efi.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832
  1. /*
  2. * Extensible Firmware Interface
  3. *
  4. * Based on Extensible Firmware Interface Specification version 0.9 April 30, 1999
  5. *
  6. * Copyright (C) 1999 VA Linux Systems
  7. * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  8. * Copyright (C) 1999-2003 Hewlett-Packard Co.
  9. * David Mosberger-Tang <davidm@hpl.hp.com>
  10. * Stephane Eranian <eranian@hpl.hp.com>
  11. *
  12. * All EFI Runtime Services are not implemented yet as EFI only
  13. * supports physical mode addressing on SoftSDV. This is to be fixed
  14. * in a future version. --drummond 1999-07-20
  15. *
  16. * Implemented EFI runtime services and virtual mode calls. --davidm
  17. *
  18. * Goutham Rao: <goutham.rao@intel.com>
  19. * Skip non-WB memory and ignore empty memory ranges.
  20. */
  21. #include <linux/config.h>
  22. #include <linux/module.h>
  23. #include <linux/kernel.h>
  24. #include <linux/init.h>
  25. #include <linux/types.h>
  26. #include <linux/time.h>
  27. #include <linux/efi.h>
  28. #include <asm/io.h>
  29. #include <asm/kregs.h>
  30. #include <asm/meminit.h>
  31. #include <asm/pgtable.h>
  32. #include <asm/processor.h>
  33. #include <asm/mca.h>
  34. #define EFI_DEBUG 0
  35. extern efi_status_t efi_call_phys (void *, ...);
  36. struct efi efi;
  37. EXPORT_SYMBOL(efi);
  38. static efi_runtime_services_t *runtime;
  39. static unsigned long mem_limit = ~0UL, max_addr = ~0UL;
  40. #define efi_call_virt(f, args...) (*(f))(args)
  41. #define STUB_GET_TIME(prefix, adjust_arg) \
  42. static efi_status_t \
  43. prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
  44. { \
  45. struct ia64_fpreg fr[6]; \
  46. efi_time_cap_t *atc = NULL; \
  47. efi_status_t ret; \
  48. \
  49. if (tc) \
  50. atc = adjust_arg(tc); \
  51. ia64_save_scratch_fpregs(fr); \
  52. ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), adjust_arg(tm), atc); \
  53. ia64_load_scratch_fpregs(fr); \
  54. return ret; \
  55. }
  56. #define STUB_SET_TIME(prefix, adjust_arg) \
  57. static efi_status_t \
  58. prefix##_set_time (efi_time_t *tm) \
  59. { \
  60. struct ia64_fpreg fr[6]; \
  61. efi_status_t ret; \
  62. \
  63. ia64_save_scratch_fpregs(fr); \
  64. ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), adjust_arg(tm)); \
  65. ia64_load_scratch_fpregs(fr); \
  66. return ret; \
  67. }
  68. #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
  69. static efi_status_t \
  70. prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, efi_time_t *tm) \
  71. { \
  72. struct ia64_fpreg fr[6]; \
  73. efi_status_t ret; \
  74. \
  75. ia64_save_scratch_fpregs(fr); \
  76. ret = efi_call_##prefix((efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
  77. adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
  78. ia64_load_scratch_fpregs(fr); \
  79. return ret; \
  80. }
  81. #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
  82. static efi_status_t \
  83. prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
  84. { \
  85. struct ia64_fpreg fr[6]; \
  86. efi_time_t *atm = NULL; \
  87. efi_status_t ret; \
  88. \
  89. if (tm) \
  90. atm = adjust_arg(tm); \
  91. ia64_save_scratch_fpregs(fr); \
  92. ret = efi_call_##prefix((efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
  93. enabled, atm); \
  94. ia64_load_scratch_fpregs(fr); \
  95. return ret; \
  96. }
  97. #define STUB_GET_VARIABLE(prefix, adjust_arg) \
  98. static efi_status_t \
  99. prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
  100. unsigned long *data_size, void *data) \
  101. { \
  102. struct ia64_fpreg fr[6]; \
  103. u32 *aattr = NULL; \
  104. efi_status_t ret; \
  105. \
  106. if (attr) \
  107. aattr = adjust_arg(attr); \
  108. ia64_save_scratch_fpregs(fr); \
  109. ret = efi_call_##prefix((efi_get_variable_t *) __va(runtime->get_variable), \
  110. adjust_arg(name), adjust_arg(vendor), aattr, \
  111. adjust_arg(data_size), adjust_arg(data)); \
  112. ia64_load_scratch_fpregs(fr); \
  113. return ret; \
  114. }
  115. #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
  116. static efi_status_t \
  117. prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor) \
  118. { \
  119. struct ia64_fpreg fr[6]; \
  120. efi_status_t ret; \
  121. \
  122. ia64_save_scratch_fpregs(fr); \
  123. ret = efi_call_##prefix((efi_get_next_variable_t *) __va(runtime->get_next_variable), \
  124. adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
  125. ia64_load_scratch_fpregs(fr); \
  126. return ret; \
  127. }
  128. #define STUB_SET_VARIABLE(prefix, adjust_arg) \
  129. static efi_status_t \
  130. prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, unsigned long attr, \
  131. unsigned long data_size, void *data) \
  132. { \
  133. struct ia64_fpreg fr[6]; \
  134. efi_status_t ret; \
  135. \
  136. ia64_save_scratch_fpregs(fr); \
  137. ret = efi_call_##prefix((efi_set_variable_t *) __va(runtime->set_variable), \
  138. adjust_arg(name), adjust_arg(vendor), attr, data_size, \
  139. adjust_arg(data)); \
  140. ia64_load_scratch_fpregs(fr); \
  141. return ret; \
  142. }
  143. #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
  144. static efi_status_t \
  145. prefix##_get_next_high_mono_count (u32 *count) \
  146. { \
  147. struct ia64_fpreg fr[6]; \
  148. efi_status_t ret; \
  149. \
  150. ia64_save_scratch_fpregs(fr); \
  151. ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
  152. __va(runtime->get_next_high_mono_count), adjust_arg(count)); \
  153. ia64_load_scratch_fpregs(fr); \
  154. return ret; \
  155. }
  156. #define STUB_RESET_SYSTEM(prefix, adjust_arg) \
  157. static void \
  158. prefix##_reset_system (int reset_type, efi_status_t status, \
  159. unsigned long data_size, efi_char16_t *data) \
  160. { \
  161. struct ia64_fpreg fr[6]; \
  162. efi_char16_t *adata = NULL; \
  163. \
  164. if (data) \
  165. adata = adjust_arg(data); \
  166. \
  167. ia64_save_scratch_fpregs(fr); \
  168. efi_call_##prefix((efi_reset_system_t *) __va(runtime->reset_system), \
  169. reset_type, status, data_size, adata); \
  170. /* should not return, but just in case... */ \
  171. ia64_load_scratch_fpregs(fr); \
  172. }
  173. #define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))
  174. STUB_GET_TIME(phys, phys_ptr)
  175. STUB_SET_TIME(phys, phys_ptr)
  176. STUB_GET_WAKEUP_TIME(phys, phys_ptr)
  177. STUB_SET_WAKEUP_TIME(phys, phys_ptr)
  178. STUB_GET_VARIABLE(phys, phys_ptr)
  179. STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
  180. STUB_SET_VARIABLE(phys, phys_ptr)
  181. STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
  182. STUB_RESET_SYSTEM(phys, phys_ptr)
  183. #define id(arg) arg
  184. STUB_GET_TIME(virt, id)
  185. STUB_SET_TIME(virt, id)
  186. STUB_GET_WAKEUP_TIME(virt, id)
  187. STUB_SET_WAKEUP_TIME(virt, id)
  188. STUB_GET_VARIABLE(virt, id)
  189. STUB_GET_NEXT_VARIABLE(virt, id)
  190. STUB_SET_VARIABLE(virt, id)
  191. STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
  192. STUB_RESET_SYSTEM(virt, id)
  193. void
  194. efi_gettimeofday (struct timespec *ts)
  195. {
  196. efi_time_t tm;
  197. memset(ts, 0, sizeof(ts));
  198. if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS)
  199. return;
  200. ts->tv_sec = mktime(tm.year, tm.month, tm.day, tm.hour, tm.minute, tm.second);
  201. ts->tv_nsec = tm.nanosecond;
  202. }
  203. static int
  204. is_available_memory (efi_memory_desc_t *md)
  205. {
  206. if (!(md->attribute & EFI_MEMORY_WB))
  207. return 0;
  208. switch (md->type) {
  209. case EFI_LOADER_CODE:
  210. case EFI_LOADER_DATA:
  211. case EFI_BOOT_SERVICES_CODE:
  212. case EFI_BOOT_SERVICES_DATA:
  213. case EFI_CONVENTIONAL_MEMORY:
  214. return 1;
  215. }
  216. return 0;
  217. }
  218. /*
  219. * Trim descriptor MD so its starts at address START_ADDR. If the descriptor covers
  220. * memory that is normally available to the kernel, issue a warning that some memory
  221. * is being ignored.
  222. */
  223. static void
  224. trim_bottom (efi_memory_desc_t *md, u64 start_addr)
  225. {
  226. u64 num_skipped_pages;
  227. if (md->phys_addr >= start_addr || !md->num_pages)
  228. return;
  229. num_skipped_pages = (start_addr - md->phys_addr) >> EFI_PAGE_SHIFT;
  230. if (num_skipped_pages > md->num_pages)
  231. num_skipped_pages = md->num_pages;
  232. if (is_available_memory(md))
  233. printk(KERN_NOTICE "efi.%s: ignoring %luKB of memory at 0x%lx due to granule hole "
  234. "at 0x%lx\n", __FUNCTION__,
  235. (num_skipped_pages << EFI_PAGE_SHIFT) >> 10,
  236. md->phys_addr, start_addr - IA64_GRANULE_SIZE);
  237. /*
  238. * NOTE: Don't set md->phys_addr to START_ADDR because that could cause the memory
  239. * descriptor list to become unsorted. In such a case, md->num_pages will be
  240. * zero, so the Right Thing will happen.
  241. */
  242. md->phys_addr += num_skipped_pages << EFI_PAGE_SHIFT;
  243. md->num_pages -= num_skipped_pages;
  244. }
  245. static void
  246. trim_top (efi_memory_desc_t *md, u64 end_addr)
  247. {
  248. u64 num_dropped_pages, md_end_addr;
  249. md_end_addr = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT);
  250. if (md_end_addr <= end_addr || !md->num_pages)
  251. return;
  252. num_dropped_pages = (md_end_addr - end_addr) >> EFI_PAGE_SHIFT;
  253. if (num_dropped_pages > md->num_pages)
  254. num_dropped_pages = md->num_pages;
  255. if (is_available_memory(md))
  256. printk(KERN_NOTICE "efi.%s: ignoring %luKB of memory at 0x%lx due to granule hole "
  257. "at 0x%lx\n", __FUNCTION__,
  258. (num_dropped_pages << EFI_PAGE_SHIFT) >> 10,
  259. md->phys_addr, end_addr);
  260. md->num_pages -= num_dropped_pages;
  261. }
  262. /*
  263. * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
  264. * has memory that is available for OS use.
  265. */
  266. void
  267. efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
  268. {
  269. int prev_valid = 0;
  270. struct range {
  271. u64 start;
  272. u64 end;
  273. } prev, curr;
  274. void *efi_map_start, *efi_map_end, *p, *q;
  275. efi_memory_desc_t *md, *check_md;
  276. u64 efi_desc_size, start, end, granule_addr, last_granule_addr, first_non_wb_addr = 0;
  277. unsigned long total_mem = 0;
  278. efi_map_start = __va(ia64_boot_param->efi_memmap);
  279. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  280. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  281. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  282. md = p;
  283. /* skip over non-WB memory descriptors; that's all we're interested in... */
  284. if (!(md->attribute & EFI_MEMORY_WB))
  285. continue;
  286. /*
  287. * granule_addr is the base of md's first granule.
  288. * [granule_addr - first_non_wb_addr) is guaranteed to
  289. * be contiguous WB memory.
  290. */
  291. granule_addr = GRANULEROUNDDOWN(md->phys_addr);
  292. first_non_wb_addr = max(first_non_wb_addr, granule_addr);
  293. if (first_non_wb_addr < md->phys_addr) {
  294. trim_bottom(md, granule_addr + IA64_GRANULE_SIZE);
  295. granule_addr = GRANULEROUNDDOWN(md->phys_addr);
  296. first_non_wb_addr = max(first_non_wb_addr, granule_addr);
  297. }
  298. for (q = p; q < efi_map_end; q += efi_desc_size) {
  299. check_md = q;
  300. if ((check_md->attribute & EFI_MEMORY_WB) &&
  301. (check_md->phys_addr == first_non_wb_addr))
  302. first_non_wb_addr += check_md->num_pages << EFI_PAGE_SHIFT;
  303. else
  304. break; /* non-WB or hole */
  305. }
  306. last_granule_addr = GRANULEROUNDDOWN(first_non_wb_addr);
  307. if (last_granule_addr < md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT))
  308. trim_top(md, last_granule_addr);
  309. if (is_available_memory(md)) {
  310. if (md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) >= max_addr) {
  311. if (md->phys_addr >= max_addr)
  312. continue;
  313. md->num_pages = (max_addr - md->phys_addr) >> EFI_PAGE_SHIFT;
  314. first_non_wb_addr = max_addr;
  315. }
  316. if (total_mem >= mem_limit)
  317. continue;
  318. if (total_mem + (md->num_pages << EFI_PAGE_SHIFT) > mem_limit) {
  319. unsigned long limit_addr = md->phys_addr;
  320. limit_addr += mem_limit - total_mem;
  321. limit_addr = GRANULEROUNDDOWN(limit_addr);
  322. if (md->phys_addr > limit_addr)
  323. continue;
  324. md->num_pages = (limit_addr - md->phys_addr) >>
  325. EFI_PAGE_SHIFT;
  326. first_non_wb_addr = max_addr = md->phys_addr +
  327. (md->num_pages << EFI_PAGE_SHIFT);
  328. }
  329. total_mem += (md->num_pages << EFI_PAGE_SHIFT);
  330. if (md->num_pages == 0)
  331. continue;
  332. curr.start = PAGE_OFFSET + md->phys_addr;
  333. curr.end = curr.start + (md->num_pages << EFI_PAGE_SHIFT);
  334. if (!prev_valid) {
  335. prev = curr;
  336. prev_valid = 1;
  337. } else {
  338. if (curr.start < prev.start)
  339. printk(KERN_ERR "Oops: EFI memory table not ordered!\n");
  340. if (prev.end == curr.start) {
  341. /* merge two consecutive memory ranges */
  342. prev.end = curr.end;
  343. } else {
  344. start = PAGE_ALIGN(prev.start);
  345. end = prev.end & PAGE_MASK;
  346. if ((end > start) && (*callback)(start, end, arg) < 0)
  347. return;
  348. prev = curr;
  349. }
  350. }
  351. }
  352. }
  353. if (prev_valid) {
  354. start = PAGE_ALIGN(prev.start);
  355. end = prev.end & PAGE_MASK;
  356. if (end > start)
  357. (*callback)(start, end, arg);
  358. }
  359. }
  360. /*
  361. * Look for the PAL_CODE region reported by EFI and maps it using an
  362. * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor
  363. * Abstraction Layer chapter 11 in ADAG
  364. */
  365. void *
  366. efi_get_pal_addr (void)
  367. {
  368. void *efi_map_start, *efi_map_end, *p;
  369. efi_memory_desc_t *md;
  370. u64 efi_desc_size;
  371. int pal_code_count = 0;
  372. u64 vaddr, mask;
  373. efi_map_start = __va(ia64_boot_param->efi_memmap);
  374. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  375. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  376. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  377. md = p;
  378. if (md->type != EFI_PAL_CODE)
  379. continue;
  380. if (++pal_code_count > 1) {
  381. printk(KERN_ERR "Too many EFI Pal Code memory ranges, dropped @ %lx\n",
  382. md->phys_addr);
  383. continue;
  384. }
  385. /*
  386. * The only ITLB entry in region 7 that is used is the one installed by
  387. * __start(). That entry covers a 64MB range.
  388. */
  389. mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
  390. vaddr = PAGE_OFFSET + md->phys_addr;
  391. /*
  392. * We must check that the PAL mapping won't overlap with the kernel
  393. * mapping.
  394. *
  395. * PAL code is guaranteed to be aligned on a power of 2 between 4k and
  396. * 256KB and that only one ITR is needed to map it. This implies that the
  397. * PAL code is always aligned on its size, i.e., the closest matching page
  398. * size supported by the TLB. Therefore PAL code is guaranteed never to
  399. * cross a 64MB unless it is bigger than 64MB (very unlikely!). So for
  400. * now the following test is enough to determine whether or not we need a
  401. * dedicated ITR for the PAL code.
  402. */
  403. if ((vaddr & mask) == (KERNEL_START & mask)) {
  404. printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
  405. __FUNCTION__);
  406. continue;
  407. }
  408. if (md->num_pages << EFI_PAGE_SHIFT > IA64_GRANULE_SIZE)
  409. panic("Woah! PAL code size bigger than a granule!");
  410. #if EFI_DEBUG
  411. mask = ~((1 << IA64_GRANULE_SHIFT) - 1);
  412. printk(KERN_INFO "CPU %d: mapping PAL code [0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
  413. smp_processor_id(), md->phys_addr,
  414. md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
  415. vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
  416. #endif
  417. return __va(md->phys_addr);
  418. }
  419. printk(KERN_WARNING "%s: no PAL-code memory-descriptor found",
  420. __FUNCTION__);
  421. return NULL;
  422. }
  423. void
  424. efi_map_pal_code (void)
  425. {
  426. void *pal_vaddr = efi_get_pal_addr ();
  427. u64 psr;
  428. if (!pal_vaddr)
  429. return;
  430. /*
  431. * Cannot write to CRx with PSR.ic=1
  432. */
  433. psr = ia64_clear_ic();
  434. ia64_itr(0x1, IA64_TR_PALCODE, GRANULEROUNDDOWN((unsigned long) pal_vaddr),
  435. pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
  436. IA64_GRANULE_SHIFT);
  437. ia64_set_psr(psr); /* restore psr */
  438. ia64_srlz_i();
  439. }
  440. void __init
  441. efi_init (void)
  442. {
  443. void *efi_map_start, *efi_map_end;
  444. efi_config_table_t *config_tables;
  445. efi_char16_t *c16;
  446. u64 efi_desc_size;
  447. char *cp, *end, vendor[100] = "unknown";
  448. extern char saved_command_line[];
  449. int i;
  450. /* it's too early to be able to use the standard kernel command line support... */
  451. for (cp = saved_command_line; *cp; ) {
  452. if (memcmp(cp, "mem=", 4) == 0) {
  453. cp += 4;
  454. mem_limit = memparse(cp, &end);
  455. if (end != cp)
  456. break;
  457. cp = end;
  458. } else if (memcmp(cp, "max_addr=", 9) == 0) {
  459. cp += 9;
  460. max_addr = GRANULEROUNDDOWN(memparse(cp, &end));
  461. if (end != cp)
  462. break;
  463. cp = end;
  464. } else {
  465. while (*cp != ' ' && *cp)
  466. ++cp;
  467. while (*cp == ' ')
  468. ++cp;
  469. }
  470. }
  471. if (max_addr != ~0UL)
  472. printk(KERN_INFO "Ignoring memory above %luMB\n", max_addr >> 20);
  473. efi.systab = __va(ia64_boot_param->efi_systab);
  474. /*
  475. * Verify the EFI Table
  476. */
  477. if (efi.systab == NULL)
  478. panic("Woah! Can't find EFI system table.\n");
  479. if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
  480. panic("Woah! EFI system table signature incorrect\n");
  481. if ((efi.systab->hdr.revision ^ EFI_SYSTEM_TABLE_REVISION) >> 16 != 0)
  482. printk(KERN_WARNING "Warning: EFI system table major version mismatch: "
  483. "got %d.%02d, expected %d.%02d\n",
  484. efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff,
  485. EFI_SYSTEM_TABLE_REVISION >> 16, EFI_SYSTEM_TABLE_REVISION & 0xffff);
  486. config_tables = __va(efi.systab->tables);
  487. /* Show what we know for posterity */
  488. c16 = __va(efi.systab->fw_vendor);
  489. if (c16) {
  490. for (i = 0;i < (int) sizeof(vendor) && *c16; ++i)
  491. vendor[i] = *c16++;
  492. vendor[i] = '\0';
  493. }
  494. printk(KERN_INFO "EFI v%u.%.02u by %s:",
  495. efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, vendor);
  496. for (i = 0; i < (int) efi.systab->nr_tables; i++) {
  497. if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
  498. efi.mps = __va(config_tables[i].table);
  499. printk(" MPS=0x%lx", config_tables[i].table);
  500. } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
  501. efi.acpi20 = __va(config_tables[i].table);
  502. printk(" ACPI 2.0=0x%lx", config_tables[i].table);
  503. } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
  504. efi.acpi = __va(config_tables[i].table);
  505. printk(" ACPI=0x%lx", config_tables[i].table);
  506. } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
  507. efi.smbios = __va(config_tables[i].table);
  508. printk(" SMBIOS=0x%lx", config_tables[i].table);
  509. } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
  510. efi.sal_systab = __va(config_tables[i].table);
  511. printk(" SALsystab=0x%lx", config_tables[i].table);
  512. } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
  513. efi.hcdp = __va(config_tables[i].table);
  514. printk(" HCDP=0x%lx", config_tables[i].table);
  515. }
  516. }
  517. printk("\n");
  518. runtime = __va(efi.systab->runtime);
  519. efi.get_time = phys_get_time;
  520. efi.set_time = phys_set_time;
  521. efi.get_wakeup_time = phys_get_wakeup_time;
  522. efi.set_wakeup_time = phys_set_wakeup_time;
  523. efi.get_variable = phys_get_variable;
  524. efi.get_next_variable = phys_get_next_variable;
  525. efi.set_variable = phys_set_variable;
  526. efi.get_next_high_mono_count = phys_get_next_high_mono_count;
  527. efi.reset_system = phys_reset_system;
  528. efi_map_start = __va(ia64_boot_param->efi_memmap);
  529. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  530. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  531. #if EFI_DEBUG
  532. /* print EFI memory map: */
  533. {
  534. efi_memory_desc_t *md;
  535. void *p;
  536. for (i = 0, p = efi_map_start; p < efi_map_end; ++i, p += efi_desc_size) {
  537. md = p;
  538. printk("mem%02u: type=%u, attr=0x%lx, range=[0x%016lx-0x%016lx) (%luMB)\n",
  539. i, md->type, md->attribute, md->phys_addr,
  540. md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
  541. md->num_pages >> (20 - EFI_PAGE_SHIFT));
  542. }
  543. }
  544. #endif
  545. efi_map_pal_code();
  546. efi_enter_virtual_mode();
  547. }
  548. void
  549. efi_enter_virtual_mode (void)
  550. {
  551. void *efi_map_start, *efi_map_end, *p;
  552. efi_memory_desc_t *md;
  553. efi_status_t status;
  554. u64 efi_desc_size;
  555. efi_map_start = __va(ia64_boot_param->efi_memmap);
  556. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  557. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  558. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  559. md = p;
  560. if (md->attribute & EFI_MEMORY_RUNTIME) {
  561. /*
  562. * Some descriptors have multiple bits set, so the order of
  563. * the tests is relevant.
  564. */
  565. if (md->attribute & EFI_MEMORY_WB) {
  566. md->virt_addr = (u64) __va(md->phys_addr);
  567. } else if (md->attribute & EFI_MEMORY_UC) {
  568. md->virt_addr = (u64) ioremap(md->phys_addr, 0);
  569. } else if (md->attribute & EFI_MEMORY_WC) {
  570. #if 0
  571. md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
  572. | _PAGE_D
  573. | _PAGE_MA_WC
  574. | _PAGE_PL_0
  575. | _PAGE_AR_RW));
  576. #else
  577. printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
  578. md->virt_addr = (u64) ioremap(md->phys_addr, 0);
  579. #endif
  580. } else if (md->attribute & EFI_MEMORY_WT) {
  581. #if 0
  582. md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
  583. | _PAGE_D | _PAGE_MA_WT
  584. | _PAGE_PL_0
  585. | _PAGE_AR_RW));
  586. #else
  587. printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
  588. md->virt_addr = (u64) ioremap(md->phys_addr, 0);
  589. #endif
  590. }
  591. }
  592. }
  593. status = efi_call_phys(__va(runtime->set_virtual_address_map),
  594. ia64_boot_param->efi_memmap_size,
  595. efi_desc_size, ia64_boot_param->efi_memdesc_version,
  596. ia64_boot_param->efi_memmap);
  597. if (status != EFI_SUCCESS) {
  598. printk(KERN_WARNING "warning: unable to switch EFI into virtual mode "
  599. "(status=%lu)\n", status);
  600. return;
  601. }
  602. /*
  603. * Now that EFI is in virtual mode, we call the EFI functions more efficiently:
  604. */
  605. efi.get_time = virt_get_time;
  606. efi.set_time = virt_set_time;
  607. efi.get_wakeup_time = virt_get_wakeup_time;
  608. efi.set_wakeup_time = virt_set_wakeup_time;
  609. efi.get_variable = virt_get_variable;
  610. efi.get_next_variable = virt_get_next_variable;
  611. efi.set_variable = virt_set_variable;
  612. efi.get_next_high_mono_count = virt_get_next_high_mono_count;
  613. efi.reset_system = virt_reset_system;
  614. }
  615. /*
  616. * Walk the EFI memory map looking for the I/O port range. There can only be one entry of
  617. * this type, other I/O port ranges should be described via ACPI.
  618. */
  619. u64
  620. efi_get_iobase (void)
  621. {
  622. void *efi_map_start, *efi_map_end, *p;
  623. efi_memory_desc_t *md;
  624. u64 efi_desc_size;
  625. efi_map_start = __va(ia64_boot_param->efi_memmap);
  626. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  627. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  628. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  629. md = p;
  630. if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
  631. if (md->attribute & EFI_MEMORY_UC)
  632. return md->phys_addr;
  633. }
  634. }
  635. return 0;
  636. }
  637. u32
  638. efi_mem_type (unsigned long phys_addr)
  639. {
  640. void *efi_map_start, *efi_map_end, *p;
  641. efi_memory_desc_t *md;
  642. u64 efi_desc_size;
  643. efi_map_start = __va(ia64_boot_param->efi_memmap);
  644. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  645. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  646. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  647. md = p;
  648. if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT))
  649. return md->type;
  650. }
  651. return 0;
  652. }
  653. u64
  654. efi_mem_attributes (unsigned long phys_addr)
  655. {
  656. void *efi_map_start, *efi_map_end, *p;
  657. efi_memory_desc_t *md;
  658. u64 efi_desc_size;
  659. efi_map_start = __va(ia64_boot_param->efi_memmap);
  660. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  661. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  662. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  663. md = p;
  664. if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT))
  665. return md->attribute;
  666. }
  667. return 0;
  668. }
  669. EXPORT_SYMBOL(efi_mem_attributes);
  670. int
  671. valid_phys_addr_range (unsigned long phys_addr, unsigned long *size)
  672. {
  673. void *efi_map_start, *efi_map_end, *p;
  674. efi_memory_desc_t *md;
  675. u64 efi_desc_size;
  676. efi_map_start = __va(ia64_boot_param->efi_memmap);
  677. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  678. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  679. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  680. md = p;
  681. if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT)) {
  682. if (!(md->attribute & EFI_MEMORY_WB))
  683. return 0;
  684. if (*size > md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - phys_addr)
  685. *size = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - phys_addr;
  686. return 1;
  687. }
  688. }
  689. return 0;
  690. }
  691. int __init
  692. efi_uart_console_only(void)
  693. {
  694. efi_status_t status;
  695. char *s, name[] = "ConOut";
  696. efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
  697. efi_char16_t *utf16, name_utf16[32];
  698. unsigned char data[1024];
  699. unsigned long size = sizeof(data);
  700. struct efi_generic_dev_path *hdr, *end_addr;
  701. int uart = 0;
  702. /* Convert to UTF-16 */
  703. utf16 = name_utf16;
  704. s = name;
  705. while (*s)
  706. *utf16++ = *s++ & 0x7f;
  707. *utf16 = 0;
  708. status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
  709. if (status != EFI_SUCCESS) {
  710. printk(KERN_ERR "No EFI %s variable?\n", name);
  711. return 0;
  712. }
  713. hdr = (struct efi_generic_dev_path *) data;
  714. end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
  715. while (hdr < end_addr) {
  716. if (hdr->type == EFI_DEV_MSG &&
  717. hdr->sub_type == EFI_DEV_MSG_UART)
  718. uart = 1;
  719. else if (hdr->type == EFI_DEV_END_PATH ||
  720. hdr->type == EFI_DEV_END_PATH2) {
  721. if (!uart)
  722. return 0;
  723. if (hdr->sub_type == EFI_DEV_END_ENTIRE)
  724. return 1;
  725. uart = 0;
  726. }
  727. hdr = (struct efi_generic_dev_path *) ((u8 *) hdr + hdr->length);
  728. }
  729. printk(KERN_ERR "Malformed %s value\n", name);
  730. return 0;
  731. }