mmu.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107
  1. /*
  2. * linux/arch/arm/mm/mmu.c
  3. *
  4. * Copyright (C) 1995-2005 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/kernel.h>
  12. #include <linux/errno.h>
  13. #include <linux/init.h>
  14. #include <linux/bootmem.h>
  15. #include <linux/mman.h>
  16. #include <linux/nodemask.h>
  17. #include <linux/sort.h>
  18. #include <asm/cputype.h>
  19. #include <asm/mach-types.h>
  20. #include <asm/sections.h>
  21. #include <asm/cachetype.h>
  22. #include <asm/setup.h>
  23. #include <asm/sizes.h>
  24. #include <asm/smp_plat.h>
  25. #include <asm/tlb.h>
  26. #include <asm/highmem.h>
  27. #include <asm/mach/arch.h>
  28. #include <asm/mach/map.h>
  29. #include "mm.h"
  30. DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  31. /*
  32. * empty_zero_page is a special page that is used for
  33. * zero-initialized data and COW.
  34. */
  35. struct page *empty_zero_page;
  36. EXPORT_SYMBOL(empty_zero_page);
  37. /*
  38. * The pmd table for the upper-most set of pages.
  39. */
  40. pmd_t *top_pmd;
  41. #define CPOLICY_UNCACHED 0
  42. #define CPOLICY_BUFFERED 1
  43. #define CPOLICY_WRITETHROUGH 2
  44. #define CPOLICY_WRITEBACK 3
  45. #define CPOLICY_WRITEALLOC 4
  46. static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  47. static unsigned int ecc_mask __initdata = 0;
  48. pgprot_t pgprot_user;
  49. pgprot_t pgprot_kernel;
  50. EXPORT_SYMBOL(pgprot_user);
  51. EXPORT_SYMBOL(pgprot_kernel);
  52. struct cachepolicy {
  53. const char policy[16];
  54. unsigned int cr_mask;
  55. unsigned int pmd;
  56. unsigned int pte;
  57. };
  58. static struct cachepolicy cache_policies[] __initdata = {
  59. {
  60. .policy = "uncached",
  61. .cr_mask = CR_W|CR_C,
  62. .pmd = PMD_SECT_UNCACHED,
  63. .pte = L_PTE_MT_UNCACHED,
  64. }, {
  65. .policy = "buffered",
  66. .cr_mask = CR_C,
  67. .pmd = PMD_SECT_BUFFERED,
  68. .pte = L_PTE_MT_BUFFERABLE,
  69. }, {
  70. .policy = "writethrough",
  71. .cr_mask = 0,
  72. .pmd = PMD_SECT_WT,
  73. .pte = L_PTE_MT_WRITETHROUGH,
  74. }, {
  75. .policy = "writeback",
  76. .cr_mask = 0,
  77. .pmd = PMD_SECT_WB,
  78. .pte = L_PTE_MT_WRITEBACK,
  79. }, {
  80. .policy = "writealloc",
  81. .cr_mask = 0,
  82. .pmd = PMD_SECT_WBWA,
  83. .pte = L_PTE_MT_WRITEALLOC,
  84. }
  85. };
  86. /*
  87. * These are useful for identifying cache coherency
  88. * problems by allowing the cache or the cache and
  89. * writebuffer to be turned off. (Note: the write
  90. * buffer should not be on and the cache off).
  91. */
  92. static int __init early_cachepolicy(char *p)
  93. {
  94. int i;
  95. for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
  96. int len = strlen(cache_policies[i].policy);
  97. if (memcmp(p, cache_policies[i].policy, len) == 0) {
  98. cachepolicy = i;
  99. cr_alignment &= ~cache_policies[i].cr_mask;
  100. cr_no_alignment &= ~cache_policies[i].cr_mask;
  101. break;
  102. }
  103. }
  104. if (i == ARRAY_SIZE(cache_policies))
  105. printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
  106. /*
  107. * This restriction is partly to do with the way we boot; it is
  108. * unpredictable to have memory mapped using two different sets of
  109. * memory attributes (shared, type, and cache attribs). We can not
  110. * change these attributes once the initial assembly has setup the
  111. * page tables.
  112. */
  113. if (cpu_architecture() >= CPU_ARCH_ARMv6) {
  114. printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
  115. cachepolicy = CPOLICY_WRITEBACK;
  116. }
  117. flush_cache_all();
  118. set_cr(cr_alignment);
  119. return 0;
  120. }
  121. early_param("cachepolicy", early_cachepolicy);
  122. static int __init early_nocache(char *__unused)
  123. {
  124. char *p = "buffered";
  125. printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
  126. early_cachepolicy(p);
  127. return 0;
  128. }
  129. early_param("nocache", early_nocache);
  130. static int __init early_nowrite(char *__unused)
  131. {
  132. char *p = "uncached";
  133. printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
  134. early_cachepolicy(p);
  135. return 0;
  136. }
  137. early_param("nowb", early_nowrite);
  138. static int __init early_ecc(char *p)
  139. {
  140. if (memcmp(p, "on", 2) == 0)
  141. ecc_mask = PMD_PROTECTION;
  142. else if (memcmp(p, "off", 3) == 0)
  143. ecc_mask = 0;
  144. return 0;
  145. }
  146. early_param("ecc", early_ecc);
  147. static int __init noalign_setup(char *__unused)
  148. {
  149. cr_alignment &= ~CR_A;
  150. cr_no_alignment &= ~CR_A;
  151. set_cr(cr_alignment);
  152. return 1;
  153. }
  154. __setup("noalign", noalign_setup);
  155. #ifndef CONFIG_SMP
  156. void adjust_cr(unsigned long mask, unsigned long set)
  157. {
  158. unsigned long flags;
  159. mask &= ~CR_A;
  160. set &= mask;
  161. local_irq_save(flags);
  162. cr_no_alignment = (cr_no_alignment & ~mask) | set;
  163. cr_alignment = (cr_alignment & ~mask) | set;
  164. set_cr((get_cr() & ~mask) | set);
  165. local_irq_restore(flags);
  166. }
  167. #endif
  168. #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
  169. #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
  170. static struct mem_type mem_types[] = {
  171. [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
  172. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
  173. L_PTE_SHARED,
  174. .prot_l1 = PMD_TYPE_TABLE,
  175. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
  176. .domain = DOMAIN_IO,
  177. },
  178. [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
  179. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
  180. .prot_l1 = PMD_TYPE_TABLE,
  181. .prot_sect = PROT_SECT_DEVICE,
  182. .domain = DOMAIN_IO,
  183. },
  184. [MT_DEVICE_CACHED] = { /* ioremap_cached */
  185. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
  186. .prot_l1 = PMD_TYPE_TABLE,
  187. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
  188. .domain = DOMAIN_IO,
  189. },
  190. [MT_DEVICE_WC] = { /* ioremap_wc */
  191. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
  192. .prot_l1 = PMD_TYPE_TABLE,
  193. .prot_sect = PROT_SECT_DEVICE,
  194. .domain = DOMAIN_IO,
  195. },
  196. [MT_UNCACHED] = {
  197. .prot_pte = PROT_PTE_DEVICE,
  198. .prot_l1 = PMD_TYPE_TABLE,
  199. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  200. .domain = DOMAIN_IO,
  201. },
  202. [MT_CACHECLEAN] = {
  203. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  204. .domain = DOMAIN_KERNEL,
  205. },
  206. [MT_MINICLEAN] = {
  207. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
  208. .domain = DOMAIN_KERNEL,
  209. },
  210. [MT_LOW_VECTORS] = {
  211. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  212. L_PTE_EXEC,
  213. .prot_l1 = PMD_TYPE_TABLE,
  214. .domain = DOMAIN_USER,
  215. },
  216. [MT_HIGH_VECTORS] = {
  217. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  218. L_PTE_USER | L_PTE_EXEC,
  219. .prot_l1 = PMD_TYPE_TABLE,
  220. .domain = DOMAIN_USER,
  221. },
  222. [MT_MEMORY] = {
  223. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  224. .domain = DOMAIN_KERNEL,
  225. },
  226. [MT_ROM] = {
  227. .prot_sect = PMD_TYPE_SECT,
  228. .domain = DOMAIN_KERNEL,
  229. },
  230. [MT_MEMORY_NONCACHED] = {
  231. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  232. .domain = DOMAIN_KERNEL,
  233. },
  234. };
  235. const struct mem_type *get_mem_type(unsigned int type)
  236. {
  237. return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
  238. }
  239. EXPORT_SYMBOL(get_mem_type);
  240. /*
  241. * Adjust the PMD section entries according to the CPU in use.
  242. */
  243. static void __init build_mem_type_table(void)
  244. {
  245. struct cachepolicy *cp;
  246. unsigned int cr = get_cr();
  247. unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
  248. int cpu_arch = cpu_architecture();
  249. int i;
  250. if (cpu_arch < CPU_ARCH_ARMv6) {
  251. #if defined(CONFIG_CPU_DCACHE_DISABLE)
  252. if (cachepolicy > CPOLICY_BUFFERED)
  253. cachepolicy = CPOLICY_BUFFERED;
  254. #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
  255. if (cachepolicy > CPOLICY_WRITETHROUGH)
  256. cachepolicy = CPOLICY_WRITETHROUGH;
  257. #endif
  258. }
  259. if (cpu_arch < CPU_ARCH_ARMv5) {
  260. if (cachepolicy >= CPOLICY_WRITEALLOC)
  261. cachepolicy = CPOLICY_WRITEBACK;
  262. ecc_mask = 0;
  263. }
  264. #ifdef CONFIG_SMP
  265. cachepolicy = CPOLICY_WRITEALLOC;
  266. #endif
  267. /*
  268. * Strip out features not present on earlier architectures.
  269. * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
  270. * without extended page tables don't have the 'Shared' bit.
  271. */
  272. if (cpu_arch < CPU_ARCH_ARMv5)
  273. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  274. mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
  275. if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
  276. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  277. mem_types[i].prot_sect &= ~PMD_SECT_S;
  278. /*
  279. * ARMv5 and lower, bit 4 must be set for page tables (was: cache
  280. * "update-able on write" bit on ARM610). However, Xscale and
  281. * Xscale3 require this bit to be cleared.
  282. */
  283. if (cpu_is_xscale() || cpu_is_xsc3()) {
  284. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  285. mem_types[i].prot_sect &= ~PMD_BIT4;
  286. mem_types[i].prot_l1 &= ~PMD_BIT4;
  287. }
  288. } else if (cpu_arch < CPU_ARCH_ARMv6) {
  289. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  290. if (mem_types[i].prot_l1)
  291. mem_types[i].prot_l1 |= PMD_BIT4;
  292. if (mem_types[i].prot_sect)
  293. mem_types[i].prot_sect |= PMD_BIT4;
  294. }
  295. }
  296. /*
  297. * Mark the device areas according to the CPU/architecture.
  298. */
  299. if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
  300. if (!cpu_is_xsc3()) {
  301. /*
  302. * Mark device regions on ARMv6+ as execute-never
  303. * to prevent speculative instruction fetches.
  304. */
  305. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
  306. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
  307. mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
  308. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
  309. }
  310. if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
  311. /*
  312. * For ARMv7 with TEX remapping,
  313. * - shared device is SXCB=1100
  314. * - nonshared device is SXCB=0100
  315. * - write combine device mem is SXCB=0001
  316. * (Uncached Normal memory)
  317. */
  318. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
  319. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
  320. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  321. } else if (cpu_is_xsc3()) {
  322. /*
  323. * For Xscale3,
  324. * - shared device is TEXCB=00101
  325. * - nonshared device is TEXCB=01000
  326. * - write combine device mem is TEXCB=00100
  327. * (Inner/Outer Uncacheable in xsc3 parlance)
  328. */
  329. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
  330. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  331. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  332. } else {
  333. /*
  334. * For ARMv6 and ARMv7 without TEX remapping,
  335. * - shared device is TEXCB=00001
  336. * - nonshared device is TEXCB=01000
  337. * - write combine device mem is TEXCB=00100
  338. * (Uncached Normal in ARMv6 parlance).
  339. */
  340. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
  341. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  342. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  343. }
  344. } else {
  345. /*
  346. * On others, write combining is "Uncached/Buffered"
  347. */
  348. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  349. }
  350. /*
  351. * Now deal with the memory-type mappings
  352. */
  353. cp = &cache_policies[cachepolicy];
  354. vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
  355. #ifndef CONFIG_SMP
  356. /*
  357. * Only use write-through for non-SMP systems
  358. */
  359. if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
  360. vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
  361. #endif
  362. /*
  363. * Enable CPU-specific coherency if supported.
  364. * (Only available on XSC3 at the moment.)
  365. */
  366. if (arch_is_coherent() && cpu_is_xsc3())
  367. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  368. /*
  369. * ARMv6 and above have extended page tables.
  370. */
  371. if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
  372. /*
  373. * Mark cache clean areas and XIP ROM read only
  374. * from SVC mode and no access from userspace.
  375. */
  376. mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  377. mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  378. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  379. #ifdef CONFIG_SMP
  380. /*
  381. * Mark memory with the "shared" attribute for SMP systems
  382. */
  383. user_pgprot |= L_PTE_SHARED;
  384. kern_pgprot |= L_PTE_SHARED;
  385. vecs_pgprot |= L_PTE_SHARED;
  386. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
  387. mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
  388. mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
  389. mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
  390. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  391. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
  392. #endif
  393. }
  394. /*
  395. * Non-cacheable Normal - intended for memory areas that must
  396. * not cause dirty cache line writebacks when used
  397. */
  398. if (cpu_arch >= CPU_ARCH_ARMv6) {
  399. if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
  400. /* Non-cacheable Normal is XCB = 001 */
  401. mem_types[MT_MEMORY_NONCACHED].prot_sect |=
  402. PMD_SECT_BUFFERED;
  403. } else {
  404. /* For both ARMv6 and non-TEX-remapping ARMv7 */
  405. mem_types[MT_MEMORY_NONCACHED].prot_sect |=
  406. PMD_SECT_TEX(1);
  407. }
  408. } else {
  409. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
  410. }
  411. for (i = 0; i < 16; i++) {
  412. unsigned long v = pgprot_val(protection_map[i]);
  413. protection_map[i] = __pgprot(v | user_pgprot);
  414. }
  415. mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
  416. mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
  417. pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
  418. pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
  419. L_PTE_DIRTY | L_PTE_WRITE | kern_pgprot);
  420. mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
  421. mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
  422. mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
  423. mem_types[MT_ROM].prot_sect |= cp->pmd;
  424. switch (cp->pmd) {
  425. case PMD_SECT_WT:
  426. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
  427. break;
  428. case PMD_SECT_WB:
  429. case PMD_SECT_WBWA:
  430. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
  431. break;
  432. }
  433. printk("Memory policy: ECC %sabled, Data cache %s\n",
  434. ecc_mask ? "en" : "dis", cp->policy);
  435. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  436. struct mem_type *t = &mem_types[i];
  437. if (t->prot_l1)
  438. t->prot_l1 |= PMD_DOMAIN(t->domain);
  439. if (t->prot_sect)
  440. t->prot_sect |= PMD_DOMAIN(t->domain);
  441. }
  442. }
  443. #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
  444. static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
  445. unsigned long end, unsigned long pfn,
  446. const struct mem_type *type)
  447. {
  448. pte_t *pte;
  449. if (pmd_none(*pmd)) {
  450. pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
  451. __pmd_populate(pmd, __pa(pte) | type->prot_l1);
  452. }
  453. pte = pte_offset_kernel(pmd, addr);
  454. do {
  455. set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
  456. pfn++;
  457. } while (pte++, addr += PAGE_SIZE, addr != end);
  458. }
  459. static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
  460. unsigned long end, unsigned long phys,
  461. const struct mem_type *type)
  462. {
  463. pmd_t *pmd = pmd_offset(pgd, addr);
  464. /*
  465. * Try a section mapping - end, addr and phys must all be aligned
  466. * to a section boundary. Note that PMDs refer to the individual
  467. * L1 entries, whereas PGDs refer to a group of L1 entries making
  468. * up one logical pointer to an L2 table.
  469. */
  470. if (((addr | end | phys) & ~SECTION_MASK) == 0) {
  471. pmd_t *p = pmd;
  472. if (addr & SECTION_SIZE)
  473. pmd++;
  474. do {
  475. *pmd = __pmd(phys | type->prot_sect);
  476. phys += SECTION_SIZE;
  477. } while (pmd++, addr += SECTION_SIZE, addr != end);
  478. flush_pmd_entry(p);
  479. } else {
  480. /*
  481. * No need to loop; pte's aren't interested in the
  482. * individual L1 entries.
  483. */
  484. alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
  485. }
  486. }
  487. static void __init create_36bit_mapping(struct map_desc *md,
  488. const struct mem_type *type)
  489. {
  490. unsigned long phys, addr, length, end;
  491. pgd_t *pgd;
  492. addr = md->virtual;
  493. phys = (unsigned long)__pfn_to_phys(md->pfn);
  494. length = PAGE_ALIGN(md->length);
  495. if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
  496. printk(KERN_ERR "MM: CPU does not support supersection "
  497. "mapping for 0x%08llx at 0x%08lx\n",
  498. __pfn_to_phys((u64)md->pfn), addr);
  499. return;
  500. }
  501. /* N.B. ARMv6 supersections are only defined to work with domain 0.
  502. * Since domain assignments can in fact be arbitrary, the
  503. * 'domain == 0' check below is required to insure that ARMv6
  504. * supersections are only allocated for domain 0 regardless
  505. * of the actual domain assignments in use.
  506. */
  507. if (type->domain) {
  508. printk(KERN_ERR "MM: invalid domain in supersection "
  509. "mapping for 0x%08llx at 0x%08lx\n",
  510. __pfn_to_phys((u64)md->pfn), addr);
  511. return;
  512. }
  513. if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
  514. printk(KERN_ERR "MM: cannot create mapping for "
  515. "0x%08llx at 0x%08lx invalid alignment\n",
  516. __pfn_to_phys((u64)md->pfn), addr);
  517. return;
  518. }
  519. /*
  520. * Shift bits [35:32] of address into bits [23:20] of PMD
  521. * (See ARMv6 spec).
  522. */
  523. phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
  524. pgd = pgd_offset_k(addr);
  525. end = addr + length;
  526. do {
  527. pmd_t *pmd = pmd_offset(pgd, addr);
  528. int i;
  529. for (i = 0; i < 16; i++)
  530. *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
  531. addr += SUPERSECTION_SIZE;
  532. phys += SUPERSECTION_SIZE;
  533. pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
  534. } while (addr != end);
  535. }
  536. /*
  537. * Create the page directory entries and any necessary
  538. * page tables for the mapping specified by `md'. We
  539. * are able to cope here with varying sizes and address
  540. * offsets, and we take full advantage of sections and
  541. * supersections.
  542. */
  543. static void __init create_mapping(struct map_desc *md)
  544. {
  545. unsigned long phys, addr, length, end;
  546. const struct mem_type *type;
  547. pgd_t *pgd;
  548. if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
  549. printk(KERN_WARNING "BUG: not creating mapping for "
  550. "0x%08llx at 0x%08lx in user region\n",
  551. __pfn_to_phys((u64)md->pfn), md->virtual);
  552. return;
  553. }
  554. if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
  555. md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
  556. printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
  557. "overlaps vmalloc space\n",
  558. __pfn_to_phys((u64)md->pfn), md->virtual);
  559. }
  560. type = &mem_types[md->type];
  561. /*
  562. * Catch 36-bit addresses
  563. */
  564. if (md->pfn >= 0x100000) {
  565. create_36bit_mapping(md, type);
  566. return;
  567. }
  568. addr = md->virtual & PAGE_MASK;
  569. phys = (unsigned long)__pfn_to_phys(md->pfn);
  570. length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
  571. if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
  572. printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
  573. "be mapped using pages, ignoring.\n",
  574. __pfn_to_phys(md->pfn), addr);
  575. return;
  576. }
  577. pgd = pgd_offset_k(addr);
  578. end = addr + length;
  579. do {
  580. unsigned long next = pgd_addr_end(addr, end);
  581. alloc_init_section(pgd, addr, next, phys, type);
  582. phys += next - addr;
  583. addr = next;
  584. } while (pgd++, addr != end);
  585. }
  586. /*
  587. * Create the architecture specific mappings
  588. */
  589. void __init iotable_init(struct map_desc *io_desc, int nr)
  590. {
  591. int i;
  592. for (i = 0; i < nr; i++)
  593. create_mapping(io_desc + i);
  594. }
  595. static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
  596. /*
  597. * vmalloc=size forces the vmalloc area to be exactly 'size'
  598. * bytes. This can be used to increase (or decrease) the vmalloc
  599. * area - the default is 128m.
  600. */
  601. static int __init early_vmalloc(char *arg)
  602. {
  603. unsigned long vmalloc_reserve = memparse(arg, NULL);
  604. if (vmalloc_reserve < SZ_16M) {
  605. vmalloc_reserve = SZ_16M;
  606. printk(KERN_WARNING
  607. "vmalloc area too small, limiting to %luMB\n",
  608. vmalloc_reserve >> 20);
  609. }
  610. if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
  611. vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
  612. printk(KERN_WARNING
  613. "vmalloc area is too big, limiting to %luMB\n",
  614. vmalloc_reserve >> 20);
  615. }
  616. vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
  617. return 0;
  618. }
  619. early_param("vmalloc", early_vmalloc);
  620. static void __init sanity_check_meminfo(void)
  621. {
  622. int i, j, highmem = 0;
  623. for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
  624. struct membank *bank = &meminfo.bank[j];
  625. *bank = meminfo.bank[i];
  626. #ifdef CONFIG_HIGHMEM
  627. if (__va(bank->start) > vmalloc_min ||
  628. __va(bank->start) < (void *)PAGE_OFFSET)
  629. highmem = 1;
  630. bank->highmem = highmem;
  631. /*
  632. * Split those memory banks which are partially overlapping
  633. * the vmalloc area greatly simplifying things later.
  634. */
  635. if (__va(bank->start) < vmalloc_min &&
  636. bank->size > vmalloc_min - __va(bank->start)) {
  637. if (meminfo.nr_banks >= NR_BANKS) {
  638. printk(KERN_CRIT "NR_BANKS too low, "
  639. "ignoring high memory\n");
  640. } else {
  641. memmove(bank + 1, bank,
  642. (meminfo.nr_banks - i) * sizeof(*bank));
  643. meminfo.nr_banks++;
  644. i++;
  645. bank[1].size -= vmalloc_min - __va(bank->start);
  646. bank[1].start = __pa(vmalloc_min - 1) + 1;
  647. bank[1].highmem = highmem = 1;
  648. j++;
  649. }
  650. bank->size = vmalloc_min - __va(bank->start);
  651. }
  652. #else
  653. bank->highmem = highmem;
  654. /*
  655. * Check whether this memory bank would entirely overlap
  656. * the vmalloc area.
  657. */
  658. if (__va(bank->start) >= vmalloc_min ||
  659. __va(bank->start) < (void *)PAGE_OFFSET) {
  660. printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
  661. "(vmalloc region overlap).\n",
  662. bank->start, bank->start + bank->size - 1);
  663. continue;
  664. }
  665. /*
  666. * Check whether this memory bank would partially overlap
  667. * the vmalloc area.
  668. */
  669. if (__va(bank->start + bank->size) > vmalloc_min ||
  670. __va(bank->start + bank->size) < __va(bank->start)) {
  671. unsigned long newsize = vmalloc_min - __va(bank->start);
  672. printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
  673. "to -%.8lx (vmalloc region overlap).\n",
  674. bank->start, bank->start + bank->size - 1,
  675. bank->start + newsize - 1);
  676. bank->size = newsize;
  677. }
  678. #endif
  679. j++;
  680. }
  681. #ifdef CONFIG_HIGHMEM
  682. if (highmem) {
  683. const char *reason = NULL;
  684. if (cache_is_vipt_aliasing()) {
  685. /*
  686. * Interactions between kmap and other mappings
  687. * make highmem support with aliasing VIPT caches
  688. * rather difficult.
  689. */
  690. reason = "with VIPT aliasing cache";
  691. #ifdef CONFIG_SMP
  692. } else if (tlb_ops_need_broadcast()) {
  693. /*
  694. * kmap_high needs to occasionally flush TLB entries,
  695. * however, if the TLB entries need to be broadcast
  696. * we may deadlock:
  697. * kmap_high(irqs off)->flush_all_zero_pkmaps->
  698. * flush_tlb_kernel_range->smp_call_function_many
  699. * (must not be called with irqs off)
  700. */
  701. reason = "without hardware TLB ops broadcasting";
  702. #endif
  703. }
  704. if (reason) {
  705. printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
  706. reason);
  707. while (j > 0 && meminfo.bank[j - 1].highmem)
  708. j--;
  709. }
  710. }
  711. #endif
  712. meminfo.nr_banks = j;
  713. }
  714. static inline void prepare_page_table(void)
  715. {
  716. unsigned long addr;
  717. /*
  718. * Clear out all the mappings below the kernel image.
  719. */
  720. for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
  721. pmd_clear(pmd_off_k(addr));
  722. #ifdef CONFIG_XIP_KERNEL
  723. /* The XIP kernel is mapped in the module area -- skip over it */
  724. addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
  725. #endif
  726. for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
  727. pmd_clear(pmd_off_k(addr));
  728. /*
  729. * Clear out all the kernel space mappings, except for the first
  730. * memory bank, up to the end of the vmalloc region.
  731. */
  732. for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
  733. addr < VMALLOC_END; addr += PGDIR_SIZE)
  734. pmd_clear(pmd_off_k(addr));
  735. }
  736. /*
  737. * Reserve the various regions
  738. */
  739. void __init reserve_special_regions(void)
  740. {
  741. unsigned long res_size = 0;
  742. /*
  743. * Register the kernel text and data with bootmem.
  744. * Note that this can only be in node 0.
  745. */
  746. #ifdef CONFIG_XIP_KERNEL
  747. reserve_bootmem(__pa(_data), _end - _data, BOOTMEM_DEFAULT);
  748. #else
  749. reserve_bootmem(__pa(_stext), _end - _stext, BOOTMEM_DEFAULT);
  750. #endif
  751. /*
  752. * Reserve the page tables. These are already in use,
  753. * and can only be in node 0.
  754. */
  755. reserve_bootmem(__pa(swapper_pg_dir),
  756. PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
  757. /*
  758. * Hmm... This should go elsewhere, but we really really need to
  759. * stop things allocating the low memory; ideally we need a better
  760. * implementation of GFP_DMA which does not assume that DMA-able
  761. * memory starts at zero.
  762. */
  763. if (machine_is_integrator() || machine_is_cintegrator())
  764. res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
  765. /*
  766. * These should likewise go elsewhere. They pre-reserve the
  767. * screen memory region at the start of main system memory.
  768. */
  769. if (machine_is_edb7211())
  770. res_size = 0x00020000;
  771. if (machine_is_p720t())
  772. res_size = 0x00014000;
  773. /* H1940, RX3715 and RX1950 need to reserve this for suspend */
  774. if (machine_is_h1940() || machine_is_rx3715()
  775. || machine_is_rx1950()) {
  776. reserve_bootmem(0x30003000, 0x1000, BOOTMEM_DEFAULT);
  777. reserve_bootmem(0x30081000, 0x1000, BOOTMEM_DEFAULT);
  778. }
  779. if (machine_is_palmld() || machine_is_palmtx()) {
  780. reserve_bootmem(0xa0000000, 0x1000, BOOTMEM_EXCLUSIVE);
  781. reserve_bootmem(0xa0200000, 0x1000, BOOTMEM_EXCLUSIVE);
  782. }
  783. if (machine_is_treo680() || machine_is_centro()) {
  784. reserve_bootmem(0xa0000000, 0x1000, BOOTMEM_EXCLUSIVE);
  785. reserve_bootmem(0xa2000000, 0x1000, BOOTMEM_EXCLUSIVE);
  786. }
  787. if (machine_is_palmt5())
  788. reserve_bootmem(0xa0200000, 0x1000, BOOTMEM_EXCLUSIVE);
  789. /*
  790. * U300 - This platform family can share physical memory
  791. * between two ARM cpus, one running Linux and the other
  792. * running another OS.
  793. */
  794. if (machine_is_u300()) {
  795. #ifdef CONFIG_MACH_U300_SINGLE_RAM
  796. #if ((CONFIG_MACH_U300_ACCESS_MEM_SIZE & 1) == 1) && \
  797. CONFIG_MACH_U300_2MB_ALIGNMENT_FIX
  798. res_size = 0x00100000;
  799. #endif
  800. #endif
  801. }
  802. #ifdef CONFIG_SA1111
  803. /*
  804. * Because of the SA1111 DMA bug, we want to preserve our
  805. * precious DMA-able memory...
  806. */
  807. res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
  808. #endif
  809. if (res_size)
  810. reserve_bootmem(PHYS_OFFSET, res_size, BOOTMEM_DEFAULT);
  811. }
  812. /*
  813. * Set up device the mappings. Since we clear out the page tables for all
  814. * mappings above VMALLOC_END, we will remove any debug device mappings.
  815. * This means you have to be careful how you debug this function, or any
  816. * called function. This means you can't use any function or debugging
  817. * method which may touch any device, otherwise the kernel _will_ crash.
  818. */
  819. static void __init devicemaps_init(struct machine_desc *mdesc)
  820. {
  821. struct map_desc map;
  822. unsigned long addr;
  823. void *vectors;
  824. /*
  825. * Allocate the vector page early.
  826. */
  827. vectors = alloc_bootmem_low_pages(PAGE_SIZE);
  828. for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
  829. pmd_clear(pmd_off_k(addr));
  830. /*
  831. * Map the kernel if it is XIP.
  832. * It is always first in the modulearea.
  833. */
  834. #ifdef CONFIG_XIP_KERNEL
  835. map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
  836. map.virtual = MODULES_VADDR;
  837. map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
  838. map.type = MT_ROM;
  839. create_mapping(&map);
  840. #endif
  841. /*
  842. * Map the cache flushing regions.
  843. */
  844. #ifdef FLUSH_BASE
  845. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
  846. map.virtual = FLUSH_BASE;
  847. map.length = SZ_1M;
  848. map.type = MT_CACHECLEAN;
  849. create_mapping(&map);
  850. #endif
  851. #ifdef FLUSH_BASE_MINICACHE
  852. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
  853. map.virtual = FLUSH_BASE_MINICACHE;
  854. map.length = SZ_1M;
  855. map.type = MT_MINICLEAN;
  856. create_mapping(&map);
  857. #endif
  858. /*
  859. * Create a mapping for the machine vectors at the high-vectors
  860. * location (0xffff0000). If we aren't using high-vectors, also
  861. * create a mapping at the low-vectors virtual address.
  862. */
  863. map.pfn = __phys_to_pfn(virt_to_phys(vectors));
  864. map.virtual = 0xffff0000;
  865. map.length = PAGE_SIZE;
  866. map.type = MT_HIGH_VECTORS;
  867. create_mapping(&map);
  868. if (!vectors_high()) {
  869. map.virtual = 0;
  870. map.type = MT_LOW_VECTORS;
  871. create_mapping(&map);
  872. }
  873. /*
  874. * Ask the machine support to map in the statically mapped devices.
  875. */
  876. if (mdesc->map_io)
  877. mdesc->map_io();
  878. /*
  879. * Finally flush the caches and tlb to ensure that we're in a
  880. * consistent state wrt the writebuffer. This also ensures that
  881. * any write-allocated cache lines in the vector page are written
  882. * back. After this point, we can start to touch devices again.
  883. */
  884. local_flush_tlb_all();
  885. flush_cache_all();
  886. }
  887. static void __init kmap_init(void)
  888. {
  889. #ifdef CONFIG_HIGHMEM
  890. pmd_t *pmd = pmd_off_k(PKMAP_BASE);
  891. pte_t *pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
  892. BUG_ON(!pmd_none(*pmd) || !pte);
  893. __pmd_populate(pmd, __pa(pte) | _PAGE_KERNEL_TABLE);
  894. pkmap_page_table = pte + PTRS_PER_PTE;
  895. #endif
  896. }
  897. static inline void map_memory_bank(struct membank *bank)
  898. {
  899. struct map_desc map;
  900. map.pfn = bank_pfn_start(bank);
  901. map.virtual = __phys_to_virt(bank_phys_start(bank));
  902. map.length = bank_phys_size(bank);
  903. map.type = MT_MEMORY;
  904. create_mapping(&map);
  905. }
  906. static void __init map_lowmem(void)
  907. {
  908. struct meminfo *mi = &meminfo;
  909. int i;
  910. /* Map all the lowmem memory banks. */
  911. for (i = 0; i < mi->nr_banks; i++) {
  912. struct membank *bank = &mi->bank[i];
  913. if (!bank->highmem)
  914. map_memory_bank(bank);
  915. }
  916. }
  917. static int __init meminfo_cmp(const void *_a, const void *_b)
  918. {
  919. const struct membank *a = _a, *b = _b;
  920. long cmp = bank_pfn_start(a) - bank_pfn_start(b);
  921. return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
  922. }
  923. /*
  924. * paging_init() sets up the page tables, initialises the zone memory
  925. * maps, and sets up the zero page, bad page and bad page tables.
  926. */
  927. void __init paging_init(struct machine_desc *mdesc)
  928. {
  929. void *zero_page;
  930. sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL);
  931. build_mem_type_table();
  932. sanity_check_meminfo();
  933. prepare_page_table();
  934. map_lowmem();
  935. bootmem_init();
  936. devicemaps_init(mdesc);
  937. kmap_init();
  938. top_pmd = pmd_off_k(0xffff0000);
  939. /*
  940. * allocate the zero page. Note that this always succeeds and
  941. * returns a zeroed result.
  942. */
  943. zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
  944. empty_zero_page = virt_to_page(zero_page);
  945. __flush_dcache_page(NULL, empty_zero_page);
  946. }
  947. /*
  948. * In order to soft-boot, we need to insert a 1:1 mapping in place of
  949. * the user-mode pages. This will then ensure that we have predictable
  950. * results when turning the mmu off
  951. */
  952. void setup_mm_for_reboot(char mode)
  953. {
  954. unsigned long base_pmdval;
  955. pgd_t *pgd;
  956. int i;
  957. /*
  958. * We need to access to user-mode page tables here. For kernel threads
  959. * we don't have any user-mode mappings so we use the context that we
  960. * "borrowed".
  961. */
  962. pgd = current->active_mm->pgd;
  963. base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
  964. if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
  965. base_pmdval |= PMD_BIT4;
  966. for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
  967. unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
  968. pmd_t *pmd;
  969. pmd = pmd_off(pgd, i << PGDIR_SHIFT);
  970. pmd[0] = __pmd(pmdval);
  971. pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
  972. flush_pmd_entry(pmd);
  973. }
  974. local_flush_tlb_all();
  975. }