inode.c 106 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611
  1. /*
  2. * linux/fs/ext3/inode.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/inode.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * Goal-directed block allocation by Stephen Tweedie
  16. * (sct@redhat.com), 1993, 1998
  17. * Big-endian to little-endian byte-swapping/bitmaps by
  18. * David S. Miller (davem@caip.rutgers.edu), 1995
  19. * 64-bit file support on 64-bit platforms by Jakub Jelinek
  20. * (jj@sunsite.ms.mff.cuni.cz)
  21. *
  22. * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
  23. */
  24. #include <linux/highuid.h>
  25. #include <linux/quotaops.h>
  26. #include <linux/writeback.h>
  27. #include <linux/mpage.h>
  28. #include <linux/namei.h>
  29. #include <linux/aio.h>
  30. #include "ext3.h"
  31. #include "xattr.h"
  32. #include "acl.h"
  33. static int ext3_writepage_trans_blocks(struct inode *inode);
  34. static int ext3_block_truncate_page(struct inode *inode, loff_t from);
  35. /*
  36. * Test whether an inode is a fast symlink.
  37. */
  38. static int ext3_inode_is_fast_symlink(struct inode *inode)
  39. {
  40. int ea_blocks = EXT3_I(inode)->i_file_acl ?
  41. (inode->i_sb->s_blocksize >> 9) : 0;
  42. return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  43. }
  44. /*
  45. * The ext3 forget function must perform a revoke if we are freeing data
  46. * which has been journaled. Metadata (eg. indirect blocks) must be
  47. * revoked in all cases.
  48. *
  49. * "bh" may be NULL: a metadata block may have been freed from memory
  50. * but there may still be a record of it in the journal, and that record
  51. * still needs to be revoked.
  52. */
  53. int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
  54. struct buffer_head *bh, ext3_fsblk_t blocknr)
  55. {
  56. int err;
  57. might_sleep();
  58. trace_ext3_forget(inode, is_metadata, blocknr);
  59. BUFFER_TRACE(bh, "enter");
  60. jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
  61. "data mode %lx\n",
  62. bh, is_metadata, inode->i_mode,
  63. test_opt(inode->i_sb, DATA_FLAGS));
  64. /* Never use the revoke function if we are doing full data
  65. * journaling: there is no need to, and a V1 superblock won't
  66. * support it. Otherwise, only skip the revoke on un-journaled
  67. * data blocks. */
  68. if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
  69. (!is_metadata && !ext3_should_journal_data(inode))) {
  70. if (bh) {
  71. BUFFER_TRACE(bh, "call journal_forget");
  72. return ext3_journal_forget(handle, bh);
  73. }
  74. return 0;
  75. }
  76. /*
  77. * data!=journal && (is_metadata || should_journal_data(inode))
  78. */
  79. BUFFER_TRACE(bh, "call ext3_journal_revoke");
  80. err = ext3_journal_revoke(handle, blocknr, bh);
  81. if (err)
  82. ext3_abort(inode->i_sb, __func__,
  83. "error %d when attempting revoke", err);
  84. BUFFER_TRACE(bh, "exit");
  85. return err;
  86. }
  87. /*
  88. * Work out how many blocks we need to proceed with the next chunk of a
  89. * truncate transaction.
  90. */
  91. static unsigned long blocks_for_truncate(struct inode *inode)
  92. {
  93. unsigned long needed;
  94. needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
  95. /* Give ourselves just enough room to cope with inodes in which
  96. * i_blocks is corrupt: we've seen disk corruptions in the past
  97. * which resulted in random data in an inode which looked enough
  98. * like a regular file for ext3 to try to delete it. Things
  99. * will go a bit crazy if that happens, but at least we should
  100. * try not to panic the whole kernel. */
  101. if (needed < 2)
  102. needed = 2;
  103. /* But we need to bound the transaction so we don't overflow the
  104. * journal. */
  105. if (needed > EXT3_MAX_TRANS_DATA)
  106. needed = EXT3_MAX_TRANS_DATA;
  107. return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
  108. }
  109. /*
  110. * Truncate transactions can be complex and absolutely huge. So we need to
  111. * be able to restart the transaction at a conventient checkpoint to make
  112. * sure we don't overflow the journal.
  113. *
  114. * start_transaction gets us a new handle for a truncate transaction,
  115. * and extend_transaction tries to extend the existing one a bit. If
  116. * extend fails, we need to propagate the failure up and restart the
  117. * transaction in the top-level truncate loop. --sct
  118. */
  119. static handle_t *start_transaction(struct inode *inode)
  120. {
  121. handle_t *result;
  122. result = ext3_journal_start(inode, blocks_for_truncate(inode));
  123. if (!IS_ERR(result))
  124. return result;
  125. ext3_std_error(inode->i_sb, PTR_ERR(result));
  126. return result;
  127. }
  128. /*
  129. * Try to extend this transaction for the purposes of truncation.
  130. *
  131. * Returns 0 if we managed to create more room. If we can't create more
  132. * room, and the transaction must be restarted we return 1.
  133. */
  134. static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
  135. {
  136. if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
  137. return 0;
  138. if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
  139. return 0;
  140. return 1;
  141. }
  142. /*
  143. * Restart the transaction associated with *handle. This does a commit,
  144. * so before we call here everything must be consistently dirtied against
  145. * this transaction.
  146. */
  147. static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
  148. {
  149. int ret;
  150. jbd_debug(2, "restarting handle %p\n", handle);
  151. /*
  152. * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
  153. * At this moment, get_block can be called only for blocks inside
  154. * i_size since page cache has been already dropped and writes are
  155. * blocked by i_mutex. So we can safely drop the truncate_mutex.
  156. */
  157. mutex_unlock(&EXT3_I(inode)->truncate_mutex);
  158. ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
  159. mutex_lock(&EXT3_I(inode)->truncate_mutex);
  160. return ret;
  161. }
  162. /*
  163. * Called at inode eviction from icache
  164. */
  165. void ext3_evict_inode (struct inode *inode)
  166. {
  167. struct ext3_inode_info *ei = EXT3_I(inode);
  168. struct ext3_block_alloc_info *rsv;
  169. handle_t *handle;
  170. int want_delete = 0;
  171. trace_ext3_evict_inode(inode);
  172. if (!inode->i_nlink && !is_bad_inode(inode)) {
  173. dquot_initialize(inode);
  174. want_delete = 1;
  175. }
  176. /*
  177. * When journalling data dirty buffers are tracked only in the journal.
  178. * So although mm thinks everything is clean and ready for reaping the
  179. * inode might still have some pages to write in the running
  180. * transaction or waiting to be checkpointed. Thus calling
  181. * journal_invalidatepage() (via truncate_inode_pages()) to discard
  182. * these buffers can cause data loss. Also even if we did not discard
  183. * these buffers, we would have no way to find them after the inode
  184. * is reaped and thus user could see stale data if he tries to read
  185. * them before the transaction is checkpointed. So be careful and
  186. * force everything to disk here... We use ei->i_datasync_tid to
  187. * store the newest transaction containing inode's data.
  188. *
  189. * Note that directories do not have this problem because they don't
  190. * use page cache.
  191. *
  192. * The s_journal check handles the case when ext3_get_journal() fails
  193. * and puts the journal inode.
  194. */
  195. if (inode->i_nlink && ext3_should_journal_data(inode) &&
  196. EXT3_SB(inode->i_sb)->s_journal &&
  197. (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
  198. inode->i_ino != EXT3_JOURNAL_INO) {
  199. tid_t commit_tid = atomic_read(&ei->i_datasync_tid);
  200. journal_t *journal = EXT3_SB(inode->i_sb)->s_journal;
  201. log_start_commit(journal, commit_tid);
  202. log_wait_commit(journal, commit_tid);
  203. filemap_write_and_wait(&inode->i_data);
  204. }
  205. truncate_inode_pages(&inode->i_data, 0);
  206. ext3_discard_reservation(inode);
  207. rsv = ei->i_block_alloc_info;
  208. ei->i_block_alloc_info = NULL;
  209. if (unlikely(rsv))
  210. kfree(rsv);
  211. if (!want_delete)
  212. goto no_delete;
  213. handle = start_transaction(inode);
  214. if (IS_ERR(handle)) {
  215. /*
  216. * If we're going to skip the normal cleanup, we still need to
  217. * make sure that the in-core orphan linked list is properly
  218. * cleaned up.
  219. */
  220. ext3_orphan_del(NULL, inode);
  221. goto no_delete;
  222. }
  223. if (IS_SYNC(inode))
  224. handle->h_sync = 1;
  225. inode->i_size = 0;
  226. if (inode->i_blocks)
  227. ext3_truncate(inode);
  228. /*
  229. * Kill off the orphan record created when the inode lost the last
  230. * link. Note that ext3_orphan_del() has to be able to cope with the
  231. * deletion of a non-existent orphan - ext3_truncate() could
  232. * have removed the record.
  233. */
  234. ext3_orphan_del(handle, inode);
  235. ei->i_dtime = get_seconds();
  236. /*
  237. * One subtle ordering requirement: if anything has gone wrong
  238. * (transaction abort, IO errors, whatever), then we can still
  239. * do these next steps (the fs will already have been marked as
  240. * having errors), but we can't free the inode if the mark_dirty
  241. * fails.
  242. */
  243. if (ext3_mark_inode_dirty(handle, inode)) {
  244. /* If that failed, just dquot_drop() and be done with that */
  245. dquot_drop(inode);
  246. clear_inode(inode);
  247. } else {
  248. ext3_xattr_delete_inode(handle, inode);
  249. dquot_free_inode(inode);
  250. dquot_drop(inode);
  251. clear_inode(inode);
  252. ext3_free_inode(handle, inode);
  253. }
  254. ext3_journal_stop(handle);
  255. return;
  256. no_delete:
  257. clear_inode(inode);
  258. dquot_drop(inode);
  259. }
  260. typedef struct {
  261. __le32 *p;
  262. __le32 key;
  263. struct buffer_head *bh;
  264. } Indirect;
  265. static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  266. {
  267. p->key = *(p->p = v);
  268. p->bh = bh;
  269. }
  270. static int verify_chain(Indirect *from, Indirect *to)
  271. {
  272. while (from <= to && from->key == *from->p)
  273. from++;
  274. return (from > to);
  275. }
  276. /**
  277. * ext3_block_to_path - parse the block number into array of offsets
  278. * @inode: inode in question (we are only interested in its superblock)
  279. * @i_block: block number to be parsed
  280. * @offsets: array to store the offsets in
  281. * @boundary: set this non-zero if the referred-to block is likely to be
  282. * followed (on disk) by an indirect block.
  283. *
  284. * To store the locations of file's data ext3 uses a data structure common
  285. * for UNIX filesystems - tree of pointers anchored in the inode, with
  286. * data blocks at leaves and indirect blocks in intermediate nodes.
  287. * This function translates the block number into path in that tree -
  288. * return value is the path length and @offsets[n] is the offset of
  289. * pointer to (n+1)th node in the nth one. If @block is out of range
  290. * (negative or too large) warning is printed and zero returned.
  291. *
  292. * Note: function doesn't find node addresses, so no IO is needed. All
  293. * we need to know is the capacity of indirect blocks (taken from the
  294. * inode->i_sb).
  295. */
  296. /*
  297. * Portability note: the last comparison (check that we fit into triple
  298. * indirect block) is spelled differently, because otherwise on an
  299. * architecture with 32-bit longs and 8Kb pages we might get into trouble
  300. * if our filesystem had 8Kb blocks. We might use long long, but that would
  301. * kill us on x86. Oh, well, at least the sign propagation does not matter -
  302. * i_block would have to be negative in the very beginning, so we would not
  303. * get there at all.
  304. */
  305. static int ext3_block_to_path(struct inode *inode,
  306. long i_block, int offsets[4], int *boundary)
  307. {
  308. int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  309. int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
  310. const long direct_blocks = EXT3_NDIR_BLOCKS,
  311. indirect_blocks = ptrs,
  312. double_blocks = (1 << (ptrs_bits * 2));
  313. int n = 0;
  314. int final = 0;
  315. if (i_block < 0) {
  316. ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
  317. } else if (i_block < direct_blocks) {
  318. offsets[n++] = i_block;
  319. final = direct_blocks;
  320. } else if ( (i_block -= direct_blocks) < indirect_blocks) {
  321. offsets[n++] = EXT3_IND_BLOCK;
  322. offsets[n++] = i_block;
  323. final = ptrs;
  324. } else if ((i_block -= indirect_blocks) < double_blocks) {
  325. offsets[n++] = EXT3_DIND_BLOCK;
  326. offsets[n++] = i_block >> ptrs_bits;
  327. offsets[n++] = i_block & (ptrs - 1);
  328. final = ptrs;
  329. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  330. offsets[n++] = EXT3_TIND_BLOCK;
  331. offsets[n++] = i_block >> (ptrs_bits * 2);
  332. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  333. offsets[n++] = i_block & (ptrs - 1);
  334. final = ptrs;
  335. } else {
  336. ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
  337. }
  338. if (boundary)
  339. *boundary = final - 1 - (i_block & (ptrs - 1));
  340. return n;
  341. }
  342. /**
  343. * ext3_get_branch - read the chain of indirect blocks leading to data
  344. * @inode: inode in question
  345. * @depth: depth of the chain (1 - direct pointer, etc.)
  346. * @offsets: offsets of pointers in inode/indirect blocks
  347. * @chain: place to store the result
  348. * @err: here we store the error value
  349. *
  350. * Function fills the array of triples <key, p, bh> and returns %NULL
  351. * if everything went OK or the pointer to the last filled triple
  352. * (incomplete one) otherwise. Upon the return chain[i].key contains
  353. * the number of (i+1)-th block in the chain (as it is stored in memory,
  354. * i.e. little-endian 32-bit), chain[i].p contains the address of that
  355. * number (it points into struct inode for i==0 and into the bh->b_data
  356. * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
  357. * block for i>0 and NULL for i==0. In other words, it holds the block
  358. * numbers of the chain, addresses they were taken from (and where we can
  359. * verify that chain did not change) and buffer_heads hosting these
  360. * numbers.
  361. *
  362. * Function stops when it stumbles upon zero pointer (absent block)
  363. * (pointer to last triple returned, *@err == 0)
  364. * or when it gets an IO error reading an indirect block
  365. * (ditto, *@err == -EIO)
  366. * or when it notices that chain had been changed while it was reading
  367. * (ditto, *@err == -EAGAIN)
  368. * or when it reads all @depth-1 indirect blocks successfully and finds
  369. * the whole chain, all way to the data (returns %NULL, *err == 0).
  370. */
  371. static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
  372. Indirect chain[4], int *err)
  373. {
  374. struct super_block *sb = inode->i_sb;
  375. Indirect *p = chain;
  376. struct buffer_head *bh;
  377. *err = 0;
  378. /* i_data is not going away, no lock needed */
  379. add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
  380. if (!p->key)
  381. goto no_block;
  382. while (--depth) {
  383. bh = sb_bread(sb, le32_to_cpu(p->key));
  384. if (!bh)
  385. goto failure;
  386. /* Reader: pointers */
  387. if (!verify_chain(chain, p))
  388. goto changed;
  389. add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
  390. /* Reader: end */
  391. if (!p->key)
  392. goto no_block;
  393. }
  394. return NULL;
  395. changed:
  396. brelse(bh);
  397. *err = -EAGAIN;
  398. goto no_block;
  399. failure:
  400. *err = -EIO;
  401. no_block:
  402. return p;
  403. }
  404. /**
  405. * ext3_find_near - find a place for allocation with sufficient locality
  406. * @inode: owner
  407. * @ind: descriptor of indirect block.
  408. *
  409. * This function returns the preferred place for block allocation.
  410. * It is used when heuristic for sequential allocation fails.
  411. * Rules are:
  412. * + if there is a block to the left of our position - allocate near it.
  413. * + if pointer will live in indirect block - allocate near that block.
  414. * + if pointer will live in inode - allocate in the same
  415. * cylinder group.
  416. *
  417. * In the latter case we colour the starting block by the callers PID to
  418. * prevent it from clashing with concurrent allocations for a different inode
  419. * in the same block group. The PID is used here so that functionally related
  420. * files will be close-by on-disk.
  421. *
  422. * Caller must make sure that @ind is valid and will stay that way.
  423. */
  424. static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
  425. {
  426. struct ext3_inode_info *ei = EXT3_I(inode);
  427. __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
  428. __le32 *p;
  429. ext3_fsblk_t bg_start;
  430. ext3_grpblk_t colour;
  431. /* Try to find previous block */
  432. for (p = ind->p - 1; p >= start; p--) {
  433. if (*p)
  434. return le32_to_cpu(*p);
  435. }
  436. /* No such thing, so let's try location of indirect block */
  437. if (ind->bh)
  438. return ind->bh->b_blocknr;
  439. /*
  440. * It is going to be referred to from the inode itself? OK, just put it
  441. * into the same cylinder group then.
  442. */
  443. bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
  444. colour = (current->pid % 16) *
  445. (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
  446. return bg_start + colour;
  447. }
  448. /**
  449. * ext3_find_goal - find a preferred place for allocation.
  450. * @inode: owner
  451. * @block: block we want
  452. * @partial: pointer to the last triple within a chain
  453. *
  454. * Normally this function find the preferred place for block allocation,
  455. * returns it.
  456. */
  457. static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
  458. Indirect *partial)
  459. {
  460. struct ext3_block_alloc_info *block_i;
  461. block_i = EXT3_I(inode)->i_block_alloc_info;
  462. /*
  463. * try the heuristic for sequential allocation,
  464. * failing that at least try to get decent locality.
  465. */
  466. if (block_i && (block == block_i->last_alloc_logical_block + 1)
  467. && (block_i->last_alloc_physical_block != 0)) {
  468. return block_i->last_alloc_physical_block + 1;
  469. }
  470. return ext3_find_near(inode, partial);
  471. }
  472. /**
  473. * ext3_blks_to_allocate - Look up the block map and count the number
  474. * of direct blocks need to be allocated for the given branch.
  475. *
  476. * @branch: chain of indirect blocks
  477. * @k: number of blocks need for indirect blocks
  478. * @blks: number of data blocks to be mapped.
  479. * @blocks_to_boundary: the offset in the indirect block
  480. *
  481. * return the total number of blocks to be allocate, including the
  482. * direct and indirect blocks.
  483. */
  484. static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
  485. int blocks_to_boundary)
  486. {
  487. unsigned long count = 0;
  488. /*
  489. * Simple case, [t,d]Indirect block(s) has not allocated yet
  490. * then it's clear blocks on that path have not allocated
  491. */
  492. if (k > 0) {
  493. /* right now we don't handle cross boundary allocation */
  494. if (blks < blocks_to_boundary + 1)
  495. count += blks;
  496. else
  497. count += blocks_to_boundary + 1;
  498. return count;
  499. }
  500. count++;
  501. while (count < blks && count <= blocks_to_boundary &&
  502. le32_to_cpu(*(branch[0].p + count)) == 0) {
  503. count++;
  504. }
  505. return count;
  506. }
  507. /**
  508. * ext3_alloc_blocks - multiple allocate blocks needed for a branch
  509. * @handle: handle for this transaction
  510. * @inode: owner
  511. * @goal: preferred place for allocation
  512. * @indirect_blks: the number of blocks need to allocate for indirect
  513. * blocks
  514. * @blks: number of blocks need to allocated for direct blocks
  515. * @new_blocks: on return it will store the new block numbers for
  516. * the indirect blocks(if needed) and the first direct block,
  517. * @err: here we store the error value
  518. *
  519. * return the number of direct blocks allocated
  520. */
  521. static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
  522. ext3_fsblk_t goal, int indirect_blks, int blks,
  523. ext3_fsblk_t new_blocks[4], int *err)
  524. {
  525. int target, i;
  526. unsigned long count = 0;
  527. int index = 0;
  528. ext3_fsblk_t current_block = 0;
  529. int ret = 0;
  530. /*
  531. * Here we try to allocate the requested multiple blocks at once,
  532. * on a best-effort basis.
  533. * To build a branch, we should allocate blocks for
  534. * the indirect blocks(if not allocated yet), and at least
  535. * the first direct block of this branch. That's the
  536. * minimum number of blocks need to allocate(required)
  537. */
  538. target = blks + indirect_blks;
  539. while (1) {
  540. count = target;
  541. /* allocating blocks for indirect blocks and direct blocks */
  542. current_block = ext3_new_blocks(handle,inode,goal,&count,err);
  543. if (*err)
  544. goto failed_out;
  545. target -= count;
  546. /* allocate blocks for indirect blocks */
  547. while (index < indirect_blks && count) {
  548. new_blocks[index++] = current_block++;
  549. count--;
  550. }
  551. if (count > 0)
  552. break;
  553. }
  554. /* save the new block number for the first direct block */
  555. new_blocks[index] = current_block;
  556. /* total number of blocks allocated for direct blocks */
  557. ret = count;
  558. *err = 0;
  559. return ret;
  560. failed_out:
  561. for (i = 0; i <index; i++)
  562. ext3_free_blocks(handle, inode, new_blocks[i], 1);
  563. return ret;
  564. }
  565. /**
  566. * ext3_alloc_branch - allocate and set up a chain of blocks.
  567. * @handle: handle for this transaction
  568. * @inode: owner
  569. * @indirect_blks: number of allocated indirect blocks
  570. * @blks: number of allocated direct blocks
  571. * @goal: preferred place for allocation
  572. * @offsets: offsets (in the blocks) to store the pointers to next.
  573. * @branch: place to store the chain in.
  574. *
  575. * This function allocates blocks, zeroes out all but the last one,
  576. * links them into chain and (if we are synchronous) writes them to disk.
  577. * In other words, it prepares a branch that can be spliced onto the
  578. * inode. It stores the information about that chain in the branch[], in
  579. * the same format as ext3_get_branch() would do. We are calling it after
  580. * we had read the existing part of chain and partial points to the last
  581. * triple of that (one with zero ->key). Upon the exit we have the same
  582. * picture as after the successful ext3_get_block(), except that in one
  583. * place chain is disconnected - *branch->p is still zero (we did not
  584. * set the last link), but branch->key contains the number that should
  585. * be placed into *branch->p to fill that gap.
  586. *
  587. * If allocation fails we free all blocks we've allocated (and forget
  588. * their buffer_heads) and return the error value the from failed
  589. * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
  590. * as described above and return 0.
  591. */
  592. static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
  593. int indirect_blks, int *blks, ext3_fsblk_t goal,
  594. int *offsets, Indirect *branch)
  595. {
  596. int blocksize = inode->i_sb->s_blocksize;
  597. int i, n = 0;
  598. int err = 0;
  599. struct buffer_head *bh;
  600. int num;
  601. ext3_fsblk_t new_blocks[4];
  602. ext3_fsblk_t current_block;
  603. num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
  604. *blks, new_blocks, &err);
  605. if (err)
  606. return err;
  607. branch[0].key = cpu_to_le32(new_blocks[0]);
  608. /*
  609. * metadata blocks and data blocks are allocated.
  610. */
  611. for (n = 1; n <= indirect_blks; n++) {
  612. /*
  613. * Get buffer_head for parent block, zero it out
  614. * and set the pointer to new one, then send
  615. * parent to disk.
  616. */
  617. bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
  618. if (unlikely(!bh)) {
  619. err = -ENOMEM;
  620. goto failed;
  621. }
  622. branch[n].bh = bh;
  623. lock_buffer(bh);
  624. BUFFER_TRACE(bh, "call get_create_access");
  625. err = ext3_journal_get_create_access(handle, bh);
  626. if (err) {
  627. unlock_buffer(bh);
  628. brelse(bh);
  629. goto failed;
  630. }
  631. memset(bh->b_data, 0, blocksize);
  632. branch[n].p = (__le32 *) bh->b_data + offsets[n];
  633. branch[n].key = cpu_to_le32(new_blocks[n]);
  634. *branch[n].p = branch[n].key;
  635. if ( n == indirect_blks) {
  636. current_block = new_blocks[n];
  637. /*
  638. * End of chain, update the last new metablock of
  639. * the chain to point to the new allocated
  640. * data blocks numbers
  641. */
  642. for (i=1; i < num; i++)
  643. *(branch[n].p + i) = cpu_to_le32(++current_block);
  644. }
  645. BUFFER_TRACE(bh, "marking uptodate");
  646. set_buffer_uptodate(bh);
  647. unlock_buffer(bh);
  648. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  649. err = ext3_journal_dirty_metadata(handle, bh);
  650. if (err)
  651. goto failed;
  652. }
  653. *blks = num;
  654. return err;
  655. failed:
  656. /* Allocation failed, free what we already allocated */
  657. for (i = 1; i <= n ; i++) {
  658. BUFFER_TRACE(branch[i].bh, "call journal_forget");
  659. ext3_journal_forget(handle, branch[i].bh);
  660. }
  661. for (i = 0; i < indirect_blks; i++)
  662. ext3_free_blocks(handle, inode, new_blocks[i], 1);
  663. ext3_free_blocks(handle, inode, new_blocks[i], num);
  664. return err;
  665. }
  666. /**
  667. * ext3_splice_branch - splice the allocated branch onto inode.
  668. * @handle: handle for this transaction
  669. * @inode: owner
  670. * @block: (logical) number of block we are adding
  671. * @where: location of missing link
  672. * @num: number of indirect blocks we are adding
  673. * @blks: number of direct blocks we are adding
  674. *
  675. * This function fills the missing link and does all housekeeping needed in
  676. * inode (->i_blocks, etc.). In case of success we end up with the full
  677. * chain to new block and return 0.
  678. */
  679. static int ext3_splice_branch(handle_t *handle, struct inode *inode,
  680. long block, Indirect *where, int num, int blks)
  681. {
  682. int i;
  683. int err = 0;
  684. struct ext3_block_alloc_info *block_i;
  685. ext3_fsblk_t current_block;
  686. struct ext3_inode_info *ei = EXT3_I(inode);
  687. struct timespec now;
  688. block_i = ei->i_block_alloc_info;
  689. /*
  690. * If we're splicing into a [td]indirect block (as opposed to the
  691. * inode) then we need to get write access to the [td]indirect block
  692. * before the splice.
  693. */
  694. if (where->bh) {
  695. BUFFER_TRACE(where->bh, "get_write_access");
  696. err = ext3_journal_get_write_access(handle, where->bh);
  697. if (err)
  698. goto err_out;
  699. }
  700. /* That's it */
  701. *where->p = where->key;
  702. /*
  703. * Update the host buffer_head or inode to point to more just allocated
  704. * direct blocks blocks
  705. */
  706. if (num == 0 && blks > 1) {
  707. current_block = le32_to_cpu(where->key) + 1;
  708. for (i = 1; i < blks; i++)
  709. *(where->p + i ) = cpu_to_le32(current_block++);
  710. }
  711. /*
  712. * update the most recently allocated logical & physical block
  713. * in i_block_alloc_info, to assist find the proper goal block for next
  714. * allocation
  715. */
  716. if (block_i) {
  717. block_i->last_alloc_logical_block = block + blks - 1;
  718. block_i->last_alloc_physical_block =
  719. le32_to_cpu(where[num].key) + blks - 1;
  720. }
  721. /* We are done with atomic stuff, now do the rest of housekeeping */
  722. now = CURRENT_TIME_SEC;
  723. if (!timespec_equal(&inode->i_ctime, &now) || !where->bh) {
  724. inode->i_ctime = now;
  725. ext3_mark_inode_dirty(handle, inode);
  726. }
  727. /* ext3_mark_inode_dirty already updated i_sync_tid */
  728. atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
  729. /* had we spliced it onto indirect block? */
  730. if (where->bh) {
  731. /*
  732. * If we spliced it onto an indirect block, we haven't
  733. * altered the inode. Note however that if it is being spliced
  734. * onto an indirect block at the very end of the file (the
  735. * file is growing) then we *will* alter the inode to reflect
  736. * the new i_size. But that is not done here - it is done in
  737. * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
  738. */
  739. jbd_debug(5, "splicing indirect only\n");
  740. BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
  741. err = ext3_journal_dirty_metadata(handle, where->bh);
  742. if (err)
  743. goto err_out;
  744. } else {
  745. /*
  746. * OK, we spliced it into the inode itself on a direct block.
  747. * Inode was dirtied above.
  748. */
  749. jbd_debug(5, "splicing direct\n");
  750. }
  751. return err;
  752. err_out:
  753. for (i = 1; i <= num; i++) {
  754. BUFFER_TRACE(where[i].bh, "call journal_forget");
  755. ext3_journal_forget(handle, where[i].bh);
  756. ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
  757. }
  758. ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
  759. return err;
  760. }
  761. /*
  762. * Allocation strategy is simple: if we have to allocate something, we will
  763. * have to go the whole way to leaf. So let's do it before attaching anything
  764. * to tree, set linkage between the newborn blocks, write them if sync is
  765. * required, recheck the path, free and repeat if check fails, otherwise
  766. * set the last missing link (that will protect us from any truncate-generated
  767. * removals - all blocks on the path are immune now) and possibly force the
  768. * write on the parent block.
  769. * That has a nice additional property: no special recovery from the failed
  770. * allocations is needed - we simply release blocks and do not touch anything
  771. * reachable from inode.
  772. *
  773. * `handle' can be NULL if create == 0.
  774. *
  775. * The BKL may not be held on entry here. Be sure to take it early.
  776. * return > 0, # of blocks mapped or allocated.
  777. * return = 0, if plain lookup failed.
  778. * return < 0, error case.
  779. */
  780. int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
  781. sector_t iblock, unsigned long maxblocks,
  782. struct buffer_head *bh_result,
  783. int create)
  784. {
  785. int err = -EIO;
  786. int offsets[4];
  787. Indirect chain[4];
  788. Indirect *partial;
  789. ext3_fsblk_t goal;
  790. int indirect_blks;
  791. int blocks_to_boundary = 0;
  792. int depth;
  793. struct ext3_inode_info *ei = EXT3_I(inode);
  794. int count = 0;
  795. ext3_fsblk_t first_block = 0;
  796. trace_ext3_get_blocks_enter(inode, iblock, maxblocks, create);
  797. J_ASSERT(handle != NULL || create == 0);
  798. depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
  799. if (depth == 0)
  800. goto out;
  801. partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  802. /* Simplest case - block found, no allocation needed */
  803. if (!partial) {
  804. first_block = le32_to_cpu(chain[depth - 1].key);
  805. clear_buffer_new(bh_result);
  806. count++;
  807. /*map more blocks*/
  808. while (count < maxblocks && count <= blocks_to_boundary) {
  809. ext3_fsblk_t blk;
  810. if (!verify_chain(chain, chain + depth - 1)) {
  811. /*
  812. * Indirect block might be removed by
  813. * truncate while we were reading it.
  814. * Handling of that case: forget what we've
  815. * got now. Flag the err as EAGAIN, so it
  816. * will reread.
  817. */
  818. err = -EAGAIN;
  819. count = 0;
  820. break;
  821. }
  822. blk = le32_to_cpu(*(chain[depth-1].p + count));
  823. if (blk == first_block + count)
  824. count++;
  825. else
  826. break;
  827. }
  828. if (err != -EAGAIN)
  829. goto got_it;
  830. }
  831. /* Next simple case - plain lookup or failed read of indirect block */
  832. if (!create || err == -EIO)
  833. goto cleanup;
  834. /*
  835. * Block out ext3_truncate while we alter the tree
  836. */
  837. mutex_lock(&ei->truncate_mutex);
  838. /*
  839. * If the indirect block is missing while we are reading
  840. * the chain(ext3_get_branch() returns -EAGAIN err), or
  841. * if the chain has been changed after we grab the semaphore,
  842. * (either because another process truncated this branch, or
  843. * another get_block allocated this branch) re-grab the chain to see if
  844. * the request block has been allocated or not.
  845. *
  846. * Since we already block the truncate/other get_block
  847. * at this point, we will have the current copy of the chain when we
  848. * splice the branch into the tree.
  849. */
  850. if (err == -EAGAIN || !verify_chain(chain, partial)) {
  851. while (partial > chain) {
  852. brelse(partial->bh);
  853. partial--;
  854. }
  855. partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  856. if (!partial) {
  857. count++;
  858. mutex_unlock(&ei->truncate_mutex);
  859. if (err)
  860. goto cleanup;
  861. clear_buffer_new(bh_result);
  862. goto got_it;
  863. }
  864. }
  865. /*
  866. * Okay, we need to do block allocation. Lazily initialize the block
  867. * allocation info here if necessary
  868. */
  869. if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
  870. ext3_init_block_alloc_info(inode);
  871. goal = ext3_find_goal(inode, iblock, partial);
  872. /* the number of blocks need to allocate for [d,t]indirect blocks */
  873. indirect_blks = (chain + depth) - partial - 1;
  874. /*
  875. * Next look up the indirect map to count the totoal number of
  876. * direct blocks to allocate for this branch.
  877. */
  878. count = ext3_blks_to_allocate(partial, indirect_blks,
  879. maxblocks, blocks_to_boundary);
  880. err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
  881. offsets + (partial - chain), partial);
  882. /*
  883. * The ext3_splice_branch call will free and forget any buffers
  884. * on the new chain if there is a failure, but that risks using
  885. * up transaction credits, especially for bitmaps where the
  886. * credits cannot be returned. Can we handle this somehow? We
  887. * may need to return -EAGAIN upwards in the worst case. --sct
  888. */
  889. if (!err)
  890. err = ext3_splice_branch(handle, inode, iblock,
  891. partial, indirect_blks, count);
  892. mutex_unlock(&ei->truncate_mutex);
  893. if (err)
  894. goto cleanup;
  895. set_buffer_new(bh_result);
  896. got_it:
  897. map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
  898. if (count > blocks_to_boundary)
  899. set_buffer_boundary(bh_result);
  900. err = count;
  901. /* Clean up and exit */
  902. partial = chain + depth - 1; /* the whole chain */
  903. cleanup:
  904. while (partial > chain) {
  905. BUFFER_TRACE(partial->bh, "call brelse");
  906. brelse(partial->bh);
  907. partial--;
  908. }
  909. BUFFER_TRACE(bh_result, "returned");
  910. out:
  911. trace_ext3_get_blocks_exit(inode, iblock,
  912. depth ? le32_to_cpu(chain[depth-1].key) : 0,
  913. count, err);
  914. return err;
  915. }
  916. /* Maximum number of blocks we map for direct IO at once. */
  917. #define DIO_MAX_BLOCKS 4096
  918. /*
  919. * Number of credits we need for writing DIO_MAX_BLOCKS:
  920. * We need sb + group descriptor + bitmap + inode -> 4
  921. * For B blocks with A block pointers per block we need:
  922. * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
  923. * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
  924. */
  925. #define DIO_CREDITS 25
  926. static int ext3_get_block(struct inode *inode, sector_t iblock,
  927. struct buffer_head *bh_result, int create)
  928. {
  929. handle_t *handle = ext3_journal_current_handle();
  930. int ret = 0, started = 0;
  931. unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
  932. if (create && !handle) { /* Direct IO write... */
  933. if (max_blocks > DIO_MAX_BLOCKS)
  934. max_blocks = DIO_MAX_BLOCKS;
  935. handle = ext3_journal_start(inode, DIO_CREDITS +
  936. EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
  937. if (IS_ERR(handle)) {
  938. ret = PTR_ERR(handle);
  939. goto out;
  940. }
  941. started = 1;
  942. }
  943. ret = ext3_get_blocks_handle(handle, inode, iblock,
  944. max_blocks, bh_result, create);
  945. if (ret > 0) {
  946. bh_result->b_size = (ret << inode->i_blkbits);
  947. ret = 0;
  948. }
  949. if (started)
  950. ext3_journal_stop(handle);
  951. out:
  952. return ret;
  953. }
  954. int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
  955. u64 start, u64 len)
  956. {
  957. return generic_block_fiemap(inode, fieinfo, start, len,
  958. ext3_get_block);
  959. }
  960. /*
  961. * `handle' can be NULL if create is zero
  962. */
  963. struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
  964. long block, int create, int *errp)
  965. {
  966. struct buffer_head dummy;
  967. int fatal = 0, err;
  968. J_ASSERT(handle != NULL || create == 0);
  969. dummy.b_state = 0;
  970. dummy.b_blocknr = -1000;
  971. buffer_trace_init(&dummy.b_history);
  972. err = ext3_get_blocks_handle(handle, inode, block, 1,
  973. &dummy, create);
  974. /*
  975. * ext3_get_blocks_handle() returns number of blocks
  976. * mapped. 0 in case of a HOLE.
  977. */
  978. if (err > 0) {
  979. WARN_ON(err > 1);
  980. err = 0;
  981. }
  982. *errp = err;
  983. if (!err && buffer_mapped(&dummy)) {
  984. struct buffer_head *bh;
  985. bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  986. if (unlikely(!bh)) {
  987. *errp = -ENOMEM;
  988. goto err;
  989. }
  990. if (buffer_new(&dummy)) {
  991. J_ASSERT(create != 0);
  992. J_ASSERT(handle != NULL);
  993. /*
  994. * Now that we do not always journal data, we should
  995. * keep in mind whether this should always journal the
  996. * new buffer as metadata. For now, regular file
  997. * writes use ext3_get_block instead, so it's not a
  998. * problem.
  999. */
  1000. lock_buffer(bh);
  1001. BUFFER_TRACE(bh, "call get_create_access");
  1002. fatal = ext3_journal_get_create_access(handle, bh);
  1003. if (!fatal && !buffer_uptodate(bh)) {
  1004. memset(bh->b_data,0,inode->i_sb->s_blocksize);
  1005. set_buffer_uptodate(bh);
  1006. }
  1007. unlock_buffer(bh);
  1008. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  1009. err = ext3_journal_dirty_metadata(handle, bh);
  1010. if (!fatal)
  1011. fatal = err;
  1012. } else {
  1013. BUFFER_TRACE(bh, "not a new buffer");
  1014. }
  1015. if (fatal) {
  1016. *errp = fatal;
  1017. brelse(bh);
  1018. bh = NULL;
  1019. }
  1020. return bh;
  1021. }
  1022. err:
  1023. return NULL;
  1024. }
  1025. struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
  1026. int block, int create, int *err)
  1027. {
  1028. struct buffer_head * bh;
  1029. bh = ext3_getblk(handle, inode, block, create, err);
  1030. if (!bh)
  1031. return bh;
  1032. if (bh_uptodate_or_lock(bh))
  1033. return bh;
  1034. get_bh(bh);
  1035. bh->b_end_io = end_buffer_read_sync;
  1036. submit_bh(READ | REQ_META | REQ_PRIO, bh);
  1037. wait_on_buffer(bh);
  1038. if (buffer_uptodate(bh))
  1039. return bh;
  1040. put_bh(bh);
  1041. *err = -EIO;
  1042. return NULL;
  1043. }
  1044. static int walk_page_buffers( handle_t *handle,
  1045. struct buffer_head *head,
  1046. unsigned from,
  1047. unsigned to,
  1048. int *partial,
  1049. int (*fn)( handle_t *handle,
  1050. struct buffer_head *bh))
  1051. {
  1052. struct buffer_head *bh;
  1053. unsigned block_start, block_end;
  1054. unsigned blocksize = head->b_size;
  1055. int err, ret = 0;
  1056. struct buffer_head *next;
  1057. for ( bh = head, block_start = 0;
  1058. ret == 0 && (bh != head || !block_start);
  1059. block_start = block_end, bh = next)
  1060. {
  1061. next = bh->b_this_page;
  1062. block_end = block_start + blocksize;
  1063. if (block_end <= from || block_start >= to) {
  1064. if (partial && !buffer_uptodate(bh))
  1065. *partial = 1;
  1066. continue;
  1067. }
  1068. err = (*fn)(handle, bh);
  1069. if (!ret)
  1070. ret = err;
  1071. }
  1072. return ret;
  1073. }
  1074. /*
  1075. * To preserve ordering, it is essential that the hole instantiation and
  1076. * the data write be encapsulated in a single transaction. We cannot
  1077. * close off a transaction and start a new one between the ext3_get_block()
  1078. * and the commit_write(). So doing the journal_start at the start of
  1079. * prepare_write() is the right place.
  1080. *
  1081. * Also, this function can nest inside ext3_writepage() ->
  1082. * block_write_full_page(). In that case, we *know* that ext3_writepage()
  1083. * has generated enough buffer credits to do the whole page. So we won't
  1084. * block on the journal in that case, which is good, because the caller may
  1085. * be PF_MEMALLOC.
  1086. *
  1087. * By accident, ext3 can be reentered when a transaction is open via
  1088. * quota file writes. If we were to commit the transaction while thus
  1089. * reentered, there can be a deadlock - we would be holding a quota
  1090. * lock, and the commit would never complete if another thread had a
  1091. * transaction open and was blocking on the quota lock - a ranking
  1092. * violation.
  1093. *
  1094. * So what we do is to rely on the fact that journal_stop/journal_start
  1095. * will _not_ run commit under these circumstances because handle->h_ref
  1096. * is elevated. We'll still have enough credits for the tiny quotafile
  1097. * write.
  1098. */
  1099. static int do_journal_get_write_access(handle_t *handle,
  1100. struct buffer_head *bh)
  1101. {
  1102. int dirty = buffer_dirty(bh);
  1103. int ret;
  1104. if (!buffer_mapped(bh) || buffer_freed(bh))
  1105. return 0;
  1106. /*
  1107. * __block_prepare_write() could have dirtied some buffers. Clean
  1108. * the dirty bit as jbd2_journal_get_write_access() could complain
  1109. * otherwise about fs integrity issues. Setting of the dirty bit
  1110. * by __block_prepare_write() isn't a real problem here as we clear
  1111. * the bit before releasing a page lock and thus writeback cannot
  1112. * ever write the buffer.
  1113. */
  1114. if (dirty)
  1115. clear_buffer_dirty(bh);
  1116. ret = ext3_journal_get_write_access(handle, bh);
  1117. if (!ret && dirty)
  1118. ret = ext3_journal_dirty_metadata(handle, bh);
  1119. return ret;
  1120. }
  1121. /*
  1122. * Truncate blocks that were not used by write. We have to truncate the
  1123. * pagecache as well so that corresponding buffers get properly unmapped.
  1124. */
  1125. static void ext3_truncate_failed_write(struct inode *inode)
  1126. {
  1127. truncate_inode_pages(inode->i_mapping, inode->i_size);
  1128. ext3_truncate(inode);
  1129. }
  1130. /*
  1131. * Truncate blocks that were not used by direct IO write. We have to zero out
  1132. * the last file block as well because direct IO might have written to it.
  1133. */
  1134. static void ext3_truncate_failed_direct_write(struct inode *inode)
  1135. {
  1136. ext3_block_truncate_page(inode, inode->i_size);
  1137. ext3_truncate(inode);
  1138. }
  1139. static int ext3_write_begin(struct file *file, struct address_space *mapping,
  1140. loff_t pos, unsigned len, unsigned flags,
  1141. struct page **pagep, void **fsdata)
  1142. {
  1143. struct inode *inode = mapping->host;
  1144. int ret;
  1145. handle_t *handle;
  1146. int retries = 0;
  1147. struct page *page;
  1148. pgoff_t index;
  1149. unsigned from, to;
  1150. /* Reserve one block more for addition to orphan list in case
  1151. * we allocate blocks but write fails for some reason */
  1152. int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
  1153. trace_ext3_write_begin(inode, pos, len, flags);
  1154. index = pos >> PAGE_CACHE_SHIFT;
  1155. from = pos & (PAGE_CACHE_SIZE - 1);
  1156. to = from + len;
  1157. retry:
  1158. page = grab_cache_page_write_begin(mapping, index, flags);
  1159. if (!page)
  1160. return -ENOMEM;
  1161. *pagep = page;
  1162. handle = ext3_journal_start(inode, needed_blocks);
  1163. if (IS_ERR(handle)) {
  1164. unlock_page(page);
  1165. page_cache_release(page);
  1166. ret = PTR_ERR(handle);
  1167. goto out;
  1168. }
  1169. ret = __block_write_begin(page, pos, len, ext3_get_block);
  1170. if (ret)
  1171. goto write_begin_failed;
  1172. if (ext3_should_journal_data(inode)) {
  1173. ret = walk_page_buffers(handle, page_buffers(page),
  1174. from, to, NULL, do_journal_get_write_access);
  1175. }
  1176. write_begin_failed:
  1177. if (ret) {
  1178. /*
  1179. * block_write_begin may have instantiated a few blocks
  1180. * outside i_size. Trim these off again. Don't need
  1181. * i_size_read because we hold i_mutex.
  1182. *
  1183. * Add inode to orphan list in case we crash before truncate
  1184. * finishes. Do this only if ext3_can_truncate() agrees so
  1185. * that orphan processing code is happy.
  1186. */
  1187. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1188. ext3_orphan_add(handle, inode);
  1189. ext3_journal_stop(handle);
  1190. unlock_page(page);
  1191. page_cache_release(page);
  1192. if (pos + len > inode->i_size)
  1193. ext3_truncate_failed_write(inode);
  1194. }
  1195. if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
  1196. goto retry;
  1197. out:
  1198. return ret;
  1199. }
  1200. int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
  1201. {
  1202. int err = journal_dirty_data(handle, bh);
  1203. if (err)
  1204. ext3_journal_abort_handle(__func__, __func__,
  1205. bh, handle, err);
  1206. return err;
  1207. }
  1208. /* For ordered writepage and write_end functions */
  1209. static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
  1210. {
  1211. /*
  1212. * Write could have mapped the buffer but it didn't copy the data in
  1213. * yet. So avoid filing such buffer into a transaction.
  1214. */
  1215. if (buffer_mapped(bh) && buffer_uptodate(bh))
  1216. return ext3_journal_dirty_data(handle, bh);
  1217. return 0;
  1218. }
  1219. /* For write_end() in data=journal mode */
  1220. static int write_end_fn(handle_t *handle, struct buffer_head *bh)
  1221. {
  1222. if (!buffer_mapped(bh) || buffer_freed(bh))
  1223. return 0;
  1224. set_buffer_uptodate(bh);
  1225. return ext3_journal_dirty_metadata(handle, bh);
  1226. }
  1227. /*
  1228. * This is nasty and subtle: ext3_write_begin() could have allocated blocks
  1229. * for the whole page but later we failed to copy the data in. Update inode
  1230. * size according to what we managed to copy. The rest is going to be
  1231. * truncated in write_end function.
  1232. */
  1233. static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
  1234. {
  1235. /* What matters to us is i_disksize. We don't write i_size anywhere */
  1236. if (pos + copied > inode->i_size)
  1237. i_size_write(inode, pos + copied);
  1238. if (pos + copied > EXT3_I(inode)->i_disksize) {
  1239. EXT3_I(inode)->i_disksize = pos + copied;
  1240. mark_inode_dirty(inode);
  1241. }
  1242. }
  1243. /*
  1244. * We need to pick up the new inode size which generic_commit_write gave us
  1245. * `file' can be NULL - eg, when called from page_symlink().
  1246. *
  1247. * ext3 never places buffers on inode->i_mapping->private_list. metadata
  1248. * buffers are managed internally.
  1249. */
  1250. static int ext3_ordered_write_end(struct file *file,
  1251. struct address_space *mapping,
  1252. loff_t pos, unsigned len, unsigned copied,
  1253. struct page *page, void *fsdata)
  1254. {
  1255. handle_t *handle = ext3_journal_current_handle();
  1256. struct inode *inode = file->f_mapping->host;
  1257. unsigned from, to;
  1258. int ret = 0, ret2;
  1259. trace_ext3_ordered_write_end(inode, pos, len, copied);
  1260. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1261. from = pos & (PAGE_CACHE_SIZE - 1);
  1262. to = from + copied;
  1263. ret = walk_page_buffers(handle, page_buffers(page),
  1264. from, to, NULL, journal_dirty_data_fn);
  1265. if (ret == 0)
  1266. update_file_sizes(inode, pos, copied);
  1267. /*
  1268. * There may be allocated blocks outside of i_size because
  1269. * we failed to copy some data. Prepare for truncate.
  1270. */
  1271. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1272. ext3_orphan_add(handle, inode);
  1273. ret2 = ext3_journal_stop(handle);
  1274. if (!ret)
  1275. ret = ret2;
  1276. unlock_page(page);
  1277. page_cache_release(page);
  1278. if (pos + len > inode->i_size)
  1279. ext3_truncate_failed_write(inode);
  1280. return ret ? ret : copied;
  1281. }
  1282. static int ext3_writeback_write_end(struct file *file,
  1283. struct address_space *mapping,
  1284. loff_t pos, unsigned len, unsigned copied,
  1285. struct page *page, void *fsdata)
  1286. {
  1287. handle_t *handle = ext3_journal_current_handle();
  1288. struct inode *inode = file->f_mapping->host;
  1289. int ret;
  1290. trace_ext3_writeback_write_end(inode, pos, len, copied);
  1291. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1292. update_file_sizes(inode, pos, copied);
  1293. /*
  1294. * There may be allocated blocks outside of i_size because
  1295. * we failed to copy some data. Prepare for truncate.
  1296. */
  1297. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1298. ext3_orphan_add(handle, inode);
  1299. ret = ext3_journal_stop(handle);
  1300. unlock_page(page);
  1301. page_cache_release(page);
  1302. if (pos + len > inode->i_size)
  1303. ext3_truncate_failed_write(inode);
  1304. return ret ? ret : copied;
  1305. }
  1306. static int ext3_journalled_write_end(struct file *file,
  1307. struct address_space *mapping,
  1308. loff_t pos, unsigned len, unsigned copied,
  1309. struct page *page, void *fsdata)
  1310. {
  1311. handle_t *handle = ext3_journal_current_handle();
  1312. struct inode *inode = mapping->host;
  1313. struct ext3_inode_info *ei = EXT3_I(inode);
  1314. int ret = 0, ret2;
  1315. int partial = 0;
  1316. unsigned from, to;
  1317. trace_ext3_journalled_write_end(inode, pos, len, copied);
  1318. from = pos & (PAGE_CACHE_SIZE - 1);
  1319. to = from + len;
  1320. if (copied < len) {
  1321. if (!PageUptodate(page))
  1322. copied = 0;
  1323. page_zero_new_buffers(page, from + copied, to);
  1324. to = from + copied;
  1325. }
  1326. ret = walk_page_buffers(handle, page_buffers(page), from,
  1327. to, &partial, write_end_fn);
  1328. if (!partial)
  1329. SetPageUptodate(page);
  1330. if (pos + copied > inode->i_size)
  1331. i_size_write(inode, pos + copied);
  1332. /*
  1333. * There may be allocated blocks outside of i_size because
  1334. * we failed to copy some data. Prepare for truncate.
  1335. */
  1336. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1337. ext3_orphan_add(handle, inode);
  1338. ext3_set_inode_state(inode, EXT3_STATE_JDATA);
  1339. atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
  1340. if (inode->i_size > ei->i_disksize) {
  1341. ei->i_disksize = inode->i_size;
  1342. ret2 = ext3_mark_inode_dirty(handle, inode);
  1343. if (!ret)
  1344. ret = ret2;
  1345. }
  1346. ret2 = ext3_journal_stop(handle);
  1347. if (!ret)
  1348. ret = ret2;
  1349. unlock_page(page);
  1350. page_cache_release(page);
  1351. if (pos + len > inode->i_size)
  1352. ext3_truncate_failed_write(inode);
  1353. return ret ? ret : copied;
  1354. }
  1355. /*
  1356. * bmap() is special. It gets used by applications such as lilo and by
  1357. * the swapper to find the on-disk block of a specific piece of data.
  1358. *
  1359. * Naturally, this is dangerous if the block concerned is still in the
  1360. * journal. If somebody makes a swapfile on an ext3 data-journaling
  1361. * filesystem and enables swap, then they may get a nasty shock when the
  1362. * data getting swapped to that swapfile suddenly gets overwritten by
  1363. * the original zero's written out previously to the journal and
  1364. * awaiting writeback in the kernel's buffer cache.
  1365. *
  1366. * So, if we see any bmap calls here on a modified, data-journaled file,
  1367. * take extra steps to flush any blocks which might be in the cache.
  1368. */
  1369. static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
  1370. {
  1371. struct inode *inode = mapping->host;
  1372. journal_t *journal;
  1373. int err;
  1374. if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) {
  1375. /*
  1376. * This is a REALLY heavyweight approach, but the use of
  1377. * bmap on dirty files is expected to be extremely rare:
  1378. * only if we run lilo or swapon on a freshly made file
  1379. * do we expect this to happen.
  1380. *
  1381. * (bmap requires CAP_SYS_RAWIO so this does not
  1382. * represent an unprivileged user DOS attack --- we'd be
  1383. * in trouble if mortal users could trigger this path at
  1384. * will.)
  1385. *
  1386. * NB. EXT3_STATE_JDATA is not set on files other than
  1387. * regular files. If somebody wants to bmap a directory
  1388. * or symlink and gets confused because the buffer
  1389. * hasn't yet been flushed to disk, they deserve
  1390. * everything they get.
  1391. */
  1392. ext3_clear_inode_state(inode, EXT3_STATE_JDATA);
  1393. journal = EXT3_JOURNAL(inode);
  1394. journal_lock_updates(journal);
  1395. err = journal_flush(journal);
  1396. journal_unlock_updates(journal);
  1397. if (err)
  1398. return 0;
  1399. }
  1400. return generic_block_bmap(mapping,block,ext3_get_block);
  1401. }
  1402. static int bget_one(handle_t *handle, struct buffer_head *bh)
  1403. {
  1404. get_bh(bh);
  1405. return 0;
  1406. }
  1407. static int bput_one(handle_t *handle, struct buffer_head *bh)
  1408. {
  1409. put_bh(bh);
  1410. return 0;
  1411. }
  1412. static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
  1413. {
  1414. return !buffer_mapped(bh);
  1415. }
  1416. /*
  1417. * Note that we always start a transaction even if we're not journalling
  1418. * data. This is to preserve ordering: any hole instantiation within
  1419. * __block_write_full_page -> ext3_get_block() should be journalled
  1420. * along with the data so we don't crash and then get metadata which
  1421. * refers to old data.
  1422. *
  1423. * In all journalling modes block_write_full_page() will start the I/O.
  1424. *
  1425. * Problem:
  1426. *
  1427. * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
  1428. * ext3_writepage()
  1429. *
  1430. * Similar for:
  1431. *
  1432. * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
  1433. *
  1434. * Same applies to ext3_get_block(). We will deadlock on various things like
  1435. * lock_journal and i_truncate_mutex.
  1436. *
  1437. * Setting PF_MEMALLOC here doesn't work - too many internal memory
  1438. * allocations fail.
  1439. *
  1440. * 16May01: If we're reentered then journal_current_handle() will be
  1441. * non-zero. We simply *return*.
  1442. *
  1443. * 1 July 2001: @@@ FIXME:
  1444. * In journalled data mode, a data buffer may be metadata against the
  1445. * current transaction. But the same file is part of a shared mapping
  1446. * and someone does a writepage() on it.
  1447. *
  1448. * We will move the buffer onto the async_data list, but *after* it has
  1449. * been dirtied. So there's a small window where we have dirty data on
  1450. * BJ_Metadata.
  1451. *
  1452. * Note that this only applies to the last partial page in the file. The
  1453. * bit which block_write_full_page() uses prepare/commit for. (That's
  1454. * broken code anyway: it's wrong for msync()).
  1455. *
  1456. * It's a rare case: affects the final partial page, for journalled data
  1457. * where the file is subject to bith write() and writepage() in the same
  1458. * transction. To fix it we'll need a custom block_write_full_page().
  1459. * We'll probably need that anyway for journalling writepage() output.
  1460. *
  1461. * We don't honour synchronous mounts for writepage(). That would be
  1462. * disastrous. Any write() or metadata operation will sync the fs for
  1463. * us.
  1464. *
  1465. * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
  1466. * we don't need to open a transaction here.
  1467. */
  1468. static int ext3_ordered_writepage(struct page *page,
  1469. struct writeback_control *wbc)
  1470. {
  1471. struct inode *inode = page->mapping->host;
  1472. struct buffer_head *page_bufs;
  1473. handle_t *handle = NULL;
  1474. int ret = 0;
  1475. int err;
  1476. J_ASSERT(PageLocked(page));
  1477. /*
  1478. * We don't want to warn for emergency remount. The condition is
  1479. * ordered to avoid dereferencing inode->i_sb in non-error case to
  1480. * avoid slow-downs.
  1481. */
  1482. WARN_ON_ONCE(IS_RDONLY(inode) &&
  1483. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
  1484. /*
  1485. * We give up here if we're reentered, because it might be for a
  1486. * different filesystem.
  1487. */
  1488. if (ext3_journal_current_handle())
  1489. goto out_fail;
  1490. trace_ext3_ordered_writepage(page);
  1491. if (!page_has_buffers(page)) {
  1492. create_empty_buffers(page, inode->i_sb->s_blocksize,
  1493. (1 << BH_Dirty)|(1 << BH_Uptodate));
  1494. page_bufs = page_buffers(page);
  1495. } else {
  1496. page_bufs = page_buffers(page);
  1497. if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
  1498. NULL, buffer_unmapped)) {
  1499. /* Provide NULL get_block() to catch bugs if buffers
  1500. * weren't really mapped */
  1501. return block_write_full_page(page, NULL, wbc);
  1502. }
  1503. }
  1504. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1505. if (IS_ERR(handle)) {
  1506. ret = PTR_ERR(handle);
  1507. goto out_fail;
  1508. }
  1509. walk_page_buffers(handle, page_bufs, 0,
  1510. PAGE_CACHE_SIZE, NULL, bget_one);
  1511. ret = block_write_full_page(page, ext3_get_block, wbc);
  1512. /*
  1513. * The page can become unlocked at any point now, and
  1514. * truncate can then come in and change things. So we
  1515. * can't touch *page from now on. But *page_bufs is
  1516. * safe due to elevated refcount.
  1517. */
  1518. /*
  1519. * And attach them to the current transaction. But only if
  1520. * block_write_full_page() succeeded. Otherwise they are unmapped,
  1521. * and generally junk.
  1522. */
  1523. if (ret == 0) {
  1524. err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
  1525. NULL, journal_dirty_data_fn);
  1526. if (!ret)
  1527. ret = err;
  1528. }
  1529. walk_page_buffers(handle, page_bufs, 0,
  1530. PAGE_CACHE_SIZE, NULL, bput_one);
  1531. err = ext3_journal_stop(handle);
  1532. if (!ret)
  1533. ret = err;
  1534. return ret;
  1535. out_fail:
  1536. redirty_page_for_writepage(wbc, page);
  1537. unlock_page(page);
  1538. return ret;
  1539. }
  1540. static int ext3_writeback_writepage(struct page *page,
  1541. struct writeback_control *wbc)
  1542. {
  1543. struct inode *inode = page->mapping->host;
  1544. handle_t *handle = NULL;
  1545. int ret = 0;
  1546. int err;
  1547. J_ASSERT(PageLocked(page));
  1548. /*
  1549. * We don't want to warn for emergency remount. The condition is
  1550. * ordered to avoid dereferencing inode->i_sb in non-error case to
  1551. * avoid slow-downs.
  1552. */
  1553. WARN_ON_ONCE(IS_RDONLY(inode) &&
  1554. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
  1555. if (ext3_journal_current_handle())
  1556. goto out_fail;
  1557. trace_ext3_writeback_writepage(page);
  1558. if (page_has_buffers(page)) {
  1559. if (!walk_page_buffers(NULL, page_buffers(page), 0,
  1560. PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
  1561. /* Provide NULL get_block() to catch bugs if buffers
  1562. * weren't really mapped */
  1563. return block_write_full_page(page, NULL, wbc);
  1564. }
  1565. }
  1566. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1567. if (IS_ERR(handle)) {
  1568. ret = PTR_ERR(handle);
  1569. goto out_fail;
  1570. }
  1571. ret = block_write_full_page(page, ext3_get_block, wbc);
  1572. err = ext3_journal_stop(handle);
  1573. if (!ret)
  1574. ret = err;
  1575. return ret;
  1576. out_fail:
  1577. redirty_page_for_writepage(wbc, page);
  1578. unlock_page(page);
  1579. return ret;
  1580. }
  1581. static int ext3_journalled_writepage(struct page *page,
  1582. struct writeback_control *wbc)
  1583. {
  1584. struct inode *inode = page->mapping->host;
  1585. handle_t *handle = NULL;
  1586. int ret = 0;
  1587. int err;
  1588. J_ASSERT(PageLocked(page));
  1589. /*
  1590. * We don't want to warn for emergency remount. The condition is
  1591. * ordered to avoid dereferencing inode->i_sb in non-error case to
  1592. * avoid slow-downs.
  1593. */
  1594. WARN_ON_ONCE(IS_RDONLY(inode) &&
  1595. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
  1596. if (ext3_journal_current_handle())
  1597. goto no_write;
  1598. trace_ext3_journalled_writepage(page);
  1599. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1600. if (IS_ERR(handle)) {
  1601. ret = PTR_ERR(handle);
  1602. goto no_write;
  1603. }
  1604. if (!page_has_buffers(page) || PageChecked(page)) {
  1605. /*
  1606. * It's mmapped pagecache. Add buffers and journal it. There
  1607. * doesn't seem much point in redirtying the page here.
  1608. */
  1609. ClearPageChecked(page);
  1610. ret = __block_write_begin(page, 0, PAGE_CACHE_SIZE,
  1611. ext3_get_block);
  1612. if (ret != 0) {
  1613. ext3_journal_stop(handle);
  1614. goto out_unlock;
  1615. }
  1616. ret = walk_page_buffers(handle, page_buffers(page), 0,
  1617. PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
  1618. err = walk_page_buffers(handle, page_buffers(page), 0,
  1619. PAGE_CACHE_SIZE, NULL, write_end_fn);
  1620. if (ret == 0)
  1621. ret = err;
  1622. ext3_set_inode_state(inode, EXT3_STATE_JDATA);
  1623. atomic_set(&EXT3_I(inode)->i_datasync_tid,
  1624. handle->h_transaction->t_tid);
  1625. unlock_page(page);
  1626. } else {
  1627. /*
  1628. * It may be a page full of checkpoint-mode buffers. We don't
  1629. * really know unless we go poke around in the buffer_heads.
  1630. * But block_write_full_page will do the right thing.
  1631. */
  1632. ret = block_write_full_page(page, ext3_get_block, wbc);
  1633. }
  1634. err = ext3_journal_stop(handle);
  1635. if (!ret)
  1636. ret = err;
  1637. out:
  1638. return ret;
  1639. no_write:
  1640. redirty_page_for_writepage(wbc, page);
  1641. out_unlock:
  1642. unlock_page(page);
  1643. goto out;
  1644. }
  1645. static int ext3_readpage(struct file *file, struct page *page)
  1646. {
  1647. trace_ext3_readpage(page);
  1648. return mpage_readpage(page, ext3_get_block);
  1649. }
  1650. static int
  1651. ext3_readpages(struct file *file, struct address_space *mapping,
  1652. struct list_head *pages, unsigned nr_pages)
  1653. {
  1654. return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
  1655. }
  1656. static void ext3_invalidatepage(struct page *page, unsigned int offset,
  1657. unsigned int length)
  1658. {
  1659. journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  1660. trace_ext3_invalidatepage(page, offset, length);
  1661. /*
  1662. * If it's a full truncate we just forget about the pending dirtying
  1663. */
  1664. if (offset == 0 && length == PAGE_CACHE_SIZE)
  1665. ClearPageChecked(page);
  1666. journal_invalidatepage(journal, page, offset, length);
  1667. }
  1668. static int ext3_releasepage(struct page *page, gfp_t wait)
  1669. {
  1670. journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  1671. trace_ext3_releasepage(page);
  1672. WARN_ON(PageChecked(page));
  1673. if (!page_has_buffers(page))
  1674. return 0;
  1675. return journal_try_to_free_buffers(journal, page, wait);
  1676. }
  1677. /*
  1678. * If the O_DIRECT write will extend the file then add this inode to the
  1679. * orphan list. So recovery will truncate it back to the original size
  1680. * if the machine crashes during the write.
  1681. *
  1682. * If the O_DIRECT write is intantiating holes inside i_size and the machine
  1683. * crashes then stale disk data _may_ be exposed inside the file. But current
  1684. * VFS code falls back into buffered path in that case so we are safe.
  1685. */
  1686. static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
  1687. const struct iovec *iov, loff_t offset,
  1688. unsigned long nr_segs)
  1689. {
  1690. struct file *file = iocb->ki_filp;
  1691. struct inode *inode = file->f_mapping->host;
  1692. struct ext3_inode_info *ei = EXT3_I(inode);
  1693. handle_t *handle;
  1694. ssize_t ret;
  1695. int orphan = 0;
  1696. size_t count = iov_length(iov, nr_segs);
  1697. int retries = 0;
  1698. trace_ext3_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
  1699. if (rw == WRITE) {
  1700. loff_t final_size = offset + count;
  1701. if (final_size > inode->i_size) {
  1702. /* Credits for sb + inode write */
  1703. handle = ext3_journal_start(inode, 2);
  1704. if (IS_ERR(handle)) {
  1705. ret = PTR_ERR(handle);
  1706. goto out;
  1707. }
  1708. ret = ext3_orphan_add(handle, inode);
  1709. if (ret) {
  1710. ext3_journal_stop(handle);
  1711. goto out;
  1712. }
  1713. orphan = 1;
  1714. ei->i_disksize = inode->i_size;
  1715. ext3_journal_stop(handle);
  1716. }
  1717. }
  1718. retry:
  1719. ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
  1720. ext3_get_block);
  1721. /*
  1722. * In case of error extending write may have instantiated a few
  1723. * blocks outside i_size. Trim these off again.
  1724. */
  1725. if (unlikely((rw & WRITE) && ret < 0)) {
  1726. loff_t isize = i_size_read(inode);
  1727. loff_t end = offset + iov_length(iov, nr_segs);
  1728. if (end > isize)
  1729. ext3_truncate_failed_direct_write(inode);
  1730. }
  1731. if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
  1732. goto retry;
  1733. if (orphan) {
  1734. int err;
  1735. /* Credits for sb + inode write */
  1736. handle = ext3_journal_start(inode, 2);
  1737. if (IS_ERR(handle)) {
  1738. /* This is really bad luck. We've written the data
  1739. * but cannot extend i_size. Truncate allocated blocks
  1740. * and pretend the write failed... */
  1741. ext3_truncate_failed_direct_write(inode);
  1742. ret = PTR_ERR(handle);
  1743. goto out;
  1744. }
  1745. if (inode->i_nlink)
  1746. ext3_orphan_del(handle, inode);
  1747. if (ret > 0) {
  1748. loff_t end = offset + ret;
  1749. if (end > inode->i_size) {
  1750. ei->i_disksize = end;
  1751. i_size_write(inode, end);
  1752. /*
  1753. * We're going to return a positive `ret'
  1754. * here due to non-zero-length I/O, so there's
  1755. * no way of reporting error returns from
  1756. * ext3_mark_inode_dirty() to userspace. So
  1757. * ignore it.
  1758. */
  1759. ext3_mark_inode_dirty(handle, inode);
  1760. }
  1761. }
  1762. err = ext3_journal_stop(handle);
  1763. if (ret == 0)
  1764. ret = err;
  1765. }
  1766. out:
  1767. trace_ext3_direct_IO_exit(inode, offset,
  1768. iov_length(iov, nr_segs), rw, ret);
  1769. return ret;
  1770. }
  1771. /*
  1772. * Pages can be marked dirty completely asynchronously from ext3's journalling
  1773. * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
  1774. * much here because ->set_page_dirty is called under VFS locks. The page is
  1775. * not necessarily locked.
  1776. *
  1777. * We cannot just dirty the page and leave attached buffers clean, because the
  1778. * buffers' dirty state is "definitive". We cannot just set the buffers dirty
  1779. * or jbddirty because all the journalling code will explode.
  1780. *
  1781. * So what we do is to mark the page "pending dirty" and next time writepage
  1782. * is called, propagate that into the buffers appropriately.
  1783. */
  1784. static int ext3_journalled_set_page_dirty(struct page *page)
  1785. {
  1786. SetPageChecked(page);
  1787. return __set_page_dirty_nobuffers(page);
  1788. }
  1789. static const struct address_space_operations ext3_ordered_aops = {
  1790. .readpage = ext3_readpage,
  1791. .readpages = ext3_readpages,
  1792. .writepage = ext3_ordered_writepage,
  1793. .write_begin = ext3_write_begin,
  1794. .write_end = ext3_ordered_write_end,
  1795. .bmap = ext3_bmap,
  1796. .invalidatepage = ext3_invalidatepage,
  1797. .releasepage = ext3_releasepage,
  1798. .direct_IO = ext3_direct_IO,
  1799. .migratepage = buffer_migrate_page,
  1800. .is_partially_uptodate = block_is_partially_uptodate,
  1801. .is_dirty_writeback = buffer_check_dirty_writeback,
  1802. .error_remove_page = generic_error_remove_page,
  1803. };
  1804. static const struct address_space_operations ext3_writeback_aops = {
  1805. .readpage = ext3_readpage,
  1806. .readpages = ext3_readpages,
  1807. .writepage = ext3_writeback_writepage,
  1808. .write_begin = ext3_write_begin,
  1809. .write_end = ext3_writeback_write_end,
  1810. .bmap = ext3_bmap,
  1811. .invalidatepage = ext3_invalidatepage,
  1812. .releasepage = ext3_releasepage,
  1813. .direct_IO = ext3_direct_IO,
  1814. .migratepage = buffer_migrate_page,
  1815. .is_partially_uptodate = block_is_partially_uptodate,
  1816. .error_remove_page = generic_error_remove_page,
  1817. };
  1818. static const struct address_space_operations ext3_journalled_aops = {
  1819. .readpage = ext3_readpage,
  1820. .readpages = ext3_readpages,
  1821. .writepage = ext3_journalled_writepage,
  1822. .write_begin = ext3_write_begin,
  1823. .write_end = ext3_journalled_write_end,
  1824. .set_page_dirty = ext3_journalled_set_page_dirty,
  1825. .bmap = ext3_bmap,
  1826. .invalidatepage = ext3_invalidatepage,
  1827. .releasepage = ext3_releasepage,
  1828. .is_partially_uptodate = block_is_partially_uptodate,
  1829. .error_remove_page = generic_error_remove_page,
  1830. };
  1831. void ext3_set_aops(struct inode *inode)
  1832. {
  1833. if (ext3_should_order_data(inode))
  1834. inode->i_mapping->a_ops = &ext3_ordered_aops;
  1835. else if (ext3_should_writeback_data(inode))
  1836. inode->i_mapping->a_ops = &ext3_writeback_aops;
  1837. else
  1838. inode->i_mapping->a_ops = &ext3_journalled_aops;
  1839. }
  1840. /*
  1841. * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
  1842. * up to the end of the block which corresponds to `from'.
  1843. * This required during truncate. We need to physically zero the tail end
  1844. * of that block so it doesn't yield old data if the file is later grown.
  1845. */
  1846. static int ext3_block_truncate_page(struct inode *inode, loff_t from)
  1847. {
  1848. ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
  1849. unsigned offset = from & (PAGE_CACHE_SIZE - 1);
  1850. unsigned blocksize, iblock, length, pos;
  1851. struct page *page;
  1852. handle_t *handle = NULL;
  1853. struct buffer_head *bh;
  1854. int err = 0;
  1855. /* Truncated on block boundary - nothing to do */
  1856. blocksize = inode->i_sb->s_blocksize;
  1857. if ((from & (blocksize - 1)) == 0)
  1858. return 0;
  1859. page = grab_cache_page(inode->i_mapping, index);
  1860. if (!page)
  1861. return -ENOMEM;
  1862. length = blocksize - (offset & (blocksize - 1));
  1863. iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
  1864. if (!page_has_buffers(page))
  1865. create_empty_buffers(page, blocksize, 0);
  1866. /* Find the buffer that contains "offset" */
  1867. bh = page_buffers(page);
  1868. pos = blocksize;
  1869. while (offset >= pos) {
  1870. bh = bh->b_this_page;
  1871. iblock++;
  1872. pos += blocksize;
  1873. }
  1874. err = 0;
  1875. if (buffer_freed(bh)) {
  1876. BUFFER_TRACE(bh, "freed: skip");
  1877. goto unlock;
  1878. }
  1879. if (!buffer_mapped(bh)) {
  1880. BUFFER_TRACE(bh, "unmapped");
  1881. ext3_get_block(inode, iblock, bh, 0);
  1882. /* unmapped? It's a hole - nothing to do */
  1883. if (!buffer_mapped(bh)) {
  1884. BUFFER_TRACE(bh, "still unmapped");
  1885. goto unlock;
  1886. }
  1887. }
  1888. /* Ok, it's mapped. Make sure it's up-to-date */
  1889. if (PageUptodate(page))
  1890. set_buffer_uptodate(bh);
  1891. if (!bh_uptodate_or_lock(bh)) {
  1892. err = bh_submit_read(bh);
  1893. /* Uhhuh. Read error. Complain and punt. */
  1894. if (err)
  1895. goto unlock;
  1896. }
  1897. /* data=writeback mode doesn't need transaction to zero-out data */
  1898. if (!ext3_should_writeback_data(inode)) {
  1899. /* We journal at most one block */
  1900. handle = ext3_journal_start(inode, 1);
  1901. if (IS_ERR(handle)) {
  1902. clear_highpage(page);
  1903. flush_dcache_page(page);
  1904. err = PTR_ERR(handle);
  1905. goto unlock;
  1906. }
  1907. }
  1908. if (ext3_should_journal_data(inode)) {
  1909. BUFFER_TRACE(bh, "get write access");
  1910. err = ext3_journal_get_write_access(handle, bh);
  1911. if (err)
  1912. goto stop;
  1913. }
  1914. zero_user(page, offset, length);
  1915. BUFFER_TRACE(bh, "zeroed end of block");
  1916. err = 0;
  1917. if (ext3_should_journal_data(inode)) {
  1918. err = ext3_journal_dirty_metadata(handle, bh);
  1919. } else {
  1920. if (ext3_should_order_data(inode))
  1921. err = ext3_journal_dirty_data(handle, bh);
  1922. mark_buffer_dirty(bh);
  1923. }
  1924. stop:
  1925. if (handle)
  1926. ext3_journal_stop(handle);
  1927. unlock:
  1928. unlock_page(page);
  1929. page_cache_release(page);
  1930. return err;
  1931. }
  1932. /*
  1933. * Probably it should be a library function... search for first non-zero word
  1934. * or memcmp with zero_page, whatever is better for particular architecture.
  1935. * Linus?
  1936. */
  1937. static inline int all_zeroes(__le32 *p, __le32 *q)
  1938. {
  1939. while (p < q)
  1940. if (*p++)
  1941. return 0;
  1942. return 1;
  1943. }
  1944. /**
  1945. * ext3_find_shared - find the indirect blocks for partial truncation.
  1946. * @inode: inode in question
  1947. * @depth: depth of the affected branch
  1948. * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
  1949. * @chain: place to store the pointers to partial indirect blocks
  1950. * @top: place to the (detached) top of branch
  1951. *
  1952. * This is a helper function used by ext3_truncate().
  1953. *
  1954. * When we do truncate() we may have to clean the ends of several
  1955. * indirect blocks but leave the blocks themselves alive. Block is
  1956. * partially truncated if some data below the new i_size is referred
  1957. * from it (and it is on the path to the first completely truncated
  1958. * data block, indeed). We have to free the top of that path along
  1959. * with everything to the right of the path. Since no allocation
  1960. * past the truncation point is possible until ext3_truncate()
  1961. * finishes, we may safely do the latter, but top of branch may
  1962. * require special attention - pageout below the truncation point
  1963. * might try to populate it.
  1964. *
  1965. * We atomically detach the top of branch from the tree, store the
  1966. * block number of its root in *@top, pointers to buffer_heads of
  1967. * partially truncated blocks - in @chain[].bh and pointers to
  1968. * their last elements that should not be removed - in
  1969. * @chain[].p. Return value is the pointer to last filled element
  1970. * of @chain.
  1971. *
  1972. * The work left to caller to do the actual freeing of subtrees:
  1973. * a) free the subtree starting from *@top
  1974. * b) free the subtrees whose roots are stored in
  1975. * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
  1976. * c) free the subtrees growing from the inode past the @chain[0].
  1977. * (no partially truncated stuff there). */
  1978. static Indirect *ext3_find_shared(struct inode *inode, int depth,
  1979. int offsets[4], Indirect chain[4], __le32 *top)
  1980. {
  1981. Indirect *partial, *p;
  1982. int k, err;
  1983. *top = 0;
  1984. /* Make k index the deepest non-null offset + 1 */
  1985. for (k = depth; k > 1 && !offsets[k-1]; k--)
  1986. ;
  1987. partial = ext3_get_branch(inode, k, offsets, chain, &err);
  1988. /* Writer: pointers */
  1989. if (!partial)
  1990. partial = chain + k-1;
  1991. /*
  1992. * If the branch acquired continuation since we've looked at it -
  1993. * fine, it should all survive and (new) top doesn't belong to us.
  1994. */
  1995. if (!partial->key && *partial->p)
  1996. /* Writer: end */
  1997. goto no_top;
  1998. for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
  1999. ;
  2000. /*
  2001. * OK, we've found the last block that must survive. The rest of our
  2002. * branch should be detached before unlocking. However, if that rest
  2003. * of branch is all ours and does not grow immediately from the inode
  2004. * it's easier to cheat and just decrement partial->p.
  2005. */
  2006. if (p == chain + k - 1 && p > chain) {
  2007. p->p--;
  2008. } else {
  2009. *top = *p->p;
  2010. /* Nope, don't do this in ext3. Must leave the tree intact */
  2011. #if 0
  2012. *p->p = 0;
  2013. #endif
  2014. }
  2015. /* Writer: end */
  2016. while(partial > p) {
  2017. brelse(partial->bh);
  2018. partial--;
  2019. }
  2020. no_top:
  2021. return partial;
  2022. }
  2023. /*
  2024. * Zero a number of block pointers in either an inode or an indirect block.
  2025. * If we restart the transaction we must again get write access to the
  2026. * indirect block for further modification.
  2027. *
  2028. * We release `count' blocks on disk, but (last - first) may be greater
  2029. * than `count' because there can be holes in there.
  2030. */
  2031. static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
  2032. struct buffer_head *bh, ext3_fsblk_t block_to_free,
  2033. unsigned long count, __le32 *first, __le32 *last)
  2034. {
  2035. __le32 *p;
  2036. if (try_to_extend_transaction(handle, inode)) {
  2037. if (bh) {
  2038. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  2039. if (ext3_journal_dirty_metadata(handle, bh))
  2040. return;
  2041. }
  2042. ext3_mark_inode_dirty(handle, inode);
  2043. truncate_restart_transaction(handle, inode);
  2044. if (bh) {
  2045. BUFFER_TRACE(bh, "retaking write access");
  2046. if (ext3_journal_get_write_access(handle, bh))
  2047. return;
  2048. }
  2049. }
  2050. /*
  2051. * Any buffers which are on the journal will be in memory. We find
  2052. * them on the hash table so journal_revoke() will run journal_forget()
  2053. * on them. We've already detached each block from the file, so
  2054. * bforget() in journal_forget() should be safe.
  2055. *
  2056. * AKPM: turn on bforget in journal_forget()!!!
  2057. */
  2058. for (p = first; p < last; p++) {
  2059. u32 nr = le32_to_cpu(*p);
  2060. if (nr) {
  2061. struct buffer_head *bh;
  2062. *p = 0;
  2063. bh = sb_find_get_block(inode->i_sb, nr);
  2064. ext3_forget(handle, 0, inode, bh, nr);
  2065. }
  2066. }
  2067. ext3_free_blocks(handle, inode, block_to_free, count);
  2068. }
  2069. /**
  2070. * ext3_free_data - free a list of data blocks
  2071. * @handle: handle for this transaction
  2072. * @inode: inode we are dealing with
  2073. * @this_bh: indirect buffer_head which contains *@first and *@last
  2074. * @first: array of block numbers
  2075. * @last: points immediately past the end of array
  2076. *
  2077. * We are freeing all blocks referred from that array (numbers are stored as
  2078. * little-endian 32-bit) and updating @inode->i_blocks appropriately.
  2079. *
  2080. * We accumulate contiguous runs of blocks to free. Conveniently, if these
  2081. * blocks are contiguous then releasing them at one time will only affect one
  2082. * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
  2083. * actually use a lot of journal space.
  2084. *
  2085. * @this_bh will be %NULL if @first and @last point into the inode's direct
  2086. * block pointers.
  2087. */
  2088. static void ext3_free_data(handle_t *handle, struct inode *inode,
  2089. struct buffer_head *this_bh,
  2090. __le32 *first, __le32 *last)
  2091. {
  2092. ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */
  2093. unsigned long count = 0; /* Number of blocks in the run */
  2094. __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
  2095. corresponding to
  2096. block_to_free */
  2097. ext3_fsblk_t nr; /* Current block # */
  2098. __le32 *p; /* Pointer into inode/ind
  2099. for current block */
  2100. int err;
  2101. if (this_bh) { /* For indirect block */
  2102. BUFFER_TRACE(this_bh, "get_write_access");
  2103. err = ext3_journal_get_write_access(handle, this_bh);
  2104. /* Important: if we can't update the indirect pointers
  2105. * to the blocks, we can't free them. */
  2106. if (err)
  2107. return;
  2108. }
  2109. for (p = first; p < last; p++) {
  2110. nr = le32_to_cpu(*p);
  2111. if (nr) {
  2112. /* accumulate blocks to free if they're contiguous */
  2113. if (count == 0) {
  2114. block_to_free = nr;
  2115. block_to_free_p = p;
  2116. count = 1;
  2117. } else if (nr == block_to_free + count) {
  2118. count++;
  2119. } else {
  2120. ext3_clear_blocks(handle, inode, this_bh,
  2121. block_to_free,
  2122. count, block_to_free_p, p);
  2123. block_to_free = nr;
  2124. block_to_free_p = p;
  2125. count = 1;
  2126. }
  2127. }
  2128. }
  2129. if (count > 0)
  2130. ext3_clear_blocks(handle, inode, this_bh, block_to_free,
  2131. count, block_to_free_p, p);
  2132. if (this_bh) {
  2133. BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
  2134. /*
  2135. * The buffer head should have an attached journal head at this
  2136. * point. However, if the data is corrupted and an indirect
  2137. * block pointed to itself, it would have been detached when
  2138. * the block was cleared. Check for this instead of OOPSing.
  2139. */
  2140. if (bh2jh(this_bh))
  2141. ext3_journal_dirty_metadata(handle, this_bh);
  2142. else
  2143. ext3_error(inode->i_sb, "ext3_free_data",
  2144. "circular indirect block detected, "
  2145. "inode=%lu, block=%llu",
  2146. inode->i_ino,
  2147. (unsigned long long)this_bh->b_blocknr);
  2148. }
  2149. }
  2150. /**
  2151. * ext3_free_branches - free an array of branches
  2152. * @handle: JBD handle for this transaction
  2153. * @inode: inode we are dealing with
  2154. * @parent_bh: the buffer_head which contains *@first and *@last
  2155. * @first: array of block numbers
  2156. * @last: pointer immediately past the end of array
  2157. * @depth: depth of the branches to free
  2158. *
  2159. * We are freeing all blocks referred from these branches (numbers are
  2160. * stored as little-endian 32-bit) and updating @inode->i_blocks
  2161. * appropriately.
  2162. */
  2163. static void ext3_free_branches(handle_t *handle, struct inode *inode,
  2164. struct buffer_head *parent_bh,
  2165. __le32 *first, __le32 *last, int depth)
  2166. {
  2167. ext3_fsblk_t nr;
  2168. __le32 *p;
  2169. if (is_handle_aborted(handle))
  2170. return;
  2171. if (depth--) {
  2172. struct buffer_head *bh;
  2173. int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  2174. p = last;
  2175. while (--p >= first) {
  2176. nr = le32_to_cpu(*p);
  2177. if (!nr)
  2178. continue; /* A hole */
  2179. /* Go read the buffer for the next level down */
  2180. bh = sb_bread(inode->i_sb, nr);
  2181. /*
  2182. * A read failure? Report error and clear slot
  2183. * (should be rare).
  2184. */
  2185. if (!bh) {
  2186. ext3_error(inode->i_sb, "ext3_free_branches",
  2187. "Read failure, inode=%lu, block="E3FSBLK,
  2188. inode->i_ino, nr);
  2189. continue;
  2190. }
  2191. /* This zaps the entire block. Bottom up. */
  2192. BUFFER_TRACE(bh, "free child branches");
  2193. ext3_free_branches(handle, inode, bh,
  2194. (__le32*)bh->b_data,
  2195. (__le32*)bh->b_data + addr_per_block,
  2196. depth);
  2197. /*
  2198. * Everything below this this pointer has been
  2199. * released. Now let this top-of-subtree go.
  2200. *
  2201. * We want the freeing of this indirect block to be
  2202. * atomic in the journal with the updating of the
  2203. * bitmap block which owns it. So make some room in
  2204. * the journal.
  2205. *
  2206. * We zero the parent pointer *after* freeing its
  2207. * pointee in the bitmaps, so if extend_transaction()
  2208. * for some reason fails to put the bitmap changes and
  2209. * the release into the same transaction, recovery
  2210. * will merely complain about releasing a free block,
  2211. * rather than leaking blocks.
  2212. */
  2213. if (is_handle_aborted(handle))
  2214. return;
  2215. if (try_to_extend_transaction(handle, inode)) {
  2216. ext3_mark_inode_dirty(handle, inode);
  2217. truncate_restart_transaction(handle, inode);
  2218. }
  2219. /*
  2220. * We've probably journalled the indirect block several
  2221. * times during the truncate. But it's no longer
  2222. * needed and we now drop it from the transaction via
  2223. * journal_revoke().
  2224. *
  2225. * That's easy if it's exclusively part of this
  2226. * transaction. But if it's part of the committing
  2227. * transaction then journal_forget() will simply
  2228. * brelse() it. That means that if the underlying
  2229. * block is reallocated in ext3_get_block(),
  2230. * unmap_underlying_metadata() will find this block
  2231. * and will try to get rid of it. damn, damn. Thus
  2232. * we don't allow a block to be reallocated until
  2233. * a transaction freeing it has fully committed.
  2234. *
  2235. * We also have to make sure journal replay after a
  2236. * crash does not overwrite non-journaled data blocks
  2237. * with old metadata when the block got reallocated for
  2238. * data. Thus we have to store a revoke record for a
  2239. * block in the same transaction in which we free the
  2240. * block.
  2241. */
  2242. ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
  2243. ext3_free_blocks(handle, inode, nr, 1);
  2244. if (parent_bh) {
  2245. /*
  2246. * The block which we have just freed is
  2247. * pointed to by an indirect block: journal it
  2248. */
  2249. BUFFER_TRACE(parent_bh, "get_write_access");
  2250. if (!ext3_journal_get_write_access(handle,
  2251. parent_bh)){
  2252. *p = 0;
  2253. BUFFER_TRACE(parent_bh,
  2254. "call ext3_journal_dirty_metadata");
  2255. ext3_journal_dirty_metadata(handle,
  2256. parent_bh);
  2257. }
  2258. }
  2259. }
  2260. } else {
  2261. /* We have reached the bottom of the tree. */
  2262. BUFFER_TRACE(parent_bh, "free data blocks");
  2263. ext3_free_data(handle, inode, parent_bh, first, last);
  2264. }
  2265. }
  2266. int ext3_can_truncate(struct inode *inode)
  2267. {
  2268. if (S_ISREG(inode->i_mode))
  2269. return 1;
  2270. if (S_ISDIR(inode->i_mode))
  2271. return 1;
  2272. if (S_ISLNK(inode->i_mode))
  2273. return !ext3_inode_is_fast_symlink(inode);
  2274. return 0;
  2275. }
  2276. /*
  2277. * ext3_truncate()
  2278. *
  2279. * We block out ext3_get_block() block instantiations across the entire
  2280. * transaction, and VFS/VM ensures that ext3_truncate() cannot run
  2281. * simultaneously on behalf of the same inode.
  2282. *
  2283. * As we work through the truncate and commit bits of it to the journal there
  2284. * is one core, guiding principle: the file's tree must always be consistent on
  2285. * disk. We must be able to restart the truncate after a crash.
  2286. *
  2287. * The file's tree may be transiently inconsistent in memory (although it
  2288. * probably isn't), but whenever we close off and commit a journal transaction,
  2289. * the contents of (the filesystem + the journal) must be consistent and
  2290. * restartable. It's pretty simple, really: bottom up, right to left (although
  2291. * left-to-right works OK too).
  2292. *
  2293. * Note that at recovery time, journal replay occurs *before* the restart of
  2294. * truncate against the orphan inode list.
  2295. *
  2296. * The committed inode has the new, desired i_size (which is the same as
  2297. * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
  2298. * that this inode's truncate did not complete and it will again call
  2299. * ext3_truncate() to have another go. So there will be instantiated blocks
  2300. * to the right of the truncation point in a crashed ext3 filesystem. But
  2301. * that's fine - as long as they are linked from the inode, the post-crash
  2302. * ext3_truncate() run will find them and release them.
  2303. */
  2304. void ext3_truncate(struct inode *inode)
  2305. {
  2306. handle_t *handle;
  2307. struct ext3_inode_info *ei = EXT3_I(inode);
  2308. __le32 *i_data = ei->i_data;
  2309. int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  2310. int offsets[4];
  2311. Indirect chain[4];
  2312. Indirect *partial;
  2313. __le32 nr = 0;
  2314. int n;
  2315. long last_block;
  2316. unsigned blocksize = inode->i_sb->s_blocksize;
  2317. trace_ext3_truncate_enter(inode);
  2318. if (!ext3_can_truncate(inode))
  2319. goto out_notrans;
  2320. if (inode->i_size == 0 && ext3_should_writeback_data(inode))
  2321. ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
  2322. handle = start_transaction(inode);
  2323. if (IS_ERR(handle))
  2324. goto out_notrans;
  2325. last_block = (inode->i_size + blocksize-1)
  2326. >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
  2327. n = ext3_block_to_path(inode, last_block, offsets, NULL);
  2328. if (n == 0)
  2329. goto out_stop; /* error */
  2330. /*
  2331. * OK. This truncate is going to happen. We add the inode to the
  2332. * orphan list, so that if this truncate spans multiple transactions,
  2333. * and we crash, we will resume the truncate when the filesystem
  2334. * recovers. It also marks the inode dirty, to catch the new size.
  2335. *
  2336. * Implication: the file must always be in a sane, consistent
  2337. * truncatable state while each transaction commits.
  2338. */
  2339. if (ext3_orphan_add(handle, inode))
  2340. goto out_stop;
  2341. /*
  2342. * The orphan list entry will now protect us from any crash which
  2343. * occurs before the truncate completes, so it is now safe to propagate
  2344. * the new, shorter inode size (held for now in i_size) into the
  2345. * on-disk inode. We do this via i_disksize, which is the value which
  2346. * ext3 *really* writes onto the disk inode.
  2347. */
  2348. ei->i_disksize = inode->i_size;
  2349. /*
  2350. * From here we block out all ext3_get_block() callers who want to
  2351. * modify the block allocation tree.
  2352. */
  2353. mutex_lock(&ei->truncate_mutex);
  2354. if (n == 1) { /* direct blocks */
  2355. ext3_free_data(handle, inode, NULL, i_data+offsets[0],
  2356. i_data + EXT3_NDIR_BLOCKS);
  2357. goto do_indirects;
  2358. }
  2359. partial = ext3_find_shared(inode, n, offsets, chain, &nr);
  2360. /* Kill the top of shared branch (not detached) */
  2361. if (nr) {
  2362. if (partial == chain) {
  2363. /* Shared branch grows from the inode */
  2364. ext3_free_branches(handle, inode, NULL,
  2365. &nr, &nr+1, (chain+n-1) - partial);
  2366. *partial->p = 0;
  2367. /*
  2368. * We mark the inode dirty prior to restart,
  2369. * and prior to stop. No need for it here.
  2370. */
  2371. } else {
  2372. /* Shared branch grows from an indirect block */
  2373. ext3_free_branches(handle, inode, partial->bh,
  2374. partial->p,
  2375. partial->p+1, (chain+n-1) - partial);
  2376. }
  2377. }
  2378. /* Clear the ends of indirect blocks on the shared branch */
  2379. while (partial > chain) {
  2380. ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
  2381. (__le32*)partial->bh->b_data+addr_per_block,
  2382. (chain+n-1) - partial);
  2383. BUFFER_TRACE(partial->bh, "call brelse");
  2384. brelse (partial->bh);
  2385. partial--;
  2386. }
  2387. do_indirects:
  2388. /* Kill the remaining (whole) subtrees */
  2389. switch (offsets[0]) {
  2390. default:
  2391. nr = i_data[EXT3_IND_BLOCK];
  2392. if (nr) {
  2393. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
  2394. i_data[EXT3_IND_BLOCK] = 0;
  2395. }
  2396. case EXT3_IND_BLOCK:
  2397. nr = i_data[EXT3_DIND_BLOCK];
  2398. if (nr) {
  2399. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
  2400. i_data[EXT3_DIND_BLOCK] = 0;
  2401. }
  2402. case EXT3_DIND_BLOCK:
  2403. nr = i_data[EXT3_TIND_BLOCK];
  2404. if (nr) {
  2405. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
  2406. i_data[EXT3_TIND_BLOCK] = 0;
  2407. }
  2408. case EXT3_TIND_BLOCK:
  2409. ;
  2410. }
  2411. ext3_discard_reservation(inode);
  2412. mutex_unlock(&ei->truncate_mutex);
  2413. inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
  2414. ext3_mark_inode_dirty(handle, inode);
  2415. /*
  2416. * In a multi-transaction truncate, we only make the final transaction
  2417. * synchronous
  2418. */
  2419. if (IS_SYNC(inode))
  2420. handle->h_sync = 1;
  2421. out_stop:
  2422. /*
  2423. * If this was a simple ftruncate(), and the file will remain alive
  2424. * then we need to clear up the orphan record which we created above.
  2425. * However, if this was a real unlink then we were called by
  2426. * ext3_evict_inode(), and we allow that function to clean up the
  2427. * orphan info for us.
  2428. */
  2429. if (inode->i_nlink)
  2430. ext3_orphan_del(handle, inode);
  2431. ext3_journal_stop(handle);
  2432. trace_ext3_truncate_exit(inode);
  2433. return;
  2434. out_notrans:
  2435. /*
  2436. * Delete the inode from orphan list so that it doesn't stay there
  2437. * forever and trigger assertion on umount.
  2438. */
  2439. if (inode->i_nlink)
  2440. ext3_orphan_del(NULL, inode);
  2441. trace_ext3_truncate_exit(inode);
  2442. }
  2443. static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
  2444. unsigned long ino, struct ext3_iloc *iloc)
  2445. {
  2446. unsigned long block_group;
  2447. unsigned long offset;
  2448. ext3_fsblk_t block;
  2449. struct ext3_group_desc *gdp;
  2450. if (!ext3_valid_inum(sb, ino)) {
  2451. /*
  2452. * This error is already checked for in namei.c unless we are
  2453. * looking at an NFS filehandle, in which case no error
  2454. * report is needed
  2455. */
  2456. return 0;
  2457. }
  2458. block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
  2459. gdp = ext3_get_group_desc(sb, block_group, NULL);
  2460. if (!gdp)
  2461. return 0;
  2462. /*
  2463. * Figure out the offset within the block group inode table
  2464. */
  2465. offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
  2466. EXT3_INODE_SIZE(sb);
  2467. block = le32_to_cpu(gdp->bg_inode_table) +
  2468. (offset >> EXT3_BLOCK_SIZE_BITS(sb));
  2469. iloc->block_group = block_group;
  2470. iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
  2471. return block;
  2472. }
  2473. /*
  2474. * ext3_get_inode_loc returns with an extra refcount against the inode's
  2475. * underlying buffer_head on success. If 'in_mem' is true, we have all
  2476. * data in memory that is needed to recreate the on-disk version of this
  2477. * inode.
  2478. */
  2479. static int __ext3_get_inode_loc(struct inode *inode,
  2480. struct ext3_iloc *iloc, int in_mem)
  2481. {
  2482. ext3_fsblk_t block;
  2483. struct buffer_head *bh;
  2484. block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
  2485. if (!block)
  2486. return -EIO;
  2487. bh = sb_getblk(inode->i_sb, block);
  2488. if (unlikely(!bh)) {
  2489. ext3_error (inode->i_sb, "ext3_get_inode_loc",
  2490. "unable to read inode block - "
  2491. "inode=%lu, block="E3FSBLK,
  2492. inode->i_ino, block);
  2493. return -ENOMEM;
  2494. }
  2495. if (!buffer_uptodate(bh)) {
  2496. lock_buffer(bh);
  2497. /*
  2498. * If the buffer has the write error flag, we have failed
  2499. * to write out another inode in the same block. In this
  2500. * case, we don't have to read the block because we may
  2501. * read the old inode data successfully.
  2502. */
  2503. if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
  2504. set_buffer_uptodate(bh);
  2505. if (buffer_uptodate(bh)) {
  2506. /* someone brought it uptodate while we waited */
  2507. unlock_buffer(bh);
  2508. goto has_buffer;
  2509. }
  2510. /*
  2511. * If we have all information of the inode in memory and this
  2512. * is the only valid inode in the block, we need not read the
  2513. * block.
  2514. */
  2515. if (in_mem) {
  2516. struct buffer_head *bitmap_bh;
  2517. struct ext3_group_desc *desc;
  2518. int inodes_per_buffer;
  2519. int inode_offset, i;
  2520. int block_group;
  2521. int start;
  2522. block_group = (inode->i_ino - 1) /
  2523. EXT3_INODES_PER_GROUP(inode->i_sb);
  2524. inodes_per_buffer = bh->b_size /
  2525. EXT3_INODE_SIZE(inode->i_sb);
  2526. inode_offset = ((inode->i_ino - 1) %
  2527. EXT3_INODES_PER_GROUP(inode->i_sb));
  2528. start = inode_offset & ~(inodes_per_buffer - 1);
  2529. /* Is the inode bitmap in cache? */
  2530. desc = ext3_get_group_desc(inode->i_sb,
  2531. block_group, NULL);
  2532. if (!desc)
  2533. goto make_io;
  2534. bitmap_bh = sb_getblk(inode->i_sb,
  2535. le32_to_cpu(desc->bg_inode_bitmap));
  2536. if (unlikely(!bitmap_bh))
  2537. goto make_io;
  2538. /*
  2539. * If the inode bitmap isn't in cache then the
  2540. * optimisation may end up performing two reads instead
  2541. * of one, so skip it.
  2542. */
  2543. if (!buffer_uptodate(bitmap_bh)) {
  2544. brelse(bitmap_bh);
  2545. goto make_io;
  2546. }
  2547. for (i = start; i < start + inodes_per_buffer; i++) {
  2548. if (i == inode_offset)
  2549. continue;
  2550. if (ext3_test_bit(i, bitmap_bh->b_data))
  2551. break;
  2552. }
  2553. brelse(bitmap_bh);
  2554. if (i == start + inodes_per_buffer) {
  2555. /* all other inodes are free, so skip I/O */
  2556. memset(bh->b_data, 0, bh->b_size);
  2557. set_buffer_uptodate(bh);
  2558. unlock_buffer(bh);
  2559. goto has_buffer;
  2560. }
  2561. }
  2562. make_io:
  2563. /*
  2564. * There are other valid inodes in the buffer, this inode
  2565. * has in-inode xattrs, or we don't have this inode in memory.
  2566. * Read the block from disk.
  2567. */
  2568. trace_ext3_load_inode(inode);
  2569. get_bh(bh);
  2570. bh->b_end_io = end_buffer_read_sync;
  2571. submit_bh(READ | REQ_META | REQ_PRIO, bh);
  2572. wait_on_buffer(bh);
  2573. if (!buffer_uptodate(bh)) {
  2574. ext3_error(inode->i_sb, "ext3_get_inode_loc",
  2575. "unable to read inode block - "
  2576. "inode=%lu, block="E3FSBLK,
  2577. inode->i_ino, block);
  2578. brelse(bh);
  2579. return -EIO;
  2580. }
  2581. }
  2582. has_buffer:
  2583. iloc->bh = bh;
  2584. return 0;
  2585. }
  2586. int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
  2587. {
  2588. /* We have all inode data except xattrs in memory here. */
  2589. return __ext3_get_inode_loc(inode, iloc,
  2590. !ext3_test_inode_state(inode, EXT3_STATE_XATTR));
  2591. }
  2592. void ext3_set_inode_flags(struct inode *inode)
  2593. {
  2594. unsigned int flags = EXT3_I(inode)->i_flags;
  2595. inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  2596. if (flags & EXT3_SYNC_FL)
  2597. inode->i_flags |= S_SYNC;
  2598. if (flags & EXT3_APPEND_FL)
  2599. inode->i_flags |= S_APPEND;
  2600. if (flags & EXT3_IMMUTABLE_FL)
  2601. inode->i_flags |= S_IMMUTABLE;
  2602. if (flags & EXT3_NOATIME_FL)
  2603. inode->i_flags |= S_NOATIME;
  2604. if (flags & EXT3_DIRSYNC_FL)
  2605. inode->i_flags |= S_DIRSYNC;
  2606. }
  2607. /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
  2608. void ext3_get_inode_flags(struct ext3_inode_info *ei)
  2609. {
  2610. unsigned int flags = ei->vfs_inode.i_flags;
  2611. ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
  2612. EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
  2613. if (flags & S_SYNC)
  2614. ei->i_flags |= EXT3_SYNC_FL;
  2615. if (flags & S_APPEND)
  2616. ei->i_flags |= EXT3_APPEND_FL;
  2617. if (flags & S_IMMUTABLE)
  2618. ei->i_flags |= EXT3_IMMUTABLE_FL;
  2619. if (flags & S_NOATIME)
  2620. ei->i_flags |= EXT3_NOATIME_FL;
  2621. if (flags & S_DIRSYNC)
  2622. ei->i_flags |= EXT3_DIRSYNC_FL;
  2623. }
  2624. struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
  2625. {
  2626. struct ext3_iloc iloc;
  2627. struct ext3_inode *raw_inode;
  2628. struct ext3_inode_info *ei;
  2629. struct buffer_head *bh;
  2630. struct inode *inode;
  2631. journal_t *journal = EXT3_SB(sb)->s_journal;
  2632. transaction_t *transaction;
  2633. long ret;
  2634. int block;
  2635. uid_t i_uid;
  2636. gid_t i_gid;
  2637. inode = iget_locked(sb, ino);
  2638. if (!inode)
  2639. return ERR_PTR(-ENOMEM);
  2640. if (!(inode->i_state & I_NEW))
  2641. return inode;
  2642. ei = EXT3_I(inode);
  2643. ei->i_block_alloc_info = NULL;
  2644. ret = __ext3_get_inode_loc(inode, &iloc, 0);
  2645. if (ret < 0)
  2646. goto bad_inode;
  2647. bh = iloc.bh;
  2648. raw_inode = ext3_raw_inode(&iloc);
  2649. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  2650. i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
  2651. i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
  2652. if(!(test_opt (inode->i_sb, NO_UID32))) {
  2653. i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
  2654. i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
  2655. }
  2656. i_uid_write(inode, i_uid);
  2657. i_gid_write(inode, i_gid);
  2658. set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
  2659. inode->i_size = le32_to_cpu(raw_inode->i_size);
  2660. inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
  2661. inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
  2662. inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
  2663. inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
  2664. ei->i_state_flags = 0;
  2665. ei->i_dir_start_lookup = 0;
  2666. ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
  2667. /* We now have enough fields to check if the inode was active or not.
  2668. * This is needed because nfsd might try to access dead inodes
  2669. * the test is that same one that e2fsck uses
  2670. * NeilBrown 1999oct15
  2671. */
  2672. if (inode->i_nlink == 0) {
  2673. if (inode->i_mode == 0 ||
  2674. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
  2675. /* this inode is deleted */
  2676. brelse (bh);
  2677. ret = -ESTALE;
  2678. goto bad_inode;
  2679. }
  2680. /* The only unlinked inodes we let through here have
  2681. * valid i_mode and are being read by the orphan
  2682. * recovery code: that's fine, we're about to complete
  2683. * the process of deleting those. */
  2684. }
  2685. inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
  2686. ei->i_flags = le32_to_cpu(raw_inode->i_flags);
  2687. #ifdef EXT3_FRAGMENTS
  2688. ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
  2689. ei->i_frag_no = raw_inode->i_frag;
  2690. ei->i_frag_size = raw_inode->i_fsize;
  2691. #endif
  2692. ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
  2693. if (!S_ISREG(inode->i_mode)) {
  2694. ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
  2695. } else {
  2696. inode->i_size |=
  2697. ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
  2698. }
  2699. ei->i_disksize = inode->i_size;
  2700. inode->i_generation = le32_to_cpu(raw_inode->i_generation);
  2701. ei->i_block_group = iloc.block_group;
  2702. /*
  2703. * NOTE! The in-memory inode i_data array is in little-endian order
  2704. * even on big-endian machines: we do NOT byteswap the block numbers!
  2705. */
  2706. for (block = 0; block < EXT3_N_BLOCKS; block++)
  2707. ei->i_data[block] = raw_inode->i_block[block];
  2708. INIT_LIST_HEAD(&ei->i_orphan);
  2709. /*
  2710. * Set transaction id's of transactions that have to be committed
  2711. * to finish f[data]sync. We set them to currently running transaction
  2712. * as we cannot be sure that the inode or some of its metadata isn't
  2713. * part of the transaction - the inode could have been reclaimed and
  2714. * now it is reread from disk.
  2715. */
  2716. if (journal) {
  2717. tid_t tid;
  2718. spin_lock(&journal->j_state_lock);
  2719. if (journal->j_running_transaction)
  2720. transaction = journal->j_running_transaction;
  2721. else
  2722. transaction = journal->j_committing_transaction;
  2723. if (transaction)
  2724. tid = transaction->t_tid;
  2725. else
  2726. tid = journal->j_commit_sequence;
  2727. spin_unlock(&journal->j_state_lock);
  2728. atomic_set(&ei->i_sync_tid, tid);
  2729. atomic_set(&ei->i_datasync_tid, tid);
  2730. }
  2731. if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
  2732. EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
  2733. /*
  2734. * When mke2fs creates big inodes it does not zero out
  2735. * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
  2736. * so ignore those first few inodes.
  2737. */
  2738. ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
  2739. if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
  2740. EXT3_INODE_SIZE(inode->i_sb)) {
  2741. brelse (bh);
  2742. ret = -EIO;
  2743. goto bad_inode;
  2744. }
  2745. if (ei->i_extra_isize == 0) {
  2746. /* The extra space is currently unused. Use it. */
  2747. ei->i_extra_isize = sizeof(struct ext3_inode) -
  2748. EXT3_GOOD_OLD_INODE_SIZE;
  2749. } else {
  2750. __le32 *magic = (void *)raw_inode +
  2751. EXT3_GOOD_OLD_INODE_SIZE +
  2752. ei->i_extra_isize;
  2753. if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
  2754. ext3_set_inode_state(inode, EXT3_STATE_XATTR);
  2755. }
  2756. } else
  2757. ei->i_extra_isize = 0;
  2758. if (S_ISREG(inode->i_mode)) {
  2759. inode->i_op = &ext3_file_inode_operations;
  2760. inode->i_fop = &ext3_file_operations;
  2761. ext3_set_aops(inode);
  2762. } else if (S_ISDIR(inode->i_mode)) {
  2763. inode->i_op = &ext3_dir_inode_operations;
  2764. inode->i_fop = &ext3_dir_operations;
  2765. } else if (S_ISLNK(inode->i_mode)) {
  2766. if (ext3_inode_is_fast_symlink(inode)) {
  2767. inode->i_op = &ext3_fast_symlink_inode_operations;
  2768. nd_terminate_link(ei->i_data, inode->i_size,
  2769. sizeof(ei->i_data) - 1);
  2770. } else {
  2771. inode->i_op = &ext3_symlink_inode_operations;
  2772. ext3_set_aops(inode);
  2773. }
  2774. } else {
  2775. inode->i_op = &ext3_special_inode_operations;
  2776. if (raw_inode->i_block[0])
  2777. init_special_inode(inode, inode->i_mode,
  2778. old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
  2779. else
  2780. init_special_inode(inode, inode->i_mode,
  2781. new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
  2782. }
  2783. brelse (iloc.bh);
  2784. ext3_set_inode_flags(inode);
  2785. unlock_new_inode(inode);
  2786. return inode;
  2787. bad_inode:
  2788. iget_failed(inode);
  2789. return ERR_PTR(ret);
  2790. }
  2791. /*
  2792. * Post the struct inode info into an on-disk inode location in the
  2793. * buffer-cache. This gobbles the caller's reference to the
  2794. * buffer_head in the inode location struct.
  2795. *
  2796. * The caller must have write access to iloc->bh.
  2797. */
  2798. static int ext3_do_update_inode(handle_t *handle,
  2799. struct inode *inode,
  2800. struct ext3_iloc *iloc)
  2801. {
  2802. struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
  2803. struct ext3_inode_info *ei = EXT3_I(inode);
  2804. struct buffer_head *bh = iloc->bh;
  2805. int err = 0, rc, block;
  2806. int need_datasync = 0;
  2807. __le32 disksize;
  2808. uid_t i_uid;
  2809. gid_t i_gid;
  2810. again:
  2811. /* we can't allow multiple procs in here at once, its a bit racey */
  2812. lock_buffer(bh);
  2813. /* For fields not not tracking in the in-memory inode,
  2814. * initialise them to zero for new inodes. */
  2815. if (ext3_test_inode_state(inode, EXT3_STATE_NEW))
  2816. memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
  2817. ext3_get_inode_flags(ei);
  2818. raw_inode->i_mode = cpu_to_le16(inode->i_mode);
  2819. i_uid = i_uid_read(inode);
  2820. i_gid = i_gid_read(inode);
  2821. if(!(test_opt(inode->i_sb, NO_UID32))) {
  2822. raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
  2823. raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
  2824. /*
  2825. * Fix up interoperability with old kernels. Otherwise, old inodes get
  2826. * re-used with the upper 16 bits of the uid/gid intact
  2827. */
  2828. if(!ei->i_dtime) {
  2829. raw_inode->i_uid_high =
  2830. cpu_to_le16(high_16_bits(i_uid));
  2831. raw_inode->i_gid_high =
  2832. cpu_to_le16(high_16_bits(i_gid));
  2833. } else {
  2834. raw_inode->i_uid_high = 0;
  2835. raw_inode->i_gid_high = 0;
  2836. }
  2837. } else {
  2838. raw_inode->i_uid_low =
  2839. cpu_to_le16(fs_high2lowuid(i_uid));
  2840. raw_inode->i_gid_low =
  2841. cpu_to_le16(fs_high2lowgid(i_gid));
  2842. raw_inode->i_uid_high = 0;
  2843. raw_inode->i_gid_high = 0;
  2844. }
  2845. raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
  2846. disksize = cpu_to_le32(ei->i_disksize);
  2847. if (disksize != raw_inode->i_size) {
  2848. need_datasync = 1;
  2849. raw_inode->i_size = disksize;
  2850. }
  2851. raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
  2852. raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
  2853. raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
  2854. raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
  2855. raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
  2856. raw_inode->i_flags = cpu_to_le32(ei->i_flags);
  2857. #ifdef EXT3_FRAGMENTS
  2858. raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
  2859. raw_inode->i_frag = ei->i_frag_no;
  2860. raw_inode->i_fsize = ei->i_frag_size;
  2861. #endif
  2862. raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
  2863. if (!S_ISREG(inode->i_mode)) {
  2864. raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
  2865. } else {
  2866. disksize = cpu_to_le32(ei->i_disksize >> 32);
  2867. if (disksize != raw_inode->i_size_high) {
  2868. raw_inode->i_size_high = disksize;
  2869. need_datasync = 1;
  2870. }
  2871. if (ei->i_disksize > 0x7fffffffULL) {
  2872. struct super_block *sb = inode->i_sb;
  2873. if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
  2874. EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
  2875. EXT3_SB(sb)->s_es->s_rev_level ==
  2876. cpu_to_le32(EXT3_GOOD_OLD_REV)) {
  2877. /* If this is the first large file
  2878. * created, add a flag to the superblock.
  2879. */
  2880. unlock_buffer(bh);
  2881. err = ext3_journal_get_write_access(handle,
  2882. EXT3_SB(sb)->s_sbh);
  2883. if (err)
  2884. goto out_brelse;
  2885. ext3_update_dynamic_rev(sb);
  2886. EXT3_SET_RO_COMPAT_FEATURE(sb,
  2887. EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
  2888. handle->h_sync = 1;
  2889. err = ext3_journal_dirty_metadata(handle,
  2890. EXT3_SB(sb)->s_sbh);
  2891. /* get our lock and start over */
  2892. goto again;
  2893. }
  2894. }
  2895. }
  2896. raw_inode->i_generation = cpu_to_le32(inode->i_generation);
  2897. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  2898. if (old_valid_dev(inode->i_rdev)) {
  2899. raw_inode->i_block[0] =
  2900. cpu_to_le32(old_encode_dev(inode->i_rdev));
  2901. raw_inode->i_block[1] = 0;
  2902. } else {
  2903. raw_inode->i_block[0] = 0;
  2904. raw_inode->i_block[1] =
  2905. cpu_to_le32(new_encode_dev(inode->i_rdev));
  2906. raw_inode->i_block[2] = 0;
  2907. }
  2908. } else for (block = 0; block < EXT3_N_BLOCKS; block++)
  2909. raw_inode->i_block[block] = ei->i_data[block];
  2910. if (ei->i_extra_isize)
  2911. raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
  2912. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  2913. unlock_buffer(bh);
  2914. rc = ext3_journal_dirty_metadata(handle, bh);
  2915. if (!err)
  2916. err = rc;
  2917. ext3_clear_inode_state(inode, EXT3_STATE_NEW);
  2918. atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
  2919. if (need_datasync)
  2920. atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
  2921. out_brelse:
  2922. brelse (bh);
  2923. ext3_std_error(inode->i_sb, err);
  2924. return err;
  2925. }
  2926. /*
  2927. * ext3_write_inode()
  2928. *
  2929. * We are called from a few places:
  2930. *
  2931. * - Within generic_file_write() for O_SYNC files.
  2932. * Here, there will be no transaction running. We wait for any running
  2933. * transaction to commit.
  2934. *
  2935. * - Within sys_sync(), kupdate and such.
  2936. * We wait on commit, if tol to.
  2937. *
  2938. * - Within prune_icache() (PF_MEMALLOC == true)
  2939. * Here we simply return. We can't afford to block kswapd on the
  2940. * journal commit.
  2941. *
  2942. * In all cases it is actually safe for us to return without doing anything,
  2943. * because the inode has been copied into a raw inode buffer in
  2944. * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
  2945. * knfsd.
  2946. *
  2947. * Note that we are absolutely dependent upon all inode dirtiers doing the
  2948. * right thing: they *must* call mark_inode_dirty() after dirtying info in
  2949. * which we are interested.
  2950. *
  2951. * It would be a bug for them to not do this. The code:
  2952. *
  2953. * mark_inode_dirty(inode)
  2954. * stuff();
  2955. * inode->i_size = expr;
  2956. *
  2957. * is in error because a kswapd-driven write_inode() could occur while
  2958. * `stuff()' is running, and the new i_size will be lost. Plus the inode
  2959. * will no longer be on the superblock's dirty inode list.
  2960. */
  2961. int ext3_write_inode(struct inode *inode, struct writeback_control *wbc)
  2962. {
  2963. if (current->flags & PF_MEMALLOC)
  2964. return 0;
  2965. if (ext3_journal_current_handle()) {
  2966. jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
  2967. dump_stack();
  2968. return -EIO;
  2969. }
  2970. if (wbc->sync_mode != WB_SYNC_ALL)
  2971. return 0;
  2972. return ext3_force_commit(inode->i_sb);
  2973. }
  2974. /*
  2975. * ext3_setattr()
  2976. *
  2977. * Called from notify_change.
  2978. *
  2979. * We want to trap VFS attempts to truncate the file as soon as
  2980. * possible. In particular, we want to make sure that when the VFS
  2981. * shrinks i_size, we put the inode on the orphan list and modify
  2982. * i_disksize immediately, so that during the subsequent flushing of
  2983. * dirty pages and freeing of disk blocks, we can guarantee that any
  2984. * commit will leave the blocks being flushed in an unused state on
  2985. * disk. (On recovery, the inode will get truncated and the blocks will
  2986. * be freed, so we have a strong guarantee that no future commit will
  2987. * leave these blocks visible to the user.)
  2988. *
  2989. * Called with inode->sem down.
  2990. */
  2991. int ext3_setattr(struct dentry *dentry, struct iattr *attr)
  2992. {
  2993. struct inode *inode = dentry->d_inode;
  2994. int error, rc = 0;
  2995. const unsigned int ia_valid = attr->ia_valid;
  2996. error = inode_change_ok(inode, attr);
  2997. if (error)
  2998. return error;
  2999. if (is_quota_modification(inode, attr))
  3000. dquot_initialize(inode);
  3001. if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
  3002. (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
  3003. handle_t *handle;
  3004. /* (user+group)*(old+new) structure, inode write (sb,
  3005. * inode block, ? - but truncate inode update has it) */
  3006. handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
  3007. EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
  3008. if (IS_ERR(handle)) {
  3009. error = PTR_ERR(handle);
  3010. goto err_out;
  3011. }
  3012. error = dquot_transfer(inode, attr);
  3013. if (error) {
  3014. ext3_journal_stop(handle);
  3015. return error;
  3016. }
  3017. /* Update corresponding info in inode so that everything is in
  3018. * one transaction */
  3019. if (attr->ia_valid & ATTR_UID)
  3020. inode->i_uid = attr->ia_uid;
  3021. if (attr->ia_valid & ATTR_GID)
  3022. inode->i_gid = attr->ia_gid;
  3023. error = ext3_mark_inode_dirty(handle, inode);
  3024. ext3_journal_stop(handle);
  3025. }
  3026. if (attr->ia_valid & ATTR_SIZE)
  3027. inode_dio_wait(inode);
  3028. if (S_ISREG(inode->i_mode) &&
  3029. attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
  3030. handle_t *handle;
  3031. handle = ext3_journal_start(inode, 3);
  3032. if (IS_ERR(handle)) {
  3033. error = PTR_ERR(handle);
  3034. goto err_out;
  3035. }
  3036. error = ext3_orphan_add(handle, inode);
  3037. if (error) {
  3038. ext3_journal_stop(handle);
  3039. goto err_out;
  3040. }
  3041. EXT3_I(inode)->i_disksize = attr->ia_size;
  3042. error = ext3_mark_inode_dirty(handle, inode);
  3043. ext3_journal_stop(handle);
  3044. if (error) {
  3045. /* Some hard fs error must have happened. Bail out. */
  3046. ext3_orphan_del(NULL, inode);
  3047. goto err_out;
  3048. }
  3049. rc = ext3_block_truncate_page(inode, attr->ia_size);
  3050. if (rc) {
  3051. /* Cleanup orphan list and exit */
  3052. handle = ext3_journal_start(inode, 3);
  3053. if (IS_ERR(handle)) {
  3054. ext3_orphan_del(NULL, inode);
  3055. goto err_out;
  3056. }
  3057. ext3_orphan_del(handle, inode);
  3058. ext3_journal_stop(handle);
  3059. goto err_out;
  3060. }
  3061. }
  3062. if ((attr->ia_valid & ATTR_SIZE) &&
  3063. attr->ia_size != i_size_read(inode)) {
  3064. truncate_setsize(inode, attr->ia_size);
  3065. ext3_truncate(inode);
  3066. }
  3067. setattr_copy(inode, attr);
  3068. mark_inode_dirty(inode);
  3069. if (ia_valid & ATTR_MODE)
  3070. rc = ext3_acl_chmod(inode);
  3071. err_out:
  3072. ext3_std_error(inode->i_sb, error);
  3073. if (!error)
  3074. error = rc;
  3075. return error;
  3076. }
  3077. /*
  3078. * How many blocks doth make a writepage()?
  3079. *
  3080. * With N blocks per page, it may be:
  3081. * N data blocks
  3082. * 2 indirect block
  3083. * 2 dindirect
  3084. * 1 tindirect
  3085. * N+5 bitmap blocks (from the above)
  3086. * N+5 group descriptor summary blocks
  3087. * 1 inode block
  3088. * 1 superblock.
  3089. * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
  3090. *
  3091. * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
  3092. *
  3093. * With ordered or writeback data it's the same, less the N data blocks.
  3094. *
  3095. * If the inode's direct blocks can hold an integral number of pages then a
  3096. * page cannot straddle two indirect blocks, and we can only touch one indirect
  3097. * and dindirect block, and the "5" above becomes "3".
  3098. *
  3099. * This still overestimates under most circumstances. If we were to pass the
  3100. * start and end offsets in here as well we could do block_to_path() on each
  3101. * block and work out the exact number of indirects which are touched. Pah.
  3102. */
  3103. static int ext3_writepage_trans_blocks(struct inode *inode)
  3104. {
  3105. int bpp = ext3_journal_blocks_per_page(inode);
  3106. int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
  3107. int ret;
  3108. if (ext3_should_journal_data(inode))
  3109. ret = 3 * (bpp + indirects) + 2;
  3110. else
  3111. ret = 2 * (bpp + indirects) + indirects + 2;
  3112. #ifdef CONFIG_QUOTA
  3113. /* We know that structure was already allocated during dquot_initialize so
  3114. * we will be updating only the data blocks + inodes */
  3115. ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
  3116. #endif
  3117. return ret;
  3118. }
  3119. /*
  3120. * The caller must have previously called ext3_reserve_inode_write().
  3121. * Give this, we know that the caller already has write access to iloc->bh.
  3122. */
  3123. int ext3_mark_iloc_dirty(handle_t *handle,
  3124. struct inode *inode, struct ext3_iloc *iloc)
  3125. {
  3126. int err = 0;
  3127. /* the do_update_inode consumes one bh->b_count */
  3128. get_bh(iloc->bh);
  3129. /* ext3_do_update_inode() does journal_dirty_metadata */
  3130. err = ext3_do_update_inode(handle, inode, iloc);
  3131. put_bh(iloc->bh);
  3132. return err;
  3133. }
  3134. /*
  3135. * On success, We end up with an outstanding reference count against
  3136. * iloc->bh. This _must_ be cleaned up later.
  3137. */
  3138. int
  3139. ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
  3140. struct ext3_iloc *iloc)
  3141. {
  3142. int err = 0;
  3143. if (handle) {
  3144. err = ext3_get_inode_loc(inode, iloc);
  3145. if (!err) {
  3146. BUFFER_TRACE(iloc->bh, "get_write_access");
  3147. err = ext3_journal_get_write_access(handle, iloc->bh);
  3148. if (err) {
  3149. brelse(iloc->bh);
  3150. iloc->bh = NULL;
  3151. }
  3152. }
  3153. }
  3154. ext3_std_error(inode->i_sb, err);
  3155. return err;
  3156. }
  3157. /*
  3158. * What we do here is to mark the in-core inode as clean with respect to inode
  3159. * dirtiness (it may still be data-dirty).
  3160. * This means that the in-core inode may be reaped by prune_icache
  3161. * without having to perform any I/O. This is a very good thing,
  3162. * because *any* task may call prune_icache - even ones which
  3163. * have a transaction open against a different journal.
  3164. *
  3165. * Is this cheating? Not really. Sure, we haven't written the
  3166. * inode out, but prune_icache isn't a user-visible syncing function.
  3167. * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
  3168. * we start and wait on commits.
  3169. */
  3170. int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
  3171. {
  3172. struct ext3_iloc iloc;
  3173. int err;
  3174. might_sleep();
  3175. trace_ext3_mark_inode_dirty(inode, _RET_IP_);
  3176. err = ext3_reserve_inode_write(handle, inode, &iloc);
  3177. if (!err)
  3178. err = ext3_mark_iloc_dirty(handle, inode, &iloc);
  3179. return err;
  3180. }
  3181. /*
  3182. * ext3_dirty_inode() is called from __mark_inode_dirty()
  3183. *
  3184. * We're really interested in the case where a file is being extended.
  3185. * i_size has been changed by generic_commit_write() and we thus need
  3186. * to include the updated inode in the current transaction.
  3187. *
  3188. * Also, dquot_alloc_space() will always dirty the inode when blocks
  3189. * are allocated to the file.
  3190. *
  3191. * If the inode is marked synchronous, we don't honour that here - doing
  3192. * so would cause a commit on atime updates, which we don't bother doing.
  3193. * We handle synchronous inodes at the highest possible level.
  3194. */
  3195. void ext3_dirty_inode(struct inode *inode, int flags)
  3196. {
  3197. handle_t *current_handle = ext3_journal_current_handle();
  3198. handle_t *handle;
  3199. handle = ext3_journal_start(inode, 2);
  3200. if (IS_ERR(handle))
  3201. goto out;
  3202. if (current_handle &&
  3203. current_handle->h_transaction != handle->h_transaction) {
  3204. /* This task has a transaction open against a different fs */
  3205. printk(KERN_EMERG "%s: transactions do not match!\n",
  3206. __func__);
  3207. } else {
  3208. jbd_debug(5, "marking dirty. outer handle=%p\n",
  3209. current_handle);
  3210. ext3_mark_inode_dirty(handle, inode);
  3211. }
  3212. ext3_journal_stop(handle);
  3213. out:
  3214. return;
  3215. }
  3216. #if 0
  3217. /*
  3218. * Bind an inode's backing buffer_head into this transaction, to prevent
  3219. * it from being flushed to disk early. Unlike
  3220. * ext3_reserve_inode_write, this leaves behind no bh reference and
  3221. * returns no iloc structure, so the caller needs to repeat the iloc
  3222. * lookup to mark the inode dirty later.
  3223. */
  3224. static int ext3_pin_inode(handle_t *handle, struct inode *inode)
  3225. {
  3226. struct ext3_iloc iloc;
  3227. int err = 0;
  3228. if (handle) {
  3229. err = ext3_get_inode_loc(inode, &iloc);
  3230. if (!err) {
  3231. BUFFER_TRACE(iloc.bh, "get_write_access");
  3232. err = journal_get_write_access(handle, iloc.bh);
  3233. if (!err)
  3234. err = ext3_journal_dirty_metadata(handle,
  3235. iloc.bh);
  3236. brelse(iloc.bh);
  3237. }
  3238. }
  3239. ext3_std_error(inode->i_sb, err);
  3240. return err;
  3241. }
  3242. #endif
  3243. int ext3_change_inode_journal_flag(struct inode *inode, int val)
  3244. {
  3245. journal_t *journal;
  3246. handle_t *handle;
  3247. int err;
  3248. /*
  3249. * We have to be very careful here: changing a data block's
  3250. * journaling status dynamically is dangerous. If we write a
  3251. * data block to the journal, change the status and then delete
  3252. * that block, we risk forgetting to revoke the old log record
  3253. * from the journal and so a subsequent replay can corrupt data.
  3254. * So, first we make sure that the journal is empty and that
  3255. * nobody is changing anything.
  3256. */
  3257. journal = EXT3_JOURNAL(inode);
  3258. if (is_journal_aborted(journal))
  3259. return -EROFS;
  3260. journal_lock_updates(journal);
  3261. journal_flush(journal);
  3262. /*
  3263. * OK, there are no updates running now, and all cached data is
  3264. * synced to disk. We are now in a completely consistent state
  3265. * which doesn't have anything in the journal, and we know that
  3266. * no filesystem updates are running, so it is safe to modify
  3267. * the inode's in-core data-journaling state flag now.
  3268. */
  3269. if (val)
  3270. EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
  3271. else
  3272. EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
  3273. ext3_set_aops(inode);
  3274. journal_unlock_updates(journal);
  3275. /* Finally we can mark the inode as dirty. */
  3276. handle = ext3_journal_start(inode, 1);
  3277. if (IS_ERR(handle))
  3278. return PTR_ERR(handle);
  3279. err = ext3_mark_inode_dirty(handle, inode);
  3280. handle->h_sync = 1;
  3281. ext3_journal_stop(handle);
  3282. ext3_std_error(inode->i_sb, err);
  3283. return err;
  3284. }