kvm_main.c 62 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "iodev.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/syscore_ops.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <linux/bitops.h>
  43. #include <linux/spinlock.h>
  44. #include <linux/compat.h>
  45. #include <linux/srcu.h>
  46. #include <linux/hugetlb.h>
  47. #include <linux/slab.h>
  48. #include <linux/sort.h>
  49. #include <linux/bsearch.h>
  50. #include <asm/processor.h>
  51. #include <asm/io.h>
  52. #include <asm/uaccess.h>
  53. #include <asm/pgtable.h>
  54. #include "coalesced_mmio.h"
  55. #include "async_pf.h"
  56. #define CREATE_TRACE_POINTS
  57. #include <trace/events/kvm.h>
  58. MODULE_AUTHOR("Qumranet");
  59. MODULE_LICENSE("GPL");
  60. /*
  61. * Ordering of locks:
  62. *
  63. * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  64. */
  65. DEFINE_RAW_SPINLOCK(kvm_lock);
  66. LIST_HEAD(vm_list);
  67. static cpumask_var_t cpus_hardware_enabled;
  68. static int kvm_usage_count = 0;
  69. static atomic_t hardware_enable_failed;
  70. struct kmem_cache *kvm_vcpu_cache;
  71. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  72. static __read_mostly struct preempt_ops kvm_preempt_ops;
  73. struct dentry *kvm_debugfs_dir;
  74. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  75. unsigned long arg);
  76. #ifdef CONFIG_COMPAT
  77. static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
  78. unsigned long arg);
  79. #endif
  80. static int hardware_enable_all(void);
  81. static void hardware_disable_all(void);
  82. static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
  83. bool kvm_rebooting;
  84. EXPORT_SYMBOL_GPL(kvm_rebooting);
  85. static bool largepages_enabled = true;
  86. static struct page *hwpoison_page;
  87. static pfn_t hwpoison_pfn;
  88. struct page *fault_page;
  89. pfn_t fault_pfn;
  90. inline int kvm_is_mmio_pfn(pfn_t pfn)
  91. {
  92. if (pfn_valid(pfn)) {
  93. int reserved;
  94. struct page *tail = pfn_to_page(pfn);
  95. struct page *head = compound_trans_head(tail);
  96. reserved = PageReserved(head);
  97. if (head != tail) {
  98. /*
  99. * "head" is not a dangling pointer
  100. * (compound_trans_head takes care of that)
  101. * but the hugepage may have been splitted
  102. * from under us (and we may not hold a
  103. * reference count on the head page so it can
  104. * be reused before we run PageReferenced), so
  105. * we've to check PageTail before returning
  106. * what we just read.
  107. */
  108. smp_rmb();
  109. if (PageTail(tail))
  110. return reserved;
  111. }
  112. return PageReserved(tail);
  113. }
  114. return true;
  115. }
  116. /*
  117. * Switches to specified vcpu, until a matching vcpu_put()
  118. */
  119. void vcpu_load(struct kvm_vcpu *vcpu)
  120. {
  121. int cpu;
  122. mutex_lock(&vcpu->mutex);
  123. if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
  124. /* The thread running this VCPU changed. */
  125. struct pid *oldpid = vcpu->pid;
  126. struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
  127. rcu_assign_pointer(vcpu->pid, newpid);
  128. synchronize_rcu();
  129. put_pid(oldpid);
  130. }
  131. cpu = get_cpu();
  132. preempt_notifier_register(&vcpu->preempt_notifier);
  133. kvm_arch_vcpu_load(vcpu, cpu);
  134. put_cpu();
  135. }
  136. void vcpu_put(struct kvm_vcpu *vcpu)
  137. {
  138. preempt_disable();
  139. kvm_arch_vcpu_put(vcpu);
  140. preempt_notifier_unregister(&vcpu->preempt_notifier);
  141. preempt_enable();
  142. mutex_unlock(&vcpu->mutex);
  143. }
  144. static void ack_flush(void *_completed)
  145. {
  146. }
  147. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  148. {
  149. int i, cpu, me;
  150. cpumask_var_t cpus;
  151. bool called = true;
  152. struct kvm_vcpu *vcpu;
  153. zalloc_cpumask_var(&cpus, GFP_ATOMIC);
  154. me = get_cpu();
  155. kvm_for_each_vcpu(i, vcpu, kvm) {
  156. kvm_make_request(req, vcpu);
  157. cpu = vcpu->cpu;
  158. /* Set ->requests bit before we read ->mode */
  159. smp_mb();
  160. if (cpus != NULL && cpu != -1 && cpu != me &&
  161. kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
  162. cpumask_set_cpu(cpu, cpus);
  163. }
  164. if (unlikely(cpus == NULL))
  165. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  166. else if (!cpumask_empty(cpus))
  167. smp_call_function_many(cpus, ack_flush, NULL, 1);
  168. else
  169. called = false;
  170. put_cpu();
  171. free_cpumask_var(cpus);
  172. return called;
  173. }
  174. void kvm_flush_remote_tlbs(struct kvm *kvm)
  175. {
  176. int dirty_count = kvm->tlbs_dirty;
  177. smp_mb();
  178. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  179. ++kvm->stat.remote_tlb_flush;
  180. cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
  181. }
  182. void kvm_reload_remote_mmus(struct kvm *kvm)
  183. {
  184. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  185. }
  186. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  187. {
  188. struct page *page;
  189. int r;
  190. mutex_init(&vcpu->mutex);
  191. vcpu->cpu = -1;
  192. vcpu->kvm = kvm;
  193. vcpu->vcpu_id = id;
  194. vcpu->pid = NULL;
  195. init_waitqueue_head(&vcpu->wq);
  196. kvm_async_pf_vcpu_init(vcpu);
  197. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  198. if (!page) {
  199. r = -ENOMEM;
  200. goto fail;
  201. }
  202. vcpu->run = page_address(page);
  203. r = kvm_arch_vcpu_init(vcpu);
  204. if (r < 0)
  205. goto fail_free_run;
  206. return 0;
  207. fail_free_run:
  208. free_page((unsigned long)vcpu->run);
  209. fail:
  210. return r;
  211. }
  212. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  213. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  214. {
  215. put_pid(vcpu->pid);
  216. kvm_arch_vcpu_uninit(vcpu);
  217. free_page((unsigned long)vcpu->run);
  218. }
  219. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  220. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  221. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  222. {
  223. return container_of(mn, struct kvm, mmu_notifier);
  224. }
  225. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  226. struct mm_struct *mm,
  227. unsigned long address)
  228. {
  229. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  230. int need_tlb_flush, idx;
  231. /*
  232. * When ->invalidate_page runs, the linux pte has been zapped
  233. * already but the page is still allocated until
  234. * ->invalidate_page returns. So if we increase the sequence
  235. * here the kvm page fault will notice if the spte can't be
  236. * established because the page is going to be freed. If
  237. * instead the kvm page fault establishes the spte before
  238. * ->invalidate_page runs, kvm_unmap_hva will release it
  239. * before returning.
  240. *
  241. * The sequence increase only need to be seen at spin_unlock
  242. * time, and not at spin_lock time.
  243. *
  244. * Increasing the sequence after the spin_unlock would be
  245. * unsafe because the kvm page fault could then establish the
  246. * pte after kvm_unmap_hva returned, without noticing the page
  247. * is going to be freed.
  248. */
  249. idx = srcu_read_lock(&kvm->srcu);
  250. spin_lock(&kvm->mmu_lock);
  251. kvm->mmu_notifier_seq++;
  252. need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
  253. spin_unlock(&kvm->mmu_lock);
  254. srcu_read_unlock(&kvm->srcu, idx);
  255. /* we've to flush the tlb before the pages can be freed */
  256. if (need_tlb_flush)
  257. kvm_flush_remote_tlbs(kvm);
  258. }
  259. static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
  260. struct mm_struct *mm,
  261. unsigned long address,
  262. pte_t pte)
  263. {
  264. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  265. int idx;
  266. idx = srcu_read_lock(&kvm->srcu);
  267. spin_lock(&kvm->mmu_lock);
  268. kvm->mmu_notifier_seq++;
  269. kvm_set_spte_hva(kvm, address, pte);
  270. spin_unlock(&kvm->mmu_lock);
  271. srcu_read_unlock(&kvm->srcu, idx);
  272. }
  273. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  274. struct mm_struct *mm,
  275. unsigned long start,
  276. unsigned long end)
  277. {
  278. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  279. int need_tlb_flush = 0, idx;
  280. idx = srcu_read_lock(&kvm->srcu);
  281. spin_lock(&kvm->mmu_lock);
  282. /*
  283. * The count increase must become visible at unlock time as no
  284. * spte can be established without taking the mmu_lock and
  285. * count is also read inside the mmu_lock critical section.
  286. */
  287. kvm->mmu_notifier_count++;
  288. for (; start < end; start += PAGE_SIZE)
  289. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  290. need_tlb_flush |= kvm->tlbs_dirty;
  291. spin_unlock(&kvm->mmu_lock);
  292. srcu_read_unlock(&kvm->srcu, idx);
  293. /* we've to flush the tlb before the pages can be freed */
  294. if (need_tlb_flush)
  295. kvm_flush_remote_tlbs(kvm);
  296. }
  297. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  298. struct mm_struct *mm,
  299. unsigned long start,
  300. unsigned long end)
  301. {
  302. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  303. spin_lock(&kvm->mmu_lock);
  304. /*
  305. * This sequence increase will notify the kvm page fault that
  306. * the page that is going to be mapped in the spte could have
  307. * been freed.
  308. */
  309. kvm->mmu_notifier_seq++;
  310. /*
  311. * The above sequence increase must be visible before the
  312. * below count decrease but both values are read by the kvm
  313. * page fault under mmu_lock spinlock so we don't need to add
  314. * a smb_wmb() here in between the two.
  315. */
  316. kvm->mmu_notifier_count--;
  317. spin_unlock(&kvm->mmu_lock);
  318. BUG_ON(kvm->mmu_notifier_count < 0);
  319. }
  320. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  321. struct mm_struct *mm,
  322. unsigned long address)
  323. {
  324. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  325. int young, idx;
  326. idx = srcu_read_lock(&kvm->srcu);
  327. spin_lock(&kvm->mmu_lock);
  328. young = kvm_age_hva(kvm, address);
  329. spin_unlock(&kvm->mmu_lock);
  330. srcu_read_unlock(&kvm->srcu, idx);
  331. if (young)
  332. kvm_flush_remote_tlbs(kvm);
  333. return young;
  334. }
  335. static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
  336. struct mm_struct *mm,
  337. unsigned long address)
  338. {
  339. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  340. int young, idx;
  341. idx = srcu_read_lock(&kvm->srcu);
  342. spin_lock(&kvm->mmu_lock);
  343. young = kvm_test_age_hva(kvm, address);
  344. spin_unlock(&kvm->mmu_lock);
  345. srcu_read_unlock(&kvm->srcu, idx);
  346. return young;
  347. }
  348. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  349. struct mm_struct *mm)
  350. {
  351. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  352. int idx;
  353. idx = srcu_read_lock(&kvm->srcu);
  354. kvm_arch_flush_shadow(kvm);
  355. srcu_read_unlock(&kvm->srcu, idx);
  356. }
  357. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  358. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  359. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  360. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  361. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  362. .test_young = kvm_mmu_notifier_test_young,
  363. .change_pte = kvm_mmu_notifier_change_pte,
  364. .release = kvm_mmu_notifier_release,
  365. };
  366. static int kvm_init_mmu_notifier(struct kvm *kvm)
  367. {
  368. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  369. return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  370. }
  371. #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
  372. static int kvm_init_mmu_notifier(struct kvm *kvm)
  373. {
  374. return 0;
  375. }
  376. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  377. static struct kvm *kvm_create_vm(void)
  378. {
  379. int r, i;
  380. struct kvm *kvm = kvm_arch_alloc_vm();
  381. if (!kvm)
  382. return ERR_PTR(-ENOMEM);
  383. r = kvm_arch_init_vm(kvm);
  384. if (r)
  385. goto out_err_nodisable;
  386. r = hardware_enable_all();
  387. if (r)
  388. goto out_err_nodisable;
  389. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  390. INIT_HLIST_HEAD(&kvm->mask_notifier_list);
  391. INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
  392. #endif
  393. r = -ENOMEM;
  394. kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  395. if (!kvm->memslots)
  396. goto out_err_nosrcu;
  397. if (init_srcu_struct(&kvm->srcu))
  398. goto out_err_nosrcu;
  399. for (i = 0; i < KVM_NR_BUSES; i++) {
  400. kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
  401. GFP_KERNEL);
  402. if (!kvm->buses[i])
  403. goto out_err;
  404. }
  405. spin_lock_init(&kvm->mmu_lock);
  406. kvm->mm = current->mm;
  407. atomic_inc(&kvm->mm->mm_count);
  408. kvm_eventfd_init(kvm);
  409. mutex_init(&kvm->lock);
  410. mutex_init(&kvm->irq_lock);
  411. mutex_init(&kvm->slots_lock);
  412. atomic_set(&kvm->users_count, 1);
  413. r = kvm_init_mmu_notifier(kvm);
  414. if (r)
  415. goto out_err;
  416. raw_spin_lock(&kvm_lock);
  417. list_add(&kvm->vm_list, &vm_list);
  418. raw_spin_unlock(&kvm_lock);
  419. return kvm;
  420. out_err:
  421. cleanup_srcu_struct(&kvm->srcu);
  422. out_err_nosrcu:
  423. hardware_disable_all();
  424. out_err_nodisable:
  425. for (i = 0; i < KVM_NR_BUSES; i++)
  426. kfree(kvm->buses[i]);
  427. kfree(kvm->memslots);
  428. kvm_arch_free_vm(kvm);
  429. return ERR_PTR(r);
  430. }
  431. static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
  432. {
  433. if (!memslot->dirty_bitmap)
  434. return;
  435. if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
  436. vfree(memslot->dirty_bitmap_head);
  437. else
  438. kfree(memslot->dirty_bitmap_head);
  439. memslot->dirty_bitmap = NULL;
  440. memslot->dirty_bitmap_head = NULL;
  441. }
  442. /*
  443. * Free any memory in @free but not in @dont.
  444. */
  445. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  446. struct kvm_memory_slot *dont)
  447. {
  448. int i;
  449. if (!dont || free->rmap != dont->rmap)
  450. vfree(free->rmap);
  451. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  452. kvm_destroy_dirty_bitmap(free);
  453. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  454. if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
  455. vfree(free->lpage_info[i]);
  456. free->lpage_info[i] = NULL;
  457. }
  458. }
  459. free->npages = 0;
  460. free->rmap = NULL;
  461. }
  462. void kvm_free_physmem(struct kvm *kvm)
  463. {
  464. struct kvm_memslots *slots = kvm->memslots;
  465. struct kvm_memory_slot *memslot;
  466. kvm_for_each_memslot(memslot, slots)
  467. kvm_free_physmem_slot(memslot, NULL);
  468. kfree(kvm->memslots);
  469. }
  470. static void kvm_destroy_vm(struct kvm *kvm)
  471. {
  472. int i;
  473. struct mm_struct *mm = kvm->mm;
  474. kvm_arch_sync_events(kvm);
  475. raw_spin_lock(&kvm_lock);
  476. list_del(&kvm->vm_list);
  477. raw_spin_unlock(&kvm_lock);
  478. kvm_free_irq_routing(kvm);
  479. for (i = 0; i < KVM_NR_BUSES; i++)
  480. kvm_io_bus_destroy(kvm->buses[i]);
  481. kvm_coalesced_mmio_free(kvm);
  482. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  483. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  484. #else
  485. kvm_arch_flush_shadow(kvm);
  486. #endif
  487. kvm_arch_destroy_vm(kvm);
  488. kvm_free_physmem(kvm);
  489. cleanup_srcu_struct(&kvm->srcu);
  490. kvm_arch_free_vm(kvm);
  491. hardware_disable_all();
  492. mmdrop(mm);
  493. }
  494. void kvm_get_kvm(struct kvm *kvm)
  495. {
  496. atomic_inc(&kvm->users_count);
  497. }
  498. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  499. void kvm_put_kvm(struct kvm *kvm)
  500. {
  501. if (atomic_dec_and_test(&kvm->users_count))
  502. kvm_destroy_vm(kvm);
  503. }
  504. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  505. static int kvm_vm_release(struct inode *inode, struct file *filp)
  506. {
  507. struct kvm *kvm = filp->private_data;
  508. kvm_irqfd_release(kvm);
  509. kvm_put_kvm(kvm);
  510. return 0;
  511. }
  512. #ifndef CONFIG_S390
  513. /*
  514. * Allocation size is twice as large as the actual dirty bitmap size.
  515. * This makes it possible to do double buffering: see x86's
  516. * kvm_vm_ioctl_get_dirty_log().
  517. */
  518. static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
  519. {
  520. unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
  521. if (dirty_bytes > PAGE_SIZE)
  522. memslot->dirty_bitmap = vzalloc(dirty_bytes);
  523. else
  524. memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
  525. if (!memslot->dirty_bitmap)
  526. return -ENOMEM;
  527. memslot->dirty_bitmap_head = memslot->dirty_bitmap;
  528. memslot->nr_dirty_pages = 0;
  529. return 0;
  530. }
  531. #endif /* !CONFIG_S390 */
  532. void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
  533. {
  534. if (new) {
  535. int id = new->id;
  536. slots->memslots[id] = *new;
  537. if (id >= slots->nmemslots)
  538. slots->nmemslots = id + 1;
  539. }
  540. slots->generation++;
  541. }
  542. /*
  543. * Allocate some memory and give it an address in the guest physical address
  544. * space.
  545. *
  546. * Discontiguous memory is allowed, mostly for framebuffers.
  547. *
  548. * Must be called holding mmap_sem for write.
  549. */
  550. int __kvm_set_memory_region(struct kvm *kvm,
  551. struct kvm_userspace_memory_region *mem,
  552. int user_alloc)
  553. {
  554. int r;
  555. gfn_t base_gfn;
  556. unsigned long npages;
  557. unsigned long i;
  558. struct kvm_memory_slot *memslot;
  559. struct kvm_memory_slot old, new;
  560. struct kvm_memslots *slots, *old_memslots;
  561. r = -EINVAL;
  562. /* General sanity checks */
  563. if (mem->memory_size & (PAGE_SIZE - 1))
  564. goto out;
  565. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  566. goto out;
  567. /* We can read the guest memory with __xxx_user() later on. */
  568. if (user_alloc &&
  569. ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
  570. !access_ok(VERIFY_WRITE,
  571. (void __user *)(unsigned long)mem->userspace_addr,
  572. mem->memory_size)))
  573. goto out;
  574. if (mem->slot >= KVM_MEM_SLOTS_NUM)
  575. goto out;
  576. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  577. goto out;
  578. memslot = &kvm->memslots->memslots[mem->slot];
  579. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  580. npages = mem->memory_size >> PAGE_SHIFT;
  581. r = -EINVAL;
  582. if (npages > KVM_MEM_MAX_NR_PAGES)
  583. goto out;
  584. if (!npages)
  585. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  586. new = old = *memslot;
  587. new.id = mem->slot;
  588. new.base_gfn = base_gfn;
  589. new.npages = npages;
  590. new.flags = mem->flags;
  591. /* Disallow changing a memory slot's size. */
  592. r = -EINVAL;
  593. if (npages && old.npages && npages != old.npages)
  594. goto out_free;
  595. /* Check for overlaps */
  596. r = -EEXIST;
  597. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  598. struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
  599. if (s == memslot || !s->npages)
  600. continue;
  601. if (!((base_gfn + npages <= s->base_gfn) ||
  602. (base_gfn >= s->base_gfn + s->npages)))
  603. goto out_free;
  604. }
  605. /* Free page dirty bitmap if unneeded */
  606. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  607. new.dirty_bitmap = NULL;
  608. r = -ENOMEM;
  609. /* Allocate if a slot is being created */
  610. #ifndef CONFIG_S390
  611. if (npages && !new.rmap) {
  612. new.rmap = vzalloc(npages * sizeof(*new.rmap));
  613. if (!new.rmap)
  614. goto out_free;
  615. new.user_alloc = user_alloc;
  616. new.userspace_addr = mem->userspace_addr;
  617. }
  618. if (!npages)
  619. goto skip_lpage;
  620. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  621. unsigned long ugfn;
  622. unsigned long j;
  623. int lpages;
  624. int level = i + 2;
  625. /* Avoid unused variable warning if no large pages */
  626. (void)level;
  627. if (new.lpage_info[i])
  628. continue;
  629. lpages = 1 + ((base_gfn + npages - 1)
  630. >> KVM_HPAGE_GFN_SHIFT(level));
  631. lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
  632. new.lpage_info[i] = vzalloc(lpages * sizeof(*new.lpage_info[i]));
  633. if (!new.lpage_info[i])
  634. goto out_free;
  635. if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
  636. new.lpage_info[i][0].write_count = 1;
  637. if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
  638. new.lpage_info[i][lpages - 1].write_count = 1;
  639. ugfn = new.userspace_addr >> PAGE_SHIFT;
  640. /*
  641. * If the gfn and userspace address are not aligned wrt each
  642. * other, or if explicitly asked to, disable large page
  643. * support for this slot
  644. */
  645. if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
  646. !largepages_enabled)
  647. for (j = 0; j < lpages; ++j)
  648. new.lpage_info[i][j].write_count = 1;
  649. }
  650. skip_lpage:
  651. /* Allocate page dirty bitmap if needed */
  652. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  653. if (kvm_create_dirty_bitmap(&new) < 0)
  654. goto out_free;
  655. /* destroy any largepage mappings for dirty tracking */
  656. }
  657. #else /* not defined CONFIG_S390 */
  658. new.user_alloc = user_alloc;
  659. if (user_alloc)
  660. new.userspace_addr = mem->userspace_addr;
  661. #endif /* not defined CONFIG_S390 */
  662. if (!npages) {
  663. r = -ENOMEM;
  664. slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
  665. GFP_KERNEL);
  666. if (!slots)
  667. goto out_free;
  668. slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
  669. update_memslots(slots, NULL);
  670. old_memslots = kvm->memslots;
  671. rcu_assign_pointer(kvm->memslots, slots);
  672. synchronize_srcu_expedited(&kvm->srcu);
  673. /* From this point no new shadow pages pointing to a deleted
  674. * memslot will be created.
  675. *
  676. * validation of sp->gfn happens in:
  677. * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
  678. * - kvm_is_visible_gfn (mmu_check_roots)
  679. */
  680. kvm_arch_flush_shadow(kvm);
  681. kfree(old_memslots);
  682. }
  683. r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
  684. if (r)
  685. goto out_free;
  686. /* map the pages in iommu page table */
  687. if (npages) {
  688. r = kvm_iommu_map_pages(kvm, &new);
  689. if (r)
  690. goto out_free;
  691. }
  692. r = -ENOMEM;
  693. slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
  694. GFP_KERNEL);
  695. if (!slots)
  696. goto out_free;
  697. /* actual memory is freed via old in kvm_free_physmem_slot below */
  698. if (!npages) {
  699. new.rmap = NULL;
  700. new.dirty_bitmap = NULL;
  701. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
  702. new.lpage_info[i] = NULL;
  703. }
  704. update_memslots(slots, &new);
  705. old_memslots = kvm->memslots;
  706. rcu_assign_pointer(kvm->memslots, slots);
  707. synchronize_srcu_expedited(&kvm->srcu);
  708. kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
  709. /*
  710. * If the new memory slot is created, we need to clear all
  711. * mmio sptes.
  712. */
  713. if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT)
  714. kvm_arch_flush_shadow(kvm);
  715. kvm_free_physmem_slot(&old, &new);
  716. kfree(old_memslots);
  717. return 0;
  718. out_free:
  719. kvm_free_physmem_slot(&new, &old);
  720. out:
  721. return r;
  722. }
  723. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  724. int kvm_set_memory_region(struct kvm *kvm,
  725. struct kvm_userspace_memory_region *mem,
  726. int user_alloc)
  727. {
  728. int r;
  729. mutex_lock(&kvm->slots_lock);
  730. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  731. mutex_unlock(&kvm->slots_lock);
  732. return r;
  733. }
  734. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  735. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  736. struct
  737. kvm_userspace_memory_region *mem,
  738. int user_alloc)
  739. {
  740. if (mem->slot >= KVM_MEMORY_SLOTS)
  741. return -EINVAL;
  742. return kvm_set_memory_region(kvm, mem, user_alloc);
  743. }
  744. int kvm_get_dirty_log(struct kvm *kvm,
  745. struct kvm_dirty_log *log, int *is_dirty)
  746. {
  747. struct kvm_memory_slot *memslot;
  748. int r, i;
  749. unsigned long n;
  750. unsigned long any = 0;
  751. r = -EINVAL;
  752. if (log->slot >= KVM_MEMORY_SLOTS)
  753. goto out;
  754. memslot = &kvm->memslots->memslots[log->slot];
  755. r = -ENOENT;
  756. if (!memslot->dirty_bitmap)
  757. goto out;
  758. n = kvm_dirty_bitmap_bytes(memslot);
  759. for (i = 0; !any && i < n/sizeof(long); ++i)
  760. any = memslot->dirty_bitmap[i];
  761. r = -EFAULT;
  762. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  763. goto out;
  764. if (any)
  765. *is_dirty = 1;
  766. r = 0;
  767. out:
  768. return r;
  769. }
  770. void kvm_disable_largepages(void)
  771. {
  772. largepages_enabled = false;
  773. }
  774. EXPORT_SYMBOL_GPL(kvm_disable_largepages);
  775. int is_error_page(struct page *page)
  776. {
  777. return page == bad_page || page == hwpoison_page || page == fault_page;
  778. }
  779. EXPORT_SYMBOL_GPL(is_error_page);
  780. int is_error_pfn(pfn_t pfn)
  781. {
  782. return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
  783. }
  784. EXPORT_SYMBOL_GPL(is_error_pfn);
  785. int is_hwpoison_pfn(pfn_t pfn)
  786. {
  787. return pfn == hwpoison_pfn;
  788. }
  789. EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
  790. int is_fault_pfn(pfn_t pfn)
  791. {
  792. return pfn == fault_pfn;
  793. }
  794. EXPORT_SYMBOL_GPL(is_fault_pfn);
  795. int is_noslot_pfn(pfn_t pfn)
  796. {
  797. return pfn == bad_pfn;
  798. }
  799. EXPORT_SYMBOL_GPL(is_noslot_pfn);
  800. int is_invalid_pfn(pfn_t pfn)
  801. {
  802. return pfn == hwpoison_pfn || pfn == fault_pfn;
  803. }
  804. EXPORT_SYMBOL_GPL(is_invalid_pfn);
  805. static inline unsigned long bad_hva(void)
  806. {
  807. return PAGE_OFFSET;
  808. }
  809. int kvm_is_error_hva(unsigned long addr)
  810. {
  811. return addr == bad_hva();
  812. }
  813. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  814. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm_memslots *slots,
  815. gfn_t gfn)
  816. {
  817. struct kvm_memory_slot *memslot;
  818. kvm_for_each_memslot(memslot, slots)
  819. if (gfn >= memslot->base_gfn
  820. && gfn < memslot->base_gfn + memslot->npages)
  821. return memslot;
  822. return NULL;
  823. }
  824. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  825. {
  826. return __gfn_to_memslot(kvm_memslots(kvm), gfn);
  827. }
  828. EXPORT_SYMBOL_GPL(gfn_to_memslot);
  829. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  830. {
  831. int i;
  832. struct kvm_memslots *slots = kvm_memslots(kvm);
  833. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  834. struct kvm_memory_slot *memslot = &slots->memslots[i];
  835. if (memslot->flags & KVM_MEMSLOT_INVALID)
  836. continue;
  837. if (gfn >= memslot->base_gfn
  838. && gfn < memslot->base_gfn + memslot->npages)
  839. return 1;
  840. }
  841. return 0;
  842. }
  843. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  844. unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
  845. {
  846. struct vm_area_struct *vma;
  847. unsigned long addr, size;
  848. size = PAGE_SIZE;
  849. addr = gfn_to_hva(kvm, gfn);
  850. if (kvm_is_error_hva(addr))
  851. return PAGE_SIZE;
  852. down_read(&current->mm->mmap_sem);
  853. vma = find_vma(current->mm, addr);
  854. if (!vma)
  855. goto out;
  856. size = vma_kernel_pagesize(vma);
  857. out:
  858. up_read(&current->mm->mmap_sem);
  859. return size;
  860. }
  861. static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
  862. gfn_t *nr_pages)
  863. {
  864. if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
  865. return bad_hva();
  866. if (nr_pages)
  867. *nr_pages = slot->npages - (gfn - slot->base_gfn);
  868. return gfn_to_hva_memslot(slot, gfn);
  869. }
  870. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  871. {
  872. return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
  873. }
  874. EXPORT_SYMBOL_GPL(gfn_to_hva);
  875. static pfn_t get_fault_pfn(void)
  876. {
  877. get_page(fault_page);
  878. return fault_pfn;
  879. }
  880. int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
  881. unsigned long start, int write, struct page **page)
  882. {
  883. int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
  884. if (write)
  885. flags |= FOLL_WRITE;
  886. return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
  887. }
  888. static inline int check_user_page_hwpoison(unsigned long addr)
  889. {
  890. int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
  891. rc = __get_user_pages(current, current->mm, addr, 1,
  892. flags, NULL, NULL, NULL);
  893. return rc == -EHWPOISON;
  894. }
  895. static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
  896. bool *async, bool write_fault, bool *writable)
  897. {
  898. struct page *page[1];
  899. int npages = 0;
  900. pfn_t pfn;
  901. /* we can do it either atomically or asynchronously, not both */
  902. BUG_ON(atomic && async);
  903. BUG_ON(!write_fault && !writable);
  904. if (writable)
  905. *writable = true;
  906. if (atomic || async)
  907. npages = __get_user_pages_fast(addr, 1, 1, page);
  908. if (unlikely(npages != 1) && !atomic) {
  909. might_sleep();
  910. if (writable)
  911. *writable = write_fault;
  912. if (async) {
  913. down_read(&current->mm->mmap_sem);
  914. npages = get_user_page_nowait(current, current->mm,
  915. addr, write_fault, page);
  916. up_read(&current->mm->mmap_sem);
  917. } else
  918. npages = get_user_pages_fast(addr, 1, write_fault,
  919. page);
  920. /* map read fault as writable if possible */
  921. if (unlikely(!write_fault) && npages == 1) {
  922. struct page *wpage[1];
  923. npages = __get_user_pages_fast(addr, 1, 1, wpage);
  924. if (npages == 1) {
  925. *writable = true;
  926. put_page(page[0]);
  927. page[0] = wpage[0];
  928. }
  929. npages = 1;
  930. }
  931. }
  932. if (unlikely(npages != 1)) {
  933. struct vm_area_struct *vma;
  934. if (atomic)
  935. return get_fault_pfn();
  936. down_read(&current->mm->mmap_sem);
  937. if (npages == -EHWPOISON ||
  938. (!async && check_user_page_hwpoison(addr))) {
  939. up_read(&current->mm->mmap_sem);
  940. get_page(hwpoison_page);
  941. return page_to_pfn(hwpoison_page);
  942. }
  943. vma = find_vma_intersection(current->mm, addr, addr+1);
  944. if (vma == NULL)
  945. pfn = get_fault_pfn();
  946. else if ((vma->vm_flags & VM_PFNMAP)) {
  947. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
  948. vma->vm_pgoff;
  949. BUG_ON(!kvm_is_mmio_pfn(pfn));
  950. } else {
  951. if (async && (vma->vm_flags & VM_WRITE))
  952. *async = true;
  953. pfn = get_fault_pfn();
  954. }
  955. up_read(&current->mm->mmap_sem);
  956. } else
  957. pfn = page_to_pfn(page[0]);
  958. return pfn;
  959. }
  960. pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
  961. {
  962. return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
  963. }
  964. EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
  965. static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
  966. bool write_fault, bool *writable)
  967. {
  968. unsigned long addr;
  969. if (async)
  970. *async = false;
  971. addr = gfn_to_hva(kvm, gfn);
  972. if (kvm_is_error_hva(addr)) {
  973. get_page(bad_page);
  974. return page_to_pfn(bad_page);
  975. }
  976. return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
  977. }
  978. pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
  979. {
  980. return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
  981. }
  982. EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
  983. pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
  984. bool write_fault, bool *writable)
  985. {
  986. return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
  987. }
  988. EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
  989. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  990. {
  991. return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
  992. }
  993. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  994. pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
  995. bool *writable)
  996. {
  997. return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
  998. }
  999. EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
  1000. pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
  1001. struct kvm_memory_slot *slot, gfn_t gfn)
  1002. {
  1003. unsigned long addr = gfn_to_hva_memslot(slot, gfn);
  1004. return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
  1005. }
  1006. int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
  1007. int nr_pages)
  1008. {
  1009. unsigned long addr;
  1010. gfn_t entry;
  1011. addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
  1012. if (kvm_is_error_hva(addr))
  1013. return -1;
  1014. if (entry < nr_pages)
  1015. return 0;
  1016. return __get_user_pages_fast(addr, nr_pages, 1, pages);
  1017. }
  1018. EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
  1019. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  1020. {
  1021. pfn_t pfn;
  1022. pfn = gfn_to_pfn(kvm, gfn);
  1023. if (!kvm_is_mmio_pfn(pfn))
  1024. return pfn_to_page(pfn);
  1025. WARN_ON(kvm_is_mmio_pfn(pfn));
  1026. get_page(bad_page);
  1027. return bad_page;
  1028. }
  1029. EXPORT_SYMBOL_GPL(gfn_to_page);
  1030. void kvm_release_page_clean(struct page *page)
  1031. {
  1032. kvm_release_pfn_clean(page_to_pfn(page));
  1033. }
  1034. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  1035. void kvm_release_pfn_clean(pfn_t pfn)
  1036. {
  1037. if (!kvm_is_mmio_pfn(pfn))
  1038. put_page(pfn_to_page(pfn));
  1039. }
  1040. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  1041. void kvm_release_page_dirty(struct page *page)
  1042. {
  1043. kvm_release_pfn_dirty(page_to_pfn(page));
  1044. }
  1045. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  1046. void kvm_release_pfn_dirty(pfn_t pfn)
  1047. {
  1048. kvm_set_pfn_dirty(pfn);
  1049. kvm_release_pfn_clean(pfn);
  1050. }
  1051. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  1052. void kvm_set_page_dirty(struct page *page)
  1053. {
  1054. kvm_set_pfn_dirty(page_to_pfn(page));
  1055. }
  1056. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  1057. void kvm_set_pfn_dirty(pfn_t pfn)
  1058. {
  1059. if (!kvm_is_mmio_pfn(pfn)) {
  1060. struct page *page = pfn_to_page(pfn);
  1061. if (!PageReserved(page))
  1062. SetPageDirty(page);
  1063. }
  1064. }
  1065. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  1066. void kvm_set_pfn_accessed(pfn_t pfn)
  1067. {
  1068. if (!kvm_is_mmio_pfn(pfn))
  1069. mark_page_accessed(pfn_to_page(pfn));
  1070. }
  1071. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  1072. void kvm_get_pfn(pfn_t pfn)
  1073. {
  1074. if (!kvm_is_mmio_pfn(pfn))
  1075. get_page(pfn_to_page(pfn));
  1076. }
  1077. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  1078. static int next_segment(unsigned long len, int offset)
  1079. {
  1080. if (len > PAGE_SIZE - offset)
  1081. return PAGE_SIZE - offset;
  1082. else
  1083. return len;
  1084. }
  1085. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  1086. int len)
  1087. {
  1088. int r;
  1089. unsigned long addr;
  1090. addr = gfn_to_hva(kvm, gfn);
  1091. if (kvm_is_error_hva(addr))
  1092. return -EFAULT;
  1093. r = __copy_from_user(data, (void __user *)addr + offset, len);
  1094. if (r)
  1095. return -EFAULT;
  1096. return 0;
  1097. }
  1098. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  1099. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  1100. {
  1101. gfn_t gfn = gpa >> PAGE_SHIFT;
  1102. int seg;
  1103. int offset = offset_in_page(gpa);
  1104. int ret;
  1105. while ((seg = next_segment(len, offset)) != 0) {
  1106. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  1107. if (ret < 0)
  1108. return ret;
  1109. offset = 0;
  1110. len -= seg;
  1111. data += seg;
  1112. ++gfn;
  1113. }
  1114. return 0;
  1115. }
  1116. EXPORT_SYMBOL_GPL(kvm_read_guest);
  1117. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  1118. unsigned long len)
  1119. {
  1120. int r;
  1121. unsigned long addr;
  1122. gfn_t gfn = gpa >> PAGE_SHIFT;
  1123. int offset = offset_in_page(gpa);
  1124. addr = gfn_to_hva(kvm, gfn);
  1125. if (kvm_is_error_hva(addr))
  1126. return -EFAULT;
  1127. pagefault_disable();
  1128. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  1129. pagefault_enable();
  1130. if (r)
  1131. return -EFAULT;
  1132. return 0;
  1133. }
  1134. EXPORT_SYMBOL(kvm_read_guest_atomic);
  1135. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  1136. int offset, int len)
  1137. {
  1138. int r;
  1139. unsigned long addr;
  1140. addr = gfn_to_hva(kvm, gfn);
  1141. if (kvm_is_error_hva(addr))
  1142. return -EFAULT;
  1143. r = __copy_to_user((void __user *)addr + offset, data, len);
  1144. if (r)
  1145. return -EFAULT;
  1146. mark_page_dirty(kvm, gfn);
  1147. return 0;
  1148. }
  1149. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  1150. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  1151. unsigned long len)
  1152. {
  1153. gfn_t gfn = gpa >> PAGE_SHIFT;
  1154. int seg;
  1155. int offset = offset_in_page(gpa);
  1156. int ret;
  1157. while ((seg = next_segment(len, offset)) != 0) {
  1158. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1159. if (ret < 0)
  1160. return ret;
  1161. offset = 0;
  1162. len -= seg;
  1163. data += seg;
  1164. ++gfn;
  1165. }
  1166. return 0;
  1167. }
  1168. int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1169. gpa_t gpa)
  1170. {
  1171. struct kvm_memslots *slots = kvm_memslots(kvm);
  1172. int offset = offset_in_page(gpa);
  1173. gfn_t gfn = gpa >> PAGE_SHIFT;
  1174. ghc->gpa = gpa;
  1175. ghc->generation = slots->generation;
  1176. ghc->memslot = __gfn_to_memslot(slots, gfn);
  1177. ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
  1178. if (!kvm_is_error_hva(ghc->hva))
  1179. ghc->hva += offset;
  1180. else
  1181. return -EFAULT;
  1182. return 0;
  1183. }
  1184. EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
  1185. int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1186. void *data, unsigned long len)
  1187. {
  1188. struct kvm_memslots *slots = kvm_memslots(kvm);
  1189. int r;
  1190. if (slots->generation != ghc->generation)
  1191. kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
  1192. if (kvm_is_error_hva(ghc->hva))
  1193. return -EFAULT;
  1194. r = __copy_to_user((void __user *)ghc->hva, data, len);
  1195. if (r)
  1196. return -EFAULT;
  1197. mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
  1198. return 0;
  1199. }
  1200. EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
  1201. int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1202. void *data, unsigned long len)
  1203. {
  1204. struct kvm_memslots *slots = kvm_memslots(kvm);
  1205. int r;
  1206. if (slots->generation != ghc->generation)
  1207. kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
  1208. if (kvm_is_error_hva(ghc->hva))
  1209. return -EFAULT;
  1210. r = __copy_from_user(data, (void __user *)ghc->hva, len);
  1211. if (r)
  1212. return -EFAULT;
  1213. return 0;
  1214. }
  1215. EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
  1216. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1217. {
  1218. return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
  1219. offset, len);
  1220. }
  1221. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1222. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1223. {
  1224. gfn_t gfn = gpa >> PAGE_SHIFT;
  1225. int seg;
  1226. int offset = offset_in_page(gpa);
  1227. int ret;
  1228. while ((seg = next_segment(len, offset)) != 0) {
  1229. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1230. if (ret < 0)
  1231. return ret;
  1232. offset = 0;
  1233. len -= seg;
  1234. ++gfn;
  1235. }
  1236. return 0;
  1237. }
  1238. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1239. void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
  1240. gfn_t gfn)
  1241. {
  1242. if (memslot && memslot->dirty_bitmap) {
  1243. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1244. if (!__test_and_set_bit_le(rel_gfn, memslot->dirty_bitmap))
  1245. memslot->nr_dirty_pages++;
  1246. }
  1247. }
  1248. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1249. {
  1250. struct kvm_memory_slot *memslot;
  1251. memslot = gfn_to_memslot(kvm, gfn);
  1252. mark_page_dirty_in_slot(kvm, memslot, gfn);
  1253. }
  1254. /*
  1255. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1256. */
  1257. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1258. {
  1259. DEFINE_WAIT(wait);
  1260. for (;;) {
  1261. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1262. if (kvm_arch_vcpu_runnable(vcpu)) {
  1263. kvm_make_request(KVM_REQ_UNHALT, vcpu);
  1264. break;
  1265. }
  1266. if (kvm_cpu_has_pending_timer(vcpu))
  1267. break;
  1268. if (signal_pending(current))
  1269. break;
  1270. schedule();
  1271. }
  1272. finish_wait(&vcpu->wq, &wait);
  1273. }
  1274. void kvm_resched(struct kvm_vcpu *vcpu)
  1275. {
  1276. if (!need_resched())
  1277. return;
  1278. cond_resched();
  1279. }
  1280. EXPORT_SYMBOL_GPL(kvm_resched);
  1281. void kvm_vcpu_on_spin(struct kvm_vcpu *me)
  1282. {
  1283. struct kvm *kvm = me->kvm;
  1284. struct kvm_vcpu *vcpu;
  1285. int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
  1286. int yielded = 0;
  1287. int pass;
  1288. int i;
  1289. /*
  1290. * We boost the priority of a VCPU that is runnable but not
  1291. * currently running, because it got preempted by something
  1292. * else and called schedule in __vcpu_run. Hopefully that
  1293. * VCPU is holding the lock that we need and will release it.
  1294. * We approximate round-robin by starting at the last boosted VCPU.
  1295. */
  1296. for (pass = 0; pass < 2 && !yielded; pass++) {
  1297. kvm_for_each_vcpu(i, vcpu, kvm) {
  1298. struct task_struct *task = NULL;
  1299. struct pid *pid;
  1300. if (!pass && i < last_boosted_vcpu) {
  1301. i = last_boosted_vcpu;
  1302. continue;
  1303. } else if (pass && i > last_boosted_vcpu)
  1304. break;
  1305. if (vcpu == me)
  1306. continue;
  1307. if (waitqueue_active(&vcpu->wq))
  1308. continue;
  1309. rcu_read_lock();
  1310. pid = rcu_dereference(vcpu->pid);
  1311. if (pid)
  1312. task = get_pid_task(vcpu->pid, PIDTYPE_PID);
  1313. rcu_read_unlock();
  1314. if (!task)
  1315. continue;
  1316. if (task->flags & PF_VCPU) {
  1317. put_task_struct(task);
  1318. continue;
  1319. }
  1320. if (yield_to(task, 1)) {
  1321. put_task_struct(task);
  1322. kvm->last_boosted_vcpu = i;
  1323. yielded = 1;
  1324. break;
  1325. }
  1326. put_task_struct(task);
  1327. }
  1328. }
  1329. }
  1330. EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
  1331. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1332. {
  1333. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1334. struct page *page;
  1335. if (vmf->pgoff == 0)
  1336. page = virt_to_page(vcpu->run);
  1337. #ifdef CONFIG_X86
  1338. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1339. page = virt_to_page(vcpu->arch.pio_data);
  1340. #endif
  1341. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1342. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1343. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1344. #endif
  1345. else
  1346. return VM_FAULT_SIGBUS;
  1347. get_page(page);
  1348. vmf->page = page;
  1349. return 0;
  1350. }
  1351. static const struct vm_operations_struct kvm_vcpu_vm_ops = {
  1352. .fault = kvm_vcpu_fault,
  1353. };
  1354. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1355. {
  1356. vma->vm_ops = &kvm_vcpu_vm_ops;
  1357. return 0;
  1358. }
  1359. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1360. {
  1361. struct kvm_vcpu *vcpu = filp->private_data;
  1362. kvm_put_kvm(vcpu->kvm);
  1363. return 0;
  1364. }
  1365. static struct file_operations kvm_vcpu_fops = {
  1366. .release = kvm_vcpu_release,
  1367. .unlocked_ioctl = kvm_vcpu_ioctl,
  1368. #ifdef CONFIG_COMPAT
  1369. .compat_ioctl = kvm_vcpu_compat_ioctl,
  1370. #endif
  1371. .mmap = kvm_vcpu_mmap,
  1372. .llseek = noop_llseek,
  1373. };
  1374. /*
  1375. * Allocates an inode for the vcpu.
  1376. */
  1377. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1378. {
  1379. return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
  1380. }
  1381. /*
  1382. * Creates some virtual cpus. Good luck creating more than one.
  1383. */
  1384. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
  1385. {
  1386. int r;
  1387. struct kvm_vcpu *vcpu, *v;
  1388. vcpu = kvm_arch_vcpu_create(kvm, id);
  1389. if (IS_ERR(vcpu))
  1390. return PTR_ERR(vcpu);
  1391. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1392. r = kvm_arch_vcpu_setup(vcpu);
  1393. if (r)
  1394. goto vcpu_destroy;
  1395. mutex_lock(&kvm->lock);
  1396. if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
  1397. r = -EINVAL;
  1398. goto unlock_vcpu_destroy;
  1399. }
  1400. kvm_for_each_vcpu(r, v, kvm)
  1401. if (v->vcpu_id == id) {
  1402. r = -EEXIST;
  1403. goto unlock_vcpu_destroy;
  1404. }
  1405. BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
  1406. /* Now it's all set up, let userspace reach it */
  1407. kvm_get_kvm(kvm);
  1408. r = create_vcpu_fd(vcpu);
  1409. if (r < 0) {
  1410. kvm_put_kvm(kvm);
  1411. goto unlock_vcpu_destroy;
  1412. }
  1413. kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
  1414. smp_wmb();
  1415. atomic_inc(&kvm->online_vcpus);
  1416. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1417. if (kvm->bsp_vcpu_id == id)
  1418. kvm->bsp_vcpu = vcpu;
  1419. #endif
  1420. mutex_unlock(&kvm->lock);
  1421. return r;
  1422. unlock_vcpu_destroy:
  1423. mutex_unlock(&kvm->lock);
  1424. vcpu_destroy:
  1425. kvm_arch_vcpu_destroy(vcpu);
  1426. return r;
  1427. }
  1428. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1429. {
  1430. if (sigset) {
  1431. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1432. vcpu->sigset_active = 1;
  1433. vcpu->sigset = *sigset;
  1434. } else
  1435. vcpu->sigset_active = 0;
  1436. return 0;
  1437. }
  1438. static long kvm_vcpu_ioctl(struct file *filp,
  1439. unsigned int ioctl, unsigned long arg)
  1440. {
  1441. struct kvm_vcpu *vcpu = filp->private_data;
  1442. void __user *argp = (void __user *)arg;
  1443. int r;
  1444. struct kvm_fpu *fpu = NULL;
  1445. struct kvm_sregs *kvm_sregs = NULL;
  1446. if (vcpu->kvm->mm != current->mm)
  1447. return -EIO;
  1448. #if defined(CONFIG_S390) || defined(CONFIG_PPC)
  1449. /*
  1450. * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
  1451. * so vcpu_load() would break it.
  1452. */
  1453. if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
  1454. return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1455. #endif
  1456. vcpu_load(vcpu);
  1457. switch (ioctl) {
  1458. case KVM_RUN:
  1459. r = -EINVAL;
  1460. if (arg)
  1461. goto out;
  1462. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1463. trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
  1464. break;
  1465. case KVM_GET_REGS: {
  1466. struct kvm_regs *kvm_regs;
  1467. r = -ENOMEM;
  1468. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1469. if (!kvm_regs)
  1470. goto out;
  1471. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1472. if (r)
  1473. goto out_free1;
  1474. r = -EFAULT;
  1475. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1476. goto out_free1;
  1477. r = 0;
  1478. out_free1:
  1479. kfree(kvm_regs);
  1480. break;
  1481. }
  1482. case KVM_SET_REGS: {
  1483. struct kvm_regs *kvm_regs;
  1484. r = -ENOMEM;
  1485. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1486. if (!kvm_regs)
  1487. goto out;
  1488. r = -EFAULT;
  1489. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  1490. goto out_free2;
  1491. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1492. if (r)
  1493. goto out_free2;
  1494. r = 0;
  1495. out_free2:
  1496. kfree(kvm_regs);
  1497. break;
  1498. }
  1499. case KVM_GET_SREGS: {
  1500. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1501. r = -ENOMEM;
  1502. if (!kvm_sregs)
  1503. goto out;
  1504. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1505. if (r)
  1506. goto out;
  1507. r = -EFAULT;
  1508. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1509. goto out;
  1510. r = 0;
  1511. break;
  1512. }
  1513. case KVM_SET_SREGS: {
  1514. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1515. r = -ENOMEM;
  1516. if (!kvm_sregs)
  1517. goto out;
  1518. r = -EFAULT;
  1519. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1520. goto out;
  1521. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1522. if (r)
  1523. goto out;
  1524. r = 0;
  1525. break;
  1526. }
  1527. case KVM_GET_MP_STATE: {
  1528. struct kvm_mp_state mp_state;
  1529. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1530. if (r)
  1531. goto out;
  1532. r = -EFAULT;
  1533. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1534. goto out;
  1535. r = 0;
  1536. break;
  1537. }
  1538. case KVM_SET_MP_STATE: {
  1539. struct kvm_mp_state mp_state;
  1540. r = -EFAULT;
  1541. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1542. goto out;
  1543. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1544. if (r)
  1545. goto out;
  1546. r = 0;
  1547. break;
  1548. }
  1549. case KVM_TRANSLATE: {
  1550. struct kvm_translation tr;
  1551. r = -EFAULT;
  1552. if (copy_from_user(&tr, argp, sizeof tr))
  1553. goto out;
  1554. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1555. if (r)
  1556. goto out;
  1557. r = -EFAULT;
  1558. if (copy_to_user(argp, &tr, sizeof tr))
  1559. goto out;
  1560. r = 0;
  1561. break;
  1562. }
  1563. case KVM_SET_GUEST_DEBUG: {
  1564. struct kvm_guest_debug dbg;
  1565. r = -EFAULT;
  1566. if (copy_from_user(&dbg, argp, sizeof dbg))
  1567. goto out;
  1568. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  1569. if (r)
  1570. goto out;
  1571. r = 0;
  1572. break;
  1573. }
  1574. case KVM_SET_SIGNAL_MASK: {
  1575. struct kvm_signal_mask __user *sigmask_arg = argp;
  1576. struct kvm_signal_mask kvm_sigmask;
  1577. sigset_t sigset, *p;
  1578. p = NULL;
  1579. if (argp) {
  1580. r = -EFAULT;
  1581. if (copy_from_user(&kvm_sigmask, argp,
  1582. sizeof kvm_sigmask))
  1583. goto out;
  1584. r = -EINVAL;
  1585. if (kvm_sigmask.len != sizeof sigset)
  1586. goto out;
  1587. r = -EFAULT;
  1588. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1589. sizeof sigset))
  1590. goto out;
  1591. p = &sigset;
  1592. }
  1593. r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
  1594. break;
  1595. }
  1596. case KVM_GET_FPU: {
  1597. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1598. r = -ENOMEM;
  1599. if (!fpu)
  1600. goto out;
  1601. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1602. if (r)
  1603. goto out;
  1604. r = -EFAULT;
  1605. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1606. goto out;
  1607. r = 0;
  1608. break;
  1609. }
  1610. case KVM_SET_FPU: {
  1611. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1612. r = -ENOMEM;
  1613. if (!fpu)
  1614. goto out;
  1615. r = -EFAULT;
  1616. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1617. goto out;
  1618. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1619. if (r)
  1620. goto out;
  1621. r = 0;
  1622. break;
  1623. }
  1624. default:
  1625. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1626. }
  1627. out:
  1628. vcpu_put(vcpu);
  1629. kfree(fpu);
  1630. kfree(kvm_sregs);
  1631. return r;
  1632. }
  1633. #ifdef CONFIG_COMPAT
  1634. static long kvm_vcpu_compat_ioctl(struct file *filp,
  1635. unsigned int ioctl, unsigned long arg)
  1636. {
  1637. struct kvm_vcpu *vcpu = filp->private_data;
  1638. void __user *argp = compat_ptr(arg);
  1639. int r;
  1640. if (vcpu->kvm->mm != current->mm)
  1641. return -EIO;
  1642. switch (ioctl) {
  1643. case KVM_SET_SIGNAL_MASK: {
  1644. struct kvm_signal_mask __user *sigmask_arg = argp;
  1645. struct kvm_signal_mask kvm_sigmask;
  1646. compat_sigset_t csigset;
  1647. sigset_t sigset;
  1648. if (argp) {
  1649. r = -EFAULT;
  1650. if (copy_from_user(&kvm_sigmask, argp,
  1651. sizeof kvm_sigmask))
  1652. goto out;
  1653. r = -EINVAL;
  1654. if (kvm_sigmask.len != sizeof csigset)
  1655. goto out;
  1656. r = -EFAULT;
  1657. if (copy_from_user(&csigset, sigmask_arg->sigset,
  1658. sizeof csigset))
  1659. goto out;
  1660. }
  1661. sigset_from_compat(&sigset, &csigset);
  1662. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  1663. break;
  1664. }
  1665. default:
  1666. r = kvm_vcpu_ioctl(filp, ioctl, arg);
  1667. }
  1668. out:
  1669. return r;
  1670. }
  1671. #endif
  1672. static long kvm_vm_ioctl(struct file *filp,
  1673. unsigned int ioctl, unsigned long arg)
  1674. {
  1675. struct kvm *kvm = filp->private_data;
  1676. void __user *argp = (void __user *)arg;
  1677. int r;
  1678. if (kvm->mm != current->mm)
  1679. return -EIO;
  1680. switch (ioctl) {
  1681. case KVM_CREATE_VCPU:
  1682. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1683. if (r < 0)
  1684. goto out;
  1685. break;
  1686. case KVM_SET_USER_MEMORY_REGION: {
  1687. struct kvm_userspace_memory_region kvm_userspace_mem;
  1688. r = -EFAULT;
  1689. if (copy_from_user(&kvm_userspace_mem, argp,
  1690. sizeof kvm_userspace_mem))
  1691. goto out;
  1692. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1693. if (r)
  1694. goto out;
  1695. break;
  1696. }
  1697. case KVM_GET_DIRTY_LOG: {
  1698. struct kvm_dirty_log log;
  1699. r = -EFAULT;
  1700. if (copy_from_user(&log, argp, sizeof log))
  1701. goto out;
  1702. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1703. if (r)
  1704. goto out;
  1705. break;
  1706. }
  1707. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1708. case KVM_REGISTER_COALESCED_MMIO: {
  1709. struct kvm_coalesced_mmio_zone zone;
  1710. r = -EFAULT;
  1711. if (copy_from_user(&zone, argp, sizeof zone))
  1712. goto out;
  1713. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1714. if (r)
  1715. goto out;
  1716. r = 0;
  1717. break;
  1718. }
  1719. case KVM_UNREGISTER_COALESCED_MMIO: {
  1720. struct kvm_coalesced_mmio_zone zone;
  1721. r = -EFAULT;
  1722. if (copy_from_user(&zone, argp, sizeof zone))
  1723. goto out;
  1724. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1725. if (r)
  1726. goto out;
  1727. r = 0;
  1728. break;
  1729. }
  1730. #endif
  1731. case KVM_IRQFD: {
  1732. struct kvm_irqfd data;
  1733. r = -EFAULT;
  1734. if (copy_from_user(&data, argp, sizeof data))
  1735. goto out;
  1736. r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
  1737. break;
  1738. }
  1739. case KVM_IOEVENTFD: {
  1740. struct kvm_ioeventfd data;
  1741. r = -EFAULT;
  1742. if (copy_from_user(&data, argp, sizeof data))
  1743. goto out;
  1744. r = kvm_ioeventfd(kvm, &data);
  1745. break;
  1746. }
  1747. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1748. case KVM_SET_BOOT_CPU_ID:
  1749. r = 0;
  1750. mutex_lock(&kvm->lock);
  1751. if (atomic_read(&kvm->online_vcpus) != 0)
  1752. r = -EBUSY;
  1753. else
  1754. kvm->bsp_vcpu_id = arg;
  1755. mutex_unlock(&kvm->lock);
  1756. break;
  1757. #endif
  1758. default:
  1759. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1760. if (r == -ENOTTY)
  1761. r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
  1762. }
  1763. out:
  1764. return r;
  1765. }
  1766. #ifdef CONFIG_COMPAT
  1767. struct compat_kvm_dirty_log {
  1768. __u32 slot;
  1769. __u32 padding1;
  1770. union {
  1771. compat_uptr_t dirty_bitmap; /* one bit per page */
  1772. __u64 padding2;
  1773. };
  1774. };
  1775. static long kvm_vm_compat_ioctl(struct file *filp,
  1776. unsigned int ioctl, unsigned long arg)
  1777. {
  1778. struct kvm *kvm = filp->private_data;
  1779. int r;
  1780. if (kvm->mm != current->mm)
  1781. return -EIO;
  1782. switch (ioctl) {
  1783. case KVM_GET_DIRTY_LOG: {
  1784. struct compat_kvm_dirty_log compat_log;
  1785. struct kvm_dirty_log log;
  1786. r = -EFAULT;
  1787. if (copy_from_user(&compat_log, (void __user *)arg,
  1788. sizeof(compat_log)))
  1789. goto out;
  1790. log.slot = compat_log.slot;
  1791. log.padding1 = compat_log.padding1;
  1792. log.padding2 = compat_log.padding2;
  1793. log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
  1794. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1795. if (r)
  1796. goto out;
  1797. break;
  1798. }
  1799. default:
  1800. r = kvm_vm_ioctl(filp, ioctl, arg);
  1801. }
  1802. out:
  1803. return r;
  1804. }
  1805. #endif
  1806. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1807. {
  1808. struct page *page[1];
  1809. unsigned long addr;
  1810. int npages;
  1811. gfn_t gfn = vmf->pgoff;
  1812. struct kvm *kvm = vma->vm_file->private_data;
  1813. addr = gfn_to_hva(kvm, gfn);
  1814. if (kvm_is_error_hva(addr))
  1815. return VM_FAULT_SIGBUS;
  1816. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1817. NULL);
  1818. if (unlikely(npages != 1))
  1819. return VM_FAULT_SIGBUS;
  1820. vmf->page = page[0];
  1821. return 0;
  1822. }
  1823. static const struct vm_operations_struct kvm_vm_vm_ops = {
  1824. .fault = kvm_vm_fault,
  1825. };
  1826. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1827. {
  1828. vma->vm_ops = &kvm_vm_vm_ops;
  1829. return 0;
  1830. }
  1831. static struct file_operations kvm_vm_fops = {
  1832. .release = kvm_vm_release,
  1833. .unlocked_ioctl = kvm_vm_ioctl,
  1834. #ifdef CONFIG_COMPAT
  1835. .compat_ioctl = kvm_vm_compat_ioctl,
  1836. #endif
  1837. .mmap = kvm_vm_mmap,
  1838. .llseek = noop_llseek,
  1839. };
  1840. static int kvm_dev_ioctl_create_vm(void)
  1841. {
  1842. int r;
  1843. struct kvm *kvm;
  1844. kvm = kvm_create_vm();
  1845. if (IS_ERR(kvm))
  1846. return PTR_ERR(kvm);
  1847. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1848. r = kvm_coalesced_mmio_init(kvm);
  1849. if (r < 0) {
  1850. kvm_put_kvm(kvm);
  1851. return r;
  1852. }
  1853. #endif
  1854. r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
  1855. if (r < 0)
  1856. kvm_put_kvm(kvm);
  1857. return r;
  1858. }
  1859. static long kvm_dev_ioctl_check_extension_generic(long arg)
  1860. {
  1861. switch (arg) {
  1862. case KVM_CAP_USER_MEMORY:
  1863. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  1864. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  1865. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1866. case KVM_CAP_SET_BOOT_CPU_ID:
  1867. #endif
  1868. case KVM_CAP_INTERNAL_ERROR_DATA:
  1869. return 1;
  1870. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  1871. case KVM_CAP_IRQ_ROUTING:
  1872. return KVM_MAX_IRQ_ROUTES;
  1873. #endif
  1874. default:
  1875. break;
  1876. }
  1877. return kvm_dev_ioctl_check_extension(arg);
  1878. }
  1879. static long kvm_dev_ioctl(struct file *filp,
  1880. unsigned int ioctl, unsigned long arg)
  1881. {
  1882. long r = -EINVAL;
  1883. switch (ioctl) {
  1884. case KVM_GET_API_VERSION:
  1885. r = -EINVAL;
  1886. if (arg)
  1887. goto out;
  1888. r = KVM_API_VERSION;
  1889. break;
  1890. case KVM_CREATE_VM:
  1891. r = -EINVAL;
  1892. if (arg)
  1893. goto out;
  1894. r = kvm_dev_ioctl_create_vm();
  1895. break;
  1896. case KVM_CHECK_EXTENSION:
  1897. r = kvm_dev_ioctl_check_extension_generic(arg);
  1898. break;
  1899. case KVM_GET_VCPU_MMAP_SIZE:
  1900. r = -EINVAL;
  1901. if (arg)
  1902. goto out;
  1903. r = PAGE_SIZE; /* struct kvm_run */
  1904. #ifdef CONFIG_X86
  1905. r += PAGE_SIZE; /* pio data page */
  1906. #endif
  1907. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1908. r += PAGE_SIZE; /* coalesced mmio ring page */
  1909. #endif
  1910. break;
  1911. case KVM_TRACE_ENABLE:
  1912. case KVM_TRACE_PAUSE:
  1913. case KVM_TRACE_DISABLE:
  1914. r = -EOPNOTSUPP;
  1915. break;
  1916. default:
  1917. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1918. }
  1919. out:
  1920. return r;
  1921. }
  1922. static struct file_operations kvm_chardev_ops = {
  1923. .unlocked_ioctl = kvm_dev_ioctl,
  1924. .compat_ioctl = kvm_dev_ioctl,
  1925. .llseek = noop_llseek,
  1926. };
  1927. static struct miscdevice kvm_dev = {
  1928. KVM_MINOR,
  1929. "kvm",
  1930. &kvm_chardev_ops,
  1931. };
  1932. static void hardware_enable_nolock(void *junk)
  1933. {
  1934. int cpu = raw_smp_processor_id();
  1935. int r;
  1936. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1937. return;
  1938. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  1939. r = kvm_arch_hardware_enable(NULL);
  1940. if (r) {
  1941. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1942. atomic_inc(&hardware_enable_failed);
  1943. printk(KERN_INFO "kvm: enabling virtualization on "
  1944. "CPU%d failed\n", cpu);
  1945. }
  1946. }
  1947. static void hardware_enable(void *junk)
  1948. {
  1949. raw_spin_lock(&kvm_lock);
  1950. hardware_enable_nolock(junk);
  1951. raw_spin_unlock(&kvm_lock);
  1952. }
  1953. static void hardware_disable_nolock(void *junk)
  1954. {
  1955. int cpu = raw_smp_processor_id();
  1956. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1957. return;
  1958. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1959. kvm_arch_hardware_disable(NULL);
  1960. }
  1961. static void hardware_disable(void *junk)
  1962. {
  1963. raw_spin_lock(&kvm_lock);
  1964. hardware_disable_nolock(junk);
  1965. raw_spin_unlock(&kvm_lock);
  1966. }
  1967. static void hardware_disable_all_nolock(void)
  1968. {
  1969. BUG_ON(!kvm_usage_count);
  1970. kvm_usage_count--;
  1971. if (!kvm_usage_count)
  1972. on_each_cpu(hardware_disable_nolock, NULL, 1);
  1973. }
  1974. static void hardware_disable_all(void)
  1975. {
  1976. raw_spin_lock(&kvm_lock);
  1977. hardware_disable_all_nolock();
  1978. raw_spin_unlock(&kvm_lock);
  1979. }
  1980. static int hardware_enable_all(void)
  1981. {
  1982. int r = 0;
  1983. raw_spin_lock(&kvm_lock);
  1984. kvm_usage_count++;
  1985. if (kvm_usage_count == 1) {
  1986. atomic_set(&hardware_enable_failed, 0);
  1987. on_each_cpu(hardware_enable_nolock, NULL, 1);
  1988. if (atomic_read(&hardware_enable_failed)) {
  1989. hardware_disable_all_nolock();
  1990. r = -EBUSY;
  1991. }
  1992. }
  1993. raw_spin_unlock(&kvm_lock);
  1994. return r;
  1995. }
  1996. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1997. void *v)
  1998. {
  1999. int cpu = (long)v;
  2000. if (!kvm_usage_count)
  2001. return NOTIFY_OK;
  2002. val &= ~CPU_TASKS_FROZEN;
  2003. switch (val) {
  2004. case CPU_DYING:
  2005. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2006. cpu);
  2007. hardware_disable(NULL);
  2008. break;
  2009. case CPU_STARTING:
  2010. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2011. cpu);
  2012. hardware_enable(NULL);
  2013. break;
  2014. }
  2015. return NOTIFY_OK;
  2016. }
  2017. asmlinkage void kvm_spurious_fault(void)
  2018. {
  2019. /* Fault while not rebooting. We want the trace. */
  2020. BUG();
  2021. }
  2022. EXPORT_SYMBOL_GPL(kvm_spurious_fault);
  2023. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2024. void *v)
  2025. {
  2026. /*
  2027. * Some (well, at least mine) BIOSes hang on reboot if
  2028. * in vmx root mode.
  2029. *
  2030. * And Intel TXT required VMX off for all cpu when system shutdown.
  2031. */
  2032. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2033. kvm_rebooting = true;
  2034. on_each_cpu(hardware_disable_nolock, NULL, 1);
  2035. return NOTIFY_OK;
  2036. }
  2037. static struct notifier_block kvm_reboot_notifier = {
  2038. .notifier_call = kvm_reboot,
  2039. .priority = 0,
  2040. };
  2041. static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2042. {
  2043. int i;
  2044. for (i = 0; i < bus->dev_count; i++) {
  2045. struct kvm_io_device *pos = bus->range[i].dev;
  2046. kvm_iodevice_destructor(pos);
  2047. }
  2048. kfree(bus);
  2049. }
  2050. int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
  2051. {
  2052. const struct kvm_io_range *r1 = p1;
  2053. const struct kvm_io_range *r2 = p2;
  2054. if (r1->addr < r2->addr)
  2055. return -1;
  2056. if (r1->addr + r1->len > r2->addr + r2->len)
  2057. return 1;
  2058. return 0;
  2059. }
  2060. int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
  2061. gpa_t addr, int len)
  2062. {
  2063. if (bus->dev_count == NR_IOBUS_DEVS)
  2064. return -ENOSPC;
  2065. bus->range[bus->dev_count++] = (struct kvm_io_range) {
  2066. .addr = addr,
  2067. .len = len,
  2068. .dev = dev,
  2069. };
  2070. sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
  2071. kvm_io_bus_sort_cmp, NULL);
  2072. return 0;
  2073. }
  2074. int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
  2075. gpa_t addr, int len)
  2076. {
  2077. struct kvm_io_range *range, key;
  2078. int off;
  2079. key = (struct kvm_io_range) {
  2080. .addr = addr,
  2081. .len = len,
  2082. };
  2083. range = bsearch(&key, bus->range, bus->dev_count,
  2084. sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
  2085. if (range == NULL)
  2086. return -ENOENT;
  2087. off = range - bus->range;
  2088. while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
  2089. off--;
  2090. return off;
  2091. }
  2092. /* kvm_io_bus_write - called under kvm->slots_lock */
  2093. int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  2094. int len, const void *val)
  2095. {
  2096. int idx;
  2097. struct kvm_io_bus *bus;
  2098. struct kvm_io_range range;
  2099. range = (struct kvm_io_range) {
  2100. .addr = addr,
  2101. .len = len,
  2102. };
  2103. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  2104. idx = kvm_io_bus_get_first_dev(bus, addr, len);
  2105. if (idx < 0)
  2106. return -EOPNOTSUPP;
  2107. while (idx < bus->dev_count &&
  2108. kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
  2109. if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
  2110. return 0;
  2111. idx++;
  2112. }
  2113. return -EOPNOTSUPP;
  2114. }
  2115. /* kvm_io_bus_read - called under kvm->slots_lock */
  2116. int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  2117. int len, void *val)
  2118. {
  2119. int idx;
  2120. struct kvm_io_bus *bus;
  2121. struct kvm_io_range range;
  2122. range = (struct kvm_io_range) {
  2123. .addr = addr,
  2124. .len = len,
  2125. };
  2126. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  2127. idx = kvm_io_bus_get_first_dev(bus, addr, len);
  2128. if (idx < 0)
  2129. return -EOPNOTSUPP;
  2130. while (idx < bus->dev_count &&
  2131. kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
  2132. if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
  2133. return 0;
  2134. idx++;
  2135. }
  2136. return -EOPNOTSUPP;
  2137. }
  2138. /* Caller must hold slots_lock. */
  2139. int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  2140. int len, struct kvm_io_device *dev)
  2141. {
  2142. struct kvm_io_bus *new_bus, *bus;
  2143. bus = kvm->buses[bus_idx];
  2144. if (bus->dev_count > NR_IOBUS_DEVS-1)
  2145. return -ENOSPC;
  2146. new_bus = kmemdup(bus, sizeof(struct kvm_io_bus), GFP_KERNEL);
  2147. if (!new_bus)
  2148. return -ENOMEM;
  2149. kvm_io_bus_insert_dev(new_bus, dev, addr, len);
  2150. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  2151. synchronize_srcu_expedited(&kvm->srcu);
  2152. kfree(bus);
  2153. return 0;
  2154. }
  2155. /* Caller must hold slots_lock. */
  2156. int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  2157. struct kvm_io_device *dev)
  2158. {
  2159. int i, r;
  2160. struct kvm_io_bus *new_bus, *bus;
  2161. new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
  2162. if (!new_bus)
  2163. return -ENOMEM;
  2164. bus = kvm->buses[bus_idx];
  2165. memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
  2166. r = -ENOENT;
  2167. for (i = 0; i < new_bus->dev_count; i++)
  2168. if (new_bus->range[i].dev == dev) {
  2169. r = 0;
  2170. new_bus->dev_count--;
  2171. new_bus->range[i] = new_bus->range[new_bus->dev_count];
  2172. sort(new_bus->range, new_bus->dev_count,
  2173. sizeof(struct kvm_io_range),
  2174. kvm_io_bus_sort_cmp, NULL);
  2175. break;
  2176. }
  2177. if (r) {
  2178. kfree(new_bus);
  2179. return r;
  2180. }
  2181. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  2182. synchronize_srcu_expedited(&kvm->srcu);
  2183. kfree(bus);
  2184. return r;
  2185. }
  2186. static struct notifier_block kvm_cpu_notifier = {
  2187. .notifier_call = kvm_cpu_hotplug,
  2188. };
  2189. static int vm_stat_get(void *_offset, u64 *val)
  2190. {
  2191. unsigned offset = (long)_offset;
  2192. struct kvm *kvm;
  2193. *val = 0;
  2194. raw_spin_lock(&kvm_lock);
  2195. list_for_each_entry(kvm, &vm_list, vm_list)
  2196. *val += *(u32 *)((void *)kvm + offset);
  2197. raw_spin_unlock(&kvm_lock);
  2198. return 0;
  2199. }
  2200. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  2201. static int vcpu_stat_get(void *_offset, u64 *val)
  2202. {
  2203. unsigned offset = (long)_offset;
  2204. struct kvm *kvm;
  2205. struct kvm_vcpu *vcpu;
  2206. int i;
  2207. *val = 0;
  2208. raw_spin_lock(&kvm_lock);
  2209. list_for_each_entry(kvm, &vm_list, vm_list)
  2210. kvm_for_each_vcpu(i, vcpu, kvm)
  2211. *val += *(u32 *)((void *)vcpu + offset);
  2212. raw_spin_unlock(&kvm_lock);
  2213. return 0;
  2214. }
  2215. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  2216. static const struct file_operations *stat_fops[] = {
  2217. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  2218. [KVM_STAT_VM] = &vm_stat_fops,
  2219. };
  2220. static void kvm_init_debug(void)
  2221. {
  2222. struct kvm_stats_debugfs_item *p;
  2223. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  2224. for (p = debugfs_entries; p->name; ++p)
  2225. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  2226. (void *)(long)p->offset,
  2227. stat_fops[p->kind]);
  2228. }
  2229. static void kvm_exit_debug(void)
  2230. {
  2231. struct kvm_stats_debugfs_item *p;
  2232. for (p = debugfs_entries; p->name; ++p)
  2233. debugfs_remove(p->dentry);
  2234. debugfs_remove(kvm_debugfs_dir);
  2235. }
  2236. static int kvm_suspend(void)
  2237. {
  2238. if (kvm_usage_count)
  2239. hardware_disable_nolock(NULL);
  2240. return 0;
  2241. }
  2242. static void kvm_resume(void)
  2243. {
  2244. if (kvm_usage_count) {
  2245. WARN_ON(raw_spin_is_locked(&kvm_lock));
  2246. hardware_enable_nolock(NULL);
  2247. }
  2248. }
  2249. static struct syscore_ops kvm_syscore_ops = {
  2250. .suspend = kvm_suspend,
  2251. .resume = kvm_resume,
  2252. };
  2253. struct page *bad_page;
  2254. pfn_t bad_pfn;
  2255. static inline
  2256. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2257. {
  2258. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2259. }
  2260. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2261. {
  2262. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2263. kvm_arch_vcpu_load(vcpu, cpu);
  2264. }
  2265. static void kvm_sched_out(struct preempt_notifier *pn,
  2266. struct task_struct *next)
  2267. {
  2268. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2269. kvm_arch_vcpu_put(vcpu);
  2270. }
  2271. int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
  2272. struct module *module)
  2273. {
  2274. int r;
  2275. int cpu;
  2276. r = kvm_arch_init(opaque);
  2277. if (r)
  2278. goto out_fail;
  2279. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2280. if (bad_page == NULL) {
  2281. r = -ENOMEM;
  2282. goto out;
  2283. }
  2284. bad_pfn = page_to_pfn(bad_page);
  2285. hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2286. if (hwpoison_page == NULL) {
  2287. r = -ENOMEM;
  2288. goto out_free_0;
  2289. }
  2290. hwpoison_pfn = page_to_pfn(hwpoison_page);
  2291. fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2292. if (fault_page == NULL) {
  2293. r = -ENOMEM;
  2294. goto out_free_0;
  2295. }
  2296. fault_pfn = page_to_pfn(fault_page);
  2297. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  2298. r = -ENOMEM;
  2299. goto out_free_0;
  2300. }
  2301. r = kvm_arch_hardware_setup();
  2302. if (r < 0)
  2303. goto out_free_0a;
  2304. for_each_online_cpu(cpu) {
  2305. smp_call_function_single(cpu,
  2306. kvm_arch_check_processor_compat,
  2307. &r, 1);
  2308. if (r < 0)
  2309. goto out_free_1;
  2310. }
  2311. r = register_cpu_notifier(&kvm_cpu_notifier);
  2312. if (r)
  2313. goto out_free_2;
  2314. register_reboot_notifier(&kvm_reboot_notifier);
  2315. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2316. if (!vcpu_align)
  2317. vcpu_align = __alignof__(struct kvm_vcpu);
  2318. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
  2319. 0, NULL);
  2320. if (!kvm_vcpu_cache) {
  2321. r = -ENOMEM;
  2322. goto out_free_3;
  2323. }
  2324. r = kvm_async_pf_init();
  2325. if (r)
  2326. goto out_free;
  2327. kvm_chardev_ops.owner = module;
  2328. kvm_vm_fops.owner = module;
  2329. kvm_vcpu_fops.owner = module;
  2330. r = misc_register(&kvm_dev);
  2331. if (r) {
  2332. printk(KERN_ERR "kvm: misc device register failed\n");
  2333. goto out_unreg;
  2334. }
  2335. register_syscore_ops(&kvm_syscore_ops);
  2336. kvm_preempt_ops.sched_in = kvm_sched_in;
  2337. kvm_preempt_ops.sched_out = kvm_sched_out;
  2338. kvm_init_debug();
  2339. return 0;
  2340. out_unreg:
  2341. kvm_async_pf_deinit();
  2342. out_free:
  2343. kmem_cache_destroy(kvm_vcpu_cache);
  2344. out_free_3:
  2345. unregister_reboot_notifier(&kvm_reboot_notifier);
  2346. unregister_cpu_notifier(&kvm_cpu_notifier);
  2347. out_free_2:
  2348. out_free_1:
  2349. kvm_arch_hardware_unsetup();
  2350. out_free_0a:
  2351. free_cpumask_var(cpus_hardware_enabled);
  2352. out_free_0:
  2353. if (fault_page)
  2354. __free_page(fault_page);
  2355. if (hwpoison_page)
  2356. __free_page(hwpoison_page);
  2357. __free_page(bad_page);
  2358. out:
  2359. kvm_arch_exit();
  2360. out_fail:
  2361. return r;
  2362. }
  2363. EXPORT_SYMBOL_GPL(kvm_init);
  2364. void kvm_exit(void)
  2365. {
  2366. kvm_exit_debug();
  2367. misc_deregister(&kvm_dev);
  2368. kmem_cache_destroy(kvm_vcpu_cache);
  2369. kvm_async_pf_deinit();
  2370. unregister_syscore_ops(&kvm_syscore_ops);
  2371. unregister_reboot_notifier(&kvm_reboot_notifier);
  2372. unregister_cpu_notifier(&kvm_cpu_notifier);
  2373. on_each_cpu(hardware_disable_nolock, NULL, 1);
  2374. kvm_arch_hardware_unsetup();
  2375. kvm_arch_exit();
  2376. free_cpumask_var(cpus_hardware_enabled);
  2377. __free_page(hwpoison_page);
  2378. __free_page(bad_page);
  2379. }
  2380. EXPORT_SYMBOL_GPL(kvm_exit);