setup.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 1999,2001-2004 Silicon Graphics, Inc. All rights reserved.
  7. */
  8. #include <linux/config.h>
  9. #include <linux/module.h>
  10. #include <linux/init.h>
  11. #include <linux/delay.h>
  12. #include <linux/kernel.h>
  13. #include <linux/kdev_t.h>
  14. #include <linux/string.h>
  15. #include <linux/tty.h>
  16. #include <linux/console.h>
  17. #include <linux/timex.h>
  18. #include <linux/sched.h>
  19. #include <linux/ioport.h>
  20. #include <linux/mm.h>
  21. #include <linux/serial.h>
  22. #include <linux/irq.h>
  23. #include <linux/bootmem.h>
  24. #include <linux/mmzone.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/acpi.h>
  27. #include <linux/compiler.h>
  28. #include <linux/sched.h>
  29. #include <linux/root_dev.h>
  30. #include <linux/nodemask.h>
  31. #include <asm/io.h>
  32. #include <asm/sal.h>
  33. #include <asm/machvec.h>
  34. #include <asm/system.h>
  35. #include <asm/processor.h>
  36. #include <asm/sn/arch.h>
  37. #include <asm/sn/addrs.h>
  38. #include <asm/sn/pda.h>
  39. #include <asm/sn/nodepda.h>
  40. #include <asm/sn/sn_cpuid.h>
  41. #include <asm/sn/simulator.h>
  42. #include <asm/sn/leds.h>
  43. #include <asm/sn/bte.h>
  44. #include <asm/sn/shub_mmr.h>
  45. #include <asm/sn/clksupport.h>
  46. #include <asm/sn/sn_sal.h>
  47. #include <asm/sn/geo.h>
  48. #include "xtalk/xwidgetdev.h"
  49. #include "xtalk/hubdev.h"
  50. #include <asm/sn/klconfig.h>
  51. DEFINE_PER_CPU(struct pda_s, pda_percpu);
  52. #define MAX_PHYS_MEMORY (1UL << 49) /* 1 TB */
  53. lboard_t *root_lboard[MAX_COMPACT_NODES];
  54. extern void bte_init_node(nodepda_t *, cnodeid_t);
  55. extern void sn_timer_init(void);
  56. extern unsigned long last_time_offset;
  57. extern void (*ia64_mark_idle) (int);
  58. extern void snidle(int);
  59. extern unsigned char acpi_kbd_controller_present;
  60. unsigned long sn_rtc_cycles_per_second;
  61. EXPORT_SYMBOL(sn_rtc_cycles_per_second);
  62. DEFINE_PER_CPU(struct sn_hub_info_s, __sn_hub_info);
  63. EXPORT_PER_CPU_SYMBOL(__sn_hub_info);
  64. partid_t sn_partid = -1;
  65. EXPORT_SYMBOL(sn_partid);
  66. char sn_system_serial_number_string[128];
  67. EXPORT_SYMBOL(sn_system_serial_number_string);
  68. u64 sn_partition_serial_number;
  69. EXPORT_SYMBOL(sn_partition_serial_number);
  70. u8 sn_partition_id;
  71. EXPORT_SYMBOL(sn_partition_id);
  72. u8 sn_system_size;
  73. EXPORT_SYMBOL(sn_system_size);
  74. u8 sn_sharing_domain_size;
  75. EXPORT_SYMBOL(sn_sharing_domain_size);
  76. u8 sn_coherency_id;
  77. EXPORT_SYMBOL(sn_coherency_id);
  78. u8 sn_region_size;
  79. EXPORT_SYMBOL(sn_region_size);
  80. short physical_node_map[MAX_PHYSNODE_ID];
  81. EXPORT_SYMBOL(physical_node_map);
  82. int numionodes;
  83. static void sn_init_pdas(char **);
  84. static void scan_for_ionodes(void);
  85. static nodepda_t *nodepdaindr[MAX_COMPACT_NODES];
  86. /*
  87. * The format of "screen_info" is strange, and due to early i386-setup
  88. * code. This is just enough to make the console code think we're on a
  89. * VGA color display.
  90. */
  91. struct screen_info sn_screen_info = {
  92. .orig_x = 0,
  93. .orig_y = 0,
  94. .orig_video_mode = 3,
  95. .orig_video_cols = 80,
  96. .orig_video_ega_bx = 3,
  97. .orig_video_lines = 25,
  98. .orig_video_isVGA = 1,
  99. .orig_video_points = 16
  100. };
  101. /*
  102. * This is here so we can use the CMOS detection in ide-probe.c to
  103. * determine what drives are present. In theory, we don't need this
  104. * as the auto-detection could be done via ide-probe.c:do_probe() but
  105. * in practice that would be much slower, which is painful when
  106. * running in the simulator. Note that passing zeroes in DRIVE_INFO
  107. * is sufficient (the IDE driver will autodetect the drive geometry).
  108. */
  109. #ifdef CONFIG_IA64_GENERIC
  110. extern char drive_info[4 * 16];
  111. #else
  112. char drive_info[4 * 16];
  113. #endif
  114. /*
  115. * Get nasid of current cpu early in boot before nodepda is initialized
  116. */
  117. static int
  118. boot_get_nasid(void)
  119. {
  120. int nasid;
  121. if (ia64_sn_get_sapic_info(get_sapicid(), &nasid, NULL, NULL))
  122. BUG();
  123. return nasid;
  124. }
  125. /*
  126. * This routine can only be used during init, since
  127. * smp_boot_data is an init data structure.
  128. * We have to use smp_boot_data.cpu_phys_id to find
  129. * the physical id of the processor because the normal
  130. * cpu_physical_id() relies on data structures that
  131. * may not be initialized yet.
  132. */
  133. static int __init pxm_to_nasid(int pxm)
  134. {
  135. int i;
  136. int nid;
  137. nid = pxm_to_nid_map[pxm];
  138. for (i = 0; i < num_node_memblks; i++) {
  139. if (node_memblk[i].nid == nid) {
  140. return NASID_GET(node_memblk[i].start_paddr);
  141. }
  142. }
  143. return -1;
  144. }
  145. /**
  146. * early_sn_setup - early setup routine for SN platforms
  147. *
  148. * Sets up an initial console to aid debugging. Intended primarily
  149. * for bringup. See start_kernel() in init/main.c.
  150. */
  151. void __init early_sn_setup(void)
  152. {
  153. efi_system_table_t *efi_systab;
  154. efi_config_table_t *config_tables;
  155. struct ia64_sal_systab *sal_systab;
  156. struct ia64_sal_desc_entry_point *ep;
  157. char *p;
  158. int i, j;
  159. /*
  160. * Parse enough of the SAL tables to locate the SAL entry point. Since, console
  161. * IO on SN2 is done via SAL calls, early_printk won't work without this.
  162. *
  163. * This code duplicates some of the ACPI table parsing that is in efi.c & sal.c.
  164. * Any changes to those file may have to be made hereas well.
  165. */
  166. efi_systab = (efi_system_table_t *) __va(ia64_boot_param->efi_systab);
  167. config_tables = __va(efi_systab->tables);
  168. for (i = 0; i < efi_systab->nr_tables; i++) {
  169. if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) ==
  170. 0) {
  171. sal_systab = __va(config_tables[i].table);
  172. p = (char *)(sal_systab + 1);
  173. for (j = 0; j < sal_systab->entry_count; j++) {
  174. if (*p == SAL_DESC_ENTRY_POINT) {
  175. ep = (struct ia64_sal_desc_entry_point
  176. *)p;
  177. ia64_sal_handler_init(__va
  178. (ep->sal_proc),
  179. __va(ep->gp));
  180. return;
  181. }
  182. p += SAL_DESC_SIZE(*p);
  183. }
  184. }
  185. }
  186. /* Uh-oh, SAL not available?? */
  187. printk(KERN_ERR "failed to find SAL entry point\n");
  188. }
  189. extern int platform_intr_list[];
  190. extern nasid_t master_nasid;
  191. static int shub_1_1_found __initdata;
  192. /*
  193. * sn_check_for_wars
  194. *
  195. * Set flag for enabling shub specific wars
  196. */
  197. static inline int __init is_shub_1_1(int nasid)
  198. {
  199. unsigned long id;
  200. int rev;
  201. if (is_shub2())
  202. return 0;
  203. id = REMOTE_HUB_L(nasid, SH1_SHUB_ID);
  204. rev = (id & SH1_SHUB_ID_REVISION_MASK) >> SH1_SHUB_ID_REVISION_SHFT;
  205. return rev <= 2;
  206. }
  207. static void __init sn_check_for_wars(void)
  208. {
  209. int cnode;
  210. if (is_shub2()) {
  211. /* none yet */
  212. } else {
  213. for_each_online_node(cnode) {
  214. if (is_shub_1_1(cnodeid_to_nasid(cnode)))
  215. sn_hub_info->shub_1_1_found = 1;
  216. }
  217. }
  218. }
  219. /**
  220. * sn_setup - SN platform setup routine
  221. * @cmdline_p: kernel command line
  222. *
  223. * Handles platform setup for SN machines. This includes determining
  224. * the RTC frequency (via a SAL call), initializing secondary CPUs, and
  225. * setting up per-node data areas. The console is also initialized here.
  226. */
  227. void __init sn_setup(char **cmdline_p)
  228. {
  229. long status, ticks_per_sec, drift;
  230. int pxm;
  231. int major = sn_sal_rev_major(), minor = sn_sal_rev_minor();
  232. extern void sn_cpu_init(void);
  233. /*
  234. * If the generic code has enabled vga console support - lets
  235. * get rid of it again. This is a kludge for the fact that ACPI
  236. * currtently has no way of informing us if legacy VGA is available
  237. * or not.
  238. */
  239. #if defined(CONFIG_VT) && defined(CONFIG_VGA_CONSOLE)
  240. if (conswitchp == &vga_con) {
  241. printk(KERN_DEBUG "SGI: Disabling VGA console\n");
  242. #ifdef CONFIG_DUMMY_CONSOLE
  243. conswitchp = &dummy_con;
  244. #else
  245. conswitchp = NULL;
  246. #endif /* CONFIG_DUMMY_CONSOLE */
  247. }
  248. #endif /* def(CONFIG_VT) && def(CONFIG_VGA_CONSOLE) */
  249. MAX_DMA_ADDRESS = PAGE_OFFSET + MAX_PHYS_MEMORY;
  250. memset(physical_node_map, -1, sizeof(physical_node_map));
  251. for (pxm = 0; pxm < MAX_PXM_DOMAINS; pxm++)
  252. if (pxm_to_nid_map[pxm] != -1)
  253. physical_node_map[pxm_to_nasid(pxm)] =
  254. pxm_to_nid_map[pxm];
  255. /*
  256. * Old PROMs do not provide an ACPI FADT. Disable legacy keyboard
  257. * support here so we don't have to listen to failed keyboard probe
  258. * messages.
  259. */
  260. if ((major < 2 || (major == 2 && minor <= 9)) &&
  261. acpi_kbd_controller_present) {
  262. printk(KERN_INFO "Disabling legacy keyboard support as prom "
  263. "is too old and doesn't provide FADT\n");
  264. acpi_kbd_controller_present = 0;
  265. }
  266. printk("SGI SAL version %x.%02x\n", major, minor);
  267. /*
  268. * Confirm the SAL we're running on is recent enough...
  269. */
  270. if ((major < SN_SAL_MIN_MAJOR) || (major == SN_SAL_MIN_MAJOR &&
  271. minor < SN_SAL_MIN_MINOR)) {
  272. printk(KERN_ERR "This kernel needs SGI SAL version >= "
  273. "%x.%02x\n", SN_SAL_MIN_MAJOR, SN_SAL_MIN_MINOR);
  274. panic("PROM version too old\n");
  275. }
  276. master_nasid = boot_get_nasid();
  277. status =
  278. ia64_sal_freq_base(SAL_FREQ_BASE_REALTIME_CLOCK, &ticks_per_sec,
  279. &drift);
  280. if (status != 0 || ticks_per_sec < 100000) {
  281. printk(KERN_WARNING
  282. "unable to determine platform RTC clock frequency, guessing.\n");
  283. /* PROM gives wrong value for clock freq. so guess */
  284. sn_rtc_cycles_per_second = 1000000000000UL / 30000UL;
  285. } else
  286. sn_rtc_cycles_per_second = ticks_per_sec;
  287. platform_intr_list[ACPI_INTERRUPT_CPEI] = IA64_CPE_VECTOR;
  288. /*
  289. * we set the default root device to /dev/hda
  290. * to make simulation easy
  291. */
  292. ROOT_DEV = Root_HDA1;
  293. /*
  294. * Create the PDAs and NODEPDAs for all the cpus.
  295. */
  296. sn_init_pdas(cmdline_p);
  297. ia64_mark_idle = &snidle;
  298. /*
  299. * For the bootcpu, we do this here. All other cpus will make the
  300. * call as part of cpu_init in slave cpu initialization.
  301. */
  302. sn_cpu_init();
  303. #ifdef CONFIG_SMP
  304. init_smp_config();
  305. #endif
  306. screen_info = sn_screen_info;
  307. sn_timer_init();
  308. }
  309. /**
  310. * sn_init_pdas - setup node data areas
  311. *
  312. * One time setup for Node Data Area. Called by sn_setup().
  313. */
  314. static void __init sn_init_pdas(char **cmdline_p)
  315. {
  316. cnodeid_t cnode;
  317. memset(pda->cnodeid_to_nasid_table, -1,
  318. sizeof(pda->cnodeid_to_nasid_table));
  319. for_each_online_node(cnode)
  320. pda->cnodeid_to_nasid_table[cnode] =
  321. pxm_to_nasid(nid_to_pxm_map[cnode]);
  322. numionodes = num_online_nodes();
  323. scan_for_ionodes();
  324. /*
  325. * Allocate & initalize the nodepda for each node.
  326. */
  327. for_each_online_node(cnode) {
  328. nodepdaindr[cnode] =
  329. alloc_bootmem_node(NODE_DATA(cnode), sizeof(nodepda_t));
  330. memset(nodepdaindr[cnode], 0, sizeof(nodepda_t));
  331. memset(nodepdaindr[cnode]->phys_cpuid, -1,
  332. sizeof(nodepdaindr[cnode]->phys_cpuid));
  333. }
  334. /*
  335. * Allocate & initialize nodepda for TIOs. For now, put them on node 0.
  336. */
  337. for (cnode = num_online_nodes(); cnode < numionodes; cnode++) {
  338. nodepdaindr[cnode] =
  339. alloc_bootmem_node(NODE_DATA(0), sizeof(nodepda_t));
  340. memset(nodepdaindr[cnode], 0, sizeof(nodepda_t));
  341. }
  342. /*
  343. * Now copy the array of nodepda pointers to each nodepda.
  344. */
  345. for (cnode = 0; cnode < numionodes; cnode++)
  346. memcpy(nodepdaindr[cnode]->pernode_pdaindr, nodepdaindr,
  347. sizeof(nodepdaindr));
  348. /*
  349. * Set up IO related platform-dependent nodepda fields.
  350. * The following routine actually sets up the hubinfo struct
  351. * in nodepda.
  352. */
  353. for_each_online_node(cnode) {
  354. bte_init_node(nodepdaindr[cnode], cnode);
  355. }
  356. /*
  357. * Initialize the per node hubdev. This includes IO Nodes and
  358. * headless/memless nodes.
  359. */
  360. for (cnode = 0; cnode < numionodes; cnode++) {
  361. hubdev_init_node(nodepdaindr[cnode], cnode);
  362. }
  363. }
  364. /**
  365. * sn_cpu_init - initialize per-cpu data areas
  366. * @cpuid: cpuid of the caller
  367. *
  368. * Called during cpu initialization on each cpu as it starts.
  369. * Currently, initializes the per-cpu data area for SNIA.
  370. * Also sets up a few fields in the nodepda. Also known as
  371. * platform_cpu_init() by the ia64 machvec code.
  372. */
  373. void __init sn_cpu_init(void)
  374. {
  375. int cpuid;
  376. int cpuphyid;
  377. int nasid;
  378. int subnode;
  379. int slice;
  380. int cnode;
  381. int i;
  382. static int wars_have_been_checked;
  383. memset(pda, 0, sizeof(pda));
  384. if (ia64_sn_get_sn_info(0, &sn_hub_info->shub2, &sn_hub_info->nasid_bitmask, &sn_hub_info->nasid_shift,
  385. &sn_system_size, &sn_sharing_domain_size, &sn_partition_id,
  386. &sn_coherency_id, &sn_region_size))
  387. BUG();
  388. sn_hub_info->as_shift = sn_hub_info->nasid_shift - 2;
  389. /*
  390. * The boot cpu makes this call again after platform initialization is
  391. * complete.
  392. */
  393. if (nodepdaindr[0] == NULL)
  394. return;
  395. cpuid = smp_processor_id();
  396. cpuphyid = get_sapicid();
  397. if (ia64_sn_get_sapic_info(cpuphyid, &nasid, &subnode, &slice))
  398. BUG();
  399. for (i=0; i < MAX_NUMNODES; i++) {
  400. if (nodepdaindr[i]) {
  401. nodepdaindr[i]->phys_cpuid[cpuid].nasid = nasid;
  402. nodepdaindr[i]->phys_cpuid[cpuid].slice = slice;
  403. nodepdaindr[i]->phys_cpuid[cpuid].subnode = subnode;
  404. }
  405. }
  406. cnode = nasid_to_cnodeid(nasid);
  407. pda->p_nodepda = nodepdaindr[cnode];
  408. pda->led_address =
  409. (typeof(pda->led_address)) (LED0 + (slice << LED_CPU_SHIFT));
  410. pda->led_state = LED_ALWAYS_SET;
  411. pda->hb_count = HZ / 2;
  412. pda->hb_state = 0;
  413. pda->idle_flag = 0;
  414. if (cpuid != 0) {
  415. memcpy(pda->cnodeid_to_nasid_table,
  416. pdacpu(0)->cnodeid_to_nasid_table,
  417. sizeof(pda->cnodeid_to_nasid_table));
  418. }
  419. /*
  420. * Check for WARs.
  421. * Only needs to be done once, on BSP.
  422. * Has to be done after loop above, because it uses pda.cnodeid_to_nasid_table[i].
  423. * Has to be done before assignment below.
  424. */
  425. if (!wars_have_been_checked) {
  426. sn_check_for_wars();
  427. wars_have_been_checked = 1;
  428. }
  429. sn_hub_info->shub_1_1_found = shub_1_1_found;
  430. /*
  431. * Set up addresses of PIO/MEM write status registers.
  432. */
  433. {
  434. u64 pio1[] = {SH1_PIO_WRITE_STATUS_0, 0, SH1_PIO_WRITE_STATUS_1, 0};
  435. u64 pio2[] = {SH2_PIO_WRITE_STATUS_0, SH2_PIO_WRITE_STATUS_1,
  436. SH2_PIO_WRITE_STATUS_2, SH2_PIO_WRITE_STATUS_3};
  437. u64 *pio;
  438. pio = is_shub1() ? pio1 : pio2;
  439. pda->pio_write_status_addr = (volatile unsigned long *) LOCAL_MMR_ADDR(pio[slice]);
  440. pda->pio_write_status_val = is_shub1() ? SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK : 0;
  441. }
  442. /*
  443. * WAR addresses for SHUB 1.x.
  444. */
  445. if (local_node_data->active_cpu_count++ == 0 && is_shub1()) {
  446. int buddy_nasid;
  447. buddy_nasid =
  448. cnodeid_to_nasid(numa_node_id() ==
  449. num_online_nodes() - 1 ? 0 : numa_node_id() + 1);
  450. pda->pio_shub_war_cam_addr =
  451. (volatile unsigned long *)GLOBAL_MMR_ADDR(nasid,
  452. SH1_PI_CAM_CONTROL);
  453. }
  454. }
  455. /*
  456. * Scan klconfig for ionodes. Add the nasids to the
  457. * physical_node_map and the pda and increment numionodes.
  458. */
  459. static void __init scan_for_ionodes(void)
  460. {
  461. int nasid = 0;
  462. lboard_t *brd;
  463. /* Setup ionodes with memory */
  464. for (nasid = 0; nasid < MAX_PHYSNODE_ID; nasid += 2) {
  465. char *klgraph_header;
  466. cnodeid_t cnodeid;
  467. if (physical_node_map[nasid] == -1)
  468. continue;
  469. cnodeid = -1;
  470. klgraph_header = __va(ia64_sn_get_klconfig_addr(nasid));
  471. if (!klgraph_header) {
  472. if (IS_RUNNING_ON_SIMULATOR())
  473. continue;
  474. BUG(); /* All nodes must have klconfig tables! */
  475. }
  476. cnodeid = nasid_to_cnodeid(nasid);
  477. root_lboard[cnodeid] = (lboard_t *)
  478. NODE_OFFSET_TO_LBOARD((nasid),
  479. ((kl_config_hdr_t
  480. *) (klgraph_header))->
  481. ch_board_info);
  482. }
  483. /* Scan headless/memless IO Nodes. */
  484. for (nasid = 0; nasid < MAX_PHYSNODE_ID; nasid += 2) {
  485. /* if there's no nasid, don't try to read the klconfig on the node */
  486. if (physical_node_map[nasid] == -1)
  487. continue;
  488. brd = find_lboard_any((lboard_t *)
  489. root_lboard[nasid_to_cnodeid(nasid)],
  490. KLTYPE_SNIA);
  491. if (brd) {
  492. brd = KLCF_NEXT_ANY(brd); /* Skip this node's lboard */
  493. if (!brd)
  494. continue;
  495. }
  496. brd = find_lboard_any(brd, KLTYPE_SNIA);
  497. while (brd) {
  498. pda->cnodeid_to_nasid_table[numionodes] =
  499. brd->brd_nasid;
  500. physical_node_map[brd->brd_nasid] = numionodes;
  501. root_lboard[numionodes] = brd;
  502. numionodes++;
  503. brd = KLCF_NEXT_ANY(brd);
  504. if (!brd)
  505. break;
  506. brd = find_lboard_any(brd, KLTYPE_SNIA);
  507. }
  508. }
  509. /* Scan for TIO nodes. */
  510. for (nasid = 0; nasid < MAX_PHYSNODE_ID; nasid += 2) {
  511. /* if there's no nasid, don't try to read the klconfig on the node */
  512. if (physical_node_map[nasid] == -1)
  513. continue;
  514. brd = find_lboard_any((lboard_t *)
  515. root_lboard[nasid_to_cnodeid(nasid)],
  516. KLTYPE_TIO);
  517. while (brd) {
  518. pda->cnodeid_to_nasid_table[numionodes] =
  519. brd->brd_nasid;
  520. physical_node_map[brd->brd_nasid] = numionodes;
  521. root_lboard[numionodes] = brd;
  522. numionodes++;
  523. brd = KLCF_NEXT_ANY(brd);
  524. if (!brd)
  525. break;
  526. brd = find_lboard_any(brd, KLTYPE_TIO);
  527. }
  528. }
  529. }
  530. int
  531. nasid_slice_to_cpuid(int nasid, int slice)
  532. {
  533. long cpu;
  534. for (cpu=0; cpu < NR_CPUS; cpu++)
  535. if (nodepda->phys_cpuid[cpu].nasid == nasid && nodepda->phys_cpuid[cpu].slice == slice)
  536. return cpu;
  537. return -1;
  538. }