fault_32.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462
  1. /*
  2. * fault.c: Page fault handlers for the Sparc.
  3. *
  4. * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
  5. * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
  6. * Copyright (C) 1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  7. */
  8. #include <asm/head.h>
  9. #include <linux/string.h>
  10. #include <linux/types.h>
  11. #include <linux/sched.h>
  12. #include <linux/ptrace.h>
  13. #include <linux/mman.h>
  14. #include <linux/threads.h>
  15. #include <linux/kernel.h>
  16. #include <linux/signal.h>
  17. #include <linux/mm.h>
  18. #include <linux/smp.h>
  19. #include <linux/perf_event.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/kdebug.h>
  22. #include <asm/page.h>
  23. #include <asm/pgtable.h>
  24. #include <asm/openprom.h>
  25. #include <asm/oplib.h>
  26. #include <asm/smp.h>
  27. #include <asm/traps.h>
  28. #include <asm/uaccess.h>
  29. int show_unhandled_signals = 1;
  30. static void unhandled_fault(unsigned long, struct task_struct *,
  31. struct pt_regs *) __attribute__ ((noreturn));
  32. static void __noreturn unhandled_fault(unsigned long address,
  33. struct task_struct *tsk,
  34. struct pt_regs *regs)
  35. {
  36. if ((unsigned long) address < PAGE_SIZE) {
  37. printk(KERN_ALERT
  38. "Unable to handle kernel NULL pointer dereference\n");
  39. } else {
  40. printk(KERN_ALERT "Unable to handle kernel paging request at virtual address %08lx\n",
  41. address);
  42. }
  43. printk(KERN_ALERT "tsk->{mm,active_mm}->context = %08lx\n",
  44. (tsk->mm ? tsk->mm->context : tsk->active_mm->context));
  45. printk(KERN_ALERT "tsk->{mm,active_mm}->pgd = %08lx\n",
  46. (tsk->mm ? (unsigned long) tsk->mm->pgd :
  47. (unsigned long) tsk->active_mm->pgd));
  48. die_if_kernel("Oops", regs);
  49. }
  50. asmlinkage int lookup_fault(unsigned long pc, unsigned long ret_pc,
  51. unsigned long address)
  52. {
  53. struct pt_regs regs;
  54. unsigned long g2;
  55. unsigned int insn;
  56. int i;
  57. i = search_extables_range(ret_pc, &g2);
  58. switch (i) {
  59. case 3:
  60. /* load & store will be handled by fixup */
  61. return 3;
  62. case 1:
  63. /* store will be handled by fixup, load will bump out */
  64. /* for _to_ macros */
  65. insn = *((unsigned int *) pc);
  66. if ((insn >> 21) & 1)
  67. return 1;
  68. break;
  69. case 2:
  70. /* load will be handled by fixup, store will bump out */
  71. /* for _from_ macros */
  72. insn = *((unsigned int *) pc);
  73. if (!((insn >> 21) & 1) || ((insn>>19)&0x3f) == 15)
  74. return 2;
  75. break;
  76. default:
  77. break;
  78. }
  79. memset(&regs, 0, sizeof(regs));
  80. regs.pc = pc;
  81. regs.npc = pc + 4;
  82. __asm__ __volatile__(
  83. "rd %%psr, %0\n\t"
  84. "nop\n\t"
  85. "nop\n\t"
  86. "nop\n" : "=r" (regs.psr));
  87. unhandled_fault(address, current, &regs);
  88. /* Not reached */
  89. return 0;
  90. }
  91. static inline void
  92. show_signal_msg(struct pt_regs *regs, int sig, int code,
  93. unsigned long address, struct task_struct *tsk)
  94. {
  95. if (!unhandled_signal(tsk, sig))
  96. return;
  97. if (!printk_ratelimit())
  98. return;
  99. printk("%s%s[%d]: segfault at %lx ip %p (rpc %p) sp %p error %x",
  100. task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
  101. tsk->comm, task_pid_nr(tsk), address,
  102. (void *)regs->pc, (void *)regs->u_regs[UREG_I7],
  103. (void *)regs->u_regs[UREG_FP], code);
  104. print_vma_addr(KERN_CONT " in ", regs->pc);
  105. printk(KERN_CONT "\n");
  106. }
  107. static void __do_fault_siginfo(int code, int sig, struct pt_regs *regs,
  108. unsigned long addr)
  109. {
  110. siginfo_t info;
  111. info.si_signo = sig;
  112. info.si_code = code;
  113. info.si_errno = 0;
  114. info.si_addr = (void __user *) addr;
  115. info.si_trapno = 0;
  116. if (unlikely(show_unhandled_signals))
  117. show_signal_msg(regs, sig, info.si_code,
  118. addr, current);
  119. force_sig_info (sig, &info, current);
  120. }
  121. extern unsigned long safe_compute_effective_address(struct pt_regs *,
  122. unsigned int);
  123. static unsigned long compute_si_addr(struct pt_regs *regs, int text_fault)
  124. {
  125. unsigned int insn;
  126. if (text_fault)
  127. return regs->pc;
  128. if (regs->psr & PSR_PS)
  129. insn = *(unsigned int *) regs->pc;
  130. else
  131. __get_user(insn, (unsigned int *) regs->pc);
  132. return safe_compute_effective_address(regs, insn);
  133. }
  134. static noinline void do_fault_siginfo(int code, int sig, struct pt_regs *regs,
  135. int text_fault)
  136. {
  137. unsigned long addr = compute_si_addr(regs, text_fault);
  138. __do_fault_siginfo(code, sig, regs, addr);
  139. }
  140. asmlinkage void do_sparc_fault(struct pt_regs *regs, int text_fault, int write,
  141. unsigned long address)
  142. {
  143. struct vm_area_struct *vma;
  144. struct task_struct *tsk = current;
  145. struct mm_struct *mm = tsk->mm;
  146. unsigned int fixup;
  147. unsigned long g2;
  148. int from_user = !(regs->psr & PSR_PS);
  149. int fault, code;
  150. unsigned int flags = (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE |
  151. (write ? FAULT_FLAG_WRITE : 0));
  152. if (text_fault)
  153. address = regs->pc;
  154. /*
  155. * We fault-in kernel-space virtual memory on-demand. The
  156. * 'reference' page table is init_mm.pgd.
  157. *
  158. * NOTE! We MUST NOT take any locks for this case. We may
  159. * be in an interrupt or a critical region, and should
  160. * only copy the information from the master page table,
  161. * nothing more.
  162. */
  163. code = SEGV_MAPERR;
  164. if (address >= TASK_SIZE)
  165. goto vmalloc_fault;
  166. /*
  167. * If we're in an interrupt or have no user
  168. * context, we must not take the fault..
  169. */
  170. if (in_atomic() || !mm)
  171. goto no_context;
  172. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
  173. retry:
  174. down_read(&mm->mmap_sem);
  175. if (!from_user && address >= PAGE_OFFSET)
  176. goto bad_area;
  177. vma = find_vma(mm, address);
  178. if (!vma)
  179. goto bad_area;
  180. if (vma->vm_start <= address)
  181. goto good_area;
  182. if (!(vma->vm_flags & VM_GROWSDOWN))
  183. goto bad_area;
  184. if (expand_stack(vma, address))
  185. goto bad_area;
  186. /*
  187. * Ok, we have a good vm_area for this memory access, so
  188. * we can handle it..
  189. */
  190. good_area:
  191. code = SEGV_ACCERR;
  192. if (write) {
  193. if (!(vma->vm_flags & VM_WRITE))
  194. goto bad_area;
  195. } else {
  196. /* Allow reads even for write-only mappings */
  197. if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
  198. goto bad_area;
  199. }
  200. /*
  201. * If for any reason at all we couldn't handle the fault,
  202. * make sure we exit gracefully rather than endlessly redo
  203. * the fault.
  204. */
  205. fault = handle_mm_fault(mm, vma, address, flags);
  206. if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
  207. return;
  208. if (unlikely(fault & VM_FAULT_ERROR)) {
  209. if (fault & VM_FAULT_OOM)
  210. goto out_of_memory;
  211. else if (fault & VM_FAULT_SIGBUS)
  212. goto do_sigbus;
  213. BUG();
  214. }
  215. if (flags & FAULT_FLAG_ALLOW_RETRY) {
  216. if (fault & VM_FAULT_MAJOR) {
  217. current->maj_flt++;
  218. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ,
  219. 1, regs, address);
  220. } else {
  221. current->min_flt++;
  222. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN,
  223. 1, regs, address);
  224. }
  225. if (fault & VM_FAULT_RETRY) {
  226. flags &= ~FAULT_FLAG_ALLOW_RETRY;
  227. /* No need to up_read(&mm->mmap_sem) as we would
  228. * have already released it in __lock_page_or_retry
  229. * in mm/filemap.c.
  230. */
  231. goto retry;
  232. }
  233. }
  234. up_read(&mm->mmap_sem);
  235. return;
  236. /*
  237. * Something tried to access memory that isn't in our memory map..
  238. * Fix it, but check if it's kernel or user first..
  239. */
  240. bad_area:
  241. up_read(&mm->mmap_sem);
  242. bad_area_nosemaphore:
  243. /* User mode accesses just cause a SIGSEGV */
  244. if (from_user) {
  245. do_fault_siginfo(code, SIGSEGV, regs, text_fault);
  246. return;
  247. }
  248. /* Is this in ex_table? */
  249. no_context:
  250. g2 = regs->u_regs[UREG_G2];
  251. if (!from_user) {
  252. fixup = search_extables_range(regs->pc, &g2);
  253. /* Values below 10 are reserved for other things */
  254. if (fixup > 10) {
  255. extern const unsigned __memset_start[];
  256. extern const unsigned __memset_end[];
  257. extern const unsigned __csum_partial_copy_start[];
  258. extern const unsigned __csum_partial_copy_end[];
  259. #ifdef DEBUG_EXCEPTIONS
  260. printk("Exception: PC<%08lx> faddr<%08lx>\n",
  261. regs->pc, address);
  262. printk("EX_TABLE: insn<%08lx> fixup<%08x> g2<%08lx>\n",
  263. regs->pc, fixup, g2);
  264. #endif
  265. if ((regs->pc >= (unsigned long)__memset_start &&
  266. regs->pc < (unsigned long)__memset_end) ||
  267. (regs->pc >= (unsigned long)__csum_partial_copy_start &&
  268. regs->pc < (unsigned long)__csum_partial_copy_end)) {
  269. regs->u_regs[UREG_I4] = address;
  270. regs->u_regs[UREG_I5] = regs->pc;
  271. }
  272. regs->u_regs[UREG_G2] = g2;
  273. regs->pc = fixup;
  274. regs->npc = regs->pc + 4;
  275. return;
  276. }
  277. }
  278. unhandled_fault(address, tsk, regs);
  279. do_exit(SIGKILL);
  280. /*
  281. * We ran out of memory, or some other thing happened to us that made
  282. * us unable to handle the page fault gracefully.
  283. */
  284. out_of_memory:
  285. up_read(&mm->mmap_sem);
  286. if (from_user) {
  287. pagefault_out_of_memory();
  288. return;
  289. }
  290. goto no_context;
  291. do_sigbus:
  292. up_read(&mm->mmap_sem);
  293. do_fault_siginfo(BUS_ADRERR, SIGBUS, regs, text_fault);
  294. if (!from_user)
  295. goto no_context;
  296. vmalloc_fault:
  297. {
  298. /*
  299. * Synchronize this task's top level page-table
  300. * with the 'reference' page table.
  301. */
  302. int offset = pgd_index(address);
  303. pgd_t *pgd, *pgd_k;
  304. pmd_t *pmd, *pmd_k;
  305. pgd = tsk->active_mm->pgd + offset;
  306. pgd_k = init_mm.pgd + offset;
  307. if (!pgd_present(*pgd)) {
  308. if (!pgd_present(*pgd_k))
  309. goto bad_area_nosemaphore;
  310. pgd_val(*pgd) = pgd_val(*pgd_k);
  311. return;
  312. }
  313. pmd = pmd_offset(pgd, address);
  314. pmd_k = pmd_offset(pgd_k, address);
  315. if (pmd_present(*pmd) || !pmd_present(*pmd_k))
  316. goto bad_area_nosemaphore;
  317. *pmd = *pmd_k;
  318. return;
  319. }
  320. }
  321. /* This always deals with user addresses. */
  322. static void force_user_fault(unsigned long address, int write)
  323. {
  324. struct vm_area_struct *vma;
  325. struct task_struct *tsk = current;
  326. struct mm_struct *mm = tsk->mm;
  327. int code;
  328. code = SEGV_MAPERR;
  329. down_read(&mm->mmap_sem);
  330. vma = find_vma(mm, address);
  331. if (!vma)
  332. goto bad_area;
  333. if (vma->vm_start <= address)
  334. goto good_area;
  335. if (!(vma->vm_flags & VM_GROWSDOWN))
  336. goto bad_area;
  337. if (expand_stack(vma, address))
  338. goto bad_area;
  339. good_area:
  340. code = SEGV_ACCERR;
  341. if (write) {
  342. if (!(vma->vm_flags & VM_WRITE))
  343. goto bad_area;
  344. } else {
  345. if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
  346. goto bad_area;
  347. }
  348. switch (handle_mm_fault(mm, vma, address, write ? FAULT_FLAG_WRITE : 0)) {
  349. case VM_FAULT_SIGBUS:
  350. case VM_FAULT_OOM:
  351. goto do_sigbus;
  352. }
  353. up_read(&mm->mmap_sem);
  354. return;
  355. bad_area:
  356. up_read(&mm->mmap_sem);
  357. __do_fault_siginfo(code, SIGSEGV, tsk->thread.kregs, address);
  358. return;
  359. do_sigbus:
  360. up_read(&mm->mmap_sem);
  361. __do_fault_siginfo(BUS_ADRERR, SIGBUS, tsk->thread.kregs, address);
  362. }
  363. static void check_stack_aligned(unsigned long sp)
  364. {
  365. if (sp & 0x7UL)
  366. force_sig(SIGILL, current);
  367. }
  368. void window_overflow_fault(void)
  369. {
  370. unsigned long sp;
  371. sp = current_thread_info()->rwbuf_stkptrs[0];
  372. if (((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK))
  373. force_user_fault(sp + 0x38, 1);
  374. force_user_fault(sp, 1);
  375. check_stack_aligned(sp);
  376. }
  377. void window_underflow_fault(unsigned long sp)
  378. {
  379. if (((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK))
  380. force_user_fault(sp + 0x38, 0);
  381. force_user_fault(sp, 0);
  382. check_stack_aligned(sp);
  383. }
  384. void window_ret_fault(struct pt_regs *regs)
  385. {
  386. unsigned long sp;
  387. sp = regs->u_regs[UREG_FP];
  388. if (((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK))
  389. force_user_fault(sp + 0x38, 0);
  390. force_user_fault(sp, 0);
  391. check_stack_aligned(sp);
  392. }