bio.c 25 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096
  1. /*
  2. * Copyright (C) 2001 Jens Axboe <axboe@suse.de>
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public Licens
  14. * along with this program; if not, write to the Free Software
  15. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
  16. *
  17. */
  18. #include <linux/mm.h>
  19. #include <linux/swap.h>
  20. #include <linux/bio.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/slab.h>
  23. #include <linux/init.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/mempool.h>
  27. #include <linux/workqueue.h>
  28. #define BIO_POOL_SIZE 256
  29. static kmem_cache_t *bio_slab;
  30. #define BIOVEC_NR_POOLS 6
  31. /*
  32. * a small number of entries is fine, not going to be performance critical.
  33. * basically we just need to survive
  34. */
  35. #define BIO_SPLIT_ENTRIES 8
  36. mempool_t *bio_split_pool;
  37. struct biovec_slab {
  38. int nr_vecs;
  39. char *name;
  40. kmem_cache_t *slab;
  41. };
  42. /*
  43. * if you change this list, also change bvec_alloc or things will
  44. * break badly! cannot be bigger than what you can fit into an
  45. * unsigned short
  46. */
  47. #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
  48. static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] = {
  49. BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
  50. };
  51. #undef BV
  52. /*
  53. * bio_set is used to allow other portions of the IO system to
  54. * allocate their own private memory pools for bio and iovec structures.
  55. * These memory pools in turn all allocate from the bio_slab
  56. * and the bvec_slabs[].
  57. */
  58. struct bio_set {
  59. mempool_t *bio_pool;
  60. mempool_t *bvec_pools[BIOVEC_NR_POOLS];
  61. };
  62. /*
  63. * fs_bio_set is the bio_set containing bio and iovec memory pools used by
  64. * IO code that does not need private memory pools.
  65. */
  66. static struct bio_set *fs_bio_set;
  67. static inline struct bio_vec *bvec_alloc_bs(unsigned int __nocast gfp_mask, int nr, unsigned long *idx, struct bio_set *bs)
  68. {
  69. struct bio_vec *bvl;
  70. struct biovec_slab *bp;
  71. /*
  72. * see comment near bvec_array define!
  73. */
  74. switch (nr) {
  75. case 1 : *idx = 0; break;
  76. case 2 ... 4: *idx = 1; break;
  77. case 5 ... 16: *idx = 2; break;
  78. case 17 ... 64: *idx = 3; break;
  79. case 65 ... 128: *idx = 4; break;
  80. case 129 ... BIO_MAX_PAGES: *idx = 5; break;
  81. default:
  82. return NULL;
  83. }
  84. /*
  85. * idx now points to the pool we want to allocate from
  86. */
  87. bp = bvec_slabs + *idx;
  88. bvl = mempool_alloc(bs->bvec_pools[*idx], gfp_mask);
  89. if (bvl)
  90. memset(bvl, 0, bp->nr_vecs * sizeof(struct bio_vec));
  91. return bvl;
  92. }
  93. /*
  94. * default destructor for a bio allocated with bio_alloc_bioset()
  95. */
  96. static void bio_destructor(struct bio *bio)
  97. {
  98. const int pool_idx = BIO_POOL_IDX(bio);
  99. struct bio_set *bs = bio->bi_set;
  100. BIO_BUG_ON(pool_idx >= BIOVEC_NR_POOLS);
  101. mempool_free(bio->bi_io_vec, bs->bvec_pools[pool_idx]);
  102. mempool_free(bio, bs->bio_pool);
  103. }
  104. inline void bio_init(struct bio *bio)
  105. {
  106. bio->bi_next = NULL;
  107. bio->bi_flags = 1 << BIO_UPTODATE;
  108. bio->bi_rw = 0;
  109. bio->bi_vcnt = 0;
  110. bio->bi_idx = 0;
  111. bio->bi_phys_segments = 0;
  112. bio->bi_hw_segments = 0;
  113. bio->bi_hw_front_size = 0;
  114. bio->bi_hw_back_size = 0;
  115. bio->bi_size = 0;
  116. bio->bi_max_vecs = 0;
  117. bio->bi_end_io = NULL;
  118. atomic_set(&bio->bi_cnt, 1);
  119. bio->bi_private = NULL;
  120. }
  121. /**
  122. * bio_alloc_bioset - allocate a bio for I/O
  123. * @gfp_mask: the GFP_ mask given to the slab allocator
  124. * @nr_iovecs: number of iovecs to pre-allocate
  125. *
  126. * Description:
  127. * bio_alloc_bioset will first try it's on mempool to satisfy the allocation.
  128. * If %__GFP_WAIT is set then we will block on the internal pool waiting
  129. * for a &struct bio to become free.
  130. *
  131. * allocate bio and iovecs from the memory pools specified by the
  132. * bio_set structure.
  133. **/
  134. struct bio *bio_alloc_bioset(unsigned int __nocast gfp_mask, int nr_iovecs, struct bio_set *bs)
  135. {
  136. struct bio *bio = mempool_alloc(bs->bio_pool, gfp_mask);
  137. if (likely(bio)) {
  138. struct bio_vec *bvl = NULL;
  139. bio_init(bio);
  140. if (likely(nr_iovecs)) {
  141. unsigned long idx;
  142. bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
  143. if (unlikely(!bvl)) {
  144. mempool_free(bio, bs->bio_pool);
  145. bio = NULL;
  146. goto out;
  147. }
  148. bio->bi_flags |= idx << BIO_POOL_OFFSET;
  149. bio->bi_max_vecs = bvec_slabs[idx].nr_vecs;
  150. }
  151. bio->bi_io_vec = bvl;
  152. bio->bi_destructor = bio_destructor;
  153. bio->bi_set = bs;
  154. }
  155. out:
  156. return bio;
  157. }
  158. struct bio *bio_alloc(unsigned int __nocast gfp_mask, int nr_iovecs)
  159. {
  160. return bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
  161. }
  162. void zero_fill_bio(struct bio *bio)
  163. {
  164. unsigned long flags;
  165. struct bio_vec *bv;
  166. int i;
  167. bio_for_each_segment(bv, bio, i) {
  168. char *data = bvec_kmap_irq(bv, &flags);
  169. memset(data, 0, bv->bv_len);
  170. flush_dcache_page(bv->bv_page);
  171. bvec_kunmap_irq(data, &flags);
  172. }
  173. }
  174. EXPORT_SYMBOL(zero_fill_bio);
  175. /**
  176. * bio_put - release a reference to a bio
  177. * @bio: bio to release reference to
  178. *
  179. * Description:
  180. * Put a reference to a &struct bio, either one you have gotten with
  181. * bio_alloc or bio_get. The last put of a bio will free it.
  182. **/
  183. void bio_put(struct bio *bio)
  184. {
  185. BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
  186. /*
  187. * last put frees it
  188. */
  189. if (atomic_dec_and_test(&bio->bi_cnt)) {
  190. bio->bi_next = NULL;
  191. bio->bi_destructor(bio);
  192. }
  193. }
  194. inline int bio_phys_segments(request_queue_t *q, struct bio *bio)
  195. {
  196. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  197. blk_recount_segments(q, bio);
  198. return bio->bi_phys_segments;
  199. }
  200. inline int bio_hw_segments(request_queue_t *q, struct bio *bio)
  201. {
  202. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  203. blk_recount_segments(q, bio);
  204. return bio->bi_hw_segments;
  205. }
  206. /**
  207. * __bio_clone - clone a bio
  208. * @bio: destination bio
  209. * @bio_src: bio to clone
  210. *
  211. * Clone a &bio. Caller will own the returned bio, but not
  212. * the actual data it points to. Reference count of returned
  213. * bio will be one.
  214. */
  215. inline void __bio_clone(struct bio *bio, struct bio *bio_src)
  216. {
  217. request_queue_t *q = bdev_get_queue(bio_src->bi_bdev);
  218. memcpy(bio->bi_io_vec, bio_src->bi_io_vec, bio_src->bi_max_vecs * sizeof(struct bio_vec));
  219. bio->bi_sector = bio_src->bi_sector;
  220. bio->bi_bdev = bio_src->bi_bdev;
  221. bio->bi_flags |= 1 << BIO_CLONED;
  222. bio->bi_rw = bio_src->bi_rw;
  223. /*
  224. * notes -- maybe just leave bi_idx alone. assume identical mapping
  225. * for the clone
  226. */
  227. bio->bi_vcnt = bio_src->bi_vcnt;
  228. bio->bi_size = bio_src->bi_size;
  229. bio_phys_segments(q, bio);
  230. bio_hw_segments(q, bio);
  231. }
  232. /**
  233. * bio_clone - clone a bio
  234. * @bio: bio to clone
  235. * @gfp_mask: allocation priority
  236. *
  237. * Like __bio_clone, only also allocates the returned bio
  238. */
  239. struct bio *bio_clone(struct bio *bio, unsigned int __nocast gfp_mask)
  240. {
  241. struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
  242. if (b)
  243. __bio_clone(b, bio);
  244. return b;
  245. }
  246. /**
  247. * bio_get_nr_vecs - return approx number of vecs
  248. * @bdev: I/O target
  249. *
  250. * Return the approximate number of pages we can send to this target.
  251. * There's no guarantee that you will be able to fit this number of pages
  252. * into a bio, it does not account for dynamic restrictions that vary
  253. * on offset.
  254. */
  255. int bio_get_nr_vecs(struct block_device *bdev)
  256. {
  257. request_queue_t *q = bdev_get_queue(bdev);
  258. int nr_pages;
  259. nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
  260. if (nr_pages > q->max_phys_segments)
  261. nr_pages = q->max_phys_segments;
  262. if (nr_pages > q->max_hw_segments)
  263. nr_pages = q->max_hw_segments;
  264. return nr_pages;
  265. }
  266. static int __bio_add_page(request_queue_t *q, struct bio *bio, struct page
  267. *page, unsigned int len, unsigned int offset)
  268. {
  269. int retried_segments = 0;
  270. struct bio_vec *bvec;
  271. /*
  272. * cloned bio must not modify vec list
  273. */
  274. if (unlikely(bio_flagged(bio, BIO_CLONED)))
  275. return 0;
  276. if (bio->bi_vcnt >= bio->bi_max_vecs)
  277. return 0;
  278. if (((bio->bi_size + len) >> 9) > q->max_sectors)
  279. return 0;
  280. /*
  281. * we might lose a segment or two here, but rather that than
  282. * make this too complex.
  283. */
  284. while (bio->bi_phys_segments >= q->max_phys_segments
  285. || bio->bi_hw_segments >= q->max_hw_segments
  286. || BIOVEC_VIRT_OVERSIZE(bio->bi_size)) {
  287. if (retried_segments)
  288. return 0;
  289. retried_segments = 1;
  290. blk_recount_segments(q, bio);
  291. }
  292. /*
  293. * setup the new entry, we might clear it again later if we
  294. * cannot add the page
  295. */
  296. bvec = &bio->bi_io_vec[bio->bi_vcnt];
  297. bvec->bv_page = page;
  298. bvec->bv_len = len;
  299. bvec->bv_offset = offset;
  300. /*
  301. * if queue has other restrictions (eg varying max sector size
  302. * depending on offset), it can specify a merge_bvec_fn in the
  303. * queue to get further control
  304. */
  305. if (q->merge_bvec_fn) {
  306. /*
  307. * merge_bvec_fn() returns number of bytes it can accept
  308. * at this offset
  309. */
  310. if (q->merge_bvec_fn(q, bio, bvec) < len) {
  311. bvec->bv_page = NULL;
  312. bvec->bv_len = 0;
  313. bvec->bv_offset = 0;
  314. return 0;
  315. }
  316. }
  317. /* If we may be able to merge these biovecs, force a recount */
  318. if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec) ||
  319. BIOVEC_VIRT_MERGEABLE(bvec-1, bvec)))
  320. bio->bi_flags &= ~(1 << BIO_SEG_VALID);
  321. bio->bi_vcnt++;
  322. bio->bi_phys_segments++;
  323. bio->bi_hw_segments++;
  324. bio->bi_size += len;
  325. return len;
  326. }
  327. /**
  328. * bio_add_page - attempt to add page to bio
  329. * @bio: destination bio
  330. * @page: page to add
  331. * @len: vec entry length
  332. * @offset: vec entry offset
  333. *
  334. * Attempt to add a page to the bio_vec maplist. This can fail for a
  335. * number of reasons, such as the bio being full or target block
  336. * device limitations. The target block device must allow bio's
  337. * smaller than PAGE_SIZE, so it is always possible to add a single
  338. * page to an empty bio.
  339. */
  340. int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
  341. unsigned int offset)
  342. {
  343. return __bio_add_page(bdev_get_queue(bio->bi_bdev), bio, page,
  344. len, offset);
  345. }
  346. struct bio_map_data {
  347. struct bio_vec *iovecs;
  348. void __user *userptr;
  349. };
  350. static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio)
  351. {
  352. memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
  353. bio->bi_private = bmd;
  354. }
  355. static void bio_free_map_data(struct bio_map_data *bmd)
  356. {
  357. kfree(bmd->iovecs);
  358. kfree(bmd);
  359. }
  360. static struct bio_map_data *bio_alloc_map_data(int nr_segs)
  361. {
  362. struct bio_map_data *bmd = kmalloc(sizeof(*bmd), GFP_KERNEL);
  363. if (!bmd)
  364. return NULL;
  365. bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, GFP_KERNEL);
  366. if (bmd->iovecs)
  367. return bmd;
  368. kfree(bmd);
  369. return NULL;
  370. }
  371. /**
  372. * bio_uncopy_user - finish previously mapped bio
  373. * @bio: bio being terminated
  374. *
  375. * Free pages allocated from bio_copy_user() and write back data
  376. * to user space in case of a read.
  377. */
  378. int bio_uncopy_user(struct bio *bio)
  379. {
  380. struct bio_map_data *bmd = bio->bi_private;
  381. const int read = bio_data_dir(bio) == READ;
  382. struct bio_vec *bvec;
  383. int i, ret = 0;
  384. __bio_for_each_segment(bvec, bio, i, 0) {
  385. char *addr = page_address(bvec->bv_page);
  386. unsigned int len = bmd->iovecs[i].bv_len;
  387. if (read && !ret && copy_to_user(bmd->userptr, addr, len))
  388. ret = -EFAULT;
  389. __free_page(bvec->bv_page);
  390. bmd->userptr += len;
  391. }
  392. bio_free_map_data(bmd);
  393. bio_put(bio);
  394. return ret;
  395. }
  396. /**
  397. * bio_copy_user - copy user data to bio
  398. * @q: destination block queue
  399. * @uaddr: start of user address
  400. * @len: length in bytes
  401. * @write_to_vm: bool indicating writing to pages or not
  402. *
  403. * Prepares and returns a bio for indirect user io, bouncing data
  404. * to/from kernel pages as necessary. Must be paired with
  405. * call bio_uncopy_user() on io completion.
  406. */
  407. struct bio *bio_copy_user(request_queue_t *q, unsigned long uaddr,
  408. unsigned int len, int write_to_vm)
  409. {
  410. unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  411. unsigned long start = uaddr >> PAGE_SHIFT;
  412. struct bio_map_data *bmd;
  413. struct bio_vec *bvec;
  414. struct page *page;
  415. struct bio *bio;
  416. int i, ret;
  417. bmd = bio_alloc_map_data(end - start);
  418. if (!bmd)
  419. return ERR_PTR(-ENOMEM);
  420. bmd->userptr = (void __user *) uaddr;
  421. ret = -ENOMEM;
  422. bio = bio_alloc(GFP_KERNEL, end - start);
  423. if (!bio)
  424. goto out_bmd;
  425. bio->bi_rw |= (!write_to_vm << BIO_RW);
  426. ret = 0;
  427. while (len) {
  428. unsigned int bytes = PAGE_SIZE;
  429. if (bytes > len)
  430. bytes = len;
  431. page = alloc_page(q->bounce_gfp | GFP_KERNEL);
  432. if (!page) {
  433. ret = -ENOMEM;
  434. break;
  435. }
  436. if (__bio_add_page(q, bio, page, bytes, 0) < bytes) {
  437. ret = -EINVAL;
  438. break;
  439. }
  440. len -= bytes;
  441. }
  442. if (ret)
  443. goto cleanup;
  444. /*
  445. * success
  446. */
  447. if (!write_to_vm) {
  448. char __user *p = (char __user *) uaddr;
  449. /*
  450. * for a write, copy in data to kernel pages
  451. */
  452. ret = -EFAULT;
  453. bio_for_each_segment(bvec, bio, i) {
  454. char *addr = page_address(bvec->bv_page);
  455. if (copy_from_user(addr, p, bvec->bv_len))
  456. goto cleanup;
  457. p += bvec->bv_len;
  458. }
  459. }
  460. bio_set_map_data(bmd, bio);
  461. return bio;
  462. cleanup:
  463. bio_for_each_segment(bvec, bio, i)
  464. __free_page(bvec->bv_page);
  465. bio_put(bio);
  466. out_bmd:
  467. bio_free_map_data(bmd);
  468. return ERR_PTR(ret);
  469. }
  470. static struct bio *__bio_map_user(request_queue_t *q, struct block_device *bdev,
  471. unsigned long uaddr, unsigned int len,
  472. int write_to_vm)
  473. {
  474. unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  475. unsigned long start = uaddr >> PAGE_SHIFT;
  476. const int nr_pages = end - start;
  477. int ret, offset, i;
  478. struct page **pages;
  479. struct bio *bio;
  480. /*
  481. * transfer and buffer must be aligned to at least hardsector
  482. * size for now, in the future we can relax this restriction
  483. */
  484. if ((uaddr & queue_dma_alignment(q)) || (len & queue_dma_alignment(q)))
  485. return ERR_PTR(-EINVAL);
  486. bio = bio_alloc(GFP_KERNEL, nr_pages);
  487. if (!bio)
  488. return ERR_PTR(-ENOMEM);
  489. ret = -ENOMEM;
  490. pages = kmalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
  491. if (!pages)
  492. goto out;
  493. down_read(&current->mm->mmap_sem);
  494. ret = get_user_pages(current, current->mm, uaddr, nr_pages,
  495. write_to_vm, 0, pages, NULL);
  496. up_read(&current->mm->mmap_sem);
  497. if (ret < nr_pages)
  498. goto out;
  499. bio->bi_bdev = bdev;
  500. offset = uaddr & ~PAGE_MASK;
  501. for (i = 0; i < nr_pages; i++) {
  502. unsigned int bytes = PAGE_SIZE - offset;
  503. if (len <= 0)
  504. break;
  505. if (bytes > len)
  506. bytes = len;
  507. /*
  508. * sorry...
  509. */
  510. if (__bio_add_page(q, bio, pages[i], bytes, offset) < bytes)
  511. break;
  512. len -= bytes;
  513. offset = 0;
  514. }
  515. /*
  516. * release the pages we didn't map into the bio, if any
  517. */
  518. while (i < nr_pages)
  519. page_cache_release(pages[i++]);
  520. kfree(pages);
  521. /*
  522. * set data direction, and check if mapped pages need bouncing
  523. */
  524. if (!write_to_vm)
  525. bio->bi_rw |= (1 << BIO_RW);
  526. bio->bi_flags |= (1 << BIO_USER_MAPPED);
  527. return bio;
  528. out:
  529. kfree(pages);
  530. bio_put(bio);
  531. return ERR_PTR(ret);
  532. }
  533. /**
  534. * bio_map_user - map user address into bio
  535. * @bdev: destination block device
  536. * @uaddr: start of user address
  537. * @len: length in bytes
  538. * @write_to_vm: bool indicating writing to pages or not
  539. *
  540. * Map the user space address into a bio suitable for io to a block
  541. * device. Returns an error pointer in case of error.
  542. */
  543. struct bio *bio_map_user(request_queue_t *q, struct block_device *bdev,
  544. unsigned long uaddr, unsigned int len, int write_to_vm)
  545. {
  546. struct bio *bio;
  547. bio = __bio_map_user(q, bdev, uaddr, len, write_to_vm);
  548. if (IS_ERR(bio))
  549. return bio;
  550. /*
  551. * subtle -- if __bio_map_user() ended up bouncing a bio,
  552. * it would normally disappear when its bi_end_io is run.
  553. * however, we need it for the unmap, so grab an extra
  554. * reference to it
  555. */
  556. bio_get(bio);
  557. if (bio->bi_size == len)
  558. return bio;
  559. /*
  560. * don't support partial mappings
  561. */
  562. bio_endio(bio, bio->bi_size, 0);
  563. bio_unmap_user(bio);
  564. return ERR_PTR(-EINVAL);
  565. }
  566. static void __bio_unmap_user(struct bio *bio)
  567. {
  568. struct bio_vec *bvec;
  569. int i;
  570. /*
  571. * make sure we dirty pages we wrote to
  572. */
  573. __bio_for_each_segment(bvec, bio, i, 0) {
  574. if (bio_data_dir(bio) == READ)
  575. set_page_dirty_lock(bvec->bv_page);
  576. page_cache_release(bvec->bv_page);
  577. }
  578. bio_put(bio);
  579. }
  580. /**
  581. * bio_unmap_user - unmap a bio
  582. * @bio: the bio being unmapped
  583. *
  584. * Unmap a bio previously mapped by bio_map_user(). Must be called with
  585. * a process context.
  586. *
  587. * bio_unmap_user() may sleep.
  588. */
  589. void bio_unmap_user(struct bio *bio)
  590. {
  591. __bio_unmap_user(bio);
  592. bio_put(bio);
  593. }
  594. /*
  595. * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
  596. * for performing direct-IO in BIOs.
  597. *
  598. * The problem is that we cannot run set_page_dirty() from interrupt context
  599. * because the required locks are not interrupt-safe. So what we can do is to
  600. * mark the pages dirty _before_ performing IO. And in interrupt context,
  601. * check that the pages are still dirty. If so, fine. If not, redirty them
  602. * in process context.
  603. *
  604. * We special-case compound pages here: normally this means reads into hugetlb
  605. * pages. The logic in here doesn't really work right for compound pages
  606. * because the VM does not uniformly chase down the head page in all cases.
  607. * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
  608. * handle them at all. So we skip compound pages here at an early stage.
  609. *
  610. * Note that this code is very hard to test under normal circumstances because
  611. * direct-io pins the pages with get_user_pages(). This makes
  612. * is_page_cache_freeable return false, and the VM will not clean the pages.
  613. * But other code (eg, pdflush) could clean the pages if they are mapped
  614. * pagecache.
  615. *
  616. * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
  617. * deferred bio dirtying paths.
  618. */
  619. /*
  620. * bio_set_pages_dirty() will mark all the bio's pages as dirty.
  621. */
  622. void bio_set_pages_dirty(struct bio *bio)
  623. {
  624. struct bio_vec *bvec = bio->bi_io_vec;
  625. int i;
  626. for (i = 0; i < bio->bi_vcnt; i++) {
  627. struct page *page = bvec[i].bv_page;
  628. if (page && !PageCompound(page))
  629. set_page_dirty_lock(page);
  630. }
  631. }
  632. static void bio_release_pages(struct bio *bio)
  633. {
  634. struct bio_vec *bvec = bio->bi_io_vec;
  635. int i;
  636. for (i = 0; i < bio->bi_vcnt; i++) {
  637. struct page *page = bvec[i].bv_page;
  638. if (page)
  639. put_page(page);
  640. }
  641. }
  642. /*
  643. * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
  644. * If they are, then fine. If, however, some pages are clean then they must
  645. * have been written out during the direct-IO read. So we take another ref on
  646. * the BIO and the offending pages and re-dirty the pages in process context.
  647. *
  648. * It is expected that bio_check_pages_dirty() will wholly own the BIO from
  649. * here on. It will run one page_cache_release() against each page and will
  650. * run one bio_put() against the BIO.
  651. */
  652. static void bio_dirty_fn(void *data);
  653. static DECLARE_WORK(bio_dirty_work, bio_dirty_fn, NULL);
  654. static DEFINE_SPINLOCK(bio_dirty_lock);
  655. static struct bio *bio_dirty_list;
  656. /*
  657. * This runs in process context
  658. */
  659. static void bio_dirty_fn(void *data)
  660. {
  661. unsigned long flags;
  662. struct bio *bio;
  663. spin_lock_irqsave(&bio_dirty_lock, flags);
  664. bio = bio_dirty_list;
  665. bio_dirty_list = NULL;
  666. spin_unlock_irqrestore(&bio_dirty_lock, flags);
  667. while (bio) {
  668. struct bio *next = bio->bi_private;
  669. bio_set_pages_dirty(bio);
  670. bio_release_pages(bio);
  671. bio_put(bio);
  672. bio = next;
  673. }
  674. }
  675. void bio_check_pages_dirty(struct bio *bio)
  676. {
  677. struct bio_vec *bvec = bio->bi_io_vec;
  678. int nr_clean_pages = 0;
  679. int i;
  680. for (i = 0; i < bio->bi_vcnt; i++) {
  681. struct page *page = bvec[i].bv_page;
  682. if (PageDirty(page) || PageCompound(page)) {
  683. page_cache_release(page);
  684. bvec[i].bv_page = NULL;
  685. } else {
  686. nr_clean_pages++;
  687. }
  688. }
  689. if (nr_clean_pages) {
  690. unsigned long flags;
  691. spin_lock_irqsave(&bio_dirty_lock, flags);
  692. bio->bi_private = bio_dirty_list;
  693. bio_dirty_list = bio;
  694. spin_unlock_irqrestore(&bio_dirty_lock, flags);
  695. schedule_work(&bio_dirty_work);
  696. } else {
  697. bio_put(bio);
  698. }
  699. }
  700. /**
  701. * bio_endio - end I/O on a bio
  702. * @bio: bio
  703. * @bytes_done: number of bytes completed
  704. * @error: error, if any
  705. *
  706. * Description:
  707. * bio_endio() will end I/O on @bytes_done number of bytes. This may be
  708. * just a partial part of the bio, or it may be the whole bio. bio_endio()
  709. * is the preferred way to end I/O on a bio, it takes care of decrementing
  710. * bi_size and clearing BIO_UPTODATE on error. @error is 0 on success, and
  711. * and one of the established -Exxxx (-EIO, for instance) error values in
  712. * case something went wrong. Noone should call bi_end_io() directly on
  713. * a bio unless they own it and thus know that it has an end_io function.
  714. **/
  715. void bio_endio(struct bio *bio, unsigned int bytes_done, int error)
  716. {
  717. if (error)
  718. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  719. if (unlikely(bytes_done > bio->bi_size)) {
  720. printk("%s: want %u bytes done, only %u left\n", __FUNCTION__,
  721. bytes_done, bio->bi_size);
  722. bytes_done = bio->bi_size;
  723. }
  724. bio->bi_size -= bytes_done;
  725. bio->bi_sector += (bytes_done >> 9);
  726. if (bio->bi_end_io)
  727. bio->bi_end_io(bio, bytes_done, error);
  728. }
  729. void bio_pair_release(struct bio_pair *bp)
  730. {
  731. if (atomic_dec_and_test(&bp->cnt)) {
  732. struct bio *master = bp->bio1.bi_private;
  733. bio_endio(master, master->bi_size, bp->error);
  734. mempool_free(bp, bp->bio2.bi_private);
  735. }
  736. }
  737. static int bio_pair_end_1(struct bio * bi, unsigned int done, int err)
  738. {
  739. struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
  740. if (err)
  741. bp->error = err;
  742. if (bi->bi_size)
  743. return 1;
  744. bio_pair_release(bp);
  745. return 0;
  746. }
  747. static int bio_pair_end_2(struct bio * bi, unsigned int done, int err)
  748. {
  749. struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
  750. if (err)
  751. bp->error = err;
  752. if (bi->bi_size)
  753. return 1;
  754. bio_pair_release(bp);
  755. return 0;
  756. }
  757. /*
  758. * split a bio - only worry about a bio with a single page
  759. * in it's iovec
  760. */
  761. struct bio_pair *bio_split(struct bio *bi, mempool_t *pool, int first_sectors)
  762. {
  763. struct bio_pair *bp = mempool_alloc(pool, GFP_NOIO);
  764. if (!bp)
  765. return bp;
  766. BUG_ON(bi->bi_vcnt != 1);
  767. BUG_ON(bi->bi_idx != 0);
  768. atomic_set(&bp->cnt, 3);
  769. bp->error = 0;
  770. bp->bio1 = *bi;
  771. bp->bio2 = *bi;
  772. bp->bio2.bi_sector += first_sectors;
  773. bp->bio2.bi_size -= first_sectors << 9;
  774. bp->bio1.bi_size = first_sectors << 9;
  775. bp->bv1 = bi->bi_io_vec[0];
  776. bp->bv2 = bi->bi_io_vec[0];
  777. bp->bv2.bv_offset += first_sectors << 9;
  778. bp->bv2.bv_len -= first_sectors << 9;
  779. bp->bv1.bv_len = first_sectors << 9;
  780. bp->bio1.bi_io_vec = &bp->bv1;
  781. bp->bio2.bi_io_vec = &bp->bv2;
  782. bp->bio1.bi_end_io = bio_pair_end_1;
  783. bp->bio2.bi_end_io = bio_pair_end_2;
  784. bp->bio1.bi_private = bi;
  785. bp->bio2.bi_private = pool;
  786. return bp;
  787. }
  788. static void *bio_pair_alloc(unsigned int __nocast gfp_flags, void *data)
  789. {
  790. return kmalloc(sizeof(struct bio_pair), gfp_flags);
  791. }
  792. static void bio_pair_free(void *bp, void *data)
  793. {
  794. kfree(bp);
  795. }
  796. /*
  797. * create memory pools for biovec's in a bio_set.
  798. * use the global biovec slabs created for general use.
  799. */
  800. static int biovec_create_pools(struct bio_set *bs, int pool_entries, int scale)
  801. {
  802. int i;
  803. for (i = 0; i < BIOVEC_NR_POOLS; i++) {
  804. struct biovec_slab *bp = bvec_slabs + i;
  805. mempool_t **bvp = bs->bvec_pools + i;
  806. if (i >= scale)
  807. pool_entries >>= 1;
  808. *bvp = mempool_create(pool_entries, mempool_alloc_slab,
  809. mempool_free_slab, bp->slab);
  810. if (!*bvp)
  811. return -ENOMEM;
  812. }
  813. return 0;
  814. }
  815. static void biovec_free_pools(struct bio_set *bs)
  816. {
  817. int i;
  818. for (i = 0; i < BIOVEC_NR_POOLS; i++) {
  819. mempool_t *bvp = bs->bvec_pools[i];
  820. if (bvp)
  821. mempool_destroy(bvp);
  822. }
  823. }
  824. void bioset_free(struct bio_set *bs)
  825. {
  826. if (bs->bio_pool)
  827. mempool_destroy(bs->bio_pool);
  828. biovec_free_pools(bs);
  829. kfree(bs);
  830. }
  831. struct bio_set *bioset_create(int bio_pool_size, int bvec_pool_size, int scale)
  832. {
  833. struct bio_set *bs = kmalloc(sizeof(*bs), GFP_KERNEL);
  834. if (!bs)
  835. return NULL;
  836. memset(bs, 0, sizeof(*bs));
  837. bs->bio_pool = mempool_create(bio_pool_size, mempool_alloc_slab,
  838. mempool_free_slab, bio_slab);
  839. if (!bs->bio_pool)
  840. goto bad;
  841. if (!biovec_create_pools(bs, bvec_pool_size, scale))
  842. return bs;
  843. bad:
  844. bioset_free(bs);
  845. return NULL;
  846. }
  847. static void __init biovec_init_slabs(void)
  848. {
  849. int i;
  850. for (i = 0; i < BIOVEC_NR_POOLS; i++) {
  851. int size;
  852. struct biovec_slab *bvs = bvec_slabs + i;
  853. size = bvs->nr_vecs * sizeof(struct bio_vec);
  854. bvs->slab = kmem_cache_create(bvs->name, size, 0,
  855. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  856. }
  857. }
  858. static int __init init_bio(void)
  859. {
  860. int megabytes, bvec_pool_entries;
  861. int scale = BIOVEC_NR_POOLS;
  862. bio_slab = kmem_cache_create("bio", sizeof(struct bio), 0,
  863. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  864. biovec_init_slabs();
  865. megabytes = nr_free_pages() >> (20 - PAGE_SHIFT);
  866. /*
  867. * find out where to start scaling
  868. */
  869. if (megabytes <= 16)
  870. scale = 0;
  871. else if (megabytes <= 32)
  872. scale = 1;
  873. else if (megabytes <= 64)
  874. scale = 2;
  875. else if (megabytes <= 96)
  876. scale = 3;
  877. else if (megabytes <= 128)
  878. scale = 4;
  879. /*
  880. * scale number of entries
  881. */
  882. bvec_pool_entries = megabytes * 2;
  883. if (bvec_pool_entries > 256)
  884. bvec_pool_entries = 256;
  885. fs_bio_set = bioset_create(BIO_POOL_SIZE, bvec_pool_entries, scale);
  886. if (!fs_bio_set)
  887. panic("bio: can't allocate bios\n");
  888. bio_split_pool = mempool_create(BIO_SPLIT_ENTRIES,
  889. bio_pair_alloc, bio_pair_free, NULL);
  890. if (!bio_split_pool)
  891. panic("bio: can't create split pool\n");
  892. return 0;
  893. }
  894. subsys_initcall(init_bio);
  895. EXPORT_SYMBOL(bio_alloc);
  896. EXPORT_SYMBOL(bio_put);
  897. EXPORT_SYMBOL(bio_endio);
  898. EXPORT_SYMBOL(bio_init);
  899. EXPORT_SYMBOL(__bio_clone);
  900. EXPORT_SYMBOL(bio_clone);
  901. EXPORT_SYMBOL(bio_phys_segments);
  902. EXPORT_SYMBOL(bio_hw_segments);
  903. EXPORT_SYMBOL(bio_add_page);
  904. EXPORT_SYMBOL(bio_get_nr_vecs);
  905. EXPORT_SYMBOL(bio_map_user);
  906. EXPORT_SYMBOL(bio_unmap_user);
  907. EXPORT_SYMBOL(bio_pair_release);
  908. EXPORT_SYMBOL(bio_split);
  909. EXPORT_SYMBOL(bio_split_pool);
  910. EXPORT_SYMBOL(bio_copy_user);
  911. EXPORT_SYMBOL(bio_uncopy_user);
  912. EXPORT_SYMBOL(bioset_create);
  913. EXPORT_SYMBOL(bioset_free);
  914. EXPORT_SYMBOL(bio_alloc_bioset);