time.c 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335
  1. /*
  2. * linux/arch/parisc/kernel/time.c
  3. *
  4. * Copyright (C) 1991, 1992, 1995 Linus Torvalds
  5. * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
  6. * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
  7. *
  8. * 1994-07-02 Alan Modra
  9. * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
  10. * 1998-12-20 Updated NTP code according to technical memorandum Jan '96
  11. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  12. */
  13. #include <linux/errno.h>
  14. #include <linux/module.h>
  15. #include <linux/sched.h>
  16. #include <linux/kernel.h>
  17. #include <linux/param.h>
  18. #include <linux/string.h>
  19. #include <linux/mm.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/time.h>
  22. #include <linux/init.h>
  23. #include <linux/smp.h>
  24. #include <linux/profile.h>
  25. #include <asm/uaccess.h>
  26. #include <asm/io.h>
  27. #include <asm/irq.h>
  28. #include <asm/param.h>
  29. #include <asm/pdc.h>
  30. #include <asm/led.h>
  31. #include <linux/timex.h>
  32. static unsigned long clocktick __read_mostly; /* timer cycles per tick */
  33. #ifdef CONFIG_SMP
  34. extern void smp_do_timer(struct pt_regs *regs);
  35. #endif
  36. /*
  37. * We keep time on PA-RISC Linux by using the Interval Timer which is
  38. * a pair of registers; one is read-only and one is write-only; both
  39. * accessed through CR16. The read-only register is 32 or 64 bits wide,
  40. * and increments by 1 every CPU clock tick. The architecture only
  41. * guarantees us a rate between 0.5 and 2, but all implementations use a
  42. * rate of 1. The write-only register is 32-bits wide. When the lowest
  43. * 32 bits of the read-only register compare equal to the write-only
  44. * register, it raises a maskable external interrupt. Each processor has
  45. * an Interval Timer of its own and they are not synchronised.
  46. *
  47. * We want to generate an interrupt every 1/HZ seconds. So we program
  48. * CR16 to interrupt every @clocktick cycles. The it_value in cpu_data
  49. * is programmed with the intended time of the next tick. We can be
  50. * held off for an arbitrarily long period of time by interrupts being
  51. * disabled, so we may miss one or more ticks.
  52. */
  53. irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
  54. {
  55. unsigned long now;
  56. unsigned long next_tick;
  57. unsigned long cycles_elapsed, ticks_elapsed;
  58. unsigned long cycles_remainder;
  59. unsigned int cpu = smp_processor_id();
  60. /* gcc can optimize for "read-only" case with a local clocktick */
  61. unsigned long cpt = clocktick;
  62. profile_tick(CPU_PROFILING);
  63. /* Initialize next_tick to the expected tick time. */
  64. next_tick = cpu_data[cpu].it_value;
  65. /* Get current interval timer.
  66. * CR16 reads as 64 bits in CPU wide mode.
  67. * CR16 reads as 32 bits in CPU narrow mode.
  68. */
  69. now = mfctl(16);
  70. cycles_elapsed = now - next_tick;
  71. if ((cycles_elapsed >> 5) < cpt) {
  72. /* use "cheap" math (add/subtract) instead
  73. * of the more expensive div/mul method
  74. */
  75. cycles_remainder = cycles_elapsed;
  76. ticks_elapsed = 1;
  77. while (cycles_remainder > cpt) {
  78. cycles_remainder -= cpt;
  79. ticks_elapsed++;
  80. }
  81. } else {
  82. cycles_remainder = cycles_elapsed % cpt;
  83. ticks_elapsed = 1 + cycles_elapsed / cpt;
  84. }
  85. /* Can we differentiate between "early CR16" (aka Scenario 1) and
  86. * "long delay" (aka Scenario 3)? I don't think so.
  87. *
  88. * We expected timer_interrupt to be delivered at least a few hundred
  89. * cycles after the IT fires. But it's arbitrary how much time passes
  90. * before we call it "late". I've picked one second.
  91. */
  92. if (ticks_elapsed > HZ) {
  93. /* Scenario 3: very long delay? bad in any case */
  94. printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
  95. " cycles %lX rem %lX "
  96. " next/now %lX/%lX\n",
  97. cpu,
  98. cycles_elapsed, cycles_remainder,
  99. next_tick, now );
  100. }
  101. /* convert from "division remainder" to "remainder of clock tick" */
  102. cycles_remainder = cpt - cycles_remainder;
  103. /* Determine when (in CR16 cycles) next IT interrupt will fire.
  104. * We want IT to fire modulo clocktick even if we miss/skip some.
  105. * But those interrupts don't in fact get delivered that regularly.
  106. */
  107. next_tick = now + cycles_remainder;
  108. cpu_data[cpu].it_value = next_tick;
  109. /* Skip one clocktick on purpose if we are likely to miss next_tick.
  110. * We want to avoid the new next_tick being less than CR16.
  111. * If that happened, itimer wouldn't fire until CR16 wrapped.
  112. * We'll catch the tick we missed on the tick after that.
  113. */
  114. if (!(cycles_remainder >> 13))
  115. next_tick += cpt;
  116. /* Program the IT when to deliver the next interrupt. */
  117. /* Only bottom 32-bits of next_tick are written to cr16. */
  118. mtctl(next_tick, 16);
  119. /* Done mucking with unreliable delivery of interrupts.
  120. * Go do system house keeping.
  121. */
  122. #ifdef CONFIG_SMP
  123. smp_do_timer(regs);
  124. #else
  125. update_process_times(user_mode(regs));
  126. #endif
  127. if (cpu == 0) {
  128. write_seqlock(&xtime_lock);
  129. do_timer(ticks_elapsed);
  130. write_sequnlock(&xtime_lock);
  131. }
  132. /* check soft power switch status */
  133. if (cpu == 0 && !atomic_read(&power_tasklet.count))
  134. tasklet_schedule(&power_tasklet);
  135. return IRQ_HANDLED;
  136. }
  137. unsigned long profile_pc(struct pt_regs *regs)
  138. {
  139. unsigned long pc = instruction_pointer(regs);
  140. if (regs->gr[0] & PSW_N)
  141. pc -= 4;
  142. #ifdef CONFIG_SMP
  143. if (in_lock_functions(pc))
  144. pc = regs->gr[2];
  145. #endif
  146. return pc;
  147. }
  148. EXPORT_SYMBOL(profile_pc);
  149. /*
  150. * Return the number of micro-seconds that elapsed since the last
  151. * update to wall time (aka xtime). The xtime_lock
  152. * must be at least read-locked when calling this routine.
  153. */
  154. static inline unsigned long gettimeoffset (void)
  155. {
  156. #ifndef CONFIG_SMP
  157. /*
  158. * FIXME: This won't work on smp because jiffies are updated by cpu 0.
  159. * Once parisc-linux learns the cr16 difference between processors,
  160. * this could be made to work.
  161. */
  162. unsigned long now;
  163. unsigned long prev_tick;
  164. unsigned long next_tick;
  165. unsigned long elapsed_cycles;
  166. unsigned long usec;
  167. unsigned long cpuid = smp_processor_id();
  168. unsigned long cpt = clocktick;
  169. next_tick = cpu_data[cpuid].it_value;
  170. now = mfctl(16); /* Read the hardware interval timer. */
  171. prev_tick = next_tick - cpt;
  172. /* Assume Scenario 1: "now" is later than prev_tick. */
  173. elapsed_cycles = now - prev_tick;
  174. /* aproximate HZ with shifts. Intended math is "(elapsed/clocktick) > HZ" */
  175. #if HZ == 1000
  176. if (elapsed_cycles > (cpt << 10) )
  177. #elif HZ == 250
  178. if (elapsed_cycles > (cpt << 8) )
  179. #elif HZ == 100
  180. if (elapsed_cycles > (cpt << 7) )
  181. #else
  182. #warn WTF is HZ set to anyway?
  183. if (elapsed_cycles > (HZ * cpt) )
  184. #endif
  185. {
  186. /* Scenario 3: clock ticks are missing. */
  187. printk (KERN_CRIT "gettimeoffset(CPU %ld): missing %ld ticks!"
  188. " cycles %lX prev/now/next %lX/%lX/%lX clock %lX\n",
  189. cpuid, elapsed_cycles / cpt,
  190. elapsed_cycles, prev_tick, now, next_tick, cpt);
  191. }
  192. /* FIXME: Can we improve the precision? Not with PAGE0. */
  193. usec = (elapsed_cycles * 10000) / PAGE0->mem_10msec;
  194. return usec;
  195. #else
  196. return 0;
  197. #endif
  198. }
  199. void
  200. do_gettimeofday (struct timeval *tv)
  201. {
  202. unsigned long flags, seq, usec, sec;
  203. /* Hold xtime_lock and adjust timeval. */
  204. do {
  205. seq = read_seqbegin_irqsave(&xtime_lock, flags);
  206. usec = gettimeoffset();
  207. sec = xtime.tv_sec;
  208. usec += (xtime.tv_nsec / 1000);
  209. } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
  210. /* Move adjusted usec's into sec's. */
  211. while (usec >= USEC_PER_SEC) {
  212. usec -= USEC_PER_SEC;
  213. ++sec;
  214. }
  215. /* Return adjusted result. */
  216. tv->tv_sec = sec;
  217. tv->tv_usec = usec;
  218. }
  219. EXPORT_SYMBOL(do_gettimeofday);
  220. int
  221. do_settimeofday (struct timespec *tv)
  222. {
  223. time_t wtm_sec, sec = tv->tv_sec;
  224. long wtm_nsec, nsec = tv->tv_nsec;
  225. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  226. return -EINVAL;
  227. write_seqlock_irq(&xtime_lock);
  228. {
  229. /*
  230. * This is revolting. We need to set "xtime"
  231. * correctly. However, the value in this location is
  232. * the value at the most recent update of wall time.
  233. * Discover what correction gettimeofday would have
  234. * done, and then undo it!
  235. */
  236. nsec -= gettimeoffset() * 1000;
  237. wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
  238. wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
  239. set_normalized_timespec(&xtime, sec, nsec);
  240. set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
  241. ntp_clear();
  242. }
  243. write_sequnlock_irq(&xtime_lock);
  244. clock_was_set();
  245. return 0;
  246. }
  247. EXPORT_SYMBOL(do_settimeofday);
  248. /*
  249. * XXX: We can do better than this.
  250. * Returns nanoseconds
  251. */
  252. unsigned long long sched_clock(void)
  253. {
  254. return (unsigned long long)jiffies * (1000000000 / HZ);
  255. }
  256. void __init start_cpu_itimer(void)
  257. {
  258. unsigned int cpu = smp_processor_id();
  259. unsigned long next_tick = mfctl(16) + clocktick;
  260. mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */
  261. cpu_data[cpu].it_value = next_tick;
  262. }
  263. void __init time_init(void)
  264. {
  265. static struct pdc_tod tod_data;
  266. clocktick = (100 * PAGE0->mem_10msec) / HZ;
  267. start_cpu_itimer(); /* get CPU 0 started */
  268. if(pdc_tod_read(&tod_data) == 0) {
  269. write_seqlock_irq(&xtime_lock);
  270. xtime.tv_sec = tod_data.tod_sec;
  271. xtime.tv_nsec = tod_data.tod_usec * 1000;
  272. set_normalized_timespec(&wall_to_monotonic,
  273. -xtime.tv_sec, -xtime.tv_nsec);
  274. write_sequnlock_irq(&xtime_lock);
  275. } else {
  276. printk(KERN_ERR "Error reading tod clock\n");
  277. xtime.tv_sec = 0;
  278. xtime.tv_nsec = 0;
  279. }
  280. }