memory.c 59 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/rmap.h>
  44. #include <linux/module.h>
  45. #include <linux/init.h>
  46. #include <asm/pgalloc.h>
  47. #include <asm/uaccess.h>
  48. #include <asm/tlb.h>
  49. #include <asm/tlbflush.h>
  50. #include <asm/pgtable.h>
  51. #include <linux/swapops.h>
  52. #include <linux/elf.h>
  53. #ifndef CONFIG_DISCONTIGMEM
  54. /* use the per-pgdat data instead for discontigmem - mbligh */
  55. unsigned long max_mapnr;
  56. struct page *mem_map;
  57. EXPORT_SYMBOL(max_mapnr);
  58. EXPORT_SYMBOL(mem_map);
  59. #endif
  60. unsigned long num_physpages;
  61. /*
  62. * A number of key systems in x86 including ioremap() rely on the assumption
  63. * that high_memory defines the upper bound on direct map memory, then end
  64. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  65. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  66. * and ZONE_HIGHMEM.
  67. */
  68. void * high_memory;
  69. unsigned long vmalloc_earlyreserve;
  70. EXPORT_SYMBOL(num_physpages);
  71. EXPORT_SYMBOL(high_memory);
  72. EXPORT_SYMBOL(vmalloc_earlyreserve);
  73. /*
  74. * If a p?d_bad entry is found while walking page tables, report
  75. * the error, before resetting entry to p?d_none. Usually (but
  76. * very seldom) called out from the p?d_none_or_clear_bad macros.
  77. */
  78. void pgd_clear_bad(pgd_t *pgd)
  79. {
  80. pgd_ERROR(*pgd);
  81. pgd_clear(pgd);
  82. }
  83. void pud_clear_bad(pud_t *pud)
  84. {
  85. pud_ERROR(*pud);
  86. pud_clear(pud);
  87. }
  88. void pmd_clear_bad(pmd_t *pmd)
  89. {
  90. pmd_ERROR(*pmd);
  91. pmd_clear(pmd);
  92. }
  93. /*
  94. * Note: this doesn't free the actual pages themselves. That
  95. * has been handled earlier when unmapping all the memory regions.
  96. */
  97. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
  98. {
  99. struct page *page = pmd_page(*pmd);
  100. pmd_clear(pmd);
  101. pte_free_tlb(tlb, page);
  102. dec_page_state(nr_page_table_pages);
  103. tlb->mm->nr_ptes--;
  104. }
  105. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  106. unsigned long addr, unsigned long end,
  107. unsigned long floor, unsigned long ceiling)
  108. {
  109. pmd_t *pmd;
  110. unsigned long next;
  111. unsigned long start;
  112. start = addr;
  113. pmd = pmd_offset(pud, addr);
  114. do {
  115. next = pmd_addr_end(addr, end);
  116. if (pmd_none_or_clear_bad(pmd))
  117. continue;
  118. free_pte_range(tlb, pmd);
  119. } while (pmd++, addr = next, addr != end);
  120. start &= PUD_MASK;
  121. if (start < floor)
  122. return;
  123. if (ceiling) {
  124. ceiling &= PUD_MASK;
  125. if (!ceiling)
  126. return;
  127. }
  128. if (end - 1 > ceiling - 1)
  129. return;
  130. pmd = pmd_offset(pud, start);
  131. pud_clear(pud);
  132. pmd_free_tlb(tlb, pmd);
  133. }
  134. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  135. unsigned long addr, unsigned long end,
  136. unsigned long floor, unsigned long ceiling)
  137. {
  138. pud_t *pud;
  139. unsigned long next;
  140. unsigned long start;
  141. start = addr;
  142. pud = pud_offset(pgd, addr);
  143. do {
  144. next = pud_addr_end(addr, end);
  145. if (pud_none_or_clear_bad(pud))
  146. continue;
  147. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  148. } while (pud++, addr = next, addr != end);
  149. start &= PGDIR_MASK;
  150. if (start < floor)
  151. return;
  152. if (ceiling) {
  153. ceiling &= PGDIR_MASK;
  154. if (!ceiling)
  155. return;
  156. }
  157. if (end - 1 > ceiling - 1)
  158. return;
  159. pud = pud_offset(pgd, start);
  160. pgd_clear(pgd);
  161. pud_free_tlb(tlb, pud);
  162. }
  163. /*
  164. * This function frees user-level page tables of a process.
  165. *
  166. * Must be called with pagetable lock held.
  167. */
  168. void free_pgd_range(struct mmu_gather **tlb,
  169. unsigned long addr, unsigned long end,
  170. unsigned long floor, unsigned long ceiling)
  171. {
  172. pgd_t *pgd;
  173. unsigned long next;
  174. unsigned long start;
  175. /*
  176. * The next few lines have given us lots of grief...
  177. *
  178. * Why are we testing PMD* at this top level? Because often
  179. * there will be no work to do at all, and we'd prefer not to
  180. * go all the way down to the bottom just to discover that.
  181. *
  182. * Why all these "- 1"s? Because 0 represents both the bottom
  183. * of the address space and the top of it (using -1 for the
  184. * top wouldn't help much: the masks would do the wrong thing).
  185. * The rule is that addr 0 and floor 0 refer to the bottom of
  186. * the address space, but end 0 and ceiling 0 refer to the top
  187. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  188. * that end 0 case should be mythical).
  189. *
  190. * Wherever addr is brought up or ceiling brought down, we must
  191. * be careful to reject "the opposite 0" before it confuses the
  192. * subsequent tests. But what about where end is brought down
  193. * by PMD_SIZE below? no, end can't go down to 0 there.
  194. *
  195. * Whereas we round start (addr) and ceiling down, by different
  196. * masks at different levels, in order to test whether a table
  197. * now has no other vmas using it, so can be freed, we don't
  198. * bother to round floor or end up - the tests don't need that.
  199. */
  200. addr &= PMD_MASK;
  201. if (addr < floor) {
  202. addr += PMD_SIZE;
  203. if (!addr)
  204. return;
  205. }
  206. if (ceiling) {
  207. ceiling &= PMD_MASK;
  208. if (!ceiling)
  209. return;
  210. }
  211. if (end - 1 > ceiling - 1)
  212. end -= PMD_SIZE;
  213. if (addr > end - 1)
  214. return;
  215. start = addr;
  216. pgd = pgd_offset((*tlb)->mm, addr);
  217. do {
  218. next = pgd_addr_end(addr, end);
  219. if (pgd_none_or_clear_bad(pgd))
  220. continue;
  221. free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
  222. } while (pgd++, addr = next, addr != end);
  223. if (!tlb_is_full_mm(*tlb))
  224. flush_tlb_pgtables((*tlb)->mm, start, end);
  225. }
  226. void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
  227. unsigned long floor, unsigned long ceiling)
  228. {
  229. while (vma) {
  230. struct vm_area_struct *next = vma->vm_next;
  231. unsigned long addr = vma->vm_start;
  232. if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
  233. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  234. floor, next? next->vm_start: ceiling);
  235. } else {
  236. /*
  237. * Optimization: gather nearby vmas into one call down
  238. */
  239. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  240. && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
  241. HPAGE_SIZE)) {
  242. vma = next;
  243. next = vma->vm_next;
  244. }
  245. free_pgd_range(tlb, addr, vma->vm_end,
  246. floor, next? next->vm_start: ceiling);
  247. }
  248. vma = next;
  249. }
  250. }
  251. pte_t fastcall *pte_alloc_map(struct mm_struct *mm, pmd_t *pmd,
  252. unsigned long address)
  253. {
  254. if (!pmd_present(*pmd)) {
  255. struct page *new;
  256. spin_unlock(&mm->page_table_lock);
  257. new = pte_alloc_one(mm, address);
  258. spin_lock(&mm->page_table_lock);
  259. if (!new)
  260. return NULL;
  261. /*
  262. * Because we dropped the lock, we should re-check the
  263. * entry, as somebody else could have populated it..
  264. */
  265. if (pmd_present(*pmd)) {
  266. pte_free(new);
  267. goto out;
  268. }
  269. mm->nr_ptes++;
  270. inc_page_state(nr_page_table_pages);
  271. pmd_populate(mm, pmd, new);
  272. }
  273. out:
  274. return pte_offset_map(pmd, address);
  275. }
  276. pte_t fastcall * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
  277. {
  278. if (!pmd_present(*pmd)) {
  279. pte_t *new;
  280. spin_unlock(&mm->page_table_lock);
  281. new = pte_alloc_one_kernel(mm, address);
  282. spin_lock(&mm->page_table_lock);
  283. if (!new)
  284. return NULL;
  285. /*
  286. * Because we dropped the lock, we should re-check the
  287. * entry, as somebody else could have populated it..
  288. */
  289. if (pmd_present(*pmd)) {
  290. pte_free_kernel(new);
  291. goto out;
  292. }
  293. pmd_populate_kernel(mm, pmd, new);
  294. }
  295. out:
  296. return pte_offset_kernel(pmd, address);
  297. }
  298. /*
  299. * copy one vm_area from one task to the other. Assumes the page tables
  300. * already present in the new task to be cleared in the whole range
  301. * covered by this vma.
  302. *
  303. * dst->page_table_lock is held on entry and exit,
  304. * but may be dropped within p[mg]d_alloc() and pte_alloc_map().
  305. */
  306. static inline void
  307. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  308. pte_t *dst_pte, pte_t *src_pte, unsigned long vm_flags,
  309. unsigned long addr)
  310. {
  311. pte_t pte = *src_pte;
  312. struct page *page;
  313. unsigned long pfn;
  314. /* pte contains position in swap or file, so copy. */
  315. if (unlikely(!pte_present(pte))) {
  316. if (!pte_file(pte)) {
  317. swap_duplicate(pte_to_swp_entry(pte));
  318. /* make sure dst_mm is on swapoff's mmlist. */
  319. if (unlikely(list_empty(&dst_mm->mmlist))) {
  320. spin_lock(&mmlist_lock);
  321. list_add(&dst_mm->mmlist, &src_mm->mmlist);
  322. spin_unlock(&mmlist_lock);
  323. }
  324. }
  325. set_pte_at(dst_mm, addr, dst_pte, pte);
  326. return;
  327. }
  328. pfn = pte_pfn(pte);
  329. /* the pte points outside of valid memory, the
  330. * mapping is assumed to be good, meaningful
  331. * and not mapped via rmap - duplicate the
  332. * mapping as is.
  333. */
  334. page = NULL;
  335. if (pfn_valid(pfn))
  336. page = pfn_to_page(pfn);
  337. if (!page || PageReserved(page)) {
  338. set_pte_at(dst_mm, addr, dst_pte, pte);
  339. return;
  340. }
  341. /*
  342. * If it's a COW mapping, write protect it both
  343. * in the parent and the child
  344. */
  345. if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
  346. ptep_set_wrprotect(src_mm, addr, src_pte);
  347. pte = *src_pte;
  348. }
  349. /*
  350. * If it's a shared mapping, mark it clean in
  351. * the child
  352. */
  353. if (vm_flags & VM_SHARED)
  354. pte = pte_mkclean(pte);
  355. pte = pte_mkold(pte);
  356. get_page(page);
  357. inc_mm_counter(dst_mm, rss);
  358. if (PageAnon(page))
  359. inc_mm_counter(dst_mm, anon_rss);
  360. set_pte_at(dst_mm, addr, dst_pte, pte);
  361. page_dup_rmap(page);
  362. }
  363. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  364. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  365. unsigned long addr, unsigned long end)
  366. {
  367. pte_t *src_pte, *dst_pte;
  368. unsigned long vm_flags = vma->vm_flags;
  369. int progress;
  370. again:
  371. dst_pte = pte_alloc_map(dst_mm, dst_pmd, addr);
  372. if (!dst_pte)
  373. return -ENOMEM;
  374. src_pte = pte_offset_map_nested(src_pmd, addr);
  375. progress = 0;
  376. spin_lock(&src_mm->page_table_lock);
  377. do {
  378. /*
  379. * We are holding two locks at this point - either of them
  380. * could generate latencies in another task on another CPU.
  381. */
  382. if (progress >= 32 && (need_resched() ||
  383. need_lockbreak(&src_mm->page_table_lock) ||
  384. need_lockbreak(&dst_mm->page_table_lock)))
  385. break;
  386. if (pte_none(*src_pte)) {
  387. progress++;
  388. continue;
  389. }
  390. copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vm_flags, addr);
  391. progress += 8;
  392. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  393. spin_unlock(&src_mm->page_table_lock);
  394. pte_unmap_nested(src_pte - 1);
  395. pte_unmap(dst_pte - 1);
  396. cond_resched_lock(&dst_mm->page_table_lock);
  397. if (addr != end)
  398. goto again;
  399. return 0;
  400. }
  401. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  402. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  403. unsigned long addr, unsigned long end)
  404. {
  405. pmd_t *src_pmd, *dst_pmd;
  406. unsigned long next;
  407. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  408. if (!dst_pmd)
  409. return -ENOMEM;
  410. src_pmd = pmd_offset(src_pud, addr);
  411. do {
  412. next = pmd_addr_end(addr, end);
  413. if (pmd_none_or_clear_bad(src_pmd))
  414. continue;
  415. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  416. vma, addr, next))
  417. return -ENOMEM;
  418. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  419. return 0;
  420. }
  421. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  422. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  423. unsigned long addr, unsigned long end)
  424. {
  425. pud_t *src_pud, *dst_pud;
  426. unsigned long next;
  427. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  428. if (!dst_pud)
  429. return -ENOMEM;
  430. src_pud = pud_offset(src_pgd, addr);
  431. do {
  432. next = pud_addr_end(addr, end);
  433. if (pud_none_or_clear_bad(src_pud))
  434. continue;
  435. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  436. vma, addr, next))
  437. return -ENOMEM;
  438. } while (dst_pud++, src_pud++, addr = next, addr != end);
  439. return 0;
  440. }
  441. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  442. struct vm_area_struct *vma)
  443. {
  444. pgd_t *src_pgd, *dst_pgd;
  445. unsigned long next;
  446. unsigned long addr = vma->vm_start;
  447. unsigned long end = vma->vm_end;
  448. if (is_vm_hugetlb_page(vma))
  449. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  450. dst_pgd = pgd_offset(dst_mm, addr);
  451. src_pgd = pgd_offset(src_mm, addr);
  452. do {
  453. next = pgd_addr_end(addr, end);
  454. if (pgd_none_or_clear_bad(src_pgd))
  455. continue;
  456. if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  457. vma, addr, next))
  458. return -ENOMEM;
  459. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  460. return 0;
  461. }
  462. static void zap_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  463. unsigned long addr, unsigned long end,
  464. struct zap_details *details)
  465. {
  466. pte_t *pte;
  467. pte = pte_offset_map(pmd, addr);
  468. do {
  469. pte_t ptent = *pte;
  470. if (pte_none(ptent))
  471. continue;
  472. if (pte_present(ptent)) {
  473. struct page *page = NULL;
  474. unsigned long pfn = pte_pfn(ptent);
  475. if (pfn_valid(pfn)) {
  476. page = pfn_to_page(pfn);
  477. if (PageReserved(page))
  478. page = NULL;
  479. }
  480. if (unlikely(details) && page) {
  481. /*
  482. * unmap_shared_mapping_pages() wants to
  483. * invalidate cache without truncating:
  484. * unmap shared but keep private pages.
  485. */
  486. if (details->check_mapping &&
  487. details->check_mapping != page->mapping)
  488. continue;
  489. /*
  490. * Each page->index must be checked when
  491. * invalidating or truncating nonlinear.
  492. */
  493. if (details->nonlinear_vma &&
  494. (page->index < details->first_index ||
  495. page->index > details->last_index))
  496. continue;
  497. }
  498. ptent = ptep_get_and_clear(tlb->mm, addr, pte);
  499. tlb_remove_tlb_entry(tlb, pte, addr);
  500. if (unlikely(!page))
  501. continue;
  502. if (unlikely(details) && details->nonlinear_vma
  503. && linear_page_index(details->nonlinear_vma,
  504. addr) != page->index)
  505. set_pte_at(tlb->mm, addr, pte,
  506. pgoff_to_pte(page->index));
  507. if (pte_dirty(ptent))
  508. set_page_dirty(page);
  509. if (PageAnon(page))
  510. dec_mm_counter(tlb->mm, anon_rss);
  511. else if (pte_young(ptent))
  512. mark_page_accessed(page);
  513. tlb->freed++;
  514. page_remove_rmap(page);
  515. tlb_remove_page(tlb, page);
  516. continue;
  517. }
  518. /*
  519. * If details->check_mapping, we leave swap entries;
  520. * if details->nonlinear_vma, we leave file entries.
  521. */
  522. if (unlikely(details))
  523. continue;
  524. if (!pte_file(ptent))
  525. free_swap_and_cache(pte_to_swp_entry(ptent));
  526. pte_clear(tlb->mm, addr, pte);
  527. } while (pte++, addr += PAGE_SIZE, addr != end);
  528. pte_unmap(pte - 1);
  529. }
  530. static inline void zap_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  531. unsigned long addr, unsigned long end,
  532. struct zap_details *details)
  533. {
  534. pmd_t *pmd;
  535. unsigned long next;
  536. pmd = pmd_offset(pud, addr);
  537. do {
  538. next = pmd_addr_end(addr, end);
  539. if (pmd_none_or_clear_bad(pmd))
  540. continue;
  541. zap_pte_range(tlb, pmd, addr, next, details);
  542. } while (pmd++, addr = next, addr != end);
  543. }
  544. static inline void zap_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  545. unsigned long addr, unsigned long end,
  546. struct zap_details *details)
  547. {
  548. pud_t *pud;
  549. unsigned long next;
  550. pud = pud_offset(pgd, addr);
  551. do {
  552. next = pud_addr_end(addr, end);
  553. if (pud_none_or_clear_bad(pud))
  554. continue;
  555. zap_pmd_range(tlb, pud, addr, next, details);
  556. } while (pud++, addr = next, addr != end);
  557. }
  558. static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
  559. unsigned long addr, unsigned long end,
  560. struct zap_details *details)
  561. {
  562. pgd_t *pgd;
  563. unsigned long next;
  564. if (details && !details->check_mapping && !details->nonlinear_vma)
  565. details = NULL;
  566. BUG_ON(addr >= end);
  567. tlb_start_vma(tlb, vma);
  568. pgd = pgd_offset(vma->vm_mm, addr);
  569. do {
  570. next = pgd_addr_end(addr, end);
  571. if (pgd_none_or_clear_bad(pgd))
  572. continue;
  573. zap_pud_range(tlb, pgd, addr, next, details);
  574. } while (pgd++, addr = next, addr != end);
  575. tlb_end_vma(tlb, vma);
  576. }
  577. #ifdef CONFIG_PREEMPT
  578. # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
  579. #else
  580. /* No preempt: go for improved straight-line efficiency */
  581. # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
  582. #endif
  583. /**
  584. * unmap_vmas - unmap a range of memory covered by a list of vma's
  585. * @tlbp: address of the caller's struct mmu_gather
  586. * @mm: the controlling mm_struct
  587. * @vma: the starting vma
  588. * @start_addr: virtual address at which to start unmapping
  589. * @end_addr: virtual address at which to end unmapping
  590. * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
  591. * @details: details of nonlinear truncation or shared cache invalidation
  592. *
  593. * Returns the end address of the unmapping (restart addr if interrupted).
  594. *
  595. * Unmap all pages in the vma list. Called under page_table_lock.
  596. *
  597. * We aim to not hold page_table_lock for too long (for scheduling latency
  598. * reasons). So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
  599. * return the ending mmu_gather to the caller.
  600. *
  601. * Only addresses between `start' and `end' will be unmapped.
  602. *
  603. * The VMA list must be sorted in ascending virtual address order.
  604. *
  605. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  606. * range after unmap_vmas() returns. So the only responsibility here is to
  607. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  608. * drops the lock and schedules.
  609. */
  610. unsigned long unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
  611. struct vm_area_struct *vma, unsigned long start_addr,
  612. unsigned long end_addr, unsigned long *nr_accounted,
  613. struct zap_details *details)
  614. {
  615. unsigned long zap_bytes = ZAP_BLOCK_SIZE;
  616. unsigned long tlb_start = 0; /* For tlb_finish_mmu */
  617. int tlb_start_valid = 0;
  618. unsigned long start = start_addr;
  619. spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
  620. int fullmm = tlb_is_full_mm(*tlbp);
  621. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
  622. unsigned long end;
  623. start = max(vma->vm_start, start_addr);
  624. if (start >= vma->vm_end)
  625. continue;
  626. end = min(vma->vm_end, end_addr);
  627. if (end <= vma->vm_start)
  628. continue;
  629. if (vma->vm_flags & VM_ACCOUNT)
  630. *nr_accounted += (end - start) >> PAGE_SHIFT;
  631. while (start != end) {
  632. unsigned long block;
  633. if (!tlb_start_valid) {
  634. tlb_start = start;
  635. tlb_start_valid = 1;
  636. }
  637. if (is_vm_hugetlb_page(vma)) {
  638. block = end - start;
  639. unmap_hugepage_range(vma, start, end);
  640. } else {
  641. block = min(zap_bytes, end - start);
  642. unmap_page_range(*tlbp, vma, start,
  643. start + block, details);
  644. }
  645. start += block;
  646. zap_bytes -= block;
  647. if ((long)zap_bytes > 0)
  648. continue;
  649. tlb_finish_mmu(*tlbp, tlb_start, start);
  650. if (need_resched() ||
  651. need_lockbreak(&mm->page_table_lock) ||
  652. (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
  653. if (i_mmap_lock) {
  654. /* must reset count of rss freed */
  655. *tlbp = tlb_gather_mmu(mm, fullmm);
  656. goto out;
  657. }
  658. spin_unlock(&mm->page_table_lock);
  659. cond_resched();
  660. spin_lock(&mm->page_table_lock);
  661. }
  662. *tlbp = tlb_gather_mmu(mm, fullmm);
  663. tlb_start_valid = 0;
  664. zap_bytes = ZAP_BLOCK_SIZE;
  665. }
  666. }
  667. out:
  668. return start; /* which is now the end (or restart) address */
  669. }
  670. /**
  671. * zap_page_range - remove user pages in a given range
  672. * @vma: vm_area_struct holding the applicable pages
  673. * @address: starting address of pages to zap
  674. * @size: number of bytes to zap
  675. * @details: details of nonlinear truncation or shared cache invalidation
  676. */
  677. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  678. unsigned long size, struct zap_details *details)
  679. {
  680. struct mm_struct *mm = vma->vm_mm;
  681. struct mmu_gather *tlb;
  682. unsigned long end = address + size;
  683. unsigned long nr_accounted = 0;
  684. if (is_vm_hugetlb_page(vma)) {
  685. zap_hugepage_range(vma, address, size);
  686. return end;
  687. }
  688. lru_add_drain();
  689. spin_lock(&mm->page_table_lock);
  690. tlb = tlb_gather_mmu(mm, 0);
  691. end = unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details);
  692. tlb_finish_mmu(tlb, address, end);
  693. spin_unlock(&mm->page_table_lock);
  694. return end;
  695. }
  696. /*
  697. * Do a quick page-table lookup for a single page.
  698. * mm->page_table_lock must be held.
  699. */
  700. static struct page *
  701. __follow_page(struct mm_struct *mm, unsigned long address, int read, int write)
  702. {
  703. pgd_t *pgd;
  704. pud_t *pud;
  705. pmd_t *pmd;
  706. pte_t *ptep, pte;
  707. unsigned long pfn;
  708. struct page *page;
  709. page = follow_huge_addr(mm, address, write);
  710. if (! IS_ERR(page))
  711. return page;
  712. pgd = pgd_offset(mm, address);
  713. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  714. goto out;
  715. pud = pud_offset(pgd, address);
  716. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  717. goto out;
  718. pmd = pmd_offset(pud, address);
  719. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  720. goto out;
  721. if (pmd_huge(*pmd))
  722. return follow_huge_pmd(mm, address, pmd, write);
  723. ptep = pte_offset_map(pmd, address);
  724. if (!ptep)
  725. goto out;
  726. pte = *ptep;
  727. pte_unmap(ptep);
  728. if (pte_present(pte)) {
  729. if (write && !pte_write(pte))
  730. goto out;
  731. if (read && !pte_read(pte))
  732. goto out;
  733. pfn = pte_pfn(pte);
  734. if (pfn_valid(pfn)) {
  735. page = pfn_to_page(pfn);
  736. if (write && !pte_dirty(pte) && !PageDirty(page))
  737. set_page_dirty(page);
  738. mark_page_accessed(page);
  739. return page;
  740. }
  741. }
  742. out:
  743. return NULL;
  744. }
  745. struct page *
  746. follow_page(struct mm_struct *mm, unsigned long address, int write)
  747. {
  748. return __follow_page(mm, address, /*read*/0, write);
  749. }
  750. int
  751. check_user_page_readable(struct mm_struct *mm, unsigned long address)
  752. {
  753. return __follow_page(mm, address, /*read*/1, /*write*/0) != NULL;
  754. }
  755. EXPORT_SYMBOL(check_user_page_readable);
  756. /*
  757. * Given a physical address, is there a useful struct page pointing to
  758. * it? This may become more complex in the future if we start dealing
  759. * with IO-aperture pages for direct-IO.
  760. */
  761. static inline struct page *get_page_map(struct page *page)
  762. {
  763. if (!pfn_valid(page_to_pfn(page)))
  764. return NULL;
  765. return page;
  766. }
  767. static inline int
  768. untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma,
  769. unsigned long address)
  770. {
  771. pgd_t *pgd;
  772. pud_t *pud;
  773. pmd_t *pmd;
  774. /* Check if the vma is for an anonymous mapping. */
  775. if (vma->vm_ops && vma->vm_ops->nopage)
  776. return 0;
  777. /* Check if page directory entry exists. */
  778. pgd = pgd_offset(mm, address);
  779. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  780. return 1;
  781. pud = pud_offset(pgd, address);
  782. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  783. return 1;
  784. /* Check if page middle directory entry exists. */
  785. pmd = pmd_offset(pud, address);
  786. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  787. return 1;
  788. /* There is a pte slot for 'address' in 'mm'. */
  789. return 0;
  790. }
  791. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  792. unsigned long start, int len, int write, int force,
  793. struct page **pages, struct vm_area_struct **vmas)
  794. {
  795. int i;
  796. unsigned int flags;
  797. /*
  798. * Require read or write permissions.
  799. * If 'force' is set, we only require the "MAY" flags.
  800. */
  801. flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  802. flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  803. i = 0;
  804. do {
  805. struct vm_area_struct * vma;
  806. vma = find_extend_vma(mm, start);
  807. if (!vma && in_gate_area(tsk, start)) {
  808. unsigned long pg = start & PAGE_MASK;
  809. struct vm_area_struct *gate_vma = get_gate_vma(tsk);
  810. pgd_t *pgd;
  811. pud_t *pud;
  812. pmd_t *pmd;
  813. pte_t *pte;
  814. if (write) /* user gate pages are read-only */
  815. return i ? : -EFAULT;
  816. if (pg > TASK_SIZE)
  817. pgd = pgd_offset_k(pg);
  818. else
  819. pgd = pgd_offset_gate(mm, pg);
  820. BUG_ON(pgd_none(*pgd));
  821. pud = pud_offset(pgd, pg);
  822. BUG_ON(pud_none(*pud));
  823. pmd = pmd_offset(pud, pg);
  824. BUG_ON(pmd_none(*pmd));
  825. pte = pte_offset_map(pmd, pg);
  826. BUG_ON(pte_none(*pte));
  827. if (pages) {
  828. pages[i] = pte_page(*pte);
  829. get_page(pages[i]);
  830. }
  831. pte_unmap(pte);
  832. if (vmas)
  833. vmas[i] = gate_vma;
  834. i++;
  835. start += PAGE_SIZE;
  836. len--;
  837. continue;
  838. }
  839. if (!vma || (vma->vm_flags & VM_IO)
  840. || !(flags & vma->vm_flags))
  841. return i ? : -EFAULT;
  842. if (is_vm_hugetlb_page(vma)) {
  843. i = follow_hugetlb_page(mm, vma, pages, vmas,
  844. &start, &len, i);
  845. continue;
  846. }
  847. spin_lock(&mm->page_table_lock);
  848. do {
  849. struct page *map;
  850. int lookup_write = write;
  851. cond_resched_lock(&mm->page_table_lock);
  852. while (!(map = follow_page(mm, start, lookup_write))) {
  853. /*
  854. * Shortcut for anonymous pages. We don't want
  855. * to force the creation of pages tables for
  856. * insanly big anonymously mapped areas that
  857. * nobody touched so far. This is important
  858. * for doing a core dump for these mappings.
  859. */
  860. if (!lookup_write &&
  861. untouched_anonymous_page(mm,vma,start)) {
  862. map = ZERO_PAGE(start);
  863. break;
  864. }
  865. spin_unlock(&mm->page_table_lock);
  866. switch (handle_mm_fault(mm,vma,start,write)) {
  867. case VM_FAULT_MINOR:
  868. tsk->min_flt++;
  869. break;
  870. case VM_FAULT_MAJOR:
  871. tsk->maj_flt++;
  872. break;
  873. case VM_FAULT_SIGBUS:
  874. return i ? i : -EFAULT;
  875. case VM_FAULT_OOM:
  876. return i ? i : -ENOMEM;
  877. default:
  878. BUG();
  879. }
  880. /*
  881. * Now that we have performed a write fault
  882. * and surely no longer have a shared page we
  883. * shouldn't write, we shouldn't ignore an
  884. * unwritable page in the page table if
  885. * we are forcing write access.
  886. */
  887. lookup_write = write && !force;
  888. spin_lock(&mm->page_table_lock);
  889. }
  890. if (pages) {
  891. pages[i] = get_page_map(map);
  892. if (!pages[i]) {
  893. spin_unlock(&mm->page_table_lock);
  894. while (i--)
  895. page_cache_release(pages[i]);
  896. i = -EFAULT;
  897. goto out;
  898. }
  899. flush_dcache_page(pages[i]);
  900. if (!PageReserved(pages[i]))
  901. page_cache_get(pages[i]);
  902. }
  903. if (vmas)
  904. vmas[i] = vma;
  905. i++;
  906. start += PAGE_SIZE;
  907. len--;
  908. } while(len && start < vma->vm_end);
  909. spin_unlock(&mm->page_table_lock);
  910. } while(len);
  911. out:
  912. return i;
  913. }
  914. EXPORT_SYMBOL(get_user_pages);
  915. static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  916. unsigned long addr, unsigned long end, pgprot_t prot)
  917. {
  918. pte_t *pte;
  919. pte = pte_alloc_map(mm, pmd, addr);
  920. if (!pte)
  921. return -ENOMEM;
  922. do {
  923. pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(addr), prot));
  924. BUG_ON(!pte_none(*pte));
  925. set_pte_at(mm, addr, pte, zero_pte);
  926. } while (pte++, addr += PAGE_SIZE, addr != end);
  927. pte_unmap(pte - 1);
  928. return 0;
  929. }
  930. static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
  931. unsigned long addr, unsigned long end, pgprot_t prot)
  932. {
  933. pmd_t *pmd;
  934. unsigned long next;
  935. pmd = pmd_alloc(mm, pud, addr);
  936. if (!pmd)
  937. return -ENOMEM;
  938. do {
  939. next = pmd_addr_end(addr, end);
  940. if (zeromap_pte_range(mm, pmd, addr, next, prot))
  941. return -ENOMEM;
  942. } while (pmd++, addr = next, addr != end);
  943. return 0;
  944. }
  945. static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  946. unsigned long addr, unsigned long end, pgprot_t prot)
  947. {
  948. pud_t *pud;
  949. unsigned long next;
  950. pud = pud_alloc(mm, pgd, addr);
  951. if (!pud)
  952. return -ENOMEM;
  953. do {
  954. next = pud_addr_end(addr, end);
  955. if (zeromap_pmd_range(mm, pud, addr, next, prot))
  956. return -ENOMEM;
  957. } while (pud++, addr = next, addr != end);
  958. return 0;
  959. }
  960. int zeromap_page_range(struct vm_area_struct *vma,
  961. unsigned long addr, unsigned long size, pgprot_t prot)
  962. {
  963. pgd_t *pgd;
  964. unsigned long next;
  965. unsigned long end = addr + size;
  966. struct mm_struct *mm = vma->vm_mm;
  967. int err;
  968. BUG_ON(addr >= end);
  969. pgd = pgd_offset(mm, addr);
  970. flush_cache_range(vma, addr, end);
  971. spin_lock(&mm->page_table_lock);
  972. do {
  973. next = pgd_addr_end(addr, end);
  974. err = zeromap_pud_range(mm, pgd, addr, next, prot);
  975. if (err)
  976. break;
  977. } while (pgd++, addr = next, addr != end);
  978. spin_unlock(&mm->page_table_lock);
  979. return err;
  980. }
  981. /*
  982. * maps a range of physical memory into the requested pages. the old
  983. * mappings are removed. any references to nonexistent pages results
  984. * in null mappings (currently treated as "copy-on-access")
  985. */
  986. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  987. unsigned long addr, unsigned long end,
  988. unsigned long pfn, pgprot_t prot)
  989. {
  990. pte_t *pte;
  991. pte = pte_alloc_map(mm, pmd, addr);
  992. if (!pte)
  993. return -ENOMEM;
  994. do {
  995. BUG_ON(!pte_none(*pte));
  996. if (!pfn_valid(pfn) || PageReserved(pfn_to_page(pfn)))
  997. set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
  998. pfn++;
  999. } while (pte++, addr += PAGE_SIZE, addr != end);
  1000. pte_unmap(pte - 1);
  1001. return 0;
  1002. }
  1003. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1004. unsigned long addr, unsigned long end,
  1005. unsigned long pfn, pgprot_t prot)
  1006. {
  1007. pmd_t *pmd;
  1008. unsigned long next;
  1009. pfn -= addr >> PAGE_SHIFT;
  1010. pmd = pmd_alloc(mm, pud, addr);
  1011. if (!pmd)
  1012. return -ENOMEM;
  1013. do {
  1014. next = pmd_addr_end(addr, end);
  1015. if (remap_pte_range(mm, pmd, addr, next,
  1016. pfn + (addr >> PAGE_SHIFT), prot))
  1017. return -ENOMEM;
  1018. } while (pmd++, addr = next, addr != end);
  1019. return 0;
  1020. }
  1021. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1022. unsigned long addr, unsigned long end,
  1023. unsigned long pfn, pgprot_t prot)
  1024. {
  1025. pud_t *pud;
  1026. unsigned long next;
  1027. pfn -= addr >> PAGE_SHIFT;
  1028. pud = pud_alloc(mm, pgd, addr);
  1029. if (!pud)
  1030. return -ENOMEM;
  1031. do {
  1032. next = pud_addr_end(addr, end);
  1033. if (remap_pmd_range(mm, pud, addr, next,
  1034. pfn + (addr >> PAGE_SHIFT), prot))
  1035. return -ENOMEM;
  1036. } while (pud++, addr = next, addr != end);
  1037. return 0;
  1038. }
  1039. /* Note: this is only safe if the mm semaphore is held when called. */
  1040. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1041. unsigned long pfn, unsigned long size, pgprot_t prot)
  1042. {
  1043. pgd_t *pgd;
  1044. unsigned long next;
  1045. unsigned long end = addr + size;
  1046. struct mm_struct *mm = vma->vm_mm;
  1047. int err;
  1048. /*
  1049. * Physically remapped pages are special. Tell the
  1050. * rest of the world about it:
  1051. * VM_IO tells people not to look at these pages
  1052. * (accesses can have side effects).
  1053. * VM_RESERVED tells swapout not to try to touch
  1054. * this region.
  1055. */
  1056. vma->vm_flags |= VM_IO | VM_RESERVED;
  1057. BUG_ON(addr >= end);
  1058. pfn -= addr >> PAGE_SHIFT;
  1059. pgd = pgd_offset(mm, addr);
  1060. flush_cache_range(vma, addr, end);
  1061. spin_lock(&mm->page_table_lock);
  1062. do {
  1063. next = pgd_addr_end(addr, end);
  1064. err = remap_pud_range(mm, pgd, addr, next,
  1065. pfn + (addr >> PAGE_SHIFT), prot);
  1066. if (err)
  1067. break;
  1068. } while (pgd++, addr = next, addr != end);
  1069. spin_unlock(&mm->page_table_lock);
  1070. return err;
  1071. }
  1072. EXPORT_SYMBOL(remap_pfn_range);
  1073. /*
  1074. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  1075. * servicing faults for write access. In the normal case, do always want
  1076. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  1077. * that do not have writing enabled, when used by access_process_vm.
  1078. */
  1079. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  1080. {
  1081. if (likely(vma->vm_flags & VM_WRITE))
  1082. pte = pte_mkwrite(pte);
  1083. return pte;
  1084. }
  1085. /*
  1086. * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock
  1087. */
  1088. static inline void break_cow(struct vm_area_struct * vma, struct page * new_page, unsigned long address,
  1089. pte_t *page_table)
  1090. {
  1091. pte_t entry;
  1092. entry = maybe_mkwrite(pte_mkdirty(mk_pte(new_page, vma->vm_page_prot)),
  1093. vma);
  1094. ptep_establish(vma, address, page_table, entry);
  1095. update_mmu_cache(vma, address, entry);
  1096. lazy_mmu_prot_update(entry);
  1097. }
  1098. /*
  1099. * This routine handles present pages, when users try to write
  1100. * to a shared page. It is done by copying the page to a new address
  1101. * and decrementing the shared-page counter for the old page.
  1102. *
  1103. * Goto-purists beware: the only reason for goto's here is that it results
  1104. * in better assembly code.. The "default" path will see no jumps at all.
  1105. *
  1106. * Note that this routine assumes that the protection checks have been
  1107. * done by the caller (the low-level page fault routine in most cases).
  1108. * Thus we can safely just mark it writable once we've done any necessary
  1109. * COW.
  1110. *
  1111. * We also mark the page dirty at this point even though the page will
  1112. * change only once the write actually happens. This avoids a few races,
  1113. * and potentially makes it more efficient.
  1114. *
  1115. * We hold the mm semaphore and the page_table_lock on entry and exit
  1116. * with the page_table_lock released.
  1117. */
  1118. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct * vma,
  1119. unsigned long address, pte_t *page_table, pmd_t *pmd, pte_t pte)
  1120. {
  1121. struct page *old_page, *new_page;
  1122. unsigned long pfn = pte_pfn(pte);
  1123. pte_t entry;
  1124. if (unlikely(!pfn_valid(pfn))) {
  1125. /*
  1126. * This should really halt the system so it can be debugged or
  1127. * at least the kernel stops what it's doing before it corrupts
  1128. * data, but for the moment just pretend this is OOM.
  1129. */
  1130. pte_unmap(page_table);
  1131. printk(KERN_ERR "do_wp_page: bogus page at address %08lx\n",
  1132. address);
  1133. spin_unlock(&mm->page_table_lock);
  1134. return VM_FAULT_OOM;
  1135. }
  1136. old_page = pfn_to_page(pfn);
  1137. if (!TestSetPageLocked(old_page)) {
  1138. int reuse = can_share_swap_page(old_page);
  1139. unlock_page(old_page);
  1140. if (reuse) {
  1141. flush_cache_page(vma, address, pfn);
  1142. entry = maybe_mkwrite(pte_mkyoung(pte_mkdirty(pte)),
  1143. vma);
  1144. ptep_set_access_flags(vma, address, page_table, entry, 1);
  1145. update_mmu_cache(vma, address, entry);
  1146. lazy_mmu_prot_update(entry);
  1147. pte_unmap(page_table);
  1148. spin_unlock(&mm->page_table_lock);
  1149. return VM_FAULT_MINOR;
  1150. }
  1151. }
  1152. pte_unmap(page_table);
  1153. /*
  1154. * Ok, we need to copy. Oh, well..
  1155. */
  1156. if (!PageReserved(old_page))
  1157. page_cache_get(old_page);
  1158. spin_unlock(&mm->page_table_lock);
  1159. if (unlikely(anon_vma_prepare(vma)))
  1160. goto no_new_page;
  1161. if (old_page == ZERO_PAGE(address)) {
  1162. new_page = alloc_zeroed_user_highpage(vma, address);
  1163. if (!new_page)
  1164. goto no_new_page;
  1165. } else {
  1166. new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
  1167. if (!new_page)
  1168. goto no_new_page;
  1169. copy_user_highpage(new_page, old_page, address);
  1170. }
  1171. /*
  1172. * Re-check the pte - we dropped the lock
  1173. */
  1174. spin_lock(&mm->page_table_lock);
  1175. page_table = pte_offset_map(pmd, address);
  1176. if (likely(pte_same(*page_table, pte))) {
  1177. if (PageAnon(old_page))
  1178. dec_mm_counter(mm, anon_rss);
  1179. if (PageReserved(old_page))
  1180. inc_mm_counter(mm, rss);
  1181. else
  1182. page_remove_rmap(old_page);
  1183. flush_cache_page(vma, address, pfn);
  1184. break_cow(vma, new_page, address, page_table);
  1185. lru_cache_add_active(new_page);
  1186. page_add_anon_rmap(new_page, vma, address);
  1187. /* Free the old page.. */
  1188. new_page = old_page;
  1189. }
  1190. pte_unmap(page_table);
  1191. page_cache_release(new_page);
  1192. page_cache_release(old_page);
  1193. spin_unlock(&mm->page_table_lock);
  1194. return VM_FAULT_MINOR;
  1195. no_new_page:
  1196. page_cache_release(old_page);
  1197. return VM_FAULT_OOM;
  1198. }
  1199. /*
  1200. * Helper functions for unmap_mapping_range().
  1201. *
  1202. * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
  1203. *
  1204. * We have to restart searching the prio_tree whenever we drop the lock,
  1205. * since the iterator is only valid while the lock is held, and anyway
  1206. * a later vma might be split and reinserted earlier while lock dropped.
  1207. *
  1208. * The list of nonlinear vmas could be handled more efficiently, using
  1209. * a placeholder, but handle it in the same way until a need is shown.
  1210. * It is important to search the prio_tree before nonlinear list: a vma
  1211. * may become nonlinear and be shifted from prio_tree to nonlinear list
  1212. * while the lock is dropped; but never shifted from list to prio_tree.
  1213. *
  1214. * In order to make forward progress despite restarting the search,
  1215. * vm_truncate_count is used to mark a vma as now dealt with, so we can
  1216. * quickly skip it next time around. Since the prio_tree search only
  1217. * shows us those vmas affected by unmapping the range in question, we
  1218. * can't efficiently keep all vmas in step with mapping->truncate_count:
  1219. * so instead reset them all whenever it wraps back to 0 (then go to 1).
  1220. * mapping->truncate_count and vma->vm_truncate_count are protected by
  1221. * i_mmap_lock.
  1222. *
  1223. * In order to make forward progress despite repeatedly restarting some
  1224. * large vma, note the restart_addr from unmap_vmas when it breaks out:
  1225. * and restart from that address when we reach that vma again. It might
  1226. * have been split or merged, shrunk or extended, but never shifted: so
  1227. * restart_addr remains valid so long as it remains in the vma's range.
  1228. * unmap_mapping_range forces truncate_count to leap over page-aligned
  1229. * values so we can save vma's restart_addr in its truncate_count field.
  1230. */
  1231. #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
  1232. static void reset_vma_truncate_counts(struct address_space *mapping)
  1233. {
  1234. struct vm_area_struct *vma;
  1235. struct prio_tree_iter iter;
  1236. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
  1237. vma->vm_truncate_count = 0;
  1238. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1239. vma->vm_truncate_count = 0;
  1240. }
  1241. static int unmap_mapping_range_vma(struct vm_area_struct *vma,
  1242. unsigned long start_addr, unsigned long end_addr,
  1243. struct zap_details *details)
  1244. {
  1245. unsigned long restart_addr;
  1246. int need_break;
  1247. again:
  1248. restart_addr = vma->vm_truncate_count;
  1249. if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
  1250. start_addr = restart_addr;
  1251. if (start_addr >= end_addr) {
  1252. /* Top of vma has been split off since last time */
  1253. vma->vm_truncate_count = details->truncate_count;
  1254. return 0;
  1255. }
  1256. }
  1257. restart_addr = zap_page_range(vma, start_addr,
  1258. end_addr - start_addr, details);
  1259. /*
  1260. * We cannot rely on the break test in unmap_vmas:
  1261. * on the one hand, we don't want to restart our loop
  1262. * just because that broke out for the page_table_lock;
  1263. * on the other hand, it does no test when vma is small.
  1264. */
  1265. need_break = need_resched() ||
  1266. need_lockbreak(details->i_mmap_lock);
  1267. if (restart_addr >= end_addr) {
  1268. /* We have now completed this vma: mark it so */
  1269. vma->vm_truncate_count = details->truncate_count;
  1270. if (!need_break)
  1271. return 0;
  1272. } else {
  1273. /* Note restart_addr in vma's truncate_count field */
  1274. vma->vm_truncate_count = restart_addr;
  1275. if (!need_break)
  1276. goto again;
  1277. }
  1278. spin_unlock(details->i_mmap_lock);
  1279. cond_resched();
  1280. spin_lock(details->i_mmap_lock);
  1281. return -EINTR;
  1282. }
  1283. static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
  1284. struct zap_details *details)
  1285. {
  1286. struct vm_area_struct *vma;
  1287. struct prio_tree_iter iter;
  1288. pgoff_t vba, vea, zba, zea;
  1289. restart:
  1290. vma_prio_tree_foreach(vma, &iter, root,
  1291. details->first_index, details->last_index) {
  1292. /* Skip quickly over those we have already dealt with */
  1293. if (vma->vm_truncate_count == details->truncate_count)
  1294. continue;
  1295. vba = vma->vm_pgoff;
  1296. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  1297. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  1298. zba = details->first_index;
  1299. if (zba < vba)
  1300. zba = vba;
  1301. zea = details->last_index;
  1302. if (zea > vea)
  1303. zea = vea;
  1304. if (unmap_mapping_range_vma(vma,
  1305. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  1306. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  1307. details) < 0)
  1308. goto restart;
  1309. }
  1310. }
  1311. static inline void unmap_mapping_range_list(struct list_head *head,
  1312. struct zap_details *details)
  1313. {
  1314. struct vm_area_struct *vma;
  1315. /*
  1316. * In nonlinear VMAs there is no correspondence between virtual address
  1317. * offset and file offset. So we must perform an exhaustive search
  1318. * across *all* the pages in each nonlinear VMA, not just the pages
  1319. * whose virtual address lies outside the file truncation point.
  1320. */
  1321. restart:
  1322. list_for_each_entry(vma, head, shared.vm_set.list) {
  1323. /* Skip quickly over those we have already dealt with */
  1324. if (vma->vm_truncate_count == details->truncate_count)
  1325. continue;
  1326. details->nonlinear_vma = vma;
  1327. if (unmap_mapping_range_vma(vma, vma->vm_start,
  1328. vma->vm_end, details) < 0)
  1329. goto restart;
  1330. }
  1331. }
  1332. /**
  1333. * unmap_mapping_range - unmap the portion of all mmaps
  1334. * in the specified address_space corresponding to the specified
  1335. * page range in the underlying file.
  1336. * @address_space: the address space containing mmaps to be unmapped.
  1337. * @holebegin: byte in first page to unmap, relative to the start of
  1338. * the underlying file. This will be rounded down to a PAGE_SIZE
  1339. * boundary. Note that this is different from vmtruncate(), which
  1340. * must keep the partial page. In contrast, we must get rid of
  1341. * partial pages.
  1342. * @holelen: size of prospective hole in bytes. This will be rounded
  1343. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  1344. * end of the file.
  1345. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  1346. * but 0 when invalidating pagecache, don't throw away private data.
  1347. */
  1348. void unmap_mapping_range(struct address_space *mapping,
  1349. loff_t const holebegin, loff_t const holelen, int even_cows)
  1350. {
  1351. struct zap_details details;
  1352. pgoff_t hba = holebegin >> PAGE_SHIFT;
  1353. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  1354. /* Check for overflow. */
  1355. if (sizeof(holelen) > sizeof(hlen)) {
  1356. long long holeend =
  1357. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  1358. if (holeend & ~(long long)ULONG_MAX)
  1359. hlen = ULONG_MAX - hba + 1;
  1360. }
  1361. details.check_mapping = even_cows? NULL: mapping;
  1362. details.nonlinear_vma = NULL;
  1363. details.first_index = hba;
  1364. details.last_index = hba + hlen - 1;
  1365. if (details.last_index < details.first_index)
  1366. details.last_index = ULONG_MAX;
  1367. details.i_mmap_lock = &mapping->i_mmap_lock;
  1368. spin_lock(&mapping->i_mmap_lock);
  1369. /* serialize i_size write against truncate_count write */
  1370. smp_wmb();
  1371. /* Protect against page faults, and endless unmapping loops */
  1372. mapping->truncate_count++;
  1373. /*
  1374. * For archs where spin_lock has inclusive semantics like ia64
  1375. * this smp_mb() will prevent to read pagetable contents
  1376. * before the truncate_count increment is visible to
  1377. * other cpus.
  1378. */
  1379. smp_mb();
  1380. if (unlikely(is_restart_addr(mapping->truncate_count))) {
  1381. if (mapping->truncate_count == 0)
  1382. reset_vma_truncate_counts(mapping);
  1383. mapping->truncate_count++;
  1384. }
  1385. details.truncate_count = mapping->truncate_count;
  1386. if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
  1387. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  1388. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  1389. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  1390. spin_unlock(&mapping->i_mmap_lock);
  1391. }
  1392. EXPORT_SYMBOL(unmap_mapping_range);
  1393. /*
  1394. * Handle all mappings that got truncated by a "truncate()"
  1395. * system call.
  1396. *
  1397. * NOTE! We have to be ready to update the memory sharing
  1398. * between the file and the memory map for a potential last
  1399. * incomplete page. Ugly, but necessary.
  1400. */
  1401. int vmtruncate(struct inode * inode, loff_t offset)
  1402. {
  1403. struct address_space *mapping = inode->i_mapping;
  1404. unsigned long limit;
  1405. if (inode->i_size < offset)
  1406. goto do_expand;
  1407. /*
  1408. * truncation of in-use swapfiles is disallowed - it would cause
  1409. * subsequent swapout to scribble on the now-freed blocks.
  1410. */
  1411. if (IS_SWAPFILE(inode))
  1412. goto out_busy;
  1413. i_size_write(inode, offset);
  1414. unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
  1415. truncate_inode_pages(mapping, offset);
  1416. goto out_truncate;
  1417. do_expand:
  1418. limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
  1419. if (limit != RLIM_INFINITY && offset > limit)
  1420. goto out_sig;
  1421. if (offset > inode->i_sb->s_maxbytes)
  1422. goto out_big;
  1423. i_size_write(inode, offset);
  1424. out_truncate:
  1425. if (inode->i_op && inode->i_op->truncate)
  1426. inode->i_op->truncate(inode);
  1427. return 0;
  1428. out_sig:
  1429. send_sig(SIGXFSZ, current, 0);
  1430. out_big:
  1431. return -EFBIG;
  1432. out_busy:
  1433. return -ETXTBSY;
  1434. }
  1435. EXPORT_SYMBOL(vmtruncate);
  1436. /*
  1437. * Primitive swap readahead code. We simply read an aligned block of
  1438. * (1 << page_cluster) entries in the swap area. This method is chosen
  1439. * because it doesn't cost us any seek time. We also make sure to queue
  1440. * the 'original' request together with the readahead ones...
  1441. *
  1442. * This has been extended to use the NUMA policies from the mm triggering
  1443. * the readahead.
  1444. *
  1445. * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
  1446. */
  1447. void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
  1448. {
  1449. #ifdef CONFIG_NUMA
  1450. struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
  1451. #endif
  1452. int i, num;
  1453. struct page *new_page;
  1454. unsigned long offset;
  1455. /*
  1456. * Get the number of handles we should do readahead io to.
  1457. */
  1458. num = valid_swaphandles(entry, &offset);
  1459. for (i = 0; i < num; offset++, i++) {
  1460. /* Ok, do the async read-ahead now */
  1461. new_page = read_swap_cache_async(swp_entry(swp_type(entry),
  1462. offset), vma, addr);
  1463. if (!new_page)
  1464. break;
  1465. page_cache_release(new_page);
  1466. #ifdef CONFIG_NUMA
  1467. /*
  1468. * Find the next applicable VMA for the NUMA policy.
  1469. */
  1470. addr += PAGE_SIZE;
  1471. if (addr == 0)
  1472. vma = NULL;
  1473. if (vma) {
  1474. if (addr >= vma->vm_end) {
  1475. vma = next_vma;
  1476. next_vma = vma ? vma->vm_next : NULL;
  1477. }
  1478. if (vma && addr < vma->vm_start)
  1479. vma = NULL;
  1480. } else {
  1481. if (next_vma && addr >= next_vma->vm_start) {
  1482. vma = next_vma;
  1483. next_vma = vma->vm_next;
  1484. }
  1485. }
  1486. #endif
  1487. }
  1488. lru_add_drain(); /* Push any new pages onto the LRU now */
  1489. }
  1490. /*
  1491. * We hold the mm semaphore and the page_table_lock on entry and
  1492. * should release the pagetable lock on exit..
  1493. */
  1494. static int do_swap_page(struct mm_struct * mm,
  1495. struct vm_area_struct * vma, unsigned long address,
  1496. pte_t *page_table, pmd_t *pmd, pte_t orig_pte, int write_access)
  1497. {
  1498. struct page *page;
  1499. swp_entry_t entry = pte_to_swp_entry(orig_pte);
  1500. pte_t pte;
  1501. int ret = VM_FAULT_MINOR;
  1502. pte_unmap(page_table);
  1503. spin_unlock(&mm->page_table_lock);
  1504. page = lookup_swap_cache(entry);
  1505. if (!page) {
  1506. swapin_readahead(entry, address, vma);
  1507. page = read_swap_cache_async(entry, vma, address);
  1508. if (!page) {
  1509. /*
  1510. * Back out if somebody else faulted in this pte while
  1511. * we released the page table lock.
  1512. */
  1513. spin_lock(&mm->page_table_lock);
  1514. page_table = pte_offset_map(pmd, address);
  1515. if (likely(pte_same(*page_table, orig_pte)))
  1516. ret = VM_FAULT_OOM;
  1517. else
  1518. ret = VM_FAULT_MINOR;
  1519. pte_unmap(page_table);
  1520. spin_unlock(&mm->page_table_lock);
  1521. goto out;
  1522. }
  1523. /* Had to read the page from swap area: Major fault */
  1524. ret = VM_FAULT_MAJOR;
  1525. inc_page_state(pgmajfault);
  1526. grab_swap_token();
  1527. }
  1528. mark_page_accessed(page);
  1529. lock_page(page);
  1530. /*
  1531. * Back out if somebody else faulted in this pte while we
  1532. * released the page table lock.
  1533. */
  1534. spin_lock(&mm->page_table_lock);
  1535. page_table = pte_offset_map(pmd, address);
  1536. if (unlikely(!pte_same(*page_table, orig_pte))) {
  1537. pte_unmap(page_table);
  1538. spin_unlock(&mm->page_table_lock);
  1539. unlock_page(page);
  1540. page_cache_release(page);
  1541. ret = VM_FAULT_MINOR;
  1542. goto out;
  1543. }
  1544. /* The page isn't present yet, go ahead with the fault. */
  1545. swap_free(entry);
  1546. if (vm_swap_full())
  1547. remove_exclusive_swap_page(page);
  1548. inc_mm_counter(mm, rss);
  1549. pte = mk_pte(page, vma->vm_page_prot);
  1550. if (write_access && can_share_swap_page(page)) {
  1551. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  1552. write_access = 0;
  1553. }
  1554. unlock_page(page);
  1555. flush_icache_page(vma, page);
  1556. set_pte_at(mm, address, page_table, pte);
  1557. page_add_anon_rmap(page, vma, address);
  1558. if (write_access) {
  1559. if (do_wp_page(mm, vma, address,
  1560. page_table, pmd, pte) == VM_FAULT_OOM)
  1561. ret = VM_FAULT_OOM;
  1562. goto out;
  1563. }
  1564. /* No need to invalidate - it was non-present before */
  1565. update_mmu_cache(vma, address, pte);
  1566. lazy_mmu_prot_update(pte);
  1567. pte_unmap(page_table);
  1568. spin_unlock(&mm->page_table_lock);
  1569. out:
  1570. return ret;
  1571. }
  1572. /*
  1573. * We are called with the MM semaphore and page_table_lock
  1574. * spinlock held to protect against concurrent faults in
  1575. * multithreaded programs.
  1576. */
  1577. static int
  1578. do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1579. pte_t *page_table, pmd_t *pmd, int write_access,
  1580. unsigned long addr)
  1581. {
  1582. pte_t entry;
  1583. struct page * page = ZERO_PAGE(addr);
  1584. /* Read-only mapping of ZERO_PAGE. */
  1585. entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot));
  1586. /* ..except if it's a write access */
  1587. if (write_access) {
  1588. /* Allocate our own private page. */
  1589. pte_unmap(page_table);
  1590. spin_unlock(&mm->page_table_lock);
  1591. if (unlikely(anon_vma_prepare(vma)))
  1592. goto no_mem;
  1593. page = alloc_zeroed_user_highpage(vma, addr);
  1594. if (!page)
  1595. goto no_mem;
  1596. spin_lock(&mm->page_table_lock);
  1597. page_table = pte_offset_map(pmd, addr);
  1598. if (!pte_none(*page_table)) {
  1599. pte_unmap(page_table);
  1600. page_cache_release(page);
  1601. spin_unlock(&mm->page_table_lock);
  1602. goto out;
  1603. }
  1604. inc_mm_counter(mm, rss);
  1605. entry = maybe_mkwrite(pte_mkdirty(mk_pte(page,
  1606. vma->vm_page_prot)),
  1607. vma);
  1608. lru_cache_add_active(page);
  1609. SetPageReferenced(page);
  1610. page_add_anon_rmap(page, vma, addr);
  1611. }
  1612. set_pte_at(mm, addr, page_table, entry);
  1613. pte_unmap(page_table);
  1614. /* No need to invalidate - it was non-present before */
  1615. update_mmu_cache(vma, addr, entry);
  1616. lazy_mmu_prot_update(entry);
  1617. spin_unlock(&mm->page_table_lock);
  1618. out:
  1619. return VM_FAULT_MINOR;
  1620. no_mem:
  1621. return VM_FAULT_OOM;
  1622. }
  1623. /*
  1624. * do_no_page() tries to create a new page mapping. It aggressively
  1625. * tries to share with existing pages, but makes a separate copy if
  1626. * the "write_access" parameter is true in order to avoid the next
  1627. * page fault.
  1628. *
  1629. * As this is called only for pages that do not currently exist, we
  1630. * do not need to flush old virtual caches or the TLB.
  1631. *
  1632. * This is called with the MM semaphore held and the page table
  1633. * spinlock held. Exit with the spinlock released.
  1634. */
  1635. static int
  1636. do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1637. unsigned long address, int write_access, pte_t *page_table, pmd_t *pmd)
  1638. {
  1639. struct page * new_page;
  1640. struct address_space *mapping = NULL;
  1641. pte_t entry;
  1642. unsigned int sequence = 0;
  1643. int ret = VM_FAULT_MINOR;
  1644. int anon = 0;
  1645. if (!vma->vm_ops || !vma->vm_ops->nopage)
  1646. return do_anonymous_page(mm, vma, page_table,
  1647. pmd, write_access, address);
  1648. pte_unmap(page_table);
  1649. spin_unlock(&mm->page_table_lock);
  1650. if (vma->vm_file) {
  1651. mapping = vma->vm_file->f_mapping;
  1652. sequence = mapping->truncate_count;
  1653. smp_rmb(); /* serializes i_size against truncate_count */
  1654. }
  1655. retry:
  1656. cond_resched();
  1657. new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
  1658. /*
  1659. * No smp_rmb is needed here as long as there's a full
  1660. * spin_lock/unlock sequence inside the ->nopage callback
  1661. * (for the pagecache lookup) that acts as an implicit
  1662. * smp_mb() and prevents the i_size read to happen
  1663. * after the next truncate_count read.
  1664. */
  1665. /* no page was available -- either SIGBUS or OOM */
  1666. if (new_page == NOPAGE_SIGBUS)
  1667. return VM_FAULT_SIGBUS;
  1668. if (new_page == NOPAGE_OOM)
  1669. return VM_FAULT_OOM;
  1670. /*
  1671. * Should we do an early C-O-W break?
  1672. */
  1673. if (write_access && !(vma->vm_flags & VM_SHARED)) {
  1674. struct page *page;
  1675. if (unlikely(anon_vma_prepare(vma)))
  1676. goto oom;
  1677. page = alloc_page_vma(GFP_HIGHUSER, vma, address);
  1678. if (!page)
  1679. goto oom;
  1680. copy_user_highpage(page, new_page, address);
  1681. page_cache_release(new_page);
  1682. new_page = page;
  1683. anon = 1;
  1684. }
  1685. spin_lock(&mm->page_table_lock);
  1686. /*
  1687. * For a file-backed vma, someone could have truncated or otherwise
  1688. * invalidated this page. If unmap_mapping_range got called,
  1689. * retry getting the page.
  1690. */
  1691. if (mapping && unlikely(sequence != mapping->truncate_count)) {
  1692. sequence = mapping->truncate_count;
  1693. spin_unlock(&mm->page_table_lock);
  1694. page_cache_release(new_page);
  1695. goto retry;
  1696. }
  1697. page_table = pte_offset_map(pmd, address);
  1698. /*
  1699. * This silly early PAGE_DIRTY setting removes a race
  1700. * due to the bad i386 page protection. But it's valid
  1701. * for other architectures too.
  1702. *
  1703. * Note that if write_access is true, we either now have
  1704. * an exclusive copy of the page, or this is a shared mapping,
  1705. * so we can make it writable and dirty to avoid having to
  1706. * handle that later.
  1707. */
  1708. /* Only go through if we didn't race with anybody else... */
  1709. if (pte_none(*page_table)) {
  1710. if (!PageReserved(new_page))
  1711. inc_mm_counter(mm, rss);
  1712. flush_icache_page(vma, new_page);
  1713. entry = mk_pte(new_page, vma->vm_page_prot);
  1714. if (write_access)
  1715. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1716. set_pte_at(mm, address, page_table, entry);
  1717. if (anon) {
  1718. lru_cache_add_active(new_page);
  1719. page_add_anon_rmap(new_page, vma, address);
  1720. } else
  1721. page_add_file_rmap(new_page);
  1722. pte_unmap(page_table);
  1723. } else {
  1724. /* One of our sibling threads was faster, back out. */
  1725. pte_unmap(page_table);
  1726. page_cache_release(new_page);
  1727. spin_unlock(&mm->page_table_lock);
  1728. goto out;
  1729. }
  1730. /* no need to invalidate: a not-present page shouldn't be cached */
  1731. update_mmu_cache(vma, address, entry);
  1732. lazy_mmu_prot_update(entry);
  1733. spin_unlock(&mm->page_table_lock);
  1734. out:
  1735. return ret;
  1736. oom:
  1737. page_cache_release(new_page);
  1738. ret = VM_FAULT_OOM;
  1739. goto out;
  1740. }
  1741. /*
  1742. * Fault of a previously existing named mapping. Repopulate the pte
  1743. * from the encoded file_pte if possible. This enables swappable
  1744. * nonlinear vmas.
  1745. */
  1746. static int do_file_page(struct mm_struct * mm, struct vm_area_struct * vma,
  1747. unsigned long address, int write_access, pte_t *pte, pmd_t *pmd)
  1748. {
  1749. unsigned long pgoff;
  1750. int err;
  1751. BUG_ON(!vma->vm_ops || !vma->vm_ops->nopage);
  1752. /*
  1753. * Fall back to the linear mapping if the fs does not support
  1754. * ->populate:
  1755. */
  1756. if (!vma->vm_ops || !vma->vm_ops->populate ||
  1757. (write_access && !(vma->vm_flags & VM_SHARED))) {
  1758. pte_clear(mm, address, pte);
  1759. return do_no_page(mm, vma, address, write_access, pte, pmd);
  1760. }
  1761. pgoff = pte_to_pgoff(*pte);
  1762. pte_unmap(pte);
  1763. spin_unlock(&mm->page_table_lock);
  1764. err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, vma->vm_page_prot, pgoff, 0);
  1765. if (err == -ENOMEM)
  1766. return VM_FAULT_OOM;
  1767. if (err)
  1768. return VM_FAULT_SIGBUS;
  1769. return VM_FAULT_MAJOR;
  1770. }
  1771. /*
  1772. * These routines also need to handle stuff like marking pages dirty
  1773. * and/or accessed for architectures that don't do it in hardware (most
  1774. * RISC architectures). The early dirtying is also good on the i386.
  1775. *
  1776. * There is also a hook called "update_mmu_cache()" that architectures
  1777. * with external mmu caches can use to update those (ie the Sparc or
  1778. * PowerPC hashed page tables that act as extended TLBs).
  1779. *
  1780. * Note the "page_table_lock". It is to protect against kswapd removing
  1781. * pages from under us. Note that kswapd only ever _removes_ pages, never
  1782. * adds them. As such, once we have noticed that the page is not present,
  1783. * we can drop the lock early.
  1784. *
  1785. * The adding of pages is protected by the MM semaphore (which we hold),
  1786. * so we don't need to worry about a page being suddenly been added into
  1787. * our VM.
  1788. *
  1789. * We enter with the pagetable spinlock held, we are supposed to
  1790. * release it when done.
  1791. */
  1792. static inline int handle_pte_fault(struct mm_struct *mm,
  1793. struct vm_area_struct * vma, unsigned long address,
  1794. int write_access, pte_t *pte, pmd_t *pmd)
  1795. {
  1796. pte_t entry;
  1797. entry = *pte;
  1798. if (!pte_present(entry)) {
  1799. /*
  1800. * If it truly wasn't present, we know that kswapd
  1801. * and the PTE updates will not touch it later. So
  1802. * drop the lock.
  1803. */
  1804. if (pte_none(entry))
  1805. return do_no_page(mm, vma, address, write_access, pte, pmd);
  1806. if (pte_file(entry))
  1807. return do_file_page(mm, vma, address, write_access, pte, pmd);
  1808. return do_swap_page(mm, vma, address, pte, pmd, entry, write_access);
  1809. }
  1810. if (write_access) {
  1811. if (!pte_write(entry))
  1812. return do_wp_page(mm, vma, address, pte, pmd, entry);
  1813. entry = pte_mkdirty(entry);
  1814. }
  1815. entry = pte_mkyoung(entry);
  1816. ptep_set_access_flags(vma, address, pte, entry, write_access);
  1817. update_mmu_cache(vma, address, entry);
  1818. lazy_mmu_prot_update(entry);
  1819. pte_unmap(pte);
  1820. spin_unlock(&mm->page_table_lock);
  1821. return VM_FAULT_MINOR;
  1822. }
  1823. /*
  1824. * By the time we get here, we already hold the mm semaphore
  1825. */
  1826. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma,
  1827. unsigned long address, int write_access)
  1828. {
  1829. pgd_t *pgd;
  1830. pud_t *pud;
  1831. pmd_t *pmd;
  1832. pte_t *pte;
  1833. __set_current_state(TASK_RUNNING);
  1834. inc_page_state(pgfault);
  1835. if (is_vm_hugetlb_page(vma))
  1836. return VM_FAULT_SIGBUS; /* mapping truncation does this. */
  1837. /*
  1838. * We need the page table lock to synchronize with kswapd
  1839. * and the SMP-safe atomic PTE updates.
  1840. */
  1841. pgd = pgd_offset(mm, address);
  1842. spin_lock(&mm->page_table_lock);
  1843. pud = pud_alloc(mm, pgd, address);
  1844. if (!pud)
  1845. goto oom;
  1846. pmd = pmd_alloc(mm, pud, address);
  1847. if (!pmd)
  1848. goto oom;
  1849. pte = pte_alloc_map(mm, pmd, address);
  1850. if (!pte)
  1851. goto oom;
  1852. return handle_pte_fault(mm, vma, address, write_access, pte, pmd);
  1853. oom:
  1854. spin_unlock(&mm->page_table_lock);
  1855. return VM_FAULT_OOM;
  1856. }
  1857. #ifndef __PAGETABLE_PUD_FOLDED
  1858. /*
  1859. * Allocate page upper directory.
  1860. *
  1861. * We've already handled the fast-path in-line, and we own the
  1862. * page table lock.
  1863. */
  1864. pud_t fastcall *__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  1865. {
  1866. pud_t *new;
  1867. spin_unlock(&mm->page_table_lock);
  1868. new = pud_alloc_one(mm, address);
  1869. spin_lock(&mm->page_table_lock);
  1870. if (!new)
  1871. return NULL;
  1872. /*
  1873. * Because we dropped the lock, we should re-check the
  1874. * entry, as somebody else could have populated it..
  1875. */
  1876. if (pgd_present(*pgd)) {
  1877. pud_free(new);
  1878. goto out;
  1879. }
  1880. pgd_populate(mm, pgd, new);
  1881. out:
  1882. return pud_offset(pgd, address);
  1883. }
  1884. #endif /* __PAGETABLE_PUD_FOLDED */
  1885. #ifndef __PAGETABLE_PMD_FOLDED
  1886. /*
  1887. * Allocate page middle directory.
  1888. *
  1889. * We've already handled the fast-path in-line, and we own the
  1890. * page table lock.
  1891. */
  1892. pmd_t fastcall *__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  1893. {
  1894. pmd_t *new;
  1895. spin_unlock(&mm->page_table_lock);
  1896. new = pmd_alloc_one(mm, address);
  1897. spin_lock(&mm->page_table_lock);
  1898. if (!new)
  1899. return NULL;
  1900. /*
  1901. * Because we dropped the lock, we should re-check the
  1902. * entry, as somebody else could have populated it..
  1903. */
  1904. #ifndef __ARCH_HAS_4LEVEL_HACK
  1905. if (pud_present(*pud)) {
  1906. pmd_free(new);
  1907. goto out;
  1908. }
  1909. pud_populate(mm, pud, new);
  1910. #else
  1911. if (pgd_present(*pud)) {
  1912. pmd_free(new);
  1913. goto out;
  1914. }
  1915. pgd_populate(mm, pud, new);
  1916. #endif /* __ARCH_HAS_4LEVEL_HACK */
  1917. out:
  1918. return pmd_offset(pud, address);
  1919. }
  1920. #endif /* __PAGETABLE_PMD_FOLDED */
  1921. int make_pages_present(unsigned long addr, unsigned long end)
  1922. {
  1923. int ret, len, write;
  1924. struct vm_area_struct * vma;
  1925. vma = find_vma(current->mm, addr);
  1926. if (!vma)
  1927. return -1;
  1928. write = (vma->vm_flags & VM_WRITE) != 0;
  1929. if (addr >= end)
  1930. BUG();
  1931. if (end > vma->vm_end)
  1932. BUG();
  1933. len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
  1934. ret = get_user_pages(current, current->mm, addr,
  1935. len, write, 0, NULL, NULL);
  1936. if (ret < 0)
  1937. return ret;
  1938. return ret == len ? 0 : -1;
  1939. }
  1940. /*
  1941. * Map a vmalloc()-space virtual address to the physical page.
  1942. */
  1943. struct page * vmalloc_to_page(void * vmalloc_addr)
  1944. {
  1945. unsigned long addr = (unsigned long) vmalloc_addr;
  1946. struct page *page = NULL;
  1947. pgd_t *pgd = pgd_offset_k(addr);
  1948. pud_t *pud;
  1949. pmd_t *pmd;
  1950. pte_t *ptep, pte;
  1951. if (!pgd_none(*pgd)) {
  1952. pud = pud_offset(pgd, addr);
  1953. if (!pud_none(*pud)) {
  1954. pmd = pmd_offset(pud, addr);
  1955. if (!pmd_none(*pmd)) {
  1956. ptep = pte_offset_map(pmd, addr);
  1957. pte = *ptep;
  1958. if (pte_present(pte))
  1959. page = pte_page(pte);
  1960. pte_unmap(ptep);
  1961. }
  1962. }
  1963. }
  1964. return page;
  1965. }
  1966. EXPORT_SYMBOL(vmalloc_to_page);
  1967. /*
  1968. * Map a vmalloc()-space virtual address to the physical page frame number.
  1969. */
  1970. unsigned long vmalloc_to_pfn(void * vmalloc_addr)
  1971. {
  1972. return page_to_pfn(vmalloc_to_page(vmalloc_addr));
  1973. }
  1974. EXPORT_SYMBOL(vmalloc_to_pfn);
  1975. /*
  1976. * update_mem_hiwater
  1977. * - update per process rss and vm high water data
  1978. */
  1979. void update_mem_hiwater(struct task_struct *tsk)
  1980. {
  1981. if (tsk->mm) {
  1982. unsigned long rss = get_mm_counter(tsk->mm, rss);
  1983. if (tsk->mm->hiwater_rss < rss)
  1984. tsk->mm->hiwater_rss = rss;
  1985. if (tsk->mm->hiwater_vm < tsk->mm->total_vm)
  1986. tsk->mm->hiwater_vm = tsk->mm->total_vm;
  1987. }
  1988. }
  1989. #if !defined(__HAVE_ARCH_GATE_AREA)
  1990. #if defined(AT_SYSINFO_EHDR)
  1991. struct vm_area_struct gate_vma;
  1992. static int __init gate_vma_init(void)
  1993. {
  1994. gate_vma.vm_mm = NULL;
  1995. gate_vma.vm_start = FIXADDR_USER_START;
  1996. gate_vma.vm_end = FIXADDR_USER_END;
  1997. gate_vma.vm_page_prot = PAGE_READONLY;
  1998. gate_vma.vm_flags = 0;
  1999. return 0;
  2000. }
  2001. __initcall(gate_vma_init);
  2002. #endif
  2003. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  2004. {
  2005. #ifdef AT_SYSINFO_EHDR
  2006. return &gate_vma;
  2007. #else
  2008. return NULL;
  2009. #endif
  2010. }
  2011. int in_gate_area_no_task(unsigned long addr)
  2012. {
  2013. #ifdef AT_SYSINFO_EHDR
  2014. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  2015. return 1;
  2016. #endif
  2017. return 0;
  2018. }
  2019. #endif /* __HAVE_ARCH_GATE_AREA */