random.c 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484
  1. /*
  2. * random.c -- A strong random number generator
  3. *
  4. * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
  5. *
  6. * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
  7. * rights reserved.
  8. *
  9. * Redistribution and use in source and binary forms, with or without
  10. * modification, are permitted provided that the following conditions
  11. * are met:
  12. * 1. Redistributions of source code must retain the above copyright
  13. * notice, and the entire permission notice in its entirety,
  14. * including the disclaimer of warranties.
  15. * 2. Redistributions in binary form must reproduce the above copyright
  16. * notice, this list of conditions and the following disclaimer in the
  17. * documentation and/or other materials provided with the distribution.
  18. * 3. The name of the author may not be used to endorse or promote
  19. * products derived from this software without specific prior
  20. * written permission.
  21. *
  22. * ALTERNATIVELY, this product may be distributed under the terms of
  23. * the GNU General Public License, in which case the provisions of the GPL are
  24. * required INSTEAD OF the above restrictions. (This clause is
  25. * necessary due to a potential bad interaction between the GPL and
  26. * the restrictions contained in a BSD-style copyright.)
  27. *
  28. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  29. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  30. * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  31. * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
  32. * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  33. * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  34. * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  35. * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  36. * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  37. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  38. * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  39. * DAMAGE.
  40. */
  41. /*
  42. * (now, with legal B.S. out of the way.....)
  43. *
  44. * This routine gathers environmental noise from device drivers, etc.,
  45. * and returns good random numbers, suitable for cryptographic use.
  46. * Besides the obvious cryptographic uses, these numbers are also good
  47. * for seeding TCP sequence numbers, and other places where it is
  48. * desirable to have numbers which are not only random, but hard to
  49. * predict by an attacker.
  50. *
  51. * Theory of operation
  52. * ===================
  53. *
  54. * Computers are very predictable devices. Hence it is extremely hard
  55. * to produce truly random numbers on a computer --- as opposed to
  56. * pseudo-random numbers, which can easily generated by using a
  57. * algorithm. Unfortunately, it is very easy for attackers to guess
  58. * the sequence of pseudo-random number generators, and for some
  59. * applications this is not acceptable. So instead, we must try to
  60. * gather "environmental noise" from the computer's environment, which
  61. * must be hard for outside attackers to observe, and use that to
  62. * generate random numbers. In a Unix environment, this is best done
  63. * from inside the kernel.
  64. *
  65. * Sources of randomness from the environment include inter-keyboard
  66. * timings, inter-interrupt timings from some interrupts, and other
  67. * events which are both (a) non-deterministic and (b) hard for an
  68. * outside observer to measure. Randomness from these sources are
  69. * added to an "entropy pool", which is mixed using a CRC-like function.
  70. * This is not cryptographically strong, but it is adequate assuming
  71. * the randomness is not chosen maliciously, and it is fast enough that
  72. * the overhead of doing it on every interrupt is very reasonable.
  73. * As random bytes are mixed into the entropy pool, the routines keep
  74. * an *estimate* of how many bits of randomness have been stored into
  75. * the random number generator's internal state.
  76. *
  77. * When random bytes are desired, they are obtained by taking the SHA
  78. * hash of the contents of the "entropy pool". The SHA hash avoids
  79. * exposing the internal state of the entropy pool. It is believed to
  80. * be computationally infeasible to derive any useful information
  81. * about the input of SHA from its output. Even if it is possible to
  82. * analyze SHA in some clever way, as long as the amount of data
  83. * returned from the generator is less than the inherent entropy in
  84. * the pool, the output data is totally unpredictable. For this
  85. * reason, the routine decreases its internal estimate of how many
  86. * bits of "true randomness" are contained in the entropy pool as it
  87. * outputs random numbers.
  88. *
  89. * If this estimate goes to zero, the routine can still generate
  90. * random numbers; however, an attacker may (at least in theory) be
  91. * able to infer the future output of the generator from prior
  92. * outputs. This requires successful cryptanalysis of SHA, which is
  93. * not believed to be feasible, but there is a remote possibility.
  94. * Nonetheless, these numbers should be useful for the vast majority
  95. * of purposes.
  96. *
  97. * Exported interfaces ---- output
  98. * ===============================
  99. *
  100. * There are three exported interfaces; the first is one designed to
  101. * be used from within the kernel:
  102. *
  103. * void get_random_bytes(void *buf, int nbytes);
  104. *
  105. * This interface will return the requested number of random bytes,
  106. * and place it in the requested buffer.
  107. *
  108. * The two other interfaces are two character devices /dev/random and
  109. * /dev/urandom. /dev/random is suitable for use when very high
  110. * quality randomness is desired (for example, for key generation or
  111. * one-time pads), as it will only return a maximum of the number of
  112. * bits of randomness (as estimated by the random number generator)
  113. * contained in the entropy pool.
  114. *
  115. * The /dev/urandom device does not have this limit, and will return
  116. * as many bytes as are requested. As more and more random bytes are
  117. * requested without giving time for the entropy pool to recharge,
  118. * this will result in random numbers that are merely cryptographically
  119. * strong. For many applications, however, this is acceptable.
  120. *
  121. * Exported interfaces ---- input
  122. * ==============================
  123. *
  124. * The current exported interfaces for gathering environmental noise
  125. * from the devices are:
  126. *
  127. * void add_device_randomness(const void *buf, unsigned int size);
  128. * void add_input_randomness(unsigned int type, unsigned int code,
  129. * unsigned int value);
  130. * void add_interrupt_randomness(int irq, int irq_flags);
  131. * void add_disk_randomness(struct gendisk *disk);
  132. *
  133. * add_device_randomness() is for adding data to the random pool that
  134. * is likely to differ between two devices (or possibly even per boot).
  135. * This would be things like MAC addresses or serial numbers, or the
  136. * read-out of the RTC. This does *not* add any actual entropy to the
  137. * pool, but it initializes the pool to different values for devices
  138. * that might otherwise be identical and have very little entropy
  139. * available to them (particularly common in the embedded world).
  140. *
  141. * add_input_randomness() uses the input layer interrupt timing, as well as
  142. * the event type information from the hardware.
  143. *
  144. * add_interrupt_randomness() uses the interrupt timing as random
  145. * inputs to the entropy pool. Using the cycle counters and the irq source
  146. * as inputs, it feeds the randomness roughly once a second.
  147. *
  148. * add_disk_randomness() uses what amounts to the seek time of block
  149. * layer request events, on a per-disk_devt basis, as input to the
  150. * entropy pool. Note that high-speed solid state drives with very low
  151. * seek times do not make for good sources of entropy, as their seek
  152. * times are usually fairly consistent.
  153. *
  154. * All of these routines try to estimate how many bits of randomness a
  155. * particular randomness source. They do this by keeping track of the
  156. * first and second order deltas of the event timings.
  157. *
  158. * Ensuring unpredictability at system startup
  159. * ============================================
  160. *
  161. * When any operating system starts up, it will go through a sequence
  162. * of actions that are fairly predictable by an adversary, especially
  163. * if the start-up does not involve interaction with a human operator.
  164. * This reduces the actual number of bits of unpredictability in the
  165. * entropy pool below the value in entropy_count. In order to
  166. * counteract this effect, it helps to carry information in the
  167. * entropy pool across shut-downs and start-ups. To do this, put the
  168. * following lines an appropriate script which is run during the boot
  169. * sequence:
  170. *
  171. * echo "Initializing random number generator..."
  172. * random_seed=/var/run/random-seed
  173. * # Carry a random seed from start-up to start-up
  174. * # Load and then save the whole entropy pool
  175. * if [ -f $random_seed ]; then
  176. * cat $random_seed >/dev/urandom
  177. * else
  178. * touch $random_seed
  179. * fi
  180. * chmod 600 $random_seed
  181. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  182. *
  183. * and the following lines in an appropriate script which is run as
  184. * the system is shutdown:
  185. *
  186. * # Carry a random seed from shut-down to start-up
  187. * # Save the whole entropy pool
  188. * echo "Saving random seed..."
  189. * random_seed=/var/run/random-seed
  190. * touch $random_seed
  191. * chmod 600 $random_seed
  192. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  193. *
  194. * For example, on most modern systems using the System V init
  195. * scripts, such code fragments would be found in
  196. * /etc/rc.d/init.d/random. On older Linux systems, the correct script
  197. * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
  198. *
  199. * Effectively, these commands cause the contents of the entropy pool
  200. * to be saved at shut-down time and reloaded into the entropy pool at
  201. * start-up. (The 'dd' in the addition to the bootup script is to
  202. * make sure that /etc/random-seed is different for every start-up,
  203. * even if the system crashes without executing rc.0.) Even with
  204. * complete knowledge of the start-up activities, predicting the state
  205. * of the entropy pool requires knowledge of the previous history of
  206. * the system.
  207. *
  208. * Configuring the /dev/random driver under Linux
  209. * ==============================================
  210. *
  211. * The /dev/random driver under Linux uses minor numbers 8 and 9 of
  212. * the /dev/mem major number (#1). So if your system does not have
  213. * /dev/random and /dev/urandom created already, they can be created
  214. * by using the commands:
  215. *
  216. * mknod /dev/random c 1 8
  217. * mknod /dev/urandom c 1 9
  218. *
  219. * Acknowledgements:
  220. * =================
  221. *
  222. * Ideas for constructing this random number generator were derived
  223. * from Pretty Good Privacy's random number generator, and from private
  224. * discussions with Phil Karn. Colin Plumb provided a faster random
  225. * number generator, which speed up the mixing function of the entropy
  226. * pool, taken from PGPfone. Dale Worley has also contributed many
  227. * useful ideas and suggestions to improve this driver.
  228. *
  229. * Any flaws in the design are solely my responsibility, and should
  230. * not be attributed to the Phil, Colin, or any of authors of PGP.
  231. *
  232. * Further background information on this topic may be obtained from
  233. * RFC 1750, "Randomness Recommendations for Security", by Donald
  234. * Eastlake, Steve Crocker, and Jeff Schiller.
  235. */
  236. #include <linux/utsname.h>
  237. #include <linux/module.h>
  238. #include <linux/kernel.h>
  239. #include <linux/major.h>
  240. #include <linux/string.h>
  241. #include <linux/fcntl.h>
  242. #include <linux/slab.h>
  243. #include <linux/random.h>
  244. #include <linux/poll.h>
  245. #include <linux/init.h>
  246. #include <linux/fs.h>
  247. #include <linux/genhd.h>
  248. #include <linux/interrupt.h>
  249. #include <linux/mm.h>
  250. #include <linux/spinlock.h>
  251. #include <linux/percpu.h>
  252. #include <linux/cryptohash.h>
  253. #include <linux/fips.h>
  254. #include <linux/ptrace.h>
  255. #include <linux/kmemcheck.h>
  256. #ifdef CONFIG_GENERIC_HARDIRQS
  257. # include <linux/irq.h>
  258. #endif
  259. #include <asm/processor.h>
  260. #include <asm/uaccess.h>
  261. #include <asm/irq.h>
  262. #include <asm/irq_regs.h>
  263. #include <asm/io.h>
  264. #define CREATE_TRACE_POINTS
  265. #include <trace/events/random.h>
  266. /*
  267. * Configuration information
  268. */
  269. #define INPUT_POOL_WORDS 128
  270. #define OUTPUT_POOL_WORDS 32
  271. #define SEC_XFER_SIZE 512
  272. #define EXTRACT_SIZE 10
  273. #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
  274. /*
  275. * The minimum number of bits of entropy before we wake up a read on
  276. * /dev/random. Should be enough to do a significant reseed.
  277. */
  278. static int random_read_wakeup_thresh = 64;
  279. /*
  280. * If the entropy count falls under this number of bits, then we
  281. * should wake up processes which are selecting or polling on write
  282. * access to /dev/random.
  283. */
  284. static int random_write_wakeup_thresh = 128;
  285. /*
  286. * When the input pool goes over trickle_thresh, start dropping most
  287. * samples to avoid wasting CPU time and reduce lock contention.
  288. */
  289. static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
  290. static DEFINE_PER_CPU(int, trickle_count);
  291. /*
  292. * A pool of size .poolwords is stirred with a primitive polynomial
  293. * of degree .poolwords over GF(2). The taps for various sizes are
  294. * defined below. They are chosen to be evenly spaced (minimum RMS
  295. * distance from evenly spaced; the numbers in the comments are a
  296. * scaled squared error sum) except for the last tap, which is 1 to
  297. * get the twisting happening as fast as possible.
  298. */
  299. static struct poolinfo {
  300. int poolwords;
  301. int tap1, tap2, tap3, tap4, tap5;
  302. } poolinfo_table[] = {
  303. /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
  304. { 128, 103, 76, 51, 25, 1 },
  305. /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
  306. { 32, 26, 20, 14, 7, 1 },
  307. #if 0
  308. /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
  309. { 2048, 1638, 1231, 819, 411, 1 },
  310. /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
  311. { 1024, 817, 615, 412, 204, 1 },
  312. /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
  313. { 1024, 819, 616, 410, 207, 2 },
  314. /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
  315. { 512, 411, 308, 208, 104, 1 },
  316. /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
  317. { 512, 409, 307, 206, 102, 2 },
  318. /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
  319. { 512, 409, 309, 205, 103, 2 },
  320. /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
  321. { 256, 205, 155, 101, 52, 1 },
  322. /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
  323. { 128, 103, 78, 51, 27, 2 },
  324. /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
  325. { 64, 52, 39, 26, 14, 1 },
  326. #endif
  327. };
  328. #define POOLBITS poolwords*32
  329. #define POOLBYTES poolwords*4
  330. /*
  331. * For the purposes of better mixing, we use the CRC-32 polynomial as
  332. * well to make a twisted Generalized Feedback Shift Reigster
  333. *
  334. * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM
  335. * Transactions on Modeling and Computer Simulation 2(3):179-194.
  336. * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators
  337. * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266)
  338. *
  339. * Thanks to Colin Plumb for suggesting this.
  340. *
  341. * We have not analyzed the resultant polynomial to prove it primitive;
  342. * in fact it almost certainly isn't. Nonetheless, the irreducible factors
  343. * of a random large-degree polynomial over GF(2) are more than large enough
  344. * that periodicity is not a concern.
  345. *
  346. * The input hash is much less sensitive than the output hash. All
  347. * that we want of it is that it be a good non-cryptographic hash;
  348. * i.e. it not produce collisions when fed "random" data of the sort
  349. * we expect to see. As long as the pool state differs for different
  350. * inputs, we have preserved the input entropy and done a good job.
  351. * The fact that an intelligent attacker can construct inputs that
  352. * will produce controlled alterations to the pool's state is not
  353. * important because we don't consider such inputs to contribute any
  354. * randomness. The only property we need with respect to them is that
  355. * the attacker can't increase his/her knowledge of the pool's state.
  356. * Since all additions are reversible (knowing the final state and the
  357. * input, you can reconstruct the initial state), if an attacker has
  358. * any uncertainty about the initial state, he/she can only shuffle
  359. * that uncertainty about, but never cause any collisions (which would
  360. * decrease the uncertainty).
  361. *
  362. * The chosen system lets the state of the pool be (essentially) the input
  363. * modulo the generator polymnomial. Now, for random primitive polynomials,
  364. * this is a universal class of hash functions, meaning that the chance
  365. * of a collision is limited by the attacker's knowledge of the generator
  366. * polynomail, so if it is chosen at random, an attacker can never force
  367. * a collision. Here, we use a fixed polynomial, but we *can* assume that
  368. * ###--> it is unknown to the processes generating the input entropy. <-###
  369. * Because of this important property, this is a good, collision-resistant
  370. * hash; hash collisions will occur no more often than chance.
  371. */
  372. /*
  373. * Static global variables
  374. */
  375. static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
  376. static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
  377. static struct fasync_struct *fasync;
  378. static bool debug;
  379. module_param(debug, bool, 0644);
  380. #define DEBUG_ENT(fmt, arg...) do { \
  381. if (debug) \
  382. printk(KERN_DEBUG "random %04d %04d %04d: " \
  383. fmt,\
  384. input_pool.entropy_count,\
  385. blocking_pool.entropy_count,\
  386. nonblocking_pool.entropy_count,\
  387. ## arg); } while (0)
  388. /**********************************************************************
  389. *
  390. * OS independent entropy store. Here are the functions which handle
  391. * storing entropy in an entropy pool.
  392. *
  393. **********************************************************************/
  394. struct entropy_store;
  395. struct entropy_store {
  396. /* read-only data: */
  397. struct poolinfo *poolinfo;
  398. __u32 *pool;
  399. const char *name;
  400. struct entropy_store *pull;
  401. int limit;
  402. /* read-write data: */
  403. spinlock_t lock;
  404. unsigned add_ptr;
  405. unsigned input_rotate;
  406. int entropy_count;
  407. int entropy_total;
  408. unsigned int initialized:1;
  409. __u8 last_data[EXTRACT_SIZE];
  410. };
  411. static __u32 input_pool_data[INPUT_POOL_WORDS];
  412. static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
  413. static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
  414. static struct entropy_store input_pool = {
  415. .poolinfo = &poolinfo_table[0],
  416. .name = "input",
  417. .limit = 1,
  418. .lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
  419. .pool = input_pool_data
  420. };
  421. static struct entropy_store blocking_pool = {
  422. .poolinfo = &poolinfo_table[1],
  423. .name = "blocking",
  424. .limit = 1,
  425. .pull = &input_pool,
  426. .lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
  427. .pool = blocking_pool_data
  428. };
  429. static struct entropy_store nonblocking_pool = {
  430. .poolinfo = &poolinfo_table[1],
  431. .name = "nonblocking",
  432. .pull = &input_pool,
  433. .lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
  434. .pool = nonblocking_pool_data
  435. };
  436. static __u32 const twist_table[8] = {
  437. 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
  438. 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
  439. /*
  440. * This function adds bytes into the entropy "pool". It does not
  441. * update the entropy estimate. The caller should call
  442. * credit_entropy_bits if this is appropriate.
  443. *
  444. * The pool is stirred with a primitive polynomial of the appropriate
  445. * degree, and then twisted. We twist by three bits at a time because
  446. * it's cheap to do so and helps slightly in the expected case where
  447. * the entropy is concentrated in the low-order bits.
  448. */
  449. static void _mix_pool_bytes(struct entropy_store *r, const void *in,
  450. int nbytes, __u8 out[64])
  451. {
  452. unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
  453. int input_rotate;
  454. int wordmask = r->poolinfo->poolwords - 1;
  455. const char *bytes = in;
  456. __u32 w;
  457. tap1 = r->poolinfo->tap1;
  458. tap2 = r->poolinfo->tap2;
  459. tap3 = r->poolinfo->tap3;
  460. tap4 = r->poolinfo->tap4;
  461. tap5 = r->poolinfo->tap5;
  462. smp_rmb();
  463. input_rotate = ACCESS_ONCE(r->input_rotate);
  464. i = ACCESS_ONCE(r->add_ptr);
  465. /* mix one byte at a time to simplify size handling and churn faster */
  466. while (nbytes--) {
  467. w = rol32(*bytes++, input_rotate & 31);
  468. i = (i - 1) & wordmask;
  469. /* XOR in the various taps */
  470. w ^= r->pool[i];
  471. w ^= r->pool[(i + tap1) & wordmask];
  472. w ^= r->pool[(i + tap2) & wordmask];
  473. w ^= r->pool[(i + tap3) & wordmask];
  474. w ^= r->pool[(i + tap4) & wordmask];
  475. w ^= r->pool[(i + tap5) & wordmask];
  476. /* Mix the result back in with a twist */
  477. r->pool[i] = (w >> 3) ^ twist_table[w & 7];
  478. /*
  479. * Normally, we add 7 bits of rotation to the pool.
  480. * At the beginning of the pool, add an extra 7 bits
  481. * rotation, so that successive passes spread the
  482. * input bits across the pool evenly.
  483. */
  484. input_rotate += i ? 7 : 14;
  485. }
  486. ACCESS_ONCE(r->input_rotate) = input_rotate;
  487. ACCESS_ONCE(r->add_ptr) = i;
  488. smp_wmb();
  489. if (out)
  490. for (j = 0; j < 16; j++)
  491. ((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
  492. }
  493. static void __mix_pool_bytes(struct entropy_store *r, const void *in,
  494. int nbytes, __u8 out[64])
  495. {
  496. trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
  497. _mix_pool_bytes(r, in, nbytes, out);
  498. }
  499. static void mix_pool_bytes(struct entropy_store *r, const void *in,
  500. int nbytes, __u8 out[64])
  501. {
  502. unsigned long flags;
  503. trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
  504. spin_lock_irqsave(&r->lock, flags);
  505. _mix_pool_bytes(r, in, nbytes, out);
  506. spin_unlock_irqrestore(&r->lock, flags);
  507. }
  508. struct fast_pool {
  509. __u32 pool[4];
  510. unsigned long last;
  511. unsigned short count;
  512. unsigned char rotate;
  513. unsigned char last_timer_intr;
  514. };
  515. /*
  516. * This is a fast mixing routine used by the interrupt randomness
  517. * collector. It's hardcoded for an 128 bit pool and assumes that any
  518. * locks that might be needed are taken by the caller.
  519. */
  520. static void fast_mix(struct fast_pool *f, const void *in, int nbytes)
  521. {
  522. const char *bytes = in;
  523. __u32 w;
  524. unsigned i = f->count;
  525. unsigned input_rotate = f->rotate;
  526. while (nbytes--) {
  527. w = rol32(*bytes++, input_rotate & 31) ^ f->pool[i & 3] ^
  528. f->pool[(i + 1) & 3];
  529. f->pool[i & 3] = (w >> 3) ^ twist_table[w & 7];
  530. input_rotate += (i++ & 3) ? 7 : 14;
  531. }
  532. f->count = i;
  533. f->rotate = input_rotate;
  534. }
  535. /*
  536. * Credit (or debit) the entropy store with n bits of entropy
  537. */
  538. static void credit_entropy_bits(struct entropy_store *r, int nbits)
  539. {
  540. int entropy_count, orig;
  541. if (!nbits)
  542. return;
  543. DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
  544. retry:
  545. entropy_count = orig = ACCESS_ONCE(r->entropy_count);
  546. entropy_count += nbits;
  547. if (entropy_count < 0) {
  548. DEBUG_ENT("negative entropy/overflow\n");
  549. entropy_count = 0;
  550. } else if (entropy_count > r->poolinfo->POOLBITS)
  551. entropy_count = r->poolinfo->POOLBITS;
  552. if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
  553. goto retry;
  554. if (!r->initialized && nbits > 0) {
  555. r->entropy_total += nbits;
  556. if (r->entropy_total > 128)
  557. r->initialized = 1;
  558. }
  559. trace_credit_entropy_bits(r->name, nbits, entropy_count,
  560. r->entropy_total, _RET_IP_);
  561. /* should we wake readers? */
  562. if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) {
  563. wake_up_interruptible(&random_read_wait);
  564. kill_fasync(&fasync, SIGIO, POLL_IN);
  565. }
  566. }
  567. /*********************************************************************
  568. *
  569. * Entropy input management
  570. *
  571. *********************************************************************/
  572. /* There is one of these per entropy source */
  573. struct timer_rand_state {
  574. cycles_t last_time;
  575. long last_delta, last_delta2;
  576. unsigned dont_count_entropy:1;
  577. };
  578. /*
  579. * Add device- or boot-specific data to the input and nonblocking
  580. * pools to help initialize them to unique values.
  581. *
  582. * None of this adds any entropy, it is meant to avoid the
  583. * problem of the nonblocking pool having similar initial state
  584. * across largely identical devices.
  585. */
  586. void add_device_randomness(const void *buf, unsigned int size)
  587. {
  588. unsigned long time = get_cycles() ^ jiffies;
  589. mix_pool_bytes(&input_pool, buf, size, NULL);
  590. mix_pool_bytes(&input_pool, &time, sizeof(time), NULL);
  591. mix_pool_bytes(&nonblocking_pool, buf, size, NULL);
  592. mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL);
  593. }
  594. EXPORT_SYMBOL(add_device_randomness);
  595. static struct timer_rand_state input_timer_state;
  596. /*
  597. * This function adds entropy to the entropy "pool" by using timing
  598. * delays. It uses the timer_rand_state structure to make an estimate
  599. * of how many bits of entropy this call has added to the pool.
  600. *
  601. * The number "num" is also added to the pool - it should somehow describe
  602. * the type of event which just happened. This is currently 0-255 for
  603. * keyboard scan codes, and 256 upwards for interrupts.
  604. *
  605. */
  606. static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
  607. {
  608. struct {
  609. long jiffies;
  610. unsigned cycles;
  611. unsigned num;
  612. } sample;
  613. long delta, delta2, delta3;
  614. preempt_disable();
  615. /* if over the trickle threshold, use only 1 in 4096 samples */
  616. if (input_pool.entropy_count > trickle_thresh &&
  617. ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff))
  618. goto out;
  619. sample.jiffies = jiffies;
  620. sample.cycles = get_cycles();
  621. sample.num = num;
  622. mix_pool_bytes(&input_pool, &sample, sizeof(sample), NULL);
  623. /*
  624. * Calculate number of bits of randomness we probably added.
  625. * We take into account the first, second and third-order deltas
  626. * in order to make our estimate.
  627. */
  628. if (!state->dont_count_entropy) {
  629. delta = sample.jiffies - state->last_time;
  630. state->last_time = sample.jiffies;
  631. delta2 = delta - state->last_delta;
  632. state->last_delta = delta;
  633. delta3 = delta2 - state->last_delta2;
  634. state->last_delta2 = delta2;
  635. if (delta < 0)
  636. delta = -delta;
  637. if (delta2 < 0)
  638. delta2 = -delta2;
  639. if (delta3 < 0)
  640. delta3 = -delta3;
  641. if (delta > delta2)
  642. delta = delta2;
  643. if (delta > delta3)
  644. delta = delta3;
  645. /*
  646. * delta is now minimum absolute delta.
  647. * Round down by 1 bit on general principles,
  648. * and limit entropy entimate to 12 bits.
  649. */
  650. credit_entropy_bits(&input_pool,
  651. min_t(int, fls(delta>>1), 11));
  652. }
  653. out:
  654. preempt_enable();
  655. }
  656. void add_input_randomness(unsigned int type, unsigned int code,
  657. unsigned int value)
  658. {
  659. static unsigned char last_value;
  660. /* ignore autorepeat and the like */
  661. if (value == last_value)
  662. return;
  663. DEBUG_ENT("input event\n");
  664. last_value = value;
  665. add_timer_randomness(&input_timer_state,
  666. (type << 4) ^ code ^ (code >> 4) ^ value);
  667. }
  668. EXPORT_SYMBOL_GPL(add_input_randomness);
  669. static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
  670. void add_interrupt_randomness(int irq, int irq_flags)
  671. {
  672. struct entropy_store *r;
  673. struct fast_pool *fast_pool = &__get_cpu_var(irq_randomness);
  674. struct pt_regs *regs = get_irq_regs();
  675. unsigned long now = jiffies;
  676. __u32 input[4], cycles = get_cycles();
  677. input[0] = cycles ^ jiffies;
  678. input[1] = irq;
  679. if (regs) {
  680. __u64 ip = instruction_pointer(regs);
  681. input[2] = ip;
  682. input[3] = ip >> 32;
  683. }
  684. fast_mix(fast_pool, input, sizeof(input));
  685. if ((fast_pool->count & 1023) &&
  686. !time_after(now, fast_pool->last + HZ))
  687. return;
  688. fast_pool->last = now;
  689. r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
  690. __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL);
  691. /*
  692. * If we don't have a valid cycle counter, and we see
  693. * back-to-back timer interrupts, then skip giving credit for
  694. * any entropy.
  695. */
  696. if (cycles == 0) {
  697. if (irq_flags & __IRQF_TIMER) {
  698. if (fast_pool->last_timer_intr)
  699. return;
  700. fast_pool->last_timer_intr = 1;
  701. } else
  702. fast_pool->last_timer_intr = 0;
  703. }
  704. credit_entropy_bits(r, 1);
  705. }
  706. #ifdef CONFIG_BLOCK
  707. void add_disk_randomness(struct gendisk *disk)
  708. {
  709. if (!disk || !disk->random)
  710. return;
  711. /* first major is 1, so we get >= 0x200 here */
  712. DEBUG_ENT("disk event %d:%d\n",
  713. MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
  714. add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
  715. }
  716. #endif
  717. /*********************************************************************
  718. *
  719. * Entropy extraction routines
  720. *
  721. *********************************************************************/
  722. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  723. size_t nbytes, int min, int rsvd);
  724. /*
  725. * This utility inline function is responsible for transferring entropy
  726. * from the primary pool to the secondary extraction pool. We make
  727. * sure we pull enough for a 'catastrophic reseed'.
  728. */
  729. static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
  730. {
  731. __u32 tmp[OUTPUT_POOL_WORDS];
  732. if (r->pull && r->entropy_count < nbytes * 8 &&
  733. r->entropy_count < r->poolinfo->POOLBITS) {
  734. /* If we're limited, always leave two wakeup worth's BITS */
  735. int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
  736. int bytes = nbytes;
  737. /* pull at least as many as BYTES as wakeup BITS */
  738. bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
  739. /* but never more than the buffer size */
  740. bytes = min_t(int, bytes, sizeof(tmp));
  741. DEBUG_ENT("going to reseed %s with %d bits "
  742. "(%d of %d requested)\n",
  743. r->name, bytes * 8, nbytes * 8, r->entropy_count);
  744. bytes = extract_entropy(r->pull, tmp, bytes,
  745. random_read_wakeup_thresh / 8, rsvd);
  746. mix_pool_bytes(r, tmp, bytes, NULL);
  747. credit_entropy_bits(r, bytes*8);
  748. }
  749. }
  750. /*
  751. * These functions extracts randomness from the "entropy pool", and
  752. * returns it in a buffer.
  753. *
  754. * The min parameter specifies the minimum amount we can pull before
  755. * failing to avoid races that defeat catastrophic reseeding while the
  756. * reserved parameter indicates how much entropy we must leave in the
  757. * pool after each pull to avoid starving other readers.
  758. *
  759. * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
  760. */
  761. static size_t account(struct entropy_store *r, size_t nbytes, int min,
  762. int reserved)
  763. {
  764. unsigned long flags;
  765. /* Hold lock while accounting */
  766. spin_lock_irqsave(&r->lock, flags);
  767. BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
  768. DEBUG_ENT("trying to extract %d bits from %s\n",
  769. nbytes * 8, r->name);
  770. /* Can we pull enough? */
  771. if (r->entropy_count / 8 < min + reserved) {
  772. nbytes = 0;
  773. } else {
  774. /* If limited, never pull more than available */
  775. if (r->limit && nbytes + reserved >= r->entropy_count / 8)
  776. nbytes = r->entropy_count/8 - reserved;
  777. if (r->entropy_count / 8 >= nbytes + reserved)
  778. r->entropy_count -= nbytes*8;
  779. else
  780. r->entropy_count = reserved;
  781. if (r->entropy_count < random_write_wakeup_thresh) {
  782. wake_up_interruptible(&random_write_wait);
  783. kill_fasync(&fasync, SIGIO, POLL_OUT);
  784. }
  785. }
  786. DEBUG_ENT("debiting %d entropy credits from %s%s\n",
  787. nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
  788. spin_unlock_irqrestore(&r->lock, flags);
  789. return nbytes;
  790. }
  791. static void extract_buf(struct entropy_store *r, __u8 *out)
  792. {
  793. int i;
  794. union {
  795. __u32 w[5];
  796. unsigned long l[LONGS(EXTRACT_SIZE)];
  797. } hash;
  798. __u32 workspace[SHA_WORKSPACE_WORDS];
  799. __u8 extract[64];
  800. unsigned long flags;
  801. /* Generate a hash across the pool, 16 words (512 bits) at a time */
  802. sha_init(hash.w);
  803. spin_lock_irqsave(&r->lock, flags);
  804. for (i = 0; i < r->poolinfo->poolwords; i += 16)
  805. sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
  806. /*
  807. * We mix the hash back into the pool to prevent backtracking
  808. * attacks (where the attacker knows the state of the pool
  809. * plus the current outputs, and attempts to find previous
  810. * ouputs), unless the hash function can be inverted. By
  811. * mixing at least a SHA1 worth of hash data back, we make
  812. * brute-forcing the feedback as hard as brute-forcing the
  813. * hash.
  814. */
  815. __mix_pool_bytes(r, hash.w, sizeof(hash.w), extract);
  816. spin_unlock_irqrestore(&r->lock, flags);
  817. /*
  818. * To avoid duplicates, we atomically extract a portion of the
  819. * pool while mixing, and hash one final time.
  820. */
  821. sha_transform(hash.w, extract, workspace);
  822. memset(extract, 0, sizeof(extract));
  823. memset(workspace, 0, sizeof(workspace));
  824. /*
  825. * In case the hash function has some recognizable output
  826. * pattern, we fold it in half. Thus, we always feed back
  827. * twice as much data as we output.
  828. */
  829. hash.w[0] ^= hash.w[3];
  830. hash.w[1] ^= hash.w[4];
  831. hash.w[2] ^= rol32(hash.w[2], 16);
  832. /*
  833. * If we have a architectural hardware random number
  834. * generator, mix that in, too.
  835. */
  836. for (i = 0; i < LONGS(EXTRACT_SIZE); i++) {
  837. unsigned long v;
  838. if (!arch_get_random_long(&v))
  839. break;
  840. hash.l[i] ^= v;
  841. }
  842. memcpy(out, &hash, EXTRACT_SIZE);
  843. memset(&hash, 0, sizeof(hash));
  844. }
  845. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  846. size_t nbytes, int min, int reserved)
  847. {
  848. ssize_t ret = 0, i;
  849. __u8 tmp[EXTRACT_SIZE];
  850. trace_extract_entropy(r->name, nbytes, r->entropy_count, _RET_IP_);
  851. xfer_secondary_pool(r, nbytes);
  852. nbytes = account(r, nbytes, min, reserved);
  853. while (nbytes) {
  854. extract_buf(r, tmp);
  855. if (fips_enabled) {
  856. unsigned long flags;
  857. spin_lock_irqsave(&r->lock, flags);
  858. if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
  859. panic("Hardware RNG duplicated output!\n");
  860. memcpy(r->last_data, tmp, EXTRACT_SIZE);
  861. spin_unlock_irqrestore(&r->lock, flags);
  862. }
  863. i = min_t(int, nbytes, EXTRACT_SIZE);
  864. memcpy(buf, tmp, i);
  865. nbytes -= i;
  866. buf += i;
  867. ret += i;
  868. }
  869. /* Wipe data just returned from memory */
  870. memset(tmp, 0, sizeof(tmp));
  871. return ret;
  872. }
  873. static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
  874. size_t nbytes)
  875. {
  876. ssize_t ret = 0, i;
  877. __u8 tmp[EXTRACT_SIZE];
  878. trace_extract_entropy_user(r->name, nbytes, r->entropy_count, _RET_IP_);
  879. xfer_secondary_pool(r, nbytes);
  880. nbytes = account(r, nbytes, 0, 0);
  881. while (nbytes) {
  882. if (need_resched()) {
  883. if (signal_pending(current)) {
  884. if (ret == 0)
  885. ret = -ERESTARTSYS;
  886. break;
  887. }
  888. schedule();
  889. }
  890. extract_buf(r, tmp);
  891. i = min_t(int, nbytes, EXTRACT_SIZE);
  892. if (copy_to_user(buf, tmp, i)) {
  893. ret = -EFAULT;
  894. break;
  895. }
  896. nbytes -= i;
  897. buf += i;
  898. ret += i;
  899. }
  900. /* Wipe data just returned from memory */
  901. memset(tmp, 0, sizeof(tmp));
  902. return ret;
  903. }
  904. /*
  905. * This function is the exported kernel interface. It returns some
  906. * number of good random numbers, suitable for key generation, seeding
  907. * TCP sequence numbers, etc. It does not use the hw random number
  908. * generator, if available; use get_random_bytes_arch() for that.
  909. */
  910. void get_random_bytes(void *buf, int nbytes)
  911. {
  912. extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
  913. }
  914. EXPORT_SYMBOL(get_random_bytes);
  915. /*
  916. * This function will use the architecture-specific hardware random
  917. * number generator if it is available. The arch-specific hw RNG will
  918. * almost certainly be faster than what we can do in software, but it
  919. * is impossible to verify that it is implemented securely (as
  920. * opposed, to, say, the AES encryption of a sequence number using a
  921. * key known by the NSA). So it's useful if we need the speed, but
  922. * only if we're willing to trust the hardware manufacturer not to
  923. * have put in a back door.
  924. */
  925. void get_random_bytes_arch(void *buf, int nbytes)
  926. {
  927. char *p = buf;
  928. trace_get_random_bytes(nbytes, _RET_IP_);
  929. while (nbytes) {
  930. unsigned long v;
  931. int chunk = min(nbytes, (int)sizeof(unsigned long));
  932. if (!arch_get_random_long(&v))
  933. break;
  934. memcpy(p, &v, chunk);
  935. p += chunk;
  936. nbytes -= chunk;
  937. }
  938. if (nbytes)
  939. extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
  940. }
  941. EXPORT_SYMBOL(get_random_bytes_arch);
  942. /*
  943. * init_std_data - initialize pool with system data
  944. *
  945. * @r: pool to initialize
  946. *
  947. * This function clears the pool's entropy count and mixes some system
  948. * data into the pool to prepare it for use. The pool is not cleared
  949. * as that can only decrease the entropy in the pool.
  950. */
  951. static void init_std_data(struct entropy_store *r)
  952. {
  953. int i;
  954. ktime_t now = ktime_get_real();
  955. unsigned long rv;
  956. r->entropy_count = 0;
  957. r->entropy_total = 0;
  958. mix_pool_bytes(r, &now, sizeof(now), NULL);
  959. for (i = r->poolinfo->POOLBYTES; i > 0; i -= sizeof(rv)) {
  960. if (!arch_get_random_long(&rv))
  961. break;
  962. mix_pool_bytes(r, &rv, sizeof(rv), NULL);
  963. }
  964. mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL);
  965. }
  966. /*
  967. * Note that setup_arch() may call add_device_randomness()
  968. * long before we get here. This allows seeding of the pools
  969. * with some platform dependent data very early in the boot
  970. * process. But it limits our options here. We must use
  971. * statically allocated structures that already have all
  972. * initializations complete at compile time. We should also
  973. * take care not to overwrite the precious per platform data
  974. * we were given.
  975. */
  976. static int rand_initialize(void)
  977. {
  978. init_std_data(&input_pool);
  979. init_std_data(&blocking_pool);
  980. init_std_data(&nonblocking_pool);
  981. return 0;
  982. }
  983. module_init(rand_initialize);
  984. #ifdef CONFIG_BLOCK
  985. void rand_initialize_disk(struct gendisk *disk)
  986. {
  987. struct timer_rand_state *state;
  988. /*
  989. * If kzalloc returns null, we just won't use that entropy
  990. * source.
  991. */
  992. state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
  993. if (state)
  994. disk->random = state;
  995. }
  996. #endif
  997. static ssize_t
  998. random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  999. {
  1000. ssize_t n, retval = 0, count = 0;
  1001. if (nbytes == 0)
  1002. return 0;
  1003. while (nbytes > 0) {
  1004. n = nbytes;
  1005. if (n > SEC_XFER_SIZE)
  1006. n = SEC_XFER_SIZE;
  1007. DEBUG_ENT("reading %d bits\n", n*8);
  1008. n = extract_entropy_user(&blocking_pool, buf, n);
  1009. DEBUG_ENT("read got %d bits (%d still needed)\n",
  1010. n*8, (nbytes-n)*8);
  1011. if (n == 0) {
  1012. if (file->f_flags & O_NONBLOCK) {
  1013. retval = -EAGAIN;
  1014. break;
  1015. }
  1016. DEBUG_ENT("sleeping?\n");
  1017. wait_event_interruptible(random_read_wait,
  1018. input_pool.entropy_count >=
  1019. random_read_wakeup_thresh);
  1020. DEBUG_ENT("awake\n");
  1021. if (signal_pending(current)) {
  1022. retval = -ERESTARTSYS;
  1023. break;
  1024. }
  1025. continue;
  1026. }
  1027. if (n < 0) {
  1028. retval = n;
  1029. break;
  1030. }
  1031. count += n;
  1032. buf += n;
  1033. nbytes -= n;
  1034. break; /* This break makes the device work */
  1035. /* like a named pipe */
  1036. }
  1037. return (count ? count : retval);
  1038. }
  1039. static ssize_t
  1040. urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  1041. {
  1042. return extract_entropy_user(&nonblocking_pool, buf, nbytes);
  1043. }
  1044. static unsigned int
  1045. random_poll(struct file *file, poll_table * wait)
  1046. {
  1047. unsigned int mask;
  1048. poll_wait(file, &random_read_wait, wait);
  1049. poll_wait(file, &random_write_wait, wait);
  1050. mask = 0;
  1051. if (input_pool.entropy_count >= random_read_wakeup_thresh)
  1052. mask |= POLLIN | POLLRDNORM;
  1053. if (input_pool.entropy_count < random_write_wakeup_thresh)
  1054. mask |= POLLOUT | POLLWRNORM;
  1055. return mask;
  1056. }
  1057. static int
  1058. write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
  1059. {
  1060. size_t bytes;
  1061. __u32 buf[16];
  1062. const char __user *p = buffer;
  1063. while (count > 0) {
  1064. bytes = min(count, sizeof(buf));
  1065. if (copy_from_user(&buf, p, bytes))
  1066. return -EFAULT;
  1067. count -= bytes;
  1068. p += bytes;
  1069. mix_pool_bytes(r, buf, bytes, NULL);
  1070. cond_resched();
  1071. }
  1072. return 0;
  1073. }
  1074. static ssize_t random_write(struct file *file, const char __user *buffer,
  1075. size_t count, loff_t *ppos)
  1076. {
  1077. size_t ret;
  1078. ret = write_pool(&blocking_pool, buffer, count);
  1079. if (ret)
  1080. return ret;
  1081. ret = write_pool(&nonblocking_pool, buffer, count);
  1082. if (ret)
  1083. return ret;
  1084. return (ssize_t)count;
  1085. }
  1086. static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
  1087. {
  1088. int size, ent_count;
  1089. int __user *p = (int __user *)arg;
  1090. int retval;
  1091. switch (cmd) {
  1092. case RNDGETENTCNT:
  1093. /* inherently racy, no point locking */
  1094. if (put_user(input_pool.entropy_count, p))
  1095. return -EFAULT;
  1096. return 0;
  1097. case RNDADDTOENTCNT:
  1098. if (!capable(CAP_SYS_ADMIN))
  1099. return -EPERM;
  1100. if (get_user(ent_count, p))
  1101. return -EFAULT;
  1102. credit_entropy_bits(&input_pool, ent_count);
  1103. return 0;
  1104. case RNDADDENTROPY:
  1105. if (!capable(CAP_SYS_ADMIN))
  1106. return -EPERM;
  1107. if (get_user(ent_count, p++))
  1108. return -EFAULT;
  1109. if (ent_count < 0)
  1110. return -EINVAL;
  1111. if (get_user(size, p++))
  1112. return -EFAULT;
  1113. retval = write_pool(&input_pool, (const char __user *)p,
  1114. size);
  1115. if (retval < 0)
  1116. return retval;
  1117. credit_entropy_bits(&input_pool, ent_count);
  1118. return 0;
  1119. case RNDZAPENTCNT:
  1120. case RNDCLEARPOOL:
  1121. /* Clear the entropy pool counters. */
  1122. if (!capable(CAP_SYS_ADMIN))
  1123. return -EPERM;
  1124. rand_initialize();
  1125. return 0;
  1126. default:
  1127. return -EINVAL;
  1128. }
  1129. }
  1130. static int random_fasync(int fd, struct file *filp, int on)
  1131. {
  1132. return fasync_helper(fd, filp, on, &fasync);
  1133. }
  1134. const struct file_operations random_fops = {
  1135. .read = random_read,
  1136. .write = random_write,
  1137. .poll = random_poll,
  1138. .unlocked_ioctl = random_ioctl,
  1139. .fasync = random_fasync,
  1140. .llseek = noop_llseek,
  1141. };
  1142. const struct file_operations urandom_fops = {
  1143. .read = urandom_read,
  1144. .write = random_write,
  1145. .unlocked_ioctl = random_ioctl,
  1146. .fasync = random_fasync,
  1147. .llseek = noop_llseek,
  1148. };
  1149. /***************************************************************
  1150. * Random UUID interface
  1151. *
  1152. * Used here for a Boot ID, but can be useful for other kernel
  1153. * drivers.
  1154. ***************************************************************/
  1155. /*
  1156. * Generate random UUID
  1157. */
  1158. void generate_random_uuid(unsigned char uuid_out[16])
  1159. {
  1160. get_random_bytes(uuid_out, 16);
  1161. /* Set UUID version to 4 --- truly random generation */
  1162. uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
  1163. /* Set the UUID variant to DCE */
  1164. uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
  1165. }
  1166. EXPORT_SYMBOL(generate_random_uuid);
  1167. /********************************************************************
  1168. *
  1169. * Sysctl interface
  1170. *
  1171. ********************************************************************/
  1172. #ifdef CONFIG_SYSCTL
  1173. #include <linux/sysctl.h>
  1174. static int min_read_thresh = 8, min_write_thresh;
  1175. static int max_read_thresh = INPUT_POOL_WORDS * 32;
  1176. static int max_write_thresh = INPUT_POOL_WORDS * 32;
  1177. static char sysctl_bootid[16];
  1178. /*
  1179. * These functions is used to return both the bootid UUID, and random
  1180. * UUID. The difference is in whether table->data is NULL; if it is,
  1181. * then a new UUID is generated and returned to the user.
  1182. *
  1183. * If the user accesses this via the proc interface, it will be returned
  1184. * as an ASCII string in the standard UUID format. If accesses via the
  1185. * sysctl system call, it is returned as 16 bytes of binary data.
  1186. */
  1187. static int proc_do_uuid(ctl_table *table, int write,
  1188. void __user *buffer, size_t *lenp, loff_t *ppos)
  1189. {
  1190. ctl_table fake_table;
  1191. unsigned char buf[64], tmp_uuid[16], *uuid;
  1192. uuid = table->data;
  1193. if (!uuid) {
  1194. uuid = tmp_uuid;
  1195. generate_random_uuid(uuid);
  1196. } else {
  1197. static DEFINE_SPINLOCK(bootid_spinlock);
  1198. spin_lock(&bootid_spinlock);
  1199. if (!uuid[8])
  1200. generate_random_uuid(uuid);
  1201. spin_unlock(&bootid_spinlock);
  1202. }
  1203. sprintf(buf, "%pU", uuid);
  1204. fake_table.data = buf;
  1205. fake_table.maxlen = sizeof(buf);
  1206. return proc_dostring(&fake_table, write, buffer, lenp, ppos);
  1207. }
  1208. static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
  1209. extern ctl_table random_table[];
  1210. ctl_table random_table[] = {
  1211. {
  1212. .procname = "poolsize",
  1213. .data = &sysctl_poolsize,
  1214. .maxlen = sizeof(int),
  1215. .mode = 0444,
  1216. .proc_handler = proc_dointvec,
  1217. },
  1218. {
  1219. .procname = "entropy_avail",
  1220. .maxlen = sizeof(int),
  1221. .mode = 0444,
  1222. .proc_handler = proc_dointvec,
  1223. .data = &input_pool.entropy_count,
  1224. },
  1225. {
  1226. .procname = "read_wakeup_threshold",
  1227. .data = &random_read_wakeup_thresh,
  1228. .maxlen = sizeof(int),
  1229. .mode = 0644,
  1230. .proc_handler = proc_dointvec_minmax,
  1231. .extra1 = &min_read_thresh,
  1232. .extra2 = &max_read_thresh,
  1233. },
  1234. {
  1235. .procname = "write_wakeup_threshold",
  1236. .data = &random_write_wakeup_thresh,
  1237. .maxlen = sizeof(int),
  1238. .mode = 0644,
  1239. .proc_handler = proc_dointvec_minmax,
  1240. .extra1 = &min_write_thresh,
  1241. .extra2 = &max_write_thresh,
  1242. },
  1243. {
  1244. .procname = "boot_id",
  1245. .data = &sysctl_bootid,
  1246. .maxlen = 16,
  1247. .mode = 0444,
  1248. .proc_handler = proc_do_uuid,
  1249. },
  1250. {
  1251. .procname = "uuid",
  1252. .maxlen = 16,
  1253. .mode = 0444,
  1254. .proc_handler = proc_do_uuid,
  1255. },
  1256. { }
  1257. };
  1258. #endif /* CONFIG_SYSCTL */
  1259. static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
  1260. static int __init random_int_secret_init(void)
  1261. {
  1262. get_random_bytes(random_int_secret, sizeof(random_int_secret));
  1263. return 0;
  1264. }
  1265. late_initcall(random_int_secret_init);
  1266. /*
  1267. * Get a random word for internal kernel use only. Similar to urandom but
  1268. * with the goal of minimal entropy pool depletion. As a result, the random
  1269. * value is not cryptographically secure but for several uses the cost of
  1270. * depleting entropy is too high
  1271. */
  1272. static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
  1273. unsigned int get_random_int(void)
  1274. {
  1275. __u32 *hash;
  1276. unsigned int ret;
  1277. if (arch_get_random_int(&ret))
  1278. return ret;
  1279. hash = get_cpu_var(get_random_int_hash);
  1280. hash[0] += current->pid + jiffies + get_cycles();
  1281. md5_transform(hash, random_int_secret);
  1282. ret = hash[0];
  1283. put_cpu_var(get_random_int_hash);
  1284. return ret;
  1285. }
  1286. /*
  1287. * randomize_range() returns a start address such that
  1288. *
  1289. * [...... <range> .....]
  1290. * start end
  1291. *
  1292. * a <range> with size "len" starting at the return value is inside in the
  1293. * area defined by [start, end], but is otherwise randomized.
  1294. */
  1295. unsigned long
  1296. randomize_range(unsigned long start, unsigned long end, unsigned long len)
  1297. {
  1298. unsigned long range = end - len - start;
  1299. if (end <= start + len)
  1300. return 0;
  1301. return PAGE_ALIGN(get_random_int() % range + start);
  1302. }