hugetlbpage.c 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341
  1. /*
  2. * IA-64 Huge TLB Page Support for Kernel.
  3. *
  4. * Copyright (C) 2002-2004 Rohit Seth <rohit.seth@intel.com>
  5. * Copyright (C) 2003-2004 Ken Chen <kenneth.w.chen@intel.com>
  6. *
  7. * Sep, 2003: add numa support
  8. * Feb, 2004: dynamic hugetlb page size via boot parameter
  9. */
  10. #include <linux/config.h>
  11. #include <linux/init.h>
  12. #include <linux/fs.h>
  13. #include <linux/mm.h>
  14. #include <linux/hugetlb.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/smp_lock.h>
  17. #include <linux/slab.h>
  18. #include <linux/sysctl.h>
  19. #include <asm/mman.h>
  20. #include <asm/pgalloc.h>
  21. #include <asm/tlb.h>
  22. #include <asm/tlbflush.h>
  23. unsigned int hpage_shift=HPAGE_SHIFT_DEFAULT;
  24. static pte_t *
  25. huge_pte_alloc (struct mm_struct *mm, unsigned long addr)
  26. {
  27. unsigned long taddr = htlbpage_to_page(addr);
  28. pgd_t *pgd;
  29. pud_t *pud;
  30. pmd_t *pmd;
  31. pte_t *pte = NULL;
  32. pgd = pgd_offset(mm, taddr);
  33. pud = pud_alloc(mm, pgd, taddr);
  34. if (pud) {
  35. pmd = pmd_alloc(mm, pud, taddr);
  36. if (pmd)
  37. pte = pte_alloc_map(mm, pmd, taddr);
  38. }
  39. return pte;
  40. }
  41. static pte_t *
  42. huge_pte_offset (struct mm_struct *mm, unsigned long addr)
  43. {
  44. unsigned long taddr = htlbpage_to_page(addr);
  45. pgd_t *pgd;
  46. pud_t *pud;
  47. pmd_t *pmd;
  48. pte_t *pte = NULL;
  49. pgd = pgd_offset(mm, taddr);
  50. if (pgd_present(*pgd)) {
  51. pud = pud_offset(pgd, taddr);
  52. if (pud_present(*pud)) {
  53. pmd = pmd_offset(pud, taddr);
  54. if (pmd_present(*pmd))
  55. pte = pte_offset_map(pmd, taddr);
  56. }
  57. }
  58. return pte;
  59. }
  60. #define mk_pte_huge(entry) { pte_val(entry) |= _PAGE_P; }
  61. static void
  62. set_huge_pte (struct mm_struct *mm, struct vm_area_struct *vma,
  63. struct page *page, pte_t * page_table, int write_access)
  64. {
  65. pte_t entry;
  66. add_mm_counter(mm, rss, HPAGE_SIZE / PAGE_SIZE);
  67. if (write_access) {
  68. entry =
  69. pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
  70. } else
  71. entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
  72. entry = pte_mkyoung(entry);
  73. mk_pte_huge(entry);
  74. set_pte(page_table, entry);
  75. return;
  76. }
  77. /*
  78. * This function checks for proper alignment of input addr and len parameters.
  79. */
  80. int is_aligned_hugepage_range(unsigned long addr, unsigned long len)
  81. {
  82. if (len & ~HPAGE_MASK)
  83. return -EINVAL;
  84. if (addr & ~HPAGE_MASK)
  85. return -EINVAL;
  86. if (REGION_NUMBER(addr) != REGION_HPAGE)
  87. return -EINVAL;
  88. return 0;
  89. }
  90. int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
  91. struct vm_area_struct *vma)
  92. {
  93. pte_t *src_pte, *dst_pte, entry;
  94. struct page *ptepage;
  95. unsigned long addr = vma->vm_start;
  96. unsigned long end = vma->vm_end;
  97. while (addr < end) {
  98. dst_pte = huge_pte_alloc(dst, addr);
  99. if (!dst_pte)
  100. goto nomem;
  101. src_pte = huge_pte_offset(src, addr);
  102. entry = *src_pte;
  103. ptepage = pte_page(entry);
  104. get_page(ptepage);
  105. set_pte(dst_pte, entry);
  106. add_mm_counter(dst, rss, HPAGE_SIZE / PAGE_SIZE);
  107. addr += HPAGE_SIZE;
  108. }
  109. return 0;
  110. nomem:
  111. return -ENOMEM;
  112. }
  113. int
  114. follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
  115. struct page **pages, struct vm_area_struct **vmas,
  116. unsigned long *st, int *length, int i)
  117. {
  118. pte_t *ptep, pte;
  119. unsigned long start = *st;
  120. unsigned long pstart;
  121. int len = *length;
  122. struct page *page;
  123. do {
  124. pstart = start & HPAGE_MASK;
  125. ptep = huge_pte_offset(mm, start);
  126. pte = *ptep;
  127. back1:
  128. page = pte_page(pte);
  129. if (pages) {
  130. page += ((start & ~HPAGE_MASK) >> PAGE_SHIFT);
  131. get_page(page);
  132. pages[i] = page;
  133. }
  134. if (vmas)
  135. vmas[i] = vma;
  136. i++;
  137. len--;
  138. start += PAGE_SIZE;
  139. if (((start & HPAGE_MASK) == pstart) && len &&
  140. (start < vma->vm_end))
  141. goto back1;
  142. } while (len && start < vma->vm_end);
  143. *length = len;
  144. *st = start;
  145. return i;
  146. }
  147. struct page *follow_huge_addr(struct mm_struct *mm, unsigned long addr, int write)
  148. {
  149. struct page *page;
  150. pte_t *ptep;
  151. if (REGION_NUMBER(addr) != REGION_HPAGE)
  152. return ERR_PTR(-EINVAL);
  153. ptep = huge_pte_offset(mm, addr);
  154. if (!ptep || pte_none(*ptep))
  155. return NULL;
  156. page = pte_page(*ptep);
  157. page += ((addr & ~HPAGE_MASK) >> PAGE_SHIFT);
  158. return page;
  159. }
  160. int pmd_huge(pmd_t pmd)
  161. {
  162. return 0;
  163. }
  164. struct page *
  165. follow_huge_pmd(struct mm_struct *mm, unsigned long address, pmd_t *pmd, int write)
  166. {
  167. return NULL;
  168. }
  169. void hugetlb_free_pgd_range(struct mmu_gather **tlb,
  170. unsigned long addr, unsigned long end,
  171. unsigned long floor, unsigned long ceiling)
  172. {
  173. /*
  174. * This is called only when is_hugepage_only_range(addr,),
  175. * and it follows that is_hugepage_only_range(end,) also.
  176. *
  177. * The offset of these addresses from the base of the hugetlb
  178. * region must be scaled down by HPAGE_SIZE/PAGE_SIZE so that
  179. * the standard free_pgd_range will free the right page tables.
  180. *
  181. * If floor and ceiling are also in the hugetlb region, they
  182. * must likewise be scaled down; but if outside, left unchanged.
  183. */
  184. addr = htlbpage_to_page(addr);
  185. end = htlbpage_to_page(end);
  186. if (is_hugepage_only_range(tlb->mm, floor, HPAGE_SIZE))
  187. floor = htlbpage_to_page(floor);
  188. if (is_hugepage_only_range(tlb->mm, ceiling, HPAGE_SIZE))
  189. ceiling = htlbpage_to_page(ceiling);
  190. free_pgd_range(tlb, addr, end, floor, ceiling);
  191. }
  192. void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
  193. {
  194. struct mm_struct *mm = vma->vm_mm;
  195. unsigned long address;
  196. pte_t *pte;
  197. struct page *page;
  198. BUG_ON(start & (HPAGE_SIZE - 1));
  199. BUG_ON(end & (HPAGE_SIZE - 1));
  200. for (address = start; address < end; address += HPAGE_SIZE) {
  201. pte = huge_pte_offset(mm, address);
  202. if (pte_none(*pte))
  203. continue;
  204. page = pte_page(*pte);
  205. put_page(page);
  206. pte_clear(mm, address, pte);
  207. }
  208. add_mm_counter(mm, rss, - ((end - start) >> PAGE_SHIFT));
  209. flush_tlb_range(vma, start, end);
  210. }
  211. int hugetlb_prefault(struct address_space *mapping, struct vm_area_struct *vma)
  212. {
  213. struct mm_struct *mm = current->mm;
  214. unsigned long addr;
  215. int ret = 0;
  216. BUG_ON(vma->vm_start & ~HPAGE_MASK);
  217. BUG_ON(vma->vm_end & ~HPAGE_MASK);
  218. spin_lock(&mm->page_table_lock);
  219. for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
  220. unsigned long idx;
  221. pte_t *pte = huge_pte_alloc(mm, addr);
  222. struct page *page;
  223. if (!pte) {
  224. ret = -ENOMEM;
  225. goto out;
  226. }
  227. if (!pte_none(*pte))
  228. continue;
  229. idx = ((addr - vma->vm_start) >> HPAGE_SHIFT)
  230. + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
  231. page = find_get_page(mapping, idx);
  232. if (!page) {
  233. /* charge the fs quota first */
  234. if (hugetlb_get_quota(mapping)) {
  235. ret = -ENOMEM;
  236. goto out;
  237. }
  238. page = alloc_huge_page();
  239. if (!page) {
  240. hugetlb_put_quota(mapping);
  241. ret = -ENOMEM;
  242. goto out;
  243. }
  244. ret = add_to_page_cache(page, mapping, idx, GFP_ATOMIC);
  245. if (! ret) {
  246. unlock_page(page);
  247. } else {
  248. hugetlb_put_quota(mapping);
  249. page_cache_release(page);
  250. goto out;
  251. }
  252. }
  253. set_huge_pte(mm, vma, page, pte, vma->vm_flags & VM_WRITE);
  254. }
  255. out:
  256. spin_unlock(&mm->page_table_lock);
  257. return ret;
  258. }
  259. unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
  260. unsigned long pgoff, unsigned long flags)
  261. {
  262. struct vm_area_struct *vmm;
  263. if (len > RGN_MAP_LIMIT)
  264. return -ENOMEM;
  265. if (len & ~HPAGE_MASK)
  266. return -EINVAL;
  267. /* This code assumes that REGION_HPAGE != 0. */
  268. if ((REGION_NUMBER(addr) != REGION_HPAGE) || (addr & (HPAGE_SIZE - 1)))
  269. addr = HPAGE_REGION_BASE;
  270. else
  271. addr = ALIGN(addr, HPAGE_SIZE);
  272. for (vmm = find_vma(current->mm, addr); ; vmm = vmm->vm_next) {
  273. /* At this point: (!vmm || addr < vmm->vm_end). */
  274. if (REGION_OFFSET(addr) + len > RGN_MAP_LIMIT)
  275. return -ENOMEM;
  276. if (!vmm || (addr + len) <= vmm->vm_start)
  277. return addr;
  278. addr = ALIGN(vmm->vm_end, HPAGE_SIZE);
  279. }
  280. }
  281. static int __init hugetlb_setup_sz(char *str)
  282. {
  283. u64 tr_pages;
  284. unsigned long long size;
  285. if (ia64_pal_vm_page_size(&tr_pages, NULL) != 0)
  286. /*
  287. * shouldn't happen, but just in case.
  288. */
  289. tr_pages = 0x15557000UL;
  290. size = memparse(str, &str);
  291. if (*str || (size & (size-1)) || !(tr_pages & size) ||
  292. size <= PAGE_SIZE ||
  293. size >= (1UL << PAGE_SHIFT << MAX_ORDER)) {
  294. printk(KERN_WARNING "Invalid huge page size specified\n");
  295. return 1;
  296. }
  297. hpage_shift = __ffs(size);
  298. /*
  299. * boot cpu already executed ia64_mmu_init, and has HPAGE_SHIFT_DEFAULT
  300. * override here with new page shift.
  301. */
  302. ia64_set_rr(HPAGE_REGION_BASE, hpage_shift << 2);
  303. return 1;
  304. }
  305. __setup("hugepagesz=", hugetlb_setup_sz);