pid.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600
  1. /*
  2. * Generic pidhash and scalable, time-bounded PID allocator
  3. *
  4. * (C) 2002-2003 Nadia Yvette Chambers, IBM
  5. * (C) 2004 Nadia Yvette Chambers, Oracle
  6. * (C) 2002-2004 Ingo Molnar, Red Hat
  7. *
  8. * pid-structures are backing objects for tasks sharing a given ID to chain
  9. * against. There is very little to them aside from hashing them and
  10. * parking tasks using given ID's on a list.
  11. *
  12. * The hash is always changed with the tasklist_lock write-acquired,
  13. * and the hash is only accessed with the tasklist_lock at least
  14. * read-acquired, so there's no additional SMP locking needed here.
  15. *
  16. * We have a list of bitmap pages, which bitmaps represent the PID space.
  17. * Allocating and freeing PIDs is completely lockless. The worst-case
  18. * allocation scenario when all but one out of 1 million PIDs possible are
  19. * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
  20. * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
  21. *
  22. * Pid namespaces:
  23. * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
  24. * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
  25. * Many thanks to Oleg Nesterov for comments and help
  26. *
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/export.h>
  30. #include <linux/slab.h>
  31. #include <linux/init.h>
  32. #include <linux/rculist.h>
  33. #include <linux/bootmem.h>
  34. #include <linux/hash.h>
  35. #include <linux/pid_namespace.h>
  36. #include <linux/init_task.h>
  37. #include <linux/syscalls.h>
  38. #include <linux/proc_fs.h>
  39. #define pid_hashfn(nr, ns) \
  40. hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
  41. static struct hlist_head *pid_hash;
  42. static unsigned int pidhash_shift = 4;
  43. struct pid init_struct_pid = INIT_STRUCT_PID;
  44. int pid_max = PID_MAX_DEFAULT;
  45. #define RESERVED_PIDS 300
  46. int pid_max_min = RESERVED_PIDS + 1;
  47. int pid_max_max = PID_MAX_LIMIT;
  48. static inline int mk_pid(struct pid_namespace *pid_ns,
  49. struct pidmap *map, int off)
  50. {
  51. return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
  52. }
  53. #define find_next_offset(map, off) \
  54. find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
  55. /*
  56. * PID-map pages start out as NULL, they get allocated upon
  57. * first use and are never deallocated. This way a low pid_max
  58. * value does not cause lots of bitmaps to be allocated, but
  59. * the scheme scales to up to 4 million PIDs, runtime.
  60. */
  61. struct pid_namespace init_pid_ns = {
  62. .kref = {
  63. .refcount = ATOMIC_INIT(2),
  64. },
  65. .pidmap = {
  66. [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
  67. },
  68. .last_pid = 0,
  69. .level = 0,
  70. .child_reaper = &init_task,
  71. .user_ns = &init_user_ns,
  72. .proc_inum = PROC_PID_INIT_INO,
  73. };
  74. EXPORT_SYMBOL_GPL(init_pid_ns);
  75. /*
  76. * Note: disable interrupts while the pidmap_lock is held as an
  77. * interrupt might come in and do read_lock(&tasklist_lock).
  78. *
  79. * If we don't disable interrupts there is a nasty deadlock between
  80. * detach_pid()->free_pid() and another cpu that does
  81. * spin_lock(&pidmap_lock) followed by an interrupt routine that does
  82. * read_lock(&tasklist_lock);
  83. *
  84. * After we clean up the tasklist_lock and know there are no
  85. * irq handlers that take it we can leave the interrupts enabled.
  86. * For now it is easier to be safe than to prove it can't happen.
  87. */
  88. static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
  89. static void free_pidmap(struct upid *upid)
  90. {
  91. int nr = upid->nr;
  92. struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
  93. int offset = nr & BITS_PER_PAGE_MASK;
  94. clear_bit(offset, map->page);
  95. atomic_inc(&map->nr_free);
  96. }
  97. /*
  98. * If we started walking pids at 'base', is 'a' seen before 'b'?
  99. */
  100. static int pid_before(int base, int a, int b)
  101. {
  102. /*
  103. * This is the same as saying
  104. *
  105. * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
  106. * and that mapping orders 'a' and 'b' with respect to 'base'.
  107. */
  108. return (unsigned)(a - base) < (unsigned)(b - base);
  109. }
  110. /*
  111. * We might be racing with someone else trying to set pid_ns->last_pid
  112. * at the pid allocation time (there's also a sysctl for this, but racing
  113. * with this one is OK, see comment in kernel/pid_namespace.c about it).
  114. * We want the winner to have the "later" value, because if the
  115. * "earlier" value prevails, then a pid may get reused immediately.
  116. *
  117. * Since pids rollover, it is not sufficient to just pick the bigger
  118. * value. We have to consider where we started counting from.
  119. *
  120. * 'base' is the value of pid_ns->last_pid that we observed when
  121. * we started looking for a pid.
  122. *
  123. * 'pid' is the pid that we eventually found.
  124. */
  125. static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
  126. {
  127. int prev;
  128. int last_write = base;
  129. do {
  130. prev = last_write;
  131. last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
  132. } while ((prev != last_write) && (pid_before(base, last_write, pid)));
  133. }
  134. static int alloc_pidmap(struct pid_namespace *pid_ns)
  135. {
  136. int i, offset, max_scan, pid, last = pid_ns->last_pid;
  137. struct pidmap *map;
  138. pid = last + 1;
  139. if (pid >= pid_max)
  140. pid = RESERVED_PIDS;
  141. offset = pid & BITS_PER_PAGE_MASK;
  142. map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
  143. /*
  144. * If last_pid points into the middle of the map->page we
  145. * want to scan this bitmap block twice, the second time
  146. * we start with offset == 0 (or RESERVED_PIDS).
  147. */
  148. max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
  149. for (i = 0; i <= max_scan; ++i) {
  150. if (unlikely(!map->page)) {
  151. void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  152. /*
  153. * Free the page if someone raced with us
  154. * installing it:
  155. */
  156. spin_lock_irq(&pidmap_lock);
  157. if (!map->page) {
  158. map->page = page;
  159. page = NULL;
  160. }
  161. spin_unlock_irq(&pidmap_lock);
  162. kfree(page);
  163. if (unlikely(!map->page))
  164. break;
  165. }
  166. if (likely(atomic_read(&map->nr_free))) {
  167. for ( ; ; ) {
  168. if (!test_and_set_bit(offset, map->page)) {
  169. atomic_dec(&map->nr_free);
  170. set_last_pid(pid_ns, last, pid);
  171. return pid;
  172. }
  173. offset = find_next_offset(map, offset);
  174. if (offset >= BITS_PER_PAGE)
  175. break;
  176. pid = mk_pid(pid_ns, map, offset);
  177. if (pid >= pid_max)
  178. break;
  179. }
  180. }
  181. if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
  182. ++map;
  183. offset = 0;
  184. } else {
  185. map = &pid_ns->pidmap[0];
  186. offset = RESERVED_PIDS;
  187. if (unlikely(last == offset))
  188. break;
  189. }
  190. pid = mk_pid(pid_ns, map, offset);
  191. }
  192. return -1;
  193. }
  194. int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
  195. {
  196. int offset;
  197. struct pidmap *map, *end;
  198. if (last >= PID_MAX_LIMIT)
  199. return -1;
  200. offset = (last + 1) & BITS_PER_PAGE_MASK;
  201. map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
  202. end = &pid_ns->pidmap[PIDMAP_ENTRIES];
  203. for (; map < end; map++, offset = 0) {
  204. if (unlikely(!map->page))
  205. continue;
  206. offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
  207. if (offset < BITS_PER_PAGE)
  208. return mk_pid(pid_ns, map, offset);
  209. }
  210. return -1;
  211. }
  212. void put_pid(struct pid *pid)
  213. {
  214. struct pid_namespace *ns;
  215. if (!pid)
  216. return;
  217. ns = pid->numbers[pid->level].ns;
  218. if ((atomic_read(&pid->count) == 1) ||
  219. atomic_dec_and_test(&pid->count)) {
  220. kmem_cache_free(ns->pid_cachep, pid);
  221. put_pid_ns(ns);
  222. }
  223. }
  224. EXPORT_SYMBOL_GPL(put_pid);
  225. static void delayed_put_pid(struct rcu_head *rhp)
  226. {
  227. struct pid *pid = container_of(rhp, struct pid, rcu);
  228. put_pid(pid);
  229. }
  230. void free_pid(struct pid *pid)
  231. {
  232. /* We can be called with write_lock_irq(&tasklist_lock) held */
  233. int i;
  234. unsigned long flags;
  235. spin_lock_irqsave(&pidmap_lock, flags);
  236. for (i = 0; i <= pid->level; i++) {
  237. struct upid *upid = pid->numbers + i;
  238. struct pid_namespace *ns = upid->ns;
  239. hlist_del_rcu(&upid->pid_chain);
  240. switch(--ns->nr_hashed) {
  241. case 1:
  242. /* When all that is left in the pid namespace
  243. * is the reaper wake up the reaper. The reaper
  244. * may be sleeping in zap_pid_ns_processes().
  245. */
  246. wake_up_process(ns->child_reaper);
  247. break;
  248. case 0:
  249. schedule_work(&ns->proc_work);
  250. break;
  251. }
  252. }
  253. spin_unlock_irqrestore(&pidmap_lock, flags);
  254. for (i = 0; i <= pid->level; i++)
  255. free_pidmap(pid->numbers + i);
  256. call_rcu(&pid->rcu, delayed_put_pid);
  257. }
  258. struct pid *alloc_pid(struct pid_namespace *ns)
  259. {
  260. struct pid *pid;
  261. enum pid_type type;
  262. int i, nr;
  263. struct pid_namespace *tmp;
  264. struct upid *upid;
  265. pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
  266. if (!pid)
  267. goto out;
  268. tmp = ns;
  269. pid->level = ns->level;
  270. for (i = ns->level; i >= 0; i--) {
  271. nr = alloc_pidmap(tmp);
  272. if (nr < 0)
  273. goto out_free;
  274. pid->numbers[i].nr = nr;
  275. pid->numbers[i].ns = tmp;
  276. tmp = tmp->parent;
  277. }
  278. if (unlikely(is_child_reaper(pid))) {
  279. if (pid_ns_prepare_proc(ns))
  280. goto out_free;
  281. }
  282. get_pid_ns(ns);
  283. atomic_set(&pid->count, 1);
  284. for (type = 0; type < PIDTYPE_MAX; ++type)
  285. INIT_HLIST_HEAD(&pid->tasks[type]);
  286. upid = pid->numbers + ns->level;
  287. spin_lock_irq(&pidmap_lock);
  288. if (!(ns->nr_hashed & PIDNS_HASH_ADDING))
  289. goto out_unlock;
  290. for ( ; upid >= pid->numbers; --upid) {
  291. hlist_add_head_rcu(&upid->pid_chain,
  292. &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
  293. upid->ns->nr_hashed++;
  294. }
  295. spin_unlock_irq(&pidmap_lock);
  296. out:
  297. return pid;
  298. out_unlock:
  299. spin_unlock_irq(&pidmap_lock);
  300. out_free:
  301. while (++i <= ns->level)
  302. free_pidmap(pid->numbers + i);
  303. kmem_cache_free(ns->pid_cachep, pid);
  304. pid = NULL;
  305. goto out;
  306. }
  307. void disable_pid_allocation(struct pid_namespace *ns)
  308. {
  309. spin_lock_irq(&pidmap_lock);
  310. ns->nr_hashed &= ~PIDNS_HASH_ADDING;
  311. spin_unlock_irq(&pidmap_lock);
  312. }
  313. struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
  314. {
  315. struct upid *pnr;
  316. hlist_for_each_entry_rcu(pnr,
  317. &pid_hash[pid_hashfn(nr, ns)], pid_chain)
  318. if (pnr->nr == nr && pnr->ns == ns)
  319. return container_of(pnr, struct pid,
  320. numbers[ns->level]);
  321. return NULL;
  322. }
  323. EXPORT_SYMBOL_GPL(find_pid_ns);
  324. struct pid *find_vpid(int nr)
  325. {
  326. return find_pid_ns(nr, task_active_pid_ns(current));
  327. }
  328. EXPORT_SYMBOL_GPL(find_vpid);
  329. /*
  330. * attach_pid() must be called with the tasklist_lock write-held.
  331. */
  332. void attach_pid(struct task_struct *task, enum pid_type type,
  333. struct pid *pid)
  334. {
  335. struct pid_link *link;
  336. link = &task->pids[type];
  337. link->pid = pid;
  338. hlist_add_head_rcu(&link->node, &pid->tasks[type]);
  339. }
  340. static void __change_pid(struct task_struct *task, enum pid_type type,
  341. struct pid *new)
  342. {
  343. struct pid_link *link;
  344. struct pid *pid;
  345. int tmp;
  346. link = &task->pids[type];
  347. pid = link->pid;
  348. hlist_del_rcu(&link->node);
  349. link->pid = new;
  350. for (tmp = PIDTYPE_MAX; --tmp >= 0; )
  351. if (!hlist_empty(&pid->tasks[tmp]))
  352. return;
  353. free_pid(pid);
  354. }
  355. void detach_pid(struct task_struct *task, enum pid_type type)
  356. {
  357. __change_pid(task, type, NULL);
  358. }
  359. void change_pid(struct task_struct *task, enum pid_type type,
  360. struct pid *pid)
  361. {
  362. __change_pid(task, type, pid);
  363. attach_pid(task, type, pid);
  364. }
  365. /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
  366. void transfer_pid(struct task_struct *old, struct task_struct *new,
  367. enum pid_type type)
  368. {
  369. new->pids[type].pid = old->pids[type].pid;
  370. hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
  371. }
  372. struct task_struct *pid_task(struct pid *pid, enum pid_type type)
  373. {
  374. struct task_struct *result = NULL;
  375. if (pid) {
  376. struct hlist_node *first;
  377. first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
  378. lockdep_tasklist_lock_is_held());
  379. if (first)
  380. result = hlist_entry(first, struct task_struct, pids[(type)].node);
  381. }
  382. return result;
  383. }
  384. EXPORT_SYMBOL(pid_task);
  385. /*
  386. * Must be called under rcu_read_lock().
  387. */
  388. struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
  389. {
  390. rcu_lockdep_assert(rcu_read_lock_held(),
  391. "find_task_by_pid_ns() needs rcu_read_lock()"
  392. " protection");
  393. return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
  394. }
  395. struct task_struct *find_task_by_vpid(pid_t vnr)
  396. {
  397. return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
  398. }
  399. struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
  400. {
  401. struct pid *pid;
  402. rcu_read_lock();
  403. if (type != PIDTYPE_PID)
  404. task = task->group_leader;
  405. pid = get_pid(task->pids[type].pid);
  406. rcu_read_unlock();
  407. return pid;
  408. }
  409. EXPORT_SYMBOL_GPL(get_task_pid);
  410. struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
  411. {
  412. struct task_struct *result;
  413. rcu_read_lock();
  414. result = pid_task(pid, type);
  415. if (result)
  416. get_task_struct(result);
  417. rcu_read_unlock();
  418. return result;
  419. }
  420. EXPORT_SYMBOL_GPL(get_pid_task);
  421. struct pid *find_get_pid(pid_t nr)
  422. {
  423. struct pid *pid;
  424. rcu_read_lock();
  425. pid = get_pid(find_vpid(nr));
  426. rcu_read_unlock();
  427. return pid;
  428. }
  429. EXPORT_SYMBOL_GPL(find_get_pid);
  430. pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
  431. {
  432. struct upid *upid;
  433. pid_t nr = 0;
  434. if (pid && ns->level <= pid->level) {
  435. upid = &pid->numbers[ns->level];
  436. if (upid->ns == ns)
  437. nr = upid->nr;
  438. }
  439. return nr;
  440. }
  441. EXPORT_SYMBOL_GPL(pid_nr_ns);
  442. pid_t pid_vnr(struct pid *pid)
  443. {
  444. return pid_nr_ns(pid, task_active_pid_ns(current));
  445. }
  446. EXPORT_SYMBOL_GPL(pid_vnr);
  447. pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
  448. struct pid_namespace *ns)
  449. {
  450. pid_t nr = 0;
  451. rcu_read_lock();
  452. if (!ns)
  453. ns = task_active_pid_ns(current);
  454. if (likely(pid_alive(task))) {
  455. if (type != PIDTYPE_PID)
  456. task = task->group_leader;
  457. nr = pid_nr_ns(task->pids[type].pid, ns);
  458. }
  459. rcu_read_unlock();
  460. return nr;
  461. }
  462. EXPORT_SYMBOL(__task_pid_nr_ns);
  463. pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
  464. {
  465. return pid_nr_ns(task_tgid(tsk), ns);
  466. }
  467. EXPORT_SYMBOL(task_tgid_nr_ns);
  468. struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
  469. {
  470. return ns_of_pid(task_pid(tsk));
  471. }
  472. EXPORT_SYMBOL_GPL(task_active_pid_ns);
  473. /*
  474. * Used by proc to find the first pid that is greater than or equal to nr.
  475. *
  476. * If there is a pid at nr this function is exactly the same as find_pid_ns.
  477. */
  478. struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
  479. {
  480. struct pid *pid;
  481. do {
  482. pid = find_pid_ns(nr, ns);
  483. if (pid)
  484. break;
  485. nr = next_pidmap(ns, nr);
  486. } while (nr > 0);
  487. return pid;
  488. }
  489. /*
  490. * The pid hash table is scaled according to the amount of memory in the
  491. * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
  492. * more.
  493. */
  494. void __init pidhash_init(void)
  495. {
  496. unsigned int i, pidhash_size;
  497. pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
  498. HASH_EARLY | HASH_SMALL,
  499. &pidhash_shift, NULL,
  500. 0, 4096);
  501. pidhash_size = 1U << pidhash_shift;
  502. for (i = 0; i < pidhash_size; i++)
  503. INIT_HLIST_HEAD(&pid_hash[i]);
  504. }
  505. void __init pidmap_init(void)
  506. {
  507. /* Veryify no one has done anything silly */
  508. BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_HASH_ADDING);
  509. /* bump default and minimum pid_max based on number of cpus */
  510. pid_max = min(pid_max_max, max_t(int, pid_max,
  511. PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
  512. pid_max_min = max_t(int, pid_max_min,
  513. PIDS_PER_CPU_MIN * num_possible_cpus());
  514. pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
  515. init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  516. /* Reserve PID 0. We never call free_pidmap(0) */
  517. set_bit(0, init_pid_ns.pidmap[0].page);
  518. atomic_dec(&init_pid_ns.pidmap[0].nr_free);
  519. init_pid_ns.nr_hashed = PIDNS_HASH_ADDING;
  520. init_pid_ns.pid_cachep = KMEM_CACHE(pid,
  521. SLAB_HWCACHE_ALIGN | SLAB_PANIC);
  522. }