pgtable.h 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440
  1. /*
  2. * linux/include/asm-arm/pgtable.h
  3. *
  4. * Copyright (C) 1995-2002 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #ifndef _ASMARM_PGTABLE_H
  11. #define _ASMARM_PGTABLE_H
  12. #include <asm-generic/4level-fixup.h>
  13. #include <asm/memory.h>
  14. #include <asm/proc-fns.h>
  15. #include <asm/arch/vmalloc.h>
  16. /*
  17. * Hardware-wise, we have a two level page table structure, where the first
  18. * level has 4096 entries, and the second level has 256 entries. Each entry
  19. * is one 32-bit word. Most of the bits in the second level entry are used
  20. * by hardware, and there aren't any "accessed" and "dirty" bits.
  21. *
  22. * Linux on the other hand has a three level page table structure, which can
  23. * be wrapped to fit a two level page table structure easily - using the PGD
  24. * and PTE only. However, Linux also expects one "PTE" table per page, and
  25. * at least a "dirty" bit.
  26. *
  27. * Therefore, we tweak the implementation slightly - we tell Linux that we
  28. * have 2048 entries in the first level, each of which is 8 bytes (iow, two
  29. * hardware pointers to the second level.) The second level contains two
  30. * hardware PTE tables arranged contiguously, followed by Linux versions
  31. * which contain the state information Linux needs. We, therefore, end up
  32. * with 512 entries in the "PTE" level.
  33. *
  34. * This leads to the page tables having the following layout:
  35. *
  36. * pgd pte
  37. * | |
  38. * +--------+ +0
  39. * | |-----> +------------+ +0
  40. * +- - - - + +4 | h/w pt 0 |
  41. * | |-----> +------------+ +1024
  42. * +--------+ +8 | h/w pt 1 |
  43. * | | +------------+ +2048
  44. * +- - - - + | Linux pt 0 |
  45. * | | +------------+ +3072
  46. * +--------+ | Linux pt 1 |
  47. * | | +------------+ +4096
  48. *
  49. * See L_PTE_xxx below for definitions of bits in the "Linux pt", and
  50. * PTE_xxx for definitions of bits appearing in the "h/w pt".
  51. *
  52. * PMD_xxx definitions refer to bits in the first level page table.
  53. *
  54. * The "dirty" bit is emulated by only granting hardware write permission
  55. * iff the page is marked "writable" and "dirty" in the Linux PTE. This
  56. * means that a write to a clean page will cause a permission fault, and
  57. * the Linux MM layer will mark the page dirty via handle_pte_fault().
  58. * For the hardware to notice the permission change, the TLB entry must
  59. * be flushed, and ptep_establish() does that for us.
  60. *
  61. * The "accessed" or "young" bit is emulated by a similar method; we only
  62. * allow accesses to the page if the "young" bit is set. Accesses to the
  63. * page will cause a fault, and handle_pte_fault() will set the young bit
  64. * for us as long as the page is marked present in the corresponding Linux
  65. * PTE entry. Again, ptep_establish() will ensure that the TLB is up to
  66. * date.
  67. *
  68. * However, when the "young" bit is cleared, we deny access to the page
  69. * by clearing the hardware PTE. Currently Linux does not flush the TLB
  70. * for us in this case, which means the TLB will retain the transation
  71. * until either the TLB entry is evicted under pressure, or a context
  72. * switch which changes the user space mapping occurs.
  73. */
  74. #define PTRS_PER_PTE 512
  75. #define PTRS_PER_PMD 1
  76. #define PTRS_PER_PGD 2048
  77. /*
  78. * PMD_SHIFT determines the size of the area a second-level page table can map
  79. * PGDIR_SHIFT determines what a third-level page table entry can map
  80. */
  81. #define PMD_SHIFT 21
  82. #define PGDIR_SHIFT 21
  83. #define LIBRARY_TEXT_START 0x0c000000
  84. #ifndef __ASSEMBLY__
  85. extern void __pte_error(const char *file, int line, unsigned long val);
  86. extern void __pmd_error(const char *file, int line, unsigned long val);
  87. extern void __pgd_error(const char *file, int line, unsigned long val);
  88. #define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte_val(pte))
  89. #define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd_val(pmd))
  90. #define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd_val(pgd))
  91. #endif /* !__ASSEMBLY__ */
  92. #define PMD_SIZE (1UL << PMD_SHIFT)
  93. #define PMD_MASK (~(PMD_SIZE-1))
  94. #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
  95. #define PGDIR_MASK (~(PGDIR_SIZE-1))
  96. /*
  97. * This is the lowest virtual address we can permit any user space
  98. * mapping to be mapped at. This is particularly important for
  99. * non-high vector CPUs.
  100. */
  101. #define FIRST_USER_ADDRESS PAGE_SIZE
  102. #define FIRST_USER_PGD_NR 1
  103. #define USER_PTRS_PER_PGD ((TASK_SIZE/PGDIR_SIZE) - FIRST_USER_PGD_NR)
  104. /*
  105. * ARMv6 supersection address mask and size definitions.
  106. */
  107. #define SUPERSECTION_SHIFT 24
  108. #define SUPERSECTION_SIZE (1UL << SUPERSECTION_SHIFT)
  109. #define SUPERSECTION_MASK (~(SUPERSECTION_SIZE-1))
  110. /*
  111. * Hardware page table definitions.
  112. *
  113. * + Level 1 descriptor (PMD)
  114. * - common
  115. */
  116. #define PMD_TYPE_MASK (3 << 0)
  117. #define PMD_TYPE_FAULT (0 << 0)
  118. #define PMD_TYPE_TABLE (1 << 0)
  119. #define PMD_TYPE_SECT (2 << 0)
  120. #define PMD_BIT4 (1 << 4)
  121. #define PMD_DOMAIN(x) ((x) << 5)
  122. #define PMD_PROTECTION (1 << 9) /* v5 */
  123. /*
  124. * - section
  125. */
  126. #define PMD_SECT_BUFFERABLE (1 << 2)
  127. #define PMD_SECT_CACHEABLE (1 << 3)
  128. #define PMD_SECT_AP_WRITE (1 << 10)
  129. #define PMD_SECT_AP_READ (1 << 11)
  130. #define PMD_SECT_TEX(x) ((x) << 12) /* v5 */
  131. #define PMD_SECT_APX (1 << 15) /* v6 */
  132. #define PMD_SECT_S (1 << 16) /* v6 */
  133. #define PMD_SECT_nG (1 << 17) /* v6 */
  134. #define PMD_SECT_SUPER (1 << 18) /* v6 */
  135. #define PMD_SECT_UNCACHED (0)
  136. #define PMD_SECT_BUFFERED (PMD_SECT_BUFFERABLE)
  137. #define PMD_SECT_WT (PMD_SECT_CACHEABLE)
  138. #define PMD_SECT_WB (PMD_SECT_CACHEABLE | PMD_SECT_BUFFERABLE)
  139. #define PMD_SECT_MINICACHE (PMD_SECT_TEX(1) | PMD_SECT_CACHEABLE)
  140. #define PMD_SECT_WBWA (PMD_SECT_TEX(1) | PMD_SECT_CACHEABLE | PMD_SECT_BUFFERABLE)
  141. /*
  142. * - coarse table (not used)
  143. */
  144. /*
  145. * + Level 2 descriptor (PTE)
  146. * - common
  147. */
  148. #define PTE_TYPE_MASK (3 << 0)
  149. #define PTE_TYPE_FAULT (0 << 0)
  150. #define PTE_TYPE_LARGE (1 << 0)
  151. #define PTE_TYPE_SMALL (2 << 0)
  152. #define PTE_TYPE_EXT (3 << 0) /* v5 */
  153. #define PTE_BUFFERABLE (1 << 2)
  154. #define PTE_CACHEABLE (1 << 3)
  155. /*
  156. * - extended small page/tiny page
  157. */
  158. #define PTE_EXT_AP_MASK (3 << 4)
  159. #define PTE_EXT_AP_UNO_SRO (0 << 4)
  160. #define PTE_EXT_AP_UNO_SRW (1 << 4)
  161. #define PTE_EXT_AP_URO_SRW (2 << 4)
  162. #define PTE_EXT_AP_URW_SRW (3 << 4)
  163. #define PTE_EXT_TEX(x) ((x) << 6) /* v5 */
  164. /*
  165. * - small page
  166. */
  167. #define PTE_SMALL_AP_MASK (0xff << 4)
  168. #define PTE_SMALL_AP_UNO_SRO (0x00 << 4)
  169. #define PTE_SMALL_AP_UNO_SRW (0x55 << 4)
  170. #define PTE_SMALL_AP_URO_SRW (0xaa << 4)
  171. #define PTE_SMALL_AP_URW_SRW (0xff << 4)
  172. /*
  173. * "Linux" PTE definitions.
  174. *
  175. * We keep two sets of PTEs - the hardware and the linux version.
  176. * This allows greater flexibility in the way we map the Linux bits
  177. * onto the hardware tables, and allows us to have YOUNG and DIRTY
  178. * bits.
  179. *
  180. * The PTE table pointer refers to the hardware entries; the "Linux"
  181. * entries are stored 1024 bytes below.
  182. */
  183. #define L_PTE_PRESENT (1 << 0)
  184. #define L_PTE_FILE (1 << 1) /* only when !PRESENT */
  185. #define L_PTE_YOUNG (1 << 1)
  186. #define L_PTE_BUFFERABLE (1 << 2) /* matches PTE */
  187. #define L_PTE_CACHEABLE (1 << 3) /* matches PTE */
  188. #define L_PTE_USER (1 << 4)
  189. #define L_PTE_WRITE (1 << 5)
  190. #define L_PTE_EXEC (1 << 6)
  191. #define L_PTE_DIRTY (1 << 7)
  192. #ifndef __ASSEMBLY__
  193. #include <asm/domain.h>
  194. #define _PAGE_USER_TABLE (PMD_TYPE_TABLE | PMD_BIT4 | PMD_DOMAIN(DOMAIN_USER))
  195. #define _PAGE_KERNEL_TABLE (PMD_TYPE_TABLE | PMD_BIT4 | PMD_DOMAIN(DOMAIN_KERNEL))
  196. /*
  197. * The following macros handle the cache and bufferable bits...
  198. */
  199. #define _L_PTE_DEFAULT L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_CACHEABLE | L_PTE_BUFFERABLE
  200. #define _L_PTE_READ L_PTE_USER | L_PTE_EXEC
  201. extern pgprot_t pgprot_kernel;
  202. #define PAGE_NONE __pgprot(_L_PTE_DEFAULT)
  203. #define PAGE_COPY __pgprot(_L_PTE_DEFAULT | _L_PTE_READ)
  204. #define PAGE_SHARED __pgprot(_L_PTE_DEFAULT | _L_PTE_READ | L_PTE_WRITE)
  205. #define PAGE_READONLY __pgprot(_L_PTE_DEFAULT | _L_PTE_READ)
  206. #define PAGE_KERNEL pgprot_kernel
  207. #endif /* __ASSEMBLY__ */
  208. /*
  209. * The table below defines the page protection levels that we insert into our
  210. * Linux page table version. These get translated into the best that the
  211. * architecture can perform. Note that on most ARM hardware:
  212. * 1) We cannot do execute protection
  213. * 2) If we could do execute protection, then read is implied
  214. * 3) write implies read permissions
  215. */
  216. #define __P000 PAGE_NONE
  217. #define __P001 PAGE_READONLY
  218. #define __P010 PAGE_COPY
  219. #define __P011 PAGE_COPY
  220. #define __P100 PAGE_READONLY
  221. #define __P101 PAGE_READONLY
  222. #define __P110 PAGE_COPY
  223. #define __P111 PAGE_COPY
  224. #define __S000 PAGE_NONE
  225. #define __S001 PAGE_READONLY
  226. #define __S010 PAGE_SHARED
  227. #define __S011 PAGE_SHARED
  228. #define __S100 PAGE_READONLY
  229. #define __S101 PAGE_READONLY
  230. #define __S110 PAGE_SHARED
  231. #define __S111 PAGE_SHARED
  232. #ifndef __ASSEMBLY__
  233. /*
  234. * ZERO_PAGE is a global shared page that is always zero: used
  235. * for zero-mapped memory areas etc..
  236. */
  237. extern struct page *empty_zero_page;
  238. #define ZERO_PAGE(vaddr) (empty_zero_page)
  239. #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
  240. #define pfn_pte(pfn,prot) (__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)))
  241. #define pte_none(pte) (!pte_val(pte))
  242. #define pte_clear(mm,addr,ptep) set_pte_at((mm),(addr),(ptep), __pte(0))
  243. #define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
  244. #define pte_offset_kernel(dir,addr) (pmd_page_kernel(*(dir)) + __pte_index(addr))
  245. #define pte_offset_map(dir,addr) (pmd_page_kernel(*(dir)) + __pte_index(addr))
  246. #define pte_offset_map_nested(dir,addr) (pmd_page_kernel(*(dir)) + __pte_index(addr))
  247. #define pte_unmap(pte) do { } while (0)
  248. #define pte_unmap_nested(pte) do { } while (0)
  249. #define set_pte(ptep, pte) cpu_set_pte(ptep,pte)
  250. #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
  251. /*
  252. * The following only work if pte_present() is true.
  253. * Undefined behaviour if not..
  254. */
  255. #define pte_present(pte) (pte_val(pte) & L_PTE_PRESENT)
  256. #define pte_read(pte) (pte_val(pte) & L_PTE_USER)
  257. #define pte_write(pte) (pte_val(pte) & L_PTE_WRITE)
  258. #define pte_exec(pte) (pte_val(pte) & L_PTE_EXEC)
  259. #define pte_dirty(pte) (pte_val(pte) & L_PTE_DIRTY)
  260. #define pte_young(pte) (pte_val(pte) & L_PTE_YOUNG)
  261. /*
  262. * The following only works if pte_present() is not true.
  263. */
  264. #define pte_file(pte) (pte_val(pte) & L_PTE_FILE)
  265. #define pte_to_pgoff(x) (pte_val(x) >> 2)
  266. #define pgoff_to_pte(x) __pte(((x) << 2) | L_PTE_FILE)
  267. #define PTE_FILE_MAX_BITS 30
  268. #define PTE_BIT_FUNC(fn,op) \
  269. static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }
  270. /*PTE_BIT_FUNC(rdprotect, &= ~L_PTE_USER);*/
  271. /*PTE_BIT_FUNC(mkread, |= L_PTE_USER);*/
  272. PTE_BIT_FUNC(wrprotect, &= ~L_PTE_WRITE);
  273. PTE_BIT_FUNC(mkwrite, |= L_PTE_WRITE);
  274. PTE_BIT_FUNC(exprotect, &= ~L_PTE_EXEC);
  275. PTE_BIT_FUNC(mkexec, |= L_PTE_EXEC);
  276. PTE_BIT_FUNC(mkclean, &= ~L_PTE_DIRTY);
  277. PTE_BIT_FUNC(mkdirty, |= L_PTE_DIRTY);
  278. PTE_BIT_FUNC(mkold, &= ~L_PTE_YOUNG);
  279. PTE_BIT_FUNC(mkyoung, |= L_PTE_YOUNG);
  280. /*
  281. * Mark the prot value as uncacheable and unbufferable.
  282. */
  283. #define pgprot_noncached(prot) __pgprot(pgprot_val(prot) & ~(L_PTE_CACHEABLE | L_PTE_BUFFERABLE))
  284. #define pgprot_writecombine(prot) __pgprot(pgprot_val(prot) & ~L_PTE_CACHEABLE)
  285. #define pmd_none(pmd) (!pmd_val(pmd))
  286. #define pmd_present(pmd) (pmd_val(pmd))
  287. #define pmd_bad(pmd) (pmd_val(pmd) & 2)
  288. #define copy_pmd(pmdpd,pmdps) \
  289. do { \
  290. pmdpd[0] = pmdps[0]; \
  291. pmdpd[1] = pmdps[1]; \
  292. flush_pmd_entry(pmdpd); \
  293. } while (0)
  294. #define pmd_clear(pmdp) \
  295. do { \
  296. pmdp[0] = __pmd(0); \
  297. pmdp[1] = __pmd(0); \
  298. clean_pmd_entry(pmdp); \
  299. } while (0)
  300. static inline pte_t *pmd_page_kernel(pmd_t pmd)
  301. {
  302. unsigned long ptr;
  303. ptr = pmd_val(pmd) & ~(PTRS_PER_PTE * sizeof(void *) - 1);
  304. ptr += PTRS_PER_PTE * sizeof(void *);
  305. return __va(ptr);
  306. }
  307. #define pmd_page(pmd) virt_to_page(__va(pmd_val(pmd)))
  308. /*
  309. * Permanent address of a page. We never have highmem, so this is trivial.
  310. */
  311. #define pages_to_mb(x) ((x) >> (20 - PAGE_SHIFT))
  312. /*
  313. * Conversion functions: convert a page and protection to a page entry,
  314. * and a page entry and page directory to the page they refer to.
  315. */
  316. #define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot)
  317. /*
  318. * The "pgd_xxx()" functions here are trivial for a folded two-level
  319. * setup: the pgd is never bad, and a pmd always exists (as it's folded
  320. * into the pgd entry)
  321. */
  322. #define pgd_none(pgd) (0)
  323. #define pgd_bad(pgd) (0)
  324. #define pgd_present(pgd) (1)
  325. #define pgd_clear(pgdp) do { } while (0)
  326. #define set_pgd(pgd,pgdp) do { } while (0)
  327. #define page_pte_prot(page,prot) mk_pte(page, prot)
  328. #define page_pte(page) mk_pte(page, __pgprot(0))
  329. /* to find an entry in a page-table-directory */
  330. #define pgd_index(addr) ((addr) >> PGDIR_SHIFT)
  331. #define pgd_offset(mm, addr) ((mm)->pgd+pgd_index(addr))
  332. /* to find an entry in a kernel page-table-directory */
  333. #define pgd_offset_k(addr) pgd_offset(&init_mm, addr)
  334. /* Find an entry in the second-level page table.. */
  335. #define pmd_offset(dir, addr) ((pmd_t *)(dir))
  336. /* Find an entry in the third-level page table.. */
  337. #define __pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
  338. static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
  339. {
  340. const unsigned long mask = L_PTE_EXEC | L_PTE_WRITE | L_PTE_USER;
  341. pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
  342. return pte;
  343. }
  344. extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
  345. /* Encode and decode a swap entry.
  346. *
  347. * We support up to 32GB of swap on 4k machines
  348. */
  349. #define __swp_type(x) (((x).val >> 2) & 0x7f)
  350. #define __swp_offset(x) ((x).val >> 9)
  351. #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << 2) | ((offset) << 9) })
  352. #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
  353. #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
  354. /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
  355. /* FIXME: this is not correct */
  356. #define kern_addr_valid(addr) (1)
  357. #include <asm-generic/pgtable.h>
  358. /*
  359. * We provide our own arch_get_unmapped_area to cope with VIPT caches.
  360. */
  361. #define HAVE_ARCH_UNMAPPED_AREA
  362. /*
  363. * remap a physical address `phys' of size `size' with page protection `prot'
  364. * into virtual address `from'
  365. */
  366. #define io_remap_page_range(vma,from,phys,size,prot) \
  367. remap_pfn_range(vma, from, (phys) >> PAGE_SHIFT, size, prot)
  368. #define io_remap_pfn_range(vma,from,pfn,size,prot) \
  369. remap_pfn_range(vma, from, pfn, size, prot)
  370. #define MK_IOSPACE_PFN(space, pfn) (pfn)
  371. #define GET_IOSPACE(pfn) 0
  372. #define GET_PFN(pfn) (pfn)
  373. #define pgtable_cache_init() do { } while (0)
  374. #endif /* !__ASSEMBLY__ */
  375. #endif /* _ASMARM_PGTABLE_H */