);
  371. amd_iommu_stats_add(&compl_wait);
  372. amd_iommu_stats_add(&cnt_map_single);
  373. amd_iommu_stats_add(&cnt_unmap_single);
  374. amd_iommu_stats_add(&cnt_map_sg);
  375. amd_iommu_stats_add(&cnt_unmap_sg);
  376. amd_iommu_stats_add(&cnt_alloc_coherent);
  377. amd_iommu_stats_add(&cnt_free_coherent);
  378. amd_iommu_stats_add(&cross_page);
  379. amd_iommu_stats_add(&domain_flush_single);
  380. amd_iommu_stats_add(&domain_flush_all);
  381. amd_iommu_stats_add(&alloced_io_mem);
  382. amd_iommu_stats_add(&total_map_requests);
  383. amd_iommu_stats_add(&complete_ppr);
  384. amd_iommu_stats_add(&invalidate_iotlb);
  385. amd_iommu_stats_add(&invalidate_iotlb_all);
  386. amd_iommu_stats_add(&pri_requests);
  387. }
  388. #endif
  389. /****************************************************************************
  390. *
  391. * Interrupt handling functions
  392. *
  393. ****************************************************************************/
  394. static void dump_dte_entry(u16 devid)
  395. {
  396. int i;
  397. for (i = 0; i < 4; ++i)
  398. pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
  399. amd_iommu_dev_table[devid].data[i]);
  400. }
  401. static void dump_command(unsigned long phys_addr)
  402. {
  403. struct iommu_cmd *cmd = phys_to_virt(phys_addr);
  404. int i;
  405. for (i = 0; i < 4; ++i)
  406. pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
  407. }
  408. static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
  409. {
  410. int type, devid, domid, flags;
  411. volatile u32 *event = __evt;
  412. int count = 0;
  413. u64 address;
  414. retry:
  415. type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
  416. devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
  417. domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
  418. flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
  419. address = (u64)(((u64)event[3]) << 32) | event[2];
  420. if (type == 0) {
  421. /* Did we hit the erratum? */
  422. if (++count == LOOP_TIMEOUT) {
  423. pr_err("AMD-Vi: No event written to event log\n");
  424. return;
  425. }
  426. udelay(1);
  427. goto retry;
  428. }
  429. printk(KERN_ERR "AMD-Vi: Event logged [");
  430. switch (type) {
  431. case EVENT_TYPE_ILL_DEV:
  432. printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
  433. "address=0x%016llx flags=0x%04x]\n",
  434. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  435. address, flags);
  436. dump_dte_entry(devid);
  437. break;
  438. case EVENT_TYPE_IO_FAULT:
  439. printk("IO_PAGE_FAULT device=%02x:%02x.%x "
  440. "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  441. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  442. domid, address, flags);
  443. break;
  444. case EVENT_TYPE_DEV_TAB_ERR:
  445. printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
  446. "address=0x%016llx flags=0x%04x]\n",
  447. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  448. address, flags);
  449. break;
  450. case EVENT_TYPE_PAGE_TAB_ERR:
  451. printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
  452. "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  453. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  454. domid, address, flags);
  455. break;
  456. case EVENT_TYPE_ILL_CMD:
  457. printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
  458. dump_command(address);
  459. break;
  460. case EVENT_TYPE_CMD_HARD_ERR:
  461. printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
  462. "flags=0x%04x]\n", address, flags);
  463. break;
  464. case EVENT_TYPE_IOTLB_INV_TO:
  465. printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
  466. "address=0x%016llx]\n",
  467. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  468. address);
  469. break;
  470. case EVENT_TYPE_INV_DEV_REQ:
  471. printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
  472. "address=0x%016llx flags=0x%04x]\n",
  473. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  474. address, flags);
  475. break;
  476. default:
  477. printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
  478. }
  479. memset(__evt, 0, 4 * sizeof(u32));
  480. }
  481. static void iommu_poll_events(struct amd_iommu *iommu)
  482. {
  483. u32 head, tail;
  484. unsigned long flags;
  485. spin_lock_irqsave(&iommu->lock, flags);
  486. head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
  487. tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
  488. while (head != tail) {
  489. iommu_print_event(iommu, iommu->evt_buf + head);
  490. head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
  491. }
  492. writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
  493. spin_unlock_irqrestore(&iommu->lock, flags);
  494. }
  495. static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
  496. {
  497. struct amd_iommu_fault fault;
  498. INC_STATS_COUNTER(pri_requests);
  499. if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
  500. pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
  501. return;
  502. }
  503. fault.address = raw[1];
  504. fault.pasid = PPR_PASID(raw[0]);
  505. fault.device_id = PPR_DEVID(raw[0]);
  506. fault.tag = PPR_TAG(raw[0]);
  507. fault.flags = PPR_FLAGS(raw[0]);
  508. atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
  509. }
  510. static void iommu_poll_ppr_log(struct amd_iommu *iommu)
  511. {
  512. unsigned long flags;
  513. u32 head, tail;
  514. if (iommu->ppr_log == NULL)
  515. return;
  516. /* enable ppr interrupts again */
  517. writel(MMIO_STATUS_PPR_INT_MASK, iommu->mmio_base + MMIO_STATUS_OFFSET);
  518. spin_lock_irqsave(&iommu->lock, flags);
  519. head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
  520. tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
  521. while (head != tail) {
  522. volatile u64 *raw;
  523. u64 entry[2];
  524. int i;
  525. raw = (u64 *)(iommu->ppr_log + head);
  526. /*
  527. * Hardware bug: Interrupt may arrive before the entry is
  528. * written to memory. If this happens we need to wait for the
  529. * entry to arrive.
  530. */
  531. for (i = 0; i < LOOP_TIMEOUT; ++i) {
  532. if (PPR_REQ_TYPE(raw[0]) != 0)
  533. break;
  534. udelay(1);
  535. }
  536. /* Avoid memcpy function-call overhead */
  537. entry[0] = raw[0];
  538. entry[1] = raw[1];
  539. /*
  540. * To detect the hardware bug we need to clear the entry
  541. * back to zero.
  542. */
  543. raw[0] = raw[1] = 0UL;
  544. /* Update head pointer of hardware ring-buffer */
  545. head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
  546. writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
  547. /*
  548. * Release iommu->lock because ppr-handling might need to
  549. * re-aquire it
  550. */
  551. spin_unlock_irqrestore(&iommu->lock, flags);
  552. /* Handle PPR entry */
  553. iommu_handle_ppr_entry(iommu, entry);
  554. spin_lock_irqsave(&iommu->lock, flags);
  555. /* Refresh ring-buffer information */
  556. head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
  557. tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
  558. }
  559. spin_unlock_irqrestore(&iommu->lock, flags);
  560. }
  561. irqreturn_t amd_iommu_int_thread(int irq, void *data)
  562. {
  563. struct amd_iommu *iommu;
  564. for_each_iommu(iommu) {
  565. iommu_poll_events(iommu);
  566. iommu_poll_ppr_log(iommu);
  567. }
  568. return IRQ_HANDLED;
  569. }
  570. irqreturn_t amd_iommu_int_handler(int irq, void *data)
  571. {
  572. return IRQ_WAKE_THREAD;
  573. }
  574. /****************************************************************************
  575. *
  576. * IOMMU command queuing functions
  577. *
  578. ****************************************************************************/
  579. static int wait_on_sem(volatile u64 *sem)
  580. {
  581. int i = 0;
  582. while (*sem == 0 && i < LOOP_TIMEOUT) {
  583. udelay(1);
  584. i += 1;
  585. }
  586. if (i == LOOP_TIMEOUT) {
  587. pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
  588. return -EIO;
  589. }
  590. return 0;
  591. }
  592. static void copy_cmd_to_buffer(struct amd_iommu *iommu,
  593. struct iommu_cmd *cmd,
  594. u32 tail)
  595. {
  596. u8 *target;
  597. target = iommu->cmd_buf + tail;
  598. tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
  599. /* Copy command to buffer */
  600. memcpy(target, cmd, sizeof(*cmd));
  601. /* Tell the IOMMU about it */
  602. writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  603. }
  604. static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
  605. {
  606. WARN_ON(address & 0x7ULL);
  607. memset(cmd, 0, sizeof(*cmd));
  608. cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
  609. cmd->data[1] = upper_32_bits(__pa(address));
  610. cmd->data[2] = 1;
  611. CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
  612. }
  613. static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
  614. {
  615. memset(cmd, 0, sizeof(*cmd));
  616. cmd->data[0] = devid;
  617. CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
  618. }
  619. static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
  620. size_t size, u16 domid, int pde)
  621. {
  622. u64 pages;
  623. int s;
  624. pages = iommu_num_pages(address, size, PAGE_SIZE);
  625. s = 0;
  626. if (pages > 1) {
  627. /*
  628. * If we have to flush more than one page, flush all
  629. * TLB entries for this domain
  630. */
  631. address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
  632. s = 1;
  633. }
  634. address &= PAGE_MASK;
  635. memset(cmd, 0, sizeof(*cmd));
  636. cmd->data[1] |= domid;
  637. cmd->data[2] = lower_32_bits(address);
  638. cmd->data[3] = upper_32_bits(address);
  639. CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
  640. if (s) /* size bit - we flush more than one 4kb page */
  641. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  642. if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
  643. cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
  644. }
  645. static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
  646. u64 address, size_t size)
  647. {
  648. u64 pages;
  649. int s;
  650. pages = iommu_num_pages(address, size, PAGE_SIZE);
  651. s = 0;
  652. if (pages > 1) {
  653. /*
  654. * If we have to flush more than one page, flush all
  655. * TLB entries for this domain
  656. */
  657. address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
  658. s = 1;
  659. }
  660. address &= PAGE_MASK;
  661. memset(cmd, 0, sizeof(*cmd));
  662. cmd->data[0] = devid;
  663. cmd->data[0] |= (qdep & 0xff) << 24;
  664. cmd->data[1] = devid;
  665. cmd->data[2] = lower_32_bits(address);
  666. cmd->data[3] = upper_32_bits(address);
  667. CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
  668. if (s)
  669. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  670. }
  671. static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
  672. u64 address, bool size)
  673. {
  674. memset(cmd, 0, sizeof(*cmd));
  675. address &= ~(0xfffULL);
  676. cmd->data[0] = pasid & PASID_MASK;
  677. cmd->data[1] = domid;
  678. cmd->data[2] = lower_32_bits(address);
  679. cmd->data[3] = upper_32_bits(address);
  680. cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
  681. cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
  682. if (size)
  683. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  684. CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
  685. }
  686. static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
  687. int qdep, u64 address, bool size)
  688. {
  689. memset(cmd, 0, sizeof(*cmd));
  690. address &= ~(0xfffULL);
  691. cmd->data[0] = devid;
  692. cmd->data[0] |= (pasid & 0xff) << 16;
  693. cmd->data[0] |= (qdep & 0xff) << 24;
  694. cmd->data[1] = devid;
  695. cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16;
  696. cmd->data[2] = lower_32_bits(address);
  697. cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
  698. cmd->data[3] = upper_32_bits(address);
  699. if (size)
  700. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  701. CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
  702. }
  703. static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
  704. int status, int tag, bool gn)
  705. {
  706. memset(cmd, 0, sizeof(*cmd));
  707. cmd->data[0] = devid;
  708. if (gn) {
  709. cmd->data[1] = pasid & PASID_MASK;
  710. cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
  711. }
  712. cmd->data[3] = tag & 0x1ff;
  713. cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
  714. CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
  715. }
  716. static void build_inv_all(struct iommu_cmd *cmd)
  717. {
  718. memset(cmd, 0, sizeof(*cmd));
  719. CMD_SET_TYPE(cmd, CMD_INV_ALL);
  720. }
  721. /*
  722. * Writes the command to the IOMMUs command buffer and informs the
  723. * hardware about the new command.
  724. */
  725. static int iommu_queue_command_sync(struct amd_iommu *iommu,
  726. struct iommu_cmd *cmd,
  727. bool sync)
  728. {
  729. u32 left, tail, head, next_tail;
  730. unsigned long flags;
  731. WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
  732. again:
  733. spin_lock_irqsave(&iommu->lock, flags);
  734. head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
  735. tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  736. next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
  737. left = (head - next_tail) % iommu->cmd_buf_size;
  738. if (left <= 2) {
  739. struct iommu_cmd sync_cmd;
  740. volatile u64 sem = 0;
  741. int ret;
  742. build_completion_wait(&sync_cmd, (u64)&sem);
  743. copy_cmd_to_buffer(iommu, &sync_cmd, tail);
  744. spin_unlock_irqrestore(&iommu->lock, flags);
  745. if ((ret = wait_on_sem(&sem)) != 0)
  746. return ret;
  747. goto again;
  748. }
  749. copy_cmd_to_buffer(iommu, cmd, tail);
  750. /* We need to sync now to make sure all commands are processed */
  751. iommu->need_sync = sync;
  752. spin_unlock_irqrestore(&iommu->lock, flags);
  753. return 0;
  754. }
  755. static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
  756. {
  757. return iommu_queue_command_sync(iommu, cmd, true);
  758. }
  759. /*
  760. * This function queues a completion wait command into the command
  761. * buffer of an IOMMU
  762. */
  763. static int iommu_completion_wait(struct amd_iommu *iommu)
  764. {
  765. struct iommu_cmd cmd;
  766. volatile u64 sem = 0;
  767. int ret;
  768. if (!iommu->need_sync)
  769. return 0;
  770. build_completion_wait(&cmd, (u64)&sem);
  771. ret = iommu_queue_command_sync(iommu, &cmd, false);
  772. if (ret)
  773. return ret;
  774. return wait_on_sem(&sem);
  775. }
  776. static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
  777. {
  778. struct iommu_cmd cmd;
  779. build_inv_dte(&cmd, devid);
  780. return iommu_queue_command(iommu, &cmd);
  781. }
  782. static void iommu_flush_dte_all(struct amd_iommu *iommu)
  783. {
  784. u32 devid;
  785. for (devid = 0; devid <= 0xffff; ++devid)
  786. iommu_flush_dte(iommu, devid);
  787. iommu_completion_wait(iommu);
  788. }
  789. /*
  790. * This function uses heavy locking and may disable irqs for some time. But
  791. * this is no issue because it is only called during resume.
  792. */
  793. static void iommu_flush_tlb_all(struct amd_iommu *iommu)
  794. {
  795. u32 dom_id;
  796. for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
  797. struct iommu_cmd cmd;
  798. build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
  799. dom_id, 1);
  800. iommu_queue_command(iommu, &cmd);
  801. }
  802. iommu_completion_wait(iommu);
  803. }
  804. static void iommu_flush_all(struct amd_iommu *iommu)
  805. {
  806. struct iommu_cmd cmd;
  807. build_inv_all(&cmd);
  808. iommu_queue_command(iommu, &cmd);
  809. iommu_completion_wait(iommu);
  810. }
  811. void iommu_flush_all_caches(struct amd_iommu *iommu)
  812. {
  813. if (iommu_feature(iommu, FEATURE_IA)) {
  814. iommu_flush_all(iommu);
  815. } else {
  816. iommu_flush_dte_all(iommu);
  817. iommu_flush_tlb_all(iommu);
  818. }
  819. }
  820. /*
  821. * Command send function for flushing on-device TLB
  822. */
  823. static int device_flush_iotlb(struct iommu_dev_data *dev_data,
  824. u64 address, size_t size)
  825. {
  826. struct amd_iommu *iommu;
  827. struct iommu_cmd cmd;
  828. int qdep;
  829. qdep = dev_data->ats.qdep;
  830. iommu = amd_iommu_rlookup_table[dev_data->devid];
  831. build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
  832. return iommu_queue_command(iommu, &cmd);
  833. }
  834. /*
  835. * Command send function for invalidating a device table entry
  836. */
  837. static int device_flush_dte(struct iommu_dev_data *dev_data)
  838. {
  839. struct amd_iommu *iommu;
  840. int ret;
  841. iommu = amd_iommu_rlookup_table[dev_data->devid];
  842. ret = iommu_flush_dte(iommu, dev_data->devid);
  843. if (ret)
  844. return ret;
  845. if (dev_data->ats.enabled)
  846. ret = device_flush_iotlb(dev_data, 0, ~0UL);
  847. return ret;
  848. }
  849. /*
  850. * TLB invalidation function which is called from the mapping functions.
  851. * It invalidates a single PTE if the range to flush is within a single
  852. * page. Otherwise it flushes the whole TLB of the IOMMU.
  853. */
  854. static void __domain_flush_pages(struct protection_domain *domain,
  855. u64 address, size_t size, int pde)
  856. {
  857. struct iommu_dev_data *dev_data;
  858. struct iommu_cmd cmd;
  859. int ret = 0, i;
  860. build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
  861. for (i = 0; i < amd_iommus_present; ++i) {
  862. if (!domain->dev_iommu[i])
  863. continue;
  864. /*
  865. * Devices of this domain are behind this IOMMU
  866. * We need a TLB flush
  867. */
  868. ret |= iommu_queue_command(amd_iommus[i], &cmd);
  869. }
  870. list_for_each_entry(dev_data, &domain->dev_list, list) {
  871. if (!dev_data->ats.enabled)
  872. continue;
  873. ret |= device_flush_iotlb(dev_data, address, size);
  874. }
  875. WARN_ON(ret);
  876. }
  877. static void domain_flush_pages(struct protection_domain *domain,
  878. u64 address, size_t size)
  879. {
  880. __domain_flush_pages(domain, address, size, 0);
  881. }
  882. /* Flush the whole IO/TLB for a given protection domain */
  883. static void domain_flush_tlb(struct protection_domain *domain)
  884. {
  885. __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
  886. }
  887. /* Flush the whole IO/TLB for a given protection domain - including PDE */
  888. static void domain_flush_tlb_pde(struct protection_domain *domain)
  889. {
  890. __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
  891. }
  892. static void domain_flush_complete(struct protection_domain *domain)
  893. {
  894. int i;
  895. for (i = 0; i < amd_iommus_present; ++i) {
  896. if (!domain->dev_iommu[i])
  897. continue;
  898. /*
  899. * Devices of this domain are behind this IOMMU
  900. * We need to wait for completion of all commands.
  901. */
  902. iommu_completion_wait(amd_iommus[i]);
  903. }
  904. }
  905. /*
  906. * This function flushes the DTEs for all devices in domain
  907. */
  908. static void domain_flush_devices(struct protection_domain *domain)
  909. {
  910. struct iommu_dev_data *dev_data;
  911. list_for_each_entry(dev_data, &domain->dev_list, list)
  912. device_flush_dte(dev_data);
  913. }
  914. /****************************************************************************
  915. *
  916. * The functions below are used the create the page table mappings for
  917. * unity mapped regions.
  918. *
  919. ****************************************************************************/
  920. /*
  921. * This function is used to add another level to an IO page table. Adding
  922. * another level increases the size of the address space by 9 bits to a size up
  923. * to 64 bits.
  924. */
  925. static bool increase_address_space(struct protection_domain *domain,
  926. gfp_t gfp)
  927. {
  928. u64 *pte;
  929. if (domain->mode == PAGE_MODE_6_LEVEL)
  930. /* address space already 64 bit large */
  931. return false;
  932. pte = (void *)get_zeroed_page(gfp);
  933. if (!pte)
  934. return false;
  935. *pte = PM_LEVEL_PDE(domain->mode,
  936. virt_to_phys(domain->pt_root));
  937. domain->pt_root = pte;
  938. domain->mode += 1;
  939. domain->updated = true;
  940. return true;
  941. }
  942. static u64 *alloc_pte(struct protection_domain *domain,
  943. unsigned long address,
  944. unsigned long page_size,
  945. u64 **pte_page,
  946. gfp_t gfp)
  947. {
  948. int level, end_lvl;
  949. u64 *pte, *page;
  950. BUG_ON(!is_power_of_2(page_size));
  951. while (address > PM_LEVEL_SIZE(domain->mode))
  952. increase_address_space(domain, gfp);
  953. level = domain->mode - 1;
  954. pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
  955. address = PAGE_SIZE_ALIGN(address, page_size);
  956. end_lvl = PAGE_SIZE_LEVEL(page_size);
  957. while (level > end_lvl) {
  958. if (!IOMMU_PTE_PRESENT(*pte)) {
  959. page = (u64 *)get_zeroed_page(gfp);
  960. if (!page)
  961. return NULL;
  962. *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
  963. }
  964. /* No level skipping support yet */
  965. if (PM_PTE_LEVEL(*pte) != level)
  966. return NULL;
  967. level -= 1;
  968. pte = IOMMU_PTE_PAGE(*pte);
  969. if (pte_page && level == end_lvl)
  970. *pte_page = pte;
  971. pte = &pte[PM_LEVEL_INDEX(level, address)];
  972. }
  973. return pte;
  974. }
  975. /*
  976. * This function checks if there is a PTE for a given dma address. If
  977. * there is one, it returns the pointer to it.
  978. */
  979. static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
  980. {
  981. int level;
  982. u64 *pte;
  983. if (address > PM_LEVEL_SIZE(domain->mode))
  984. return NULL;
  985. level = domain->mode - 1;
  986. pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
  987. while (level > 0) {
  988. /* Not Present */
  989. if (!IOMMU_PTE_PRESENT(*pte))
  990. return NULL;
  991. /* Large PTE */
  992. if (PM_PTE_LEVEL(*pte) == 0x07) {
  993. unsigned long pte_mask, __pte;
  994. /*
  995. * If we have a series of large PTEs, make
  996. * sure to return a pointer to the first one.
  997. */
  998. pte_mask = PTE_PAGE_SIZE(*pte);
  999. pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
  1000. __pte = ((unsigned long)pte) & pte_mask;
  1001. return (u64 *)__pte;
  1002. }
  1003. /* No level skipping support yet */
  1004. if (PM_PTE_LEVEL(*pte) != level)
  1005. return NULL;
  1006. level -= 1;
  1007. /* Walk to the next level */
  1008. pte = IOMMU_PTE_PAGE(*pte);
  1009. pte = &pte[PM_LEVEL_INDEX(level, address)];
  1010. }
  1011. return pte;
  1012. }
  1013. /*
  1014. * Generic mapping functions. It maps a physical address into a DMA
  1015. * address space. It allocates the page table pages if necessary.
  1016. * In the future it can be extended to a generic mapping function
  1017. * supporting all features of AMD IOMMU page tables like level skipping
  1018. * and full 64 bit address spaces.
  1019. */
  1020. static int iommu_map_page(struct protection_domain *dom,
  1021. unsigned long bus_addr,
  1022. unsigned long phys_addr,
  1023. int prot,
  1024. unsigned long page_size)
  1025. {
  1026. u64 __pte, *pte;
  1027. int i, count;
  1028. if (!(prot & IOMMU_PROT_MASK))
  1029. return -EINVAL;
  1030. bus_addr = PAGE_ALIGN(bus_addr);
  1031. phys_addr = PAGE_ALIGN(phys_addr);
  1032. count = PAGE_SIZE_PTE_COUNT(page_size);
  1033. pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
  1034. for (i = 0; i < count; ++i)
  1035. if (IOMMU_PTE_PRESENT(pte[i]))
  1036. return -EBUSY;
  1037. if (page_size > PAGE_SIZE) {
  1038. __pte = PAGE_SIZE_PTE(phys_addr, page_size);
  1039. __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
  1040. } else
  1041. __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
  1042. if (prot & IOMMU_PROT_IR)
  1043. __pte |= IOMMU_PTE_IR;
  1044. if (prot & IOMMU_PROT_IW)
  1045. __pte |= IOMMU_PTE_IW;
  1046. for (i = 0; i < count; ++i)
  1047. pte[i] = __pte;
  1048. update_domain(dom);
  1049. return 0;
  1050. }
  1051. static unsigned long iommu_unmap_page(struct protection_domain *dom,
  1052. unsigned long bus_addr,
  1053. unsigned long page_size)
  1054. {
  1055. unsigned long long unmap_size, unmapped;
  1056. u64 *pte;
  1057. BUG_ON(!is_power_of_2(page_size));
  1058. unmapped = 0;
  1059. while (unmapped < page_size) {
  1060. pte = fetch_pte(dom, bus_addr);
  1061. if (!pte) {
  1062. /*
  1063. * No PTE for this address
  1064. * move forward in 4kb steps
  1065. */
  1066. unmap_size = PAGE_SIZE;
  1067. } else if (PM_PTE_LEVEL(*pte) == 0) {
  1068. /* 4kb PTE found for this address */
  1069. unmap_size = PAGE_SIZE;
  1070. *pte = 0ULL;
  1071. } else {
  1072. int count, i;
  1073. /* Large PTE found which maps this address */
  1074. unmap_size = PTE_PAGE_SIZE(*pte);
  1075. count = PAGE_SIZE_PTE_COUNT(unmap_size);
  1076. for (i = 0; i < count; i++)
  1077. pte[i] = 0ULL;
  1078. }
  1079. bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
  1080. unmapped += unmap_size;
  1081. }
  1082. BUG_ON(!is_power_of_2(unmapped));
  1083. return unmapped;
  1084. }
  1085. /*
  1086. * This function checks if a specific unity mapping entry is needed for
  1087. * this specific IOMMU.
  1088. */
  1089. static int iommu_for_unity_map(struct amd_iommu *iommu,
  1090. struct unity_map_entry *entry)
  1091. {
  1092. u16 bdf, i;
  1093. for (i = entry->devid_start; i <= entry->devid_end; ++i) {
  1094. bdf = amd_iommu_alias_table[i];
  1095. if (amd_iommu_rlookup_table[bdf] == iommu)
  1096. return 1;
  1097. }
  1098. return 0;
  1099. }
  1100. /*
  1101. * This function actually applies the mapping to the page table of the
  1102. * dma_ops domain.
  1103. */
  1104. static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
  1105. struct unity_map_entry *e)
  1106. {
  1107. u64 addr;
  1108. int ret;
  1109. for (addr = e->address_start; addr < e->address_end;
  1110. addr += PAGE_SIZE) {
  1111. ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
  1112. PAGE_SIZE);
  1113. if (ret)
  1114. return ret;
  1115. /*
  1116. * if unity mapping is in aperture range mark the page
  1117. * as allocated in the aperture
  1118. */
  1119. if (addr < dma_dom->aperture_size)
  1120. __set_bit(addr >> PAGE_SHIFT,
  1121. dma_dom->aperture[0]->bitmap);
  1122. }
  1123. return 0;
  1124. }
  1125. /*
  1126. * Init the unity mappings for a specific IOMMU in the system
  1127. *
  1128. * Basically iterates over all unity mapping entries and applies them to
  1129. * the default domain DMA of that IOMMU if necessary.
  1130. */
  1131. static int iommu_init_unity_mappings(struct amd_iommu *iommu)
  1132. {
  1133. struct unity_map_entry *entry;
  1134. int ret;
  1135. list_for_each_entry(entry, &amd_iommu_unity_map, list) {
  1136. if (!iommu_for_unity_map(iommu, entry))
  1137. continue;
  1138. ret = dma_ops_unity_map(iommu->default_dom, entry);
  1139. if (ret)
  1140. return ret;
  1141. }
  1142. return 0;
  1143. }
  1144. /*
  1145. * Inits the unity mappings required for a specific device
  1146. */
  1147. static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
  1148. u16 devid)
  1149. {
  1150. struct unity_map_entry *e;
  1151. int ret;
  1152. list_for_each_entry(e, &amd_iommu_unity_map, list) {
  1153. if (!(devid >= e->devid_start && devid <= e->devid_end))
  1154. continue;
  1155. ret = dma_ops_unity_map(dma_dom, e);
  1156. if (ret)
  1157. return ret;
  1158. }
  1159. return 0;
  1160. }
  1161. /****************************************************************************
  1162. *
  1163. * The next functions belong to the address allocator for the dma_ops
  1164. * interface functions. They work like the allocators in the other IOMMU
  1165. * drivers. Its basically a bitmap which marks the allocated pages in
  1166. * the aperture. Maybe it could be enhanced in the future to a more
  1167. * efficient allocator.
  1168. *
  1169. ****************************************************************************/
  1170. /*
  1171. * The address allocator core functions.
  1172. *
  1173. * called with domain->lock held
  1174. */
  1175. /*
  1176. * Used to reserve address ranges in the aperture (e.g. for exclusion
  1177. * ranges.
  1178. */
  1179. static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
  1180. unsigned long start_page,
  1181. unsigned int pages)
  1182. {
  1183. unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
  1184. if (start_page + pages > last_page)
  1185. pages = last_page - start_page;
  1186. for (i = start_page; i < start_page + pages; ++i) {
  1187. int index = i / APERTURE_RANGE_PAGES;
  1188. int page = i % APERTURE_RANGE_PAGES;
  1189. __set_bit(page, dom->aperture[index]->bitmap);
  1190. }
  1191. }
  1192. /*
  1193. * This function is used to add a new aperture range to an existing
  1194. * aperture in case of dma_ops domain allocation or address allocation
  1195. * failure.
  1196. */
  1197. static int alloc_new_range(struct dma_ops_domain *dma_dom,
  1198. bool populate, gfp_t gfp)
  1199. {
  1200. int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
  1201. struct amd_iommu *iommu;
  1202. unsigned long i, old_size;
  1203. #ifdef CONFIG_IOMMU_STRESS
  1204. populate = false;
  1205. #endif
  1206. if (index >= APERTURE_MAX_RANGES)
  1207. return -ENOMEM;
  1208. dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
  1209. if (!dma_dom->aperture[index])
  1210. return -ENOMEM;
  1211. dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
  1212. if (!dma_dom->aperture[index]->bitmap)
  1213. goto out_free;
  1214. dma_dom->aperture[index]->offset = dma_dom->aperture_size;
  1215. if (populate) {
  1216. unsigned long address = dma_dom->aperture_size;
  1217. int i, num_ptes = APERTURE_RANGE_PAGES / 512;
  1218. u64 *pte, *pte_page;
  1219. for (i = 0; i < num_ptes; ++i) {
  1220. pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
  1221. &pte_page, gfp);
  1222. if (!pte)
  1223. goto out_free;
  1224. dma_dom->aperture[index]->pte_pages[i] = pte_page;
  1225. address += APERTURE_RANGE_SIZE / 64;
  1226. }
  1227. }
  1228. old_size = dma_dom->aperture_size;
  1229. dma_dom->aperture_size += APERTURE_RANGE_SIZE;
  1230. /* Reserve address range used for MSI messages */
  1231. if (old_size < MSI_ADDR_BASE_LO &&
  1232. dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
  1233. unsigned long spage;
  1234. int pages;
  1235. pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
  1236. spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
  1237. dma_ops_reserve_addresses(dma_dom, spage, pages);
  1238. }
  1239. /* Initialize the exclusion range if necessary */
  1240. for_each_iommu(iommu) {
  1241. if (iommu->exclusion_start &&
  1242. iommu->exclusion_start >= dma_dom->aperture[index]->offset
  1243. && iommu->exclusion_start < dma_dom->aperture_size) {
  1244. unsigned long startpage;
  1245. int pages = iommu_num_pages(iommu->exclusion_start,
  1246. iommu->exclusion_length,
  1247. PAGE_SIZE);
  1248. startpage = iommu->exclusion_start >> PAGE_SHIFT;
  1249. dma_ops_reserve_addresses(dma_dom, startpage, pages);
  1250. }
  1251. }
  1252. /*
  1253. * Check for areas already mapped as present in the new aperture
  1254. * range and mark those pages as reserved in the allocator. Such
  1255. * mappings may already exist as a result of requested unity
  1256. * mappings for devices.
  1257. */
  1258. for (i = dma_dom->aperture[index]->offset;
  1259. i < dma_dom->aperture_size;
  1260. i += PAGE_SIZE) {
  1261. u64 *pte = fetch_pte(&dma_dom->domain, i);
  1262. if (!pte || !IOMMU_PTE_PRESENT(*pte))
  1263. continue;
  1264. dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
  1265. }
  1266. update_domain(&dma_dom->domain);
  1267. return 0;
  1268. out_free:
  1269. update_domain(&dma_dom->domain);
  1270. free_page((unsigned long)dma_dom->aperture[index]->bitmap);
  1271. kfree(dma_dom->aperture[index]);
  1272. dma_dom->aperture[index] = NULL;
  1273. return -ENOMEM;
  1274. }
  1275. static unsigned long dma_ops_area_alloc(struct device *dev,
  1276. struct dma_ops_domain *dom,
  1277. unsigned int pages,
  1278. unsigned long align_mask,
  1279. u64 dma_mask,
  1280. unsigned long start)
  1281. {
  1282. unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
  1283. int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
  1284. int i = start >> APERTURE_RANGE_SHIFT;
  1285. unsigned long boundary_size;
  1286. unsigned long address = -1;
  1287. unsigned long limit;
  1288. next_bit >>= PAGE_SHIFT;
  1289. boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
  1290. PAGE_SIZE) >> PAGE_SHIFT;
  1291. for (;i < max_index; ++i) {
  1292. unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
  1293. if (dom->aperture[i]->offset >= dma_mask)
  1294. break;
  1295. limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
  1296. dma_mask >> PAGE_SHIFT);
  1297. address = iommu_area_alloc(dom->aperture[i]->bitmap,
  1298. limit, next_bit, pages, 0,
  1299. boundary_size, align_mask);
  1300. if (address != -1) {
  1301. address = dom->aperture[i]->offset +
  1302. (address << PAGE_SHIFT);
  1303. dom->next_address = address + (pages << PAGE_SHIFT);
  1304. break;
  1305. }
  1306. next_bit = 0;
  1307. }
  1308. return address;
  1309. }
  1310. static unsigned long dma_ops_alloc_addresses(struct device *dev,
  1311. struct dma_ops_domain *dom,
  1312. unsigned int pages,
  1313. unsigned long align_mask,
  1314. u64 dma_mask)
  1315. {
  1316. unsigned long address;
  1317. #ifdef CONFIG_IOMMU_STRESS
  1318. dom->next_address = 0;
  1319. dom->need_flush = true;
  1320. #endif
  1321. address = dma_ops_area_alloc(dev, dom, pages, align_mask,
  1322. dma_mask, dom->next_address);
  1323. if (address == -1) {
  1324. dom->next_address = 0;
  1325. address = dma_ops_area_alloc(dev, dom, pages, align_mask,
  1326. dma_mask, 0);
  1327. dom->need_flush = true;
  1328. }
  1329. if (unlikely(address == -1))
  1330. address = DMA_ERROR_CODE;
  1331. WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
  1332. return address;
  1333. }
  1334. /*
  1335. * The address free function.
  1336. *
  1337. * called with domain->lock held
  1338. */
  1339. static void dma_ops_free_addresses(struct dma_ops_domain *dom,
  1340. unsigned long address,
  1341. unsigned int pages)
  1342. {
  1343. unsigned i = address >> APERTURE_RANGE_SHIFT;
  1344. struct aperture_range *range = dom->aperture[i];
  1345. BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
  1346. #ifdef CONFIG_IOMMU_STRESS
  1347. if (i < 4)
  1348. return;
  1349. #endif
  1350. if (address >= dom->next_address)
  1351. dom->need_flush = true;
  1352. address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
  1353. bitmap_clear(range->bitmap, address, pages);
  1354. }
  1355. /****************************************************************************
  1356. *
  1357. * The next functions belong to the domain allocation. A domain is
  1358. * allocated for every IOMMU as the default domain. If device isolation
  1359. * is enabled, every device get its own domain. The most important thing
  1360. * about domains is the page table mapping the DMA address space they
  1361. * contain.
  1362. *
  1363. ****************************************************************************/
  1364. /*
  1365. * This function adds a protection domain to the global protection domain list
  1366. */
  1367. static void add_domain_to_list(struct protection_domain *domain)
  1368. {
  1369. unsigned long flags;
  1370. spin_lock_irqsave(&amd_iommu_pd_lock, flags);
  1371. list_add(&domain->list, &amd_iommu_pd_list);
  1372. spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
  1373. }
  1374. /*
  1375. * This function removes a protection domain to the global
  1376. * protection domain list
  1377. */
  1378. static void del_domain_from_list(struct protection_domain *domain)
  1379. {
  1380. unsigned long flags;
  1381. spin_lock_irqsave(&amd_iommu_pd_lock, flags);
  1382. list_del(&domain->list);
  1383. spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
  1384. }
  1385. static u16 domain_id_alloc(void)
  1386. {
  1387. unsigned long flags;
  1388. int id;
  1389. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1390. id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
  1391. BUG_ON(id == 0);
  1392. if (id > 0 && id < MAX_DOMAIN_ID)
  1393. __set_bit(id, amd_iommu_pd_alloc_bitmap);
  1394. else
  1395. id = 0;
  1396. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1397. return id;
  1398. }
  1399. static void domain_id_free(int id)
  1400. {
  1401. unsigned long flags;
  1402. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1403. if (id > 0 && id < MAX_DOMAIN_ID)
  1404. __clear_bit(id, amd_iommu_pd_alloc_bitmap);
  1405. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1406. }
  1407. static void free_pagetable(struct protection_domain *domain)
  1408. {
  1409. int i, j;
  1410. u64 *p1, *p2, *p3;
  1411. p1 = domain->pt_root;
  1412. if (!p1)
  1413. return;
  1414. for (i = 0; i < 512; ++i) {
  1415. if (!IOMMU_PTE_PRESENT(p1[i]))
  1416. continue;
  1417. p2 = IOMMU_PTE_PAGE(p1[i]);
  1418. for (j = 0; j < 512; ++j) {
  1419. if (!IOMMU_PTE_PRESENT(p2[j]))
  1420. continue;
  1421. p3 = IOMMU_PTE_PAGE(p2[j]);
  1422. free_page((unsigned long)p3);
  1423. }
  1424. free_page((unsigned long)p2);
  1425. }
  1426. free_page((unsigned long)p1);
  1427. domain->pt_root = NULL;
  1428. }
  1429. static void free_gcr3_tbl_level1(u64 *tbl)
  1430. {
  1431. u64 *ptr;
  1432. int i;
  1433. for (i = 0; i < 512; ++i) {
  1434. if (!(tbl[i] & GCR3_VALID))
  1435. continue;
  1436. ptr = __va(tbl[i] & PAGE_MASK);
  1437. free_page((unsigned long)ptr);
  1438. }
  1439. }
  1440. static void free_gcr3_tbl_level2(u64 *tbl)
  1441. {
  1442. u64 *ptr;
  1443. int i;
  1444. for (i = 0; i < 512; ++i) {
  1445. if (!(tbl[i] & GCR3_VALID))
  1446. continue;
  1447. ptr = __va(tbl[i] & PAGE_MASK);
  1448. free_gcr3_tbl_level1(ptr);
  1449. }
  1450. }
  1451. static void free_gcr3_table(struct protection_domain *domain)
  1452. {
  1453. if (domain->glx == 2)
  1454. free_gcr3_tbl_level2(domain->gcr3_tbl);
  1455. else if (domain->glx == 1)
  1456. free_gcr3_tbl_level1(domain->gcr3_tbl);
  1457. else if (domain->glx != 0)
  1458. BUG();
  1459. free_page((unsigned long)domain->gcr3_tbl);
  1460. }
  1461. /*
  1462. * Free a domain, only used if something went wrong in the
  1463. * allocation path and we need to free an already allocated page table
  1464. */
  1465. static void dma_ops_domain_free(struct dma_ops_domain *dom)
  1466. {
  1467. int i;
  1468. if (!dom)
  1469. return;
  1470. del_domain_from_list(&dom->domain);
  1471. free_pagetable(&dom->domain);
  1472. for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
  1473. if (!dom->aperture[i])
  1474. continue;
  1475. free_page((unsigned long)dom->aperture[i]->bitmap);
  1476. kfree(dom->aperture[i]);
  1477. }
  1478. kfree(dom);
  1479. }
  1480. /*
  1481. * Allocates a new protection domain usable for the dma_ops functions.
  1482. * It also initializes the page table and the address allocator data
  1483. * structures required for the dma_ops interface
  1484. */
  1485. static struct dma_ops_domain *dma_ops_domain_alloc(void)
  1486. {
  1487. struct dma_ops_domain *dma_dom;
  1488. dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
  1489. if (!dma_dom)
  1490. return NULL;
  1491. spin_lock_init(&dma_dom->domain.lock);
  1492. dma_dom->domain.id = domain_id_alloc();
  1493. if (dma_dom->domain.id == 0)
  1494. goto free_dma_dom;
  1495. INIT_LIST_HEAD(&dma_dom->domain.dev_list);
  1496. dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
  1497. dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  1498. dma_dom->domain.flags = PD_DMA_OPS_MASK;
  1499. dma_dom->domain.priv = dma_dom;
  1500. if (!dma_dom->domain.pt_root)
  1501. goto free_dma_dom;
  1502. dma_dom->need_flush = false;
  1503. dma_dom->target_dev = 0xffff;
  1504. add_domain_to_list(&dma_dom->domain);
  1505. if (alloc_new_range(dma_dom, true, GFP_KERNEL))
  1506. goto free_dma_dom;
  1507. /*
  1508. * mark the first page as allocated so we never return 0 as
  1509. * a valid dma-address. So we can use 0 as error value
  1510. */
  1511. dma_dom->aperture[0]->bitmap[0] = 1;
  1512. dma_dom->next_address = 0;
  1513. return dma_dom;
  1514. free_dma_dom:
  1515. dma_ops_domain_free(dma_dom);
  1516. return NULL;
  1517. }
  1518. /*
  1519. * little helper function to check whether a given protection domain is a
  1520. * dma_ops domain
  1521. */
  1522. static bool dma_ops_domain(struct protection_domain *domain)
  1523. {
  1524. return domain->flags & PD_DMA_OPS_MASK;
  1525. }
  1526. static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
  1527. {
  1528. u64 pte_root = 0;
  1529. u64 flags = 0;
  1530. if (domain->mode != PAGE_MODE_NONE)
  1531. pte_root = virt_to_phys(domain->pt_root);
  1532. pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
  1533. << DEV_ENTRY_MODE_SHIFT;
  1534. pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
  1535. flags = amd_iommu_dev_table[devid].data[1];
  1536. if (ats)
  1537. flags |= DTE_FLAG_IOTLB;
  1538. if (domain->flags & PD_IOMMUV2_MASK) {
  1539. u64 gcr3 = __pa(domain->gcr3_tbl);
  1540. u64 glx = domain->glx;
  1541. u64 tmp;
  1542. pte_root |= DTE_FLAG_GV;
  1543. pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
  1544. /* First mask out possible old values for GCR3 table */
  1545. tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
  1546. flags &= ~tmp;
  1547. tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
  1548. flags &= ~tmp;
  1549. /* Encode GCR3 table into DTE */
  1550. tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
  1551. pte_root |= tmp;
  1552. tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
  1553. flags |= tmp;
  1554. tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
  1555. flags |= tmp;
  1556. }
  1557. flags &= ~(0xffffUL);
  1558. flags |= domain->id;
  1559. amd_iommu_dev_table[devid].data[1] = flags;
  1560. amd_iommu_dev_table[devid].data[0] = pte_root;
  1561. }
  1562. static void clear_dte_entry(u16 devid)
  1563. {
  1564. /* remove entry from the device table seen by the hardware */
  1565. amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
  1566. amd_iommu_dev_table[devid].data[1] = 0;
  1567. amd_iommu_apply_erratum_63(devid);
  1568. }
  1569. static void do_attach(struct iommu_dev_data *dev_data,
  1570. struct protection_domain *domain)
  1571. {
  1572. struct amd_iommu *iommu;
  1573. bool ats;
  1574. iommu = amd_iommu_rlookup_table[dev_data->devid];
  1575. ats = dev_data->ats.enabled;
  1576. /* Update data structures */
  1577. dev_data->domain = domain;
  1578. list_add(&dev_data->list, &domain->dev_list);
  1579. set_dte_entry(dev_data->devid, domain, ats);
  1580. /* Do reference counting */
  1581. domain->dev_iommu[iommu->index] += 1;
  1582. domain->dev_cnt += 1;
  1583. /* Flush the DTE entry */
  1584. device_flush_dte(dev_data);
  1585. }
  1586. static void do_detach(struct iommu_dev_data *dev_data)
  1587. {
  1588. struct amd_iommu *iommu;
  1589. iommu = amd_iommu_rlookup_table[dev_data->devid];
  1590. /* decrease reference counters */
  1591. dev_data->domain->dev_iommu[iommu->index] -= 1;
  1592. dev_data->domain->dev_cnt -= 1;
  1593. /* Update data structures */
  1594. dev_data->domain = NULL;
  1595. list_del(&dev_data->list);
  1596. clear_dte_entry(dev_data->devid);
  1597. /* Flush the DTE entry */
  1598. device_flush_dte(dev_data);
  1599. }
  1600. /*
  1601. * If a device is not yet associated with a domain, this function does
  1602. * assigns it visible for the hardware
  1603. */
  1604. static int __attach_device(struct iommu_dev_data *dev_data,
  1605. struct protection_domain *domain)
  1606. {
  1607. int ret;
  1608. /* lock domain */
  1609. spin_lock(&domain->lock);
  1610. if (dev_data->alias_data != NULL) {
  1611. struct iommu_dev_data *alias_data = dev_data->alias_data;
  1612. /* Some sanity checks */
  1613. ret = -EBUSY;
  1614. if (alias_data->domain != NULL &&
  1615. alias_data->domain != domain)
  1616. goto out_unlock;
  1617. if (dev_data->domain != NULL &&
  1618. dev_data->domain != domain)
  1619. goto out_unlock;
  1620. /* Do real assignment */
  1621. if (alias_data->domain == NULL)
  1622. do_attach(alias_data, domain);
  1623. atomic_inc(&alias_data->bind);
  1624. }
  1625. if (dev_data->domain == NULL)
  1626. do_attach(dev_data, domain);
  1627. atomic_inc(&dev_data->bind);
  1628. ret = 0;
  1629. out_unlock:
  1630. /* ready */
  1631. spin_unlock(&domain->lock);
  1632. return ret;
  1633. }
  1634. static void pdev_iommuv2_disable(struct pci_dev *pdev)
  1635. {
  1636. pci_disable_ats(pdev);
  1637. pci_disable_pri(pdev);
  1638. pci_disable_pasid(pdev);
  1639. }
  1640. /* FIXME: Change generic reset-function to do the same */
  1641. static int pri_reset_while_enabled(struct pci_dev *pdev)
  1642. {
  1643. u16 control;
  1644. int pos;
  1645. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
  1646. if (!pos)
  1647. return -EINVAL;
  1648. pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
  1649. control |= PCI_PRI_CTRL_RESET;
  1650. pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
  1651. return 0;
  1652. }
  1653. static int pdev_iommuv2_enable(struct pci_dev *pdev)
  1654. {
  1655. bool reset_enable;
  1656. int reqs, ret;
  1657. /* FIXME: Hardcode number of outstanding requests for now */
  1658. reqs = 32;
  1659. if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
  1660. reqs = 1;
  1661. reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
  1662. /* Only allow access to user-accessible pages */
  1663. ret = pci_enable_pasid(pdev, 0);
  1664. if (ret)
  1665. goto out_err;
  1666. /* First reset the PRI state of the device */
  1667. ret = pci_reset_pri(pdev);
  1668. if (ret)
  1669. goto out_err;
  1670. /* Enable PRI */
  1671. ret = pci_enable_pri(pdev, reqs);
  1672. if (ret)
  1673. goto out_err;
  1674. if (reset_enable) {
  1675. ret = pri_reset_while_enabled(pdev);
  1676. if (ret)
  1677. goto out_err;
  1678. }
  1679. ret = pci_enable_ats(pdev, PAGE_SHIFT);
  1680. if (ret)
  1681. goto out_err;
  1682. return 0;
  1683. out_err:
  1684. pci_disable_pri(pdev);
  1685. pci_disable_pasid(pdev);
  1686. return ret;
  1687. }
  1688. /* FIXME: Move this to PCI code */
  1689. #define PCI_PRI_TLP_OFF (1 << 15)
  1690. static bool pci_pri_tlp_required(struct pci_dev *pdev)
  1691. {
  1692. u16 status;
  1693. int pos;
  1694. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
  1695. if (!pos)
  1696. return false;
  1697. pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
  1698. return (status & PCI_PRI_TLP_OFF) ? true : false;
  1699. }
  1700. /*
  1701. * If a device is not yet associated with a domain, this function does
  1702. * assigns it visible for the hardware
  1703. */
  1704. static int attach_device(struct device *dev,
  1705. struct protection_domain *domain)
  1706. {
  1707. struct pci_dev *pdev = to_pci_dev(dev);
  1708. struct iommu_dev_data *dev_data;
  1709. unsigned long flags;
  1710. int ret;
  1711. dev_data = get_dev_data(dev);
  1712. if (domain->flags & PD_IOMMUV2_MASK) {
  1713. if (!dev_data->iommu_v2 || !dev_data->passthrough)
  1714. return -EINVAL;
  1715. if (pdev_iommuv2_enable(pdev) != 0)
  1716. return -EINVAL;
  1717. dev_data->ats.enabled = true;
  1718. dev_data->ats.qdep = pci_ats_queue_depth(pdev);
  1719. dev_data->pri_tlp = pci_pri_tlp_required(pdev);
  1720. } else if (amd_iommu_iotlb_sup &&
  1721. pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
  1722. dev_data->ats.enabled = true;
  1723. dev_data->ats.qdep = pci_ats_queue_depth(pdev);
  1724. }
  1725. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1726. ret = __attach_device(dev_data, domain);
  1727. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1728. /*
  1729. * We might boot into a crash-kernel here. The crashed kernel
  1730. * left the caches in the IOMMU dirty. So we have to flush
  1731. * here to evict all dirty stuff.
  1732. */
  1733. domain_flush_tlb_pde(domain);
  1734. return ret;
  1735. }
  1736. /*
  1737. * Removes a device from a protection domain (unlocked)
  1738. */
  1739. static void __detach_device(struct iommu_dev_data *dev_data)
  1740. {
  1741. struct protection_domain *domain;
  1742. unsigned long flags;
  1743. BUG_ON(!dev_data->domain);
  1744. domain = dev_data->domain;
  1745. spin_lock_irqsave(&domain->lock, flags);
  1746. if (dev_data->alias_data != NULL) {
  1747. struct iommu_dev_data *alias_data = dev_data->alias_data;
  1748. if (atomic_dec_and_test(&alias_data->bind))
  1749. do_detach(alias_data);
  1750. }
  1751. if (atomic_dec_and_test(&dev_data->bind))
  1752. do_detach(dev_data);
  1753. spin_unlock_irqrestore(&domain->lock, flags);
  1754. /*
  1755. * If we run in passthrough mode the device must be assigned to the
  1756. * passthrough domain if it is detached from any other domain.
  1757. * Make sure we can deassign from the pt_domain itself.
  1758. */
  1759. if (dev_data->passthrough &&
  1760. (dev_data->domain == NULL && domain != pt_domain))
  1761. __attach_device(dev_data, pt_domain);
  1762. }
  1763. /*
  1764. * Removes a device from a protection domain (with devtable_lock held)
  1765. */
  1766. static void detach_device(struct device *dev)
  1767. {
  1768. struct protection_domain *domain;
  1769. struct iommu_dev_data *dev_data;
  1770. unsigned long flags;
  1771. dev_data = get_dev_data(dev);
  1772. domain = dev_data->domain;
  1773. /* lock device table */
  1774. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1775. __detach_device(dev_data);
  1776. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1777. if (domain->flags & PD_IOMMUV2_MASK)
  1778. pdev_iommuv2_disable(to_pci_dev(dev));
  1779. else if (dev_data->ats.enabled)
  1780. pci_disable_ats(to_pci_dev(dev));
  1781. dev_data->ats.enabled = false;
  1782. }
  1783. /*
  1784. * Find out the protection domain structure for a given PCI device. This
  1785. * will give us the pointer to the page table root for example.
  1786. */
  1787. static struct protection_domain *domain_for_device(struct device *dev)
  1788. {
  1789. struct iommu_dev_data *dev_data;
  1790. struct protection_domain *dom = NULL;
  1791. unsigned long flags;
  1792. dev_data = get_dev_data(dev);
  1793. if (dev_data->domain)
  1794. return dev_data->domain;
  1795. if (dev_data->alias_data != NULL) {
  1796. struct iommu_dev_data *alias_data = dev_data->alias_data;
  1797. read_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1798. if (alias_data->domain != NULL) {
  1799. __attach_device(dev_data, alias_data->domain);
  1800. dom = alias_data->domain;
  1801. }
  1802. read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1803. }
  1804. return dom;
  1805. }
  1806. static int device_change_notifier(struct notifier_block *nb,
  1807. unsigned long action, void *data)
  1808. {
  1809. struct dma_ops_domain *dma_domain;
  1810. struct protection_domain *domain;
  1811. struct iommu_dev_data *dev_data;
  1812. struct device *dev = data;
  1813. struct amd_iommu *iommu;
  1814. unsigned long flags;
  1815. u16 devid;
  1816. if (!check_device(dev))
  1817. return 0;
  1818. devid = get_device_id(dev);
  1819. iommu = amd_iommu_rlookup_table[devid];
  1820. dev_data = get_dev_data(dev);
  1821. switch (action) {
  1822. case BUS_NOTIFY_UNBOUND_DRIVER:
  1823. domain = domain_for_device(dev);
  1824. if (!domain)
  1825. goto out;
  1826. if (dev_data->passthrough)
  1827. break;
  1828. detach_device(dev);
  1829. break;
  1830. case BUS_NOTIFY_ADD_DEVICE:
  1831. iommu_init_device(dev);
  1832. /*
  1833. * dev_data is still NULL and
  1834. * got initialized in iommu_init_device
  1835. */
  1836. dev_data = get_dev_data(dev);
  1837. if (iommu_pass_through || dev_data->iommu_v2) {
  1838. dev_data->passthrough = true;
  1839. attach_device(dev, pt_domain);
  1840. break;
  1841. }
  1842. domain = domain_for_device(dev);
  1843. /* allocate a protection domain if a device is added */
  1844. dma_domain = find_protection_domain(devid);
  1845. if (dma_domain)
  1846. goto out;
  1847. dma_domain = dma_ops_domain_alloc();
  1848. if (!dma_domain)
  1849. goto out;
  1850. dma_domain->target_dev = devid;
  1851. spin_lock_irqsave(&iommu_pd_list_lock, flags);
  1852. list_add_tail(&dma_domain->list, &iommu_pd_list);
  1853. spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
  1854. dev_data = get_dev_data(dev);
  1855. dev->archdata.dma_ops = &amd_iommu_dma_ops;
  1856. break;
  1857. case BUS_NOTIFY_DEL_DEVICE:
  1858. iommu_uninit_device(dev);
  1859. default:
  1860. goto out;
  1861. }
  1862. iommu_completion_wait(iommu);
  1863. out:
  1864. return 0;
  1865. }
  1866. static struct notifier_block device_nb = {
  1867. .notifier_call = device_change_notifier,
  1868. };
  1869. void amd_iommu_init_notifier(void)
  1870. {
  1871. bus_register_notifier(&pci_bus_type, &device_nb);
  1872. }
  1873. /*****************************************************************************
  1874. *
  1875. * The next functions belong to the dma_ops mapping/unmapping code.
  1876. *
  1877. *****************************************************************************/
  1878. /*
  1879. * In the dma_ops path we only have the struct device. This function
  1880. * finds the corresponding IOMMU, the protection domain and the
  1881. * requestor id for a given device.
  1882. * If the device is not yet associated with a domain this is also done
  1883. * in this function.
  1884. */
  1885. static struct protection_domain *get_domain(struct device *dev)
  1886. {
  1887. struct protection_domain *domain;
  1888. struct dma_ops_domain *dma_dom;
  1889. u16 devid = get_device_id(dev);
  1890. if (!check_device(dev))
  1891. return ERR_PTR(-EINVAL);
  1892. domain = domain_for_device(dev);
  1893. if (domain != NULL && !dma_ops_domain(domain))
  1894. return ERR_PTR(-EBUSY);
  1895. if (domain != NULL)
  1896. return domain;
  1897. /* Device not bount yet - bind it */
  1898. dma_dom = find_protection_domain(devid);
  1899. if (!dma_dom)
  1900. dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
  1901. attach_device(dev, &dma_dom->domain);
  1902. DUMP_printk("Using protection domain %d for device %s\n",
  1903. dma_dom->domain.id, dev_name(dev));
  1904. return &dma_dom->domain;
  1905. }
  1906. static void update_device_table(struct protection_domain *domain)
  1907. {
  1908. struct iommu_dev_data *dev_data;
  1909. list_for_each_entry(dev_data, &domain->dev_list, list)
  1910. set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
  1911. }
  1912. static void update_domain(struct protection_domain *domain)
  1913. {
  1914. if (!domain->updated)
  1915. return;
  1916. update_device_table(domain);
  1917. domain_flush_devices(domain);
  1918. domain_flush_tlb_pde(domain);
  1919. domain->updated = false;
  1920. }
  1921. /*
  1922. * This function fetches the PTE for a given address in the aperture
  1923. */
  1924. static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
  1925. unsigned long address)
  1926. {
  1927. struct aperture_range *aperture;
  1928. u64 *pte, *pte_page;
  1929. aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
  1930. if (!aperture)
  1931. return NULL;
  1932. pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
  1933. if (!pte) {
  1934. pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
  1935. GFP_ATOMIC);
  1936. aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
  1937. } else
  1938. pte += PM_LEVEL_INDEX(0, address);
  1939. update_domain(&dom->domain);
  1940. return pte;
  1941. }
  1942. /*
  1943. * This is the generic map function. It maps one 4kb page at paddr to
  1944. * the given address in the DMA address space for the domain.
  1945. */
  1946. static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
  1947. unsigned long address,
  1948. phys_addr_t paddr,
  1949. int direction)
  1950. {
  1951. u64 *pte, __pte;
  1952. WARN_ON(address > dom->aperture_size);
  1953. paddr &= PAGE_MASK;
  1954. pte = dma_ops_get_pte(dom, address);
  1955. if (!pte)
  1956. return DMA_ERROR_CODE;
  1957. __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
  1958. if (direction == DMA_TO_DEVICE)
  1959. __pte |= IOMMU_PTE_IR;
  1960. else if (direction == DMA_FROM_DEVICE)
  1961. __pte |= IOMMU_PTE_IW;
  1962. else if (direction == DMA_BIDIRECTIONAL)
  1963. __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
  1964. WARN_ON(*pte);
  1965. *pte = __pte;
  1966. return (dma_addr_t)address;
  1967. }
  1968. /*
  1969. * The generic unmapping function for on page in the DMA address space.
  1970. */
  1971. static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
  1972. unsigned long address)
  1973. {
  1974. struct aperture_range *aperture;
  1975. u64 *pte;
  1976. if (address >= dom->aperture_size)
  1977. return;
  1978. aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
  1979. if (!aperture)
  1980. return;
  1981. pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
  1982. if (!pte)
  1983. return;
  1984. pte += PM_LEVEL_INDEX(0, address);
  1985. WARN_ON(!*pte);
  1986. *pte = 0ULL;
  1987. }
  1988. /*
  1989. * This function contains common code for mapping of a physically
  1990. * contiguous memory region into DMA address space. It is used by all
  1991. * mapping functions provided with this IOMMU driver.
  1992. * Must be called with the domain lock held.
  1993. */
  1994. static dma_addr_t __map_single(struct device *dev,
  1995. struct dma_ops_domain *dma_dom,
  1996. phys_addr_t paddr,
  1997. size_t size,
  1998. int dir,
  1999. bool align,
  2000. u64 dma_mask)
  2001. {
  2002. dma_addr_t offset = paddr & ~PAGE_MASK;
  2003. dma_addr_t address, start, ret;
  2004. unsigned int pages;
  2005. unsigned long align_mask = 0;
  2006. int i;
  2007. pages = iommu_num_pages(paddr, size, PAGE_SIZE);
  2008. paddr &= PAGE_MASK;
  2009. INC_STATS_COUNTER(total_map_requests);
  2010. if (pages > 1)
  2011. INC_STATS_COUNTER(cross_page);
  2012. if (align)
  2013. align_mask = (1UL << get_order(size)) - 1;
  2014. retry:
  2015. address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
  2016. dma_mask);
  2017. if (unlikely(address == DMA_ERROR_CODE)) {
  2018. /*
  2019. * setting next_address here will let the address
  2020. * allocator only scan the new allocated range in the
  2021. * first run. This is a small optimization.
  2022. */
  2023. dma_dom->next_address = dma_dom->aperture_size;
  2024. if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
  2025. goto out;
  2026. /*
  2027. * aperture was successfully enlarged by 128 MB, try
  2028. * allocation again
  2029. */
  2030. goto retry;
  2031. }
  2032. start = address;
  2033. for (i = 0; i < pages; ++i) {
  2034. ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
  2035. if (ret == DMA_ERROR_CODE)
  2036. goto out_unmap;
  2037. paddr += PAGE_SIZE;
  2038. start += PAGE_SIZE;
  2039. }
  2040. address += offset;
  2041. ADD_STATS_COUNTER(alloced_io_mem, size);
  2042. if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
  2043. domain_flush_tlb(&dma_dom->domain);
  2044. dma_dom->need_flush = false;
  2045. } else if (unlikely(amd_iommu_np_cache))
  2046. domain_flush_pages(&dma_dom->domain, address, size);
  2047. out:
  2048. return address;
  2049. out_unmap:
  2050. for (--i; i >= 0; --i) {
  2051. start -= PAGE_SIZE;
  2052. dma_ops_domain_unmap(dma_dom, start);
  2053. }
  2054. dma_ops_free_addresses(dma_dom, address, pages);
  2055. return DMA_ERROR_CODE;
  2056. }
  2057. /*
  2058. * Does the reverse of the __map_single function. Must be called with
  2059. * the domain lock held too
  2060. */
  2061. static void __unmap_single(struct dma_ops_domain *dma_dom,
  2062. dma_addr_t dma_addr,
  2063. size_t size,
  2064. int dir)
  2065. {
  2066. dma_addr_t flush_addr;
  2067. dma_addr_t i, start;
  2068. unsigned int pages;
  2069. if ((dma_addr == DMA_ERROR_CODE) ||
  2070. (dma_addr + size > dma_dom->aperture_size))
  2071. return;
  2072. flush_addr = dma_addr;
  2073. pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
  2074. dma_addr &= PAGE_MASK;
  2075. start = dma_addr;
  2076. for (i = 0; i < pages; ++i) {
  2077. dma_ops_domain_unmap(dma_dom, start);
  2078. start += PAGE_SIZE;
  2079. }
  2080. SUB_STATS_COUNTER(alloced_io_mem, size);
  2081. dma_ops_free_addresses(dma_dom, dma_addr, pages);
  2082. if (amd_iommu_unmap_flush || dma_dom->need_flush) {
  2083. domain_flush_pages(&dma_dom->domain, flush_addr, size);
  2084. dma_dom->need_flush = false;
  2085. }
  2086. }
  2087. /*
  2088. * The exported map_single function for dma_ops.
  2089. */
  2090. static dma_addr_t map_page(struct device *dev, struct page *page,
  2091. unsigned long offset, size_t size,
  2092. enum dma_data_direction dir,
  2093. struct dma_attrs *attrs)
  2094. {
  2095. unsigned long flags;
  2096. struct protection_domain *domain;
  2097. dma_addr_t addr;
  2098. u64 dma_mask;
  2099. phys_addr_t paddr = page_to_phys(page) + offset;
  2100. INC_STATS_COUNTER(cnt_map_single);
  2101. domain = get_domain(dev);
  2102. if (PTR_ERR(domain) == -EINVAL)
  2103. return (dma_addr_t)paddr;
  2104. else if (IS_ERR(domain))
  2105. return DMA_ERROR_CODE;
  2106. dma_mask = *dev->dma_mask;
  2107. spin_lock_irqsave(&domain->lock, flags);
  2108. addr = __map_single(dev, domain->priv, paddr, size, dir, false,
  2109. dma_mask);
  2110. if (addr == DMA_ERROR_CODE)
  2111. goto out;
  2112. domain_flush_complete(domain);
  2113. out:
  2114. spin_unlock_irqrestore(&domain->lock, flags);
  2115. return addr;
  2116. }
  2117. /*
  2118. * The exported unmap_single function for dma_ops.
  2119. */
  2120. static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
  2121. enum dma_data_direction dir, struct dma_attrs *attrs)
  2122. {
  2123. unsigned long flags;
  2124. struct protection_domain *domain;
  2125. INC_STATS_COUNTER(cnt_unmap_single);
  2126. domain = get_domain(dev);
  2127. if (IS_ERR(domain))
  2128. return;
  2129. spin_lock_irqsave(&domain->lock, flags);
  2130. __unmap_single(domain->priv, dma_addr, size, dir);
  2131. domain_flush_complete(domain);
  2132. spin_unlock_irqrestore(&domain->lock, flags);
  2133. }
  2134. /*
  2135. * This is a special map_sg function which is used if we should map a
  2136. * device which is not handled by an AMD IOMMU in the system.
  2137. */
  2138. static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
  2139. int nelems, int dir)
  2140. {
  2141. struct scatterlist *s;
  2142. int i;
  2143. for_each_sg(sglist, s, nelems, i) {
  2144. s->dma_address = (dma_addr_t)sg_phys(s);
  2145. s->dma_length = s->length;
  2146. }
  2147. return nelems;
  2148. }
  2149. /*
  2150. * The exported map_sg function for dma_ops (handles scatter-gather
  2151. * lists).
  2152. */
  2153. static int map_sg(struct device *dev, struct scatterlist *sglist,
  2154. int nelems, enum dma_data_direction dir,
  2155. struct dma_attrs *attrs)
  2156. {
  2157. unsigned long flags;
  2158. struct protection_domain *domain;
  2159. int i;
  2160. struct scatterlist *s;
  2161. phys_addr_t paddr;
  2162. int mapped_elems = 0;
  2163. u64 dma_mask;
  2164. INC_STATS_COUNTER(cnt_map_sg);
  2165. domain = get_domain(dev);
  2166. if (PTR_ERR(domain) == -EINVAL)
  2167. return map_sg_no_iommu(dev, sglist, nelems, dir);
  2168. else if (IS_ERR(domain))
  2169. return 0;
  2170. dma_mask = *dev->dma_mask;
  2171. spin_lock_irqsave(&domain->lock, flags);
  2172. for_each_sg(sglist, s, nelems, i) {
  2173. paddr = sg_phys(s);
  2174. s->dma_address = __map_single(dev, domain->priv,
  2175. paddr, s->length, dir, false,
  2176. dma_mask);
  2177. if (s->dma_address) {
  2178. s->dma_length = s->length;
  2179. mapped_elems++;
  2180. } else
  2181. goto unmap;
  2182. }
  2183. domain_flush_complete(domain);
  2184. out:
  2185. spin_unlock_irqrestore(&domain->lock, flags);
  2186. return mapped_elems;
  2187. unmap:
  2188. for_each_sg(sglist, s, mapped_elems, i) {
  2189. if (s->dma_address)
  2190. __unmap_single(domain->priv, s->dma_address,
  2191. s->dma_length, dir);
  2192. s->dma_address = s->dma_length = 0;
  2193. }
  2194. mapped_elems = 0;
  2195. goto out;
  2196. }
  2197. /*
  2198. * The exported map_sg function for dma_ops (handles scatter-gather
  2199. * lists).
  2200. */
  2201. static void unmap_sg(struct device *dev, struct scatterlist *sglist,
  2202. int nelems, enum dma_data_direction dir,
  2203. struct dma_attrs *attrs)
  2204. {
  2205. unsigned long flags;
  2206. struct protection_domain *domain;
  2207. struct scatterlist *s;
  2208. int i;
  2209. INC_STATS_COUNTER(cnt_unmap_sg);
  2210. domain = get_domain(dev);
  2211. if (IS_ERR(domain))
  2212. return;
  2213. spin_lock_irqsave(&domain->lock, flags);
  2214. for_each_sg(sglist, s, nelems, i) {
  2215. __unmap_single(domain->priv, s->dma_address,
  2216. s->dma_length, dir);
  2217. s->dma_address = s->dma_length = 0;
  2218. }
  2219. domain_flush_complete(domain);
  2220. spin_unlock_irqrestore(&domain->lock, flags);
  2221. }
  2222. /*
  2223. * The exported alloc_coherent function for dma_ops.
  2224. */
  2225. static void *alloc_coherent(struct device *dev, size_t size,
  2226. dma_addr_t *dma_addr, gfp_t flag,
  2227. struct dma_attrs *attrs)
  2228. {
  2229. unsigned long flags;
  2230. void *virt_addr;
  2231. struct protection_domain *domain;
  2232. phys_addr_t paddr;
  2233. u64 dma_mask = dev->coherent_dma_mask;
  2234. INC_STATS_COUNTER(cnt_alloc_coherent);
  2235. domain = get_domain(dev);
  2236. if (PTR_ERR(domain) == -EINVAL) {
  2237. virt_addr = (void *)__get_free_pages(flag, get_order(size));
  2238. *dma_addr = __pa(virt_addr);
  2239. return virt_addr;
  2240. } else if (IS_ERR(domain))
  2241. return NULL;
  2242. dma_mask = dev->coherent_dma_mask;
  2243. flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
  2244. flag |= __GFP_ZERO;
  2245. virt_addr = (void *)__get_free_pages(flag, get_order(size));
  2246. if (!virt_addr)
  2247. return NULL;
  2248. paddr = virt_to_phys(virt_addr);
  2249. if (!dma_mask)
  2250. dma_mask = *dev->dma_mask;
  2251. spin_lock_irqsave(&domain->lock, flags);
  2252. *dma_addr = __map_single(dev, domain->priv, paddr,
  2253. size, DMA_BIDIRECTIONAL, true, dma_mask);
  2254. if (*dma_addr == DMA_ERROR_CODE) {
  2255. spin_unlock_irqrestore(&domain->lock, flags);
  2256. goto out_free;
  2257. }
  2258. domain_flush_complete(domain);
  2259. spin_unlock_irqrestore(&domain->lock, flags);
  2260. return virt_addr;
  2261. out_free:
  2262. free_pages((unsigned long)virt_addr, get_order(size));
  2263. return NULL;
  2264. }
  2265. /*
  2266. * The exported free_coherent function for dma_ops.
  2267. */
  2268. static void free_coherent(struct device *dev, size_t size,
  2269. void *virt_addr, dma_addr_t dma_addr,
  2270. struct dma_attrs *attrs)
  2271. {
  2272. unsigned long flags;
  2273. struct protection_domain *domain;
  2274. INC_STATS_COUNTER(cnt_free_coherent);
  2275. domain = get_domain(dev);
  2276. if (IS_ERR(domain))
  2277. goto free_mem;
  2278. spin_lock_irqsave(&domain->lock, flags);
  2279. __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
  2280. domain_flush_complete(domain);
  2281. spin_unlock_irqrestore(&domain->lock, flags);
  2282. free_mem:
  2283. free_pages((unsigned long)virt_addr, get_order(size));
  2284. }
  2285. /*
  2286. * This function is called by the DMA layer to find out if we can handle a
  2287. * particular device. It is part of the dma_ops.
  2288. */
  2289. static int amd_iommu_dma_supported(struct device *dev, u64 mask)
  2290. {
  2291. return check_device(dev);
  2292. }
  2293. /*
  2294. * The function for pre-allocating protection domains.
  2295. *
  2296. * If the driver core informs the DMA layer if a driver grabs a device
  2297. * we don't need to preallocate the protection domains anymore.
  2298. * For now we have to.
  2299. */
  2300. static void __init prealloc_protection_domains(void)
  2301. {
  2302. struct iommu_dev_data *dev_data;
  2303. struct dma_ops_domain *dma_dom;
  2304. struct pci_dev *dev = NULL;
  2305. u16 devid;
  2306. for_each_pci_dev(dev) {
  2307. /* Do we handle this device? */
  2308. if (!check_device(&dev->dev))
  2309. continue;
  2310. dev_data = get_dev_data(&dev->dev);
  2311. if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
  2312. /* Make sure passthrough domain is allocated */
  2313. alloc_passthrough_domain();
  2314. dev_data->passthrough = true;
  2315. attach_device(&dev->dev, pt_domain);
  2316. pr_info("AMD-Vi: Using passthough domain for device %s\n",
  2317. dev_name(&dev->dev));
  2318. }
  2319. /* Is there already any domain for it? */
  2320. if (domain_for_device(&dev->dev))
  2321. continue;
  2322. devid = get_device_id(&dev->dev);
  2323. dma_dom = dma_ops_domain_alloc();
  2324. if (!dma_dom)
  2325. continue;
  2326. init_unity_mappings_for_device(dma_dom, devid);
  2327. dma_dom->target_dev = devid;
  2328. attach_device(&dev->dev, &dma_dom->domain);
  2329. list_add_tail(&dma_dom->list, &iommu_pd_list);
  2330. }
  2331. }
  2332. static struct dma_map_ops amd_iommu_dma_ops = {
  2333. .alloc = alloc_coherent,
  2334. .free = free_coherent,
  2335. .map_page = map_page,
  2336. .unmap_page = unmap_page,
  2337. .map_sg = map_sg,
  2338. .unmap_sg = unmap_sg,
  2339. .dma_supported = amd_iommu_dma_supported,
  2340. };
  2341. static unsigned device_dma_ops_init(void)
  2342. {
  2343. struct iommu_dev_data *dev_data;
  2344. struct pci_dev *pdev = NULL;
  2345. unsigned unhandled = 0;
  2346. for_each_pci_dev(pdev) {
  2347. if (!check_device(&pdev->dev)) {
  2348. iommu_ignore_device(&pdev->dev);
  2349. unhandled += 1;
  2350. continue;
  2351. }
  2352. dev_data = get_dev_data(&pdev->dev);
  2353. if (!dev_data->passthrough)
  2354. pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
  2355. else
  2356. pdev->dev.archdata.dma_ops = &nommu_dma_ops;
  2357. }
  2358. return unhandled;
  2359. }
  2360. /*
  2361. * The function which clues the AMD IOMMU driver into dma_ops.
  2362. */
  2363. void __init amd_iommu_init_api(void)
  2364. {
  2365. bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
  2366. }
  2367. int __init amd_iommu_init_dma_ops(void)
  2368. {
  2369. struct amd_iommu *iommu;
  2370. int ret, unhandled;
  2371. /*
  2372. * first allocate a default protection domain for every IOMMU we
  2373. * found in the system. Devices not assigned to any other
  2374. * protection domain will be assigned to the default one.
  2375. */
  2376. for_each_iommu(iommu) {
  2377. iommu->default_dom = dma_ops_domain_alloc();
  2378. if (iommu->default_dom == NULL)
  2379. return -ENOMEM;
  2380. iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
  2381. ret = iommu_init_unity_mappings(iommu);
  2382. if (ret)
  2383. goto free_domains;
  2384. }
  2385. /*
  2386. * Pre-allocate the protection domains for each device.
  2387. */
  2388. prealloc_protection_domains();
  2389. iommu_detected = 1;
  2390. swiotlb = 0;
  2391. /* Make the driver finally visible to the drivers */
  2392. unhandled = device_dma_ops_init();
  2393. if (unhandled && max_pfn > MAX_DMA32_PFN) {
  2394. /* There are unhandled devices - initialize swiotlb for them */
  2395. swiotlb = 1;
  2396. }
  2397. amd_iommu_stats_init();
  2398. if (amd_iommu_unmap_flush)
  2399. pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
  2400. else
  2401. pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
  2402. return 0;
  2403. free_domains:
  2404. for_each_iommu(iommu) {
  2405. if (iommu->default_dom)
  2406. dma_ops_domain_free(iommu->default_dom);
  2407. }
  2408. return ret;
  2409. }
  2410. /*****************************************************************************
  2411. *
  2412. * The following functions belong to the exported interface of AMD IOMMU
  2413. *
  2414. * This interface allows access to lower level functions of the IOMMU
  2415. * like protection domain handling and assignement of devices to domains
  2416. * which is not possible with the dma_ops interface.
  2417. *
  2418. *****************************************************************************/
  2419. static void cleanup_domain(struct protection_domain *domain)
  2420. {
  2421. struct iommu_dev_data *dev_data, *next;
  2422. unsigned long flags;
  2423. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  2424. list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
  2425. __detach_device(dev_data);
  2426. atomic_set(&dev_data->bind, 0);
  2427. }
  2428. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  2429. }
  2430. static void protection_domain_free(struct protection_domain *domain)
  2431. {
  2432. if (!domain)
  2433. return;
  2434. del_domain_from_list(domain);
  2435. if (domain->id)
  2436. domain_id_free(domain->id);
  2437. kfree(domain);
  2438. }
  2439. static struct protection_domain *protection_domain_alloc(void)
  2440. {
  2441. struct protection_domain *domain;
  2442. domain = kzalloc(sizeof(*domain), GFP_KERNEL);
  2443. if (!domain)
  2444. return NULL;
  2445. spin_lock_init(&domain->lock);
  2446. mutex_init(&domain->api_lock);
  2447. domain->id = domain_id_alloc();
  2448. if (!domain->id)
  2449. goto out_err;
  2450. INIT_LIST_HEAD(&domain->dev_list);
  2451. add_domain_to_list(domain);
  2452. return domain;
  2453. out_err:
  2454. kfree(domain);
  2455. return NULL;
  2456. }
  2457. static int __init alloc_passthrough_domain(void)
  2458. {
  2459. if (pt_domain != NULL)
  2460. return 0;
  2461. /* allocate passthrough domain */
  2462. pt_domain = protection_domain_alloc();
  2463. if (!pt_domain)
  2464. return -ENOMEM;
  2465. pt_domain->mode = PAGE_MODE_NONE;
  2466. return 0;
  2467. }
  2468. static int amd_iommu_domain_init(struct iommu_domain *dom)
  2469. {
  2470. struct protection_domain *domain;
  2471. domain = protection_domain_alloc();
  2472. if (!domain)
  2473. goto out_free;
  2474. domain->mode = PAGE_MODE_3_LEVEL;
  2475. domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  2476. if (!domain->pt_root)
  2477. goto out_free;
  2478. domain->iommu_domain = dom;
  2479. dom->priv = domain;
  2480. dom->geometry.aperture_start = 0;
  2481. dom->geometry.aperture_end = ~0ULL;
  2482. dom->geometry.force_aperture = true;
  2483. return 0;
  2484. out_free:
  2485. protection_domain_free(domain);
  2486. return -ENOMEM;
  2487. }
  2488. static void amd_iommu_domain_destroy(struct iommu_domain *dom)
  2489. {
  2490. struct protection_domain *domain = dom->priv;
  2491. if (!domain)
  2492. return;
  2493. if (domain->dev_cnt > 0)
  2494. cleanup_domain(domain);
  2495. BUG_ON(domain->dev_cnt != 0);
  2496. if (domain->mode != PAGE_MODE_NONE)
  2497. free_pagetable(domain);
  2498. if (domain->flags & PD_IOMMUV2_MASK)
  2499. free_gcr3_table(domain);
  2500. protection_domain_free(domain);
  2501. dom->priv = NULL;
  2502. }
  2503. static void amd_iommu_detach_device(struct iommu_domain *dom,
  2504. struct device *dev)
  2505. {
  2506. struct iommu_dev_data *dev_data = dev->archdata.iommu;
  2507. struct amd_iommu *iommu;
  2508. u16 devid;
  2509. if (!check_device(dev))
  2510. return;
  2511. devid = get_device_id(dev);
  2512. if (dev_data->domain != NULL)
  2513. detach_device(dev);
  2514. iommu = amd_iommu_rlookup_table[devid];
  2515. if (!iommu)
  2516. return;
  2517. iommu_completion_wait(iommu);
  2518. }
  2519. static int amd_iommu_attach_device(struct iommu_domain *dom,
  2520. struct device *dev)
  2521. {
  2522. struct protection_domain *domain = dom->priv;
  2523. struct iommu_dev_data *dev_data;
  2524. struct amd_iommu *iommu;
  2525. int ret;
  2526. if (!check_device(dev))
  2527. return -EINVAL;
  2528. dev_data = dev->archdata.iommu;
  2529. iommu = amd_iommu_rlookup_table[dev_data->devid];
  2530. if (!iommu)
  2531. return -EINVAL;
  2532. if (dev_data->domain)
  2533. detach_device(dev);
  2534. ret = attach_device(dev, domain);
  2535. iommu_completion_wait(iommu);
  2536. return ret;
  2537. }
  2538. static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
  2539. phys_addr_t paddr, size_t page_size, int iommu_prot)
  2540. {
  2541. struct protection_domain *domain = dom->priv;
  2542. int prot = 0;
  2543. int ret;
  2544. if (domain->mode == PAGE_MODE_NONE)
  2545. return -EINVAL;
  2546. if (iommu_prot & IOMMU_READ)
  2547. prot |= IOMMU_PROT_IR;
  2548. if (iommu_prot & IOMMU_WRITE)
  2549. prot |= IOMMU_PROT_IW;
  2550. mutex_lock(&domain->api_lock);
  2551. ret = iommu_map_page(domain, iova, paddr, prot, page_size);
  2552. mutex_unlock(&domain->api_lock);
  2553. return ret;
  2554. }
  2555. static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
  2556. size_t page_size)
  2557. {
  2558. struct protection_domain *domain = dom->priv;
  2559. size_t unmap_size;
  2560. if (domain->mode == PAGE_MODE_NONE)
  2561. return -EINVAL;
  2562. mutex_lock(&domain->api_lock);
  2563. unmap_size = iommu_unmap_page(domain, iova, page_size);
  2564. mutex_unlock(&domain->api_lock);
  2565. domain_flush_tlb_pde(domain);
  2566. return unmap_size;
  2567. }
  2568. static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
  2569. unsigned long iova)
  2570. {
  2571. struct protection_domain *domain = dom->priv;
  2572. unsigned long offset_mask;
  2573. phys_addr_t paddr;
  2574. u64 *pte, __pte;
  2575. if (domain->mode == PAGE_MODE_NONE)
  2576. return iova;
  2577. pte = fetch_pte(domain, iova);
  2578. if (!pte || !IOMMU_PTE_PRESENT(*pte))
  2579. return 0;
  2580. if (PM_PTE_LEVEL(*pte) == 0)
  2581. offset_mask = PAGE_SIZE - 1;
  2582. else
  2583. offset_mask = PTE_PAGE_SIZE(*pte) - 1;
  2584. __pte = *pte & PM_ADDR_MASK;
  2585. paddr = (__pte & ~offset_mask) | (iova & offset_mask);
  2586. return paddr;
  2587. }
  2588. static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
  2589. unsigned long cap)
  2590. {
  2591. switch (cap) {
  2592. case IOMMU_CAP_CACHE_COHERENCY:
  2593. return 1;
  2594. }
  2595. return 0;
  2596. }
  2597. static struct iommu_ops amd_iommu_ops = {
  2598. .domain_init = amd_iommu_domain_init,
  2599. .domain_destroy = amd_iommu_domain_destroy,
  2600. .attach_dev = amd_iommu_attach_device,
  2601. .detach_dev = amd_iommu_detach_device,
  2602. .map = amd_iommu_map,
  2603. .unmap = amd_iommu_unmap,
  2604. .iova_to_phys = amd_iommu_iova_to_phys,
  2605. .domain_has_cap = amd_iommu_domain_has_cap,
  2606. .pgsize_bitmap = AMD_IOMMU_PGSIZES,
  2607. };
  2608. /*****************************************************************************
  2609. *
  2610. * The next functions do a basic initialization of IOMMU for pass through
  2611. * mode
  2612. *
  2613. * In passthrough mode the IOMMU is initialized and enabled but not used for
  2614. * DMA-API translation.
  2615. *
  2616. *****************************************************************************/
  2617. int __init amd_iommu_init_passthrough(void)
  2618. {
  2619. struct iommu_dev_data *dev_data;
  2620. struct pci_dev *dev = NULL;
  2621. struct amd_iommu *iommu;
  2622. u16 devid;
  2623. int ret;
  2624. ret = alloc_passthrough_domain();
  2625. if (ret)
  2626. return ret;
  2627. for_each_pci_dev(dev) {
  2628. if (!check_device(&dev->dev))
  2629. continue;
  2630. dev_data = get_dev_data(&dev->dev);
  2631. dev_data->passthrough = true;
  2632. devid = get_device_id(&dev->dev);
  2633. iommu = amd_iommu_rlookup_table[devid];
  2634. if (!iommu)
  2635. continue;
  2636. attach_device(&dev->dev, pt_domain);
  2637. }
  2638. amd_iommu_stats_init();
  2639. pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
  2640. return 0;
  2641. }
  2642. /* IOMMUv2 specific functions */
  2643. int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
  2644. {
  2645. return atomic_notifier_chain_register(&ppr_notifier, nb);
  2646. }
  2647. EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
  2648. int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
  2649. {
  2650. return atomic_notifier_chain_unregister(&ppr_notifier, nb);
  2651. }
  2652. EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
  2653. void amd_iommu_domain_direct_map(struct iommu_domain *dom)
  2654. {
  2655. struct protection_domain *domain = dom->priv;
  2656. unsigned long flags;
  2657. spin_lock_irqsave(&domain->lock, flags);
  2658. /* Update data structure */
  2659. domain->mode = PAGE_MODE_NONE;
  2660. domain->updated = true;
  2661. /* Make changes visible to IOMMUs */
  2662. update_domain(domain);
  2663. /* Page-table is not visible to IOMMU anymore, so free it */
  2664. free_pagetable(domain);
  2665. spin_unlock_irqrestore(&domain->lock, flags);
  2666. }
  2667. EXPORT_SYMBOL(amd_iommu_domain_direct_map);
  2668. int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
  2669. {
  2670. struct protection_domain *domain = dom->priv;
  2671. unsigned long flags;
  2672. int levels, ret;
  2673. if (pasids <= 0 || pasids > (PASID_MASK + 1))
  2674. return -EINVAL;
  2675. /* Number of GCR3 table levels required */
  2676. for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
  2677. levels += 1;
  2678. if (levels > amd_iommu_max_glx_val)
  2679. return -EINVAL;
  2680. spin_lock_irqsave(&domain->lock, flags);
  2681. /*
  2682. * Save us all sanity checks whether devices already in the
  2683. * domain support IOMMUv2. Just force that the domain has no
  2684. * devices attached when it is switched into IOMMUv2 mode.
  2685. */
  2686. ret = -EBUSY;
  2687. if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
  2688. goto out;
  2689. ret = -ENOMEM;
  2690. domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
  2691. if (domain->gcr3_tbl == NULL)
  2692. goto out;
  2693. domain->glx = levels;
  2694. domain->flags |= PD_IOMMUV2_MASK;
  2695. domain->updated = true;
  2696. update_domain(domain);
  2697. ret = 0;
  2698. out:
  2699. spin_unlock_irqrestore(&domain->lock, flags);
  2700. return ret;
  2701. }
  2702. EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
  2703. static int __flush_pasid(struct protection_domain *domain, int pasid,
  2704. u64 address, bool size)
  2705. {
  2706. struct iommu_dev_data *dev_data;
  2707. struct iommu_cmd cmd;
  2708. int i, ret;
  2709. if (!(domain->flags & PD_IOMMUV2_MASK))
  2710. return -EINVAL;
  2711. build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
  2712. /*
  2713. * IOMMU TLB needs to be flushed before Device TLB to
  2714. * prevent device TLB refill from IOMMU TLB
  2715. */
  2716. for (i = 0; i < amd_iommus_present; ++i) {
  2717. if (domain->dev_iommu[i] == 0)
  2718. continue;
  2719. ret = iommu_queue_command(amd_iommus[i], &cmd);
  2720. if (ret != 0)
  2721. goto out;
  2722. }
  2723. /* Wait until IOMMU TLB flushes are complete */
  2724. domain_flush_complete(domain);
  2725. /* Now flush device TLBs */
  2726. list_for_each_entry(dev_data, &domain->dev_list, list) {
  2727. struct amd_iommu *iommu;
  2728. int qdep;
  2729. BUG_ON(!dev_data->ats.enabled);
  2730. qdep = dev_data->ats.qdep;
  2731. iommu = amd_iommu_rlookup_table[dev_data->devid];
  2732. build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
  2733. qdep, address, size);
  2734. ret = iommu_queue_command(iommu, &cmd);
  2735. if (ret != 0)
  2736. goto out;
  2737. }
  2738. /* Wait until all device TLBs are flushed */
  2739. domain_flush_complete(domain);
  2740. ret = 0;
  2741. out:
  2742. return ret;
  2743. }
  2744. static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
  2745. u64 address)
  2746. {
  2747. INC_STATS_COUNTER(invalidate_iotlb);
  2748. return __flush_pasid(domain, pasid, address, false);
  2749. }
  2750. int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
  2751. u64 address)
  2752. {
  2753. struct protection_domain *domain = dom->priv;
  2754. unsigned long flags;
  2755. int ret;
  2756. spin_lock_irqsave(&domain->lock, flags);
  2757. ret = __amd_iommu_flush_page(domain, pasid, address);
  2758. spin_unlock_irqrestore(&domain->lock, flags);
  2759. return ret;
  2760. }
  2761. EXPORT_SYMBOL(amd_iommu_flush_page);
  2762. static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
  2763. {
  2764. INC_STATS_COUNTER(invalidate_iotlb_all);
  2765. return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
  2766. true);
  2767. }
  2768. int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
  2769. {
  2770. struct protection_domain *domain = dom->priv;
  2771. unsigned long flags;
  2772. int ret;
  2773. spin_lock_irqsave(&domain->lock, flags);
  2774. ret = __amd_iommu_flush_tlb(domain, pasid);
  2775. spin_unlock_irqrestore(&domain->lock, flags);
  2776. return ret;
  2777. }
  2778. EXPORT_SYMBOL(amd_iommu_flush_tlb);
  2779. static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
  2780. {
  2781. int index;
  2782. u64 *pte;
  2783. while (true) {
  2784. index = (pasid >> (9 * level)) & 0x1ff;
  2785. pte = &root[index];
  2786. if (level == 0)
  2787. break;
  2788. if (!(*pte & GCR3_VALID)) {
  2789. if (!alloc)
  2790. return NULL;
  2791. root = (void *)get_zeroed_page(GFP_ATOMIC);
  2792. if (root == NULL)
  2793. return NULL;
  2794. *pte = __pa(root) | GCR3_VALID;
  2795. }
  2796. root = __va(*pte & PAGE_MASK);
  2797. level -= 1;
  2798. }
  2799. return pte;
  2800. }
  2801. static int __set_gcr3(struct protection_domain *domain, int pasid,
  2802. unsigned long cr3)
  2803. {
  2804. u64 *pte;
  2805. if (domain->mode != PAGE_MODE_NONE)
  2806. return -EINVAL;
  2807. pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
  2808. if (pte == NULL)
  2809. return -ENOMEM;
  2810. *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
  2811. return __amd_iommu_flush_tlb(domain, pasid);
  2812. }
  2813. static int __clear_gcr3(struct protection_domain *domain, int pasid)
  2814. {
  2815. u64 *pte;
  2816. if (domain->mode != PAGE_MODE_NONE)
  2817. return -EINVAL;
  2818. pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
  2819. if (pte == NULL)
  2820. return 0;
  2821. *pte = 0;
  2822. return __amd_iommu_flush_tlb(domain, pasid);
  2823. }
  2824. int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
  2825. unsigned long cr3)
  2826. {
  2827. struct protection_domain *domain = dom->priv;
  2828. unsigned long flags;
  2829. int ret;
  2830. spin_lock_irqsave(&domain->lock, flags);
  2831. ret = __set_gcr3(domain, pasid, cr3);
  2832. spin_unlock_irqrestore(&domain->lock, flags);
  2833. return ret;
  2834. }
  2835. EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
  2836. int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
  2837. {
  2838. struct protection_domain *domain = dom->priv;
  2839. unsigned long flags;
  2840. int ret;
  2841. spin_lock_irqsave(&domain->lock, flags);
  2842. ret = __clear_gcr3(domain, pasid);
  2843. spin_unlock_irqrestore(&domain->lock, flags);
  2844. return ret;
  2845. }
  2846. EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
  2847. int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
  2848. int status, int tag)
  2849. {
  2850. struct iommu_dev_data *dev_data;
  2851. struct amd_iommu *iommu;
  2852. struct iommu_cmd cmd;
  2853. INC_STATS_COUNTER(complete_ppr);
  2854. dev_data = get_dev_data(&pdev->dev);
  2855. iommu = amd_iommu_rlookup_table[dev_data->devid];
  2856. build_complete_ppr(&cmd, dev_data->devid, pasid, status,
  2857. tag, dev_data->pri_tlp);
  2858. return iommu_queue_command(iommu, &cmd);
  2859. }
  2860. EXPORT_SYMBOL(amd_iommu_complete_ppr);
  2861. struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
  2862. {
  2863. struct protection_domain *domain;
  2864. domain = get_domain(&pdev->dev);
  2865. if (IS_ERR(domain))
  2866. return NULL;
  2867. /* Only return IOMMUv2 domains */
  2868. if (!(domain->flags & PD_IOMMUV2_MASK))
  2869. return NULL;
  2870. return domain->iommu_domain;
  2871. }
  2872. EXPORT_SYMBOL(amd_iommu_get_v2_domain);
  2873. void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
  2874. {
  2875. struct iommu_dev_data *dev_data;
  2876. if (!amd_iommu_v2_supported())
  2877. return;
  2878. dev_data = get_dev_data(&pdev->dev);
  2879. dev_data->errata |= (1 << erratum);
  2880. }
  2881. EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
  2882. int amd_iommu_device_info(struct pci_dev *pdev,
  2883. struct amd_iommu_device_info *info)
  2884. {
  2885. int max_pasids;
  2886. int pos;
  2887. if (pdev == NULL || info == NULL)
  2888. return -EINVAL;
  2889. if (!amd_iommu_v2_supported())
  2890. return -EINVAL;
  2891. memset(info, 0, sizeof(*info));
  2892. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
  2893. if (pos)
  2894. info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
  2895. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
  2896. if (pos)
  2897. info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
  2898. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
  2899. if (pos) {
  2900. int features;
  2901. max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
  2902. max_pasids = min(max_pasids, (1 << 20));
  2903. info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
  2904. info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
  2905. features = pci_pasid_features(pdev);
  2906. if (features & PCI_PASID_CAP_EXEC)
  2907. info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
  2908. if (features & PCI_PASID_CAP_PRIV)
  2909. info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
  2910. }
  2911. return 0;
  2912. }
  2913. EXPORT_SYMBOL(amd_iommu_device_info);