sched.c 256 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/reciprocal_div.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/bootmem.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <trace/sched.h>
  75. #include <asm/tlb.h>
  76. #include <asm/irq_regs.h>
  77. #include "sched_cpupri.h"
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. DEFINE_TRACE(sched_wait_task);
  112. DEFINE_TRACE(sched_wakeup);
  113. DEFINE_TRACE(sched_wakeup_new);
  114. DEFINE_TRACE(sched_switch);
  115. DEFINE_TRACE(sched_migrate_task);
  116. #ifdef CONFIG_SMP
  117. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  118. /*
  119. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  120. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  121. */
  122. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  123. {
  124. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  125. }
  126. /*
  127. * Each time a sched group cpu_power is changed,
  128. * we must compute its reciprocal value
  129. */
  130. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  131. {
  132. sg->__cpu_power += val;
  133. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  134. }
  135. #endif
  136. static inline int rt_policy(int policy)
  137. {
  138. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  139. return 1;
  140. return 0;
  141. }
  142. static inline int task_has_rt_policy(struct task_struct *p)
  143. {
  144. return rt_policy(p->policy);
  145. }
  146. /*
  147. * This is the priority-queue data structure of the RT scheduling class:
  148. */
  149. struct rt_prio_array {
  150. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  151. struct list_head queue[MAX_RT_PRIO];
  152. };
  153. struct rt_bandwidth {
  154. /* nests inside the rq lock: */
  155. spinlock_t rt_runtime_lock;
  156. ktime_t rt_period;
  157. u64 rt_runtime;
  158. struct hrtimer rt_period_timer;
  159. };
  160. static struct rt_bandwidth def_rt_bandwidth;
  161. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  162. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  163. {
  164. struct rt_bandwidth *rt_b =
  165. container_of(timer, struct rt_bandwidth, rt_period_timer);
  166. ktime_t now;
  167. int overrun;
  168. int idle = 0;
  169. for (;;) {
  170. now = hrtimer_cb_get_time(timer);
  171. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  172. if (!overrun)
  173. break;
  174. idle = do_sched_rt_period_timer(rt_b, overrun);
  175. }
  176. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  177. }
  178. static
  179. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  180. {
  181. rt_b->rt_period = ns_to_ktime(period);
  182. rt_b->rt_runtime = runtime;
  183. spin_lock_init(&rt_b->rt_runtime_lock);
  184. hrtimer_init(&rt_b->rt_period_timer,
  185. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  186. rt_b->rt_period_timer.function = sched_rt_period_timer;
  187. }
  188. static inline int rt_bandwidth_enabled(void)
  189. {
  190. return sysctl_sched_rt_runtime >= 0;
  191. }
  192. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  193. {
  194. ktime_t now;
  195. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  196. return;
  197. if (hrtimer_active(&rt_b->rt_period_timer))
  198. return;
  199. spin_lock(&rt_b->rt_runtime_lock);
  200. for (;;) {
  201. unsigned long delta;
  202. ktime_t soft, hard;
  203. if (hrtimer_active(&rt_b->rt_period_timer))
  204. break;
  205. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  206. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  207. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  208. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  209. delta = ktime_to_ns(ktime_sub(hard, soft));
  210. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  211. HRTIMER_MODE_ABS, 0);
  212. }
  213. spin_unlock(&rt_b->rt_runtime_lock);
  214. }
  215. #ifdef CONFIG_RT_GROUP_SCHED
  216. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  217. {
  218. hrtimer_cancel(&rt_b->rt_period_timer);
  219. }
  220. #endif
  221. /*
  222. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  223. * detach_destroy_domains and partition_sched_domains.
  224. */
  225. static DEFINE_MUTEX(sched_domains_mutex);
  226. #ifdef CONFIG_GROUP_SCHED
  227. #include <linux/cgroup.h>
  228. struct cfs_rq;
  229. static LIST_HEAD(task_groups);
  230. /* task group related information */
  231. struct task_group {
  232. #ifdef CONFIG_CGROUP_SCHED
  233. struct cgroup_subsys_state css;
  234. #endif
  235. #ifdef CONFIG_USER_SCHED
  236. uid_t uid;
  237. #endif
  238. #ifdef CONFIG_FAIR_GROUP_SCHED
  239. /* schedulable entities of this group on each cpu */
  240. struct sched_entity **se;
  241. /* runqueue "owned" by this group on each cpu */
  242. struct cfs_rq **cfs_rq;
  243. unsigned long shares;
  244. #endif
  245. #ifdef CONFIG_RT_GROUP_SCHED
  246. struct sched_rt_entity **rt_se;
  247. struct rt_rq **rt_rq;
  248. struct rt_bandwidth rt_bandwidth;
  249. #endif
  250. struct rcu_head rcu;
  251. struct list_head list;
  252. struct task_group *parent;
  253. struct list_head siblings;
  254. struct list_head children;
  255. };
  256. #ifdef CONFIG_USER_SCHED
  257. /* Helper function to pass uid information to create_sched_user() */
  258. void set_tg_uid(struct user_struct *user)
  259. {
  260. user->tg->uid = user->uid;
  261. }
  262. /*
  263. * Root task group.
  264. * Every UID task group (including init_task_group aka UID-0) will
  265. * be a child to this group.
  266. */
  267. struct task_group root_task_group;
  268. #ifdef CONFIG_FAIR_GROUP_SCHED
  269. /* Default task group's sched entity on each cpu */
  270. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  271. /* Default task group's cfs_rq on each cpu */
  272. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  273. #endif /* CONFIG_FAIR_GROUP_SCHED */
  274. #ifdef CONFIG_RT_GROUP_SCHED
  275. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  276. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  277. #endif /* CONFIG_RT_GROUP_SCHED */
  278. #else /* !CONFIG_USER_SCHED */
  279. #define root_task_group init_task_group
  280. #endif /* CONFIG_USER_SCHED */
  281. /* task_group_lock serializes add/remove of task groups and also changes to
  282. * a task group's cpu shares.
  283. */
  284. static DEFINE_SPINLOCK(task_group_lock);
  285. #ifdef CONFIG_SMP
  286. static int root_task_group_empty(void)
  287. {
  288. return list_empty(&root_task_group.children);
  289. }
  290. #endif
  291. #ifdef CONFIG_FAIR_GROUP_SCHED
  292. #ifdef CONFIG_USER_SCHED
  293. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  294. #else /* !CONFIG_USER_SCHED */
  295. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  296. #endif /* CONFIG_USER_SCHED */
  297. /*
  298. * A weight of 0 or 1 can cause arithmetics problems.
  299. * A weight of a cfs_rq is the sum of weights of which entities
  300. * are queued on this cfs_rq, so a weight of a entity should not be
  301. * too large, so as the shares value of a task group.
  302. * (The default weight is 1024 - so there's no practical
  303. * limitation from this.)
  304. */
  305. #define MIN_SHARES 2
  306. #define MAX_SHARES (1UL << 18)
  307. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  308. #endif
  309. /* Default task group.
  310. * Every task in system belong to this group at bootup.
  311. */
  312. struct task_group init_task_group;
  313. /* return group to which a task belongs */
  314. static inline struct task_group *task_group(struct task_struct *p)
  315. {
  316. struct task_group *tg;
  317. #ifdef CONFIG_USER_SCHED
  318. rcu_read_lock();
  319. tg = __task_cred(p)->user->tg;
  320. rcu_read_unlock();
  321. #elif defined(CONFIG_CGROUP_SCHED)
  322. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  323. struct task_group, css);
  324. #else
  325. tg = &init_task_group;
  326. #endif
  327. return tg;
  328. }
  329. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  330. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  331. {
  332. #ifdef CONFIG_FAIR_GROUP_SCHED
  333. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  334. p->se.parent = task_group(p)->se[cpu];
  335. #endif
  336. #ifdef CONFIG_RT_GROUP_SCHED
  337. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  338. p->rt.parent = task_group(p)->rt_se[cpu];
  339. #endif
  340. }
  341. #else
  342. #ifdef CONFIG_SMP
  343. static int root_task_group_empty(void)
  344. {
  345. return 1;
  346. }
  347. #endif
  348. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  349. static inline struct task_group *task_group(struct task_struct *p)
  350. {
  351. return NULL;
  352. }
  353. #endif /* CONFIG_GROUP_SCHED */
  354. /* CFS-related fields in a runqueue */
  355. struct cfs_rq {
  356. struct load_weight load;
  357. unsigned long nr_running;
  358. u64 exec_clock;
  359. u64 min_vruntime;
  360. struct rb_root tasks_timeline;
  361. struct rb_node *rb_leftmost;
  362. struct list_head tasks;
  363. struct list_head *balance_iterator;
  364. /*
  365. * 'curr' points to currently running entity on this cfs_rq.
  366. * It is set to NULL otherwise (i.e when none are currently running).
  367. */
  368. struct sched_entity *curr, *next, *last;
  369. unsigned int nr_spread_over;
  370. #ifdef CONFIG_FAIR_GROUP_SCHED
  371. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  372. /*
  373. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  374. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  375. * (like users, containers etc.)
  376. *
  377. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  378. * list is used during load balance.
  379. */
  380. struct list_head leaf_cfs_rq_list;
  381. struct task_group *tg; /* group that "owns" this runqueue */
  382. #ifdef CONFIG_SMP
  383. /*
  384. * the part of load.weight contributed by tasks
  385. */
  386. unsigned long task_weight;
  387. /*
  388. * h_load = weight * f(tg)
  389. *
  390. * Where f(tg) is the recursive weight fraction assigned to
  391. * this group.
  392. */
  393. unsigned long h_load;
  394. /*
  395. * this cpu's part of tg->shares
  396. */
  397. unsigned long shares;
  398. /*
  399. * load.weight at the time we set shares
  400. */
  401. unsigned long rq_weight;
  402. #endif
  403. #endif
  404. };
  405. /* Real-Time classes' related field in a runqueue: */
  406. struct rt_rq {
  407. struct rt_prio_array active;
  408. unsigned long rt_nr_running;
  409. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  410. struct {
  411. int curr; /* highest queued rt task prio */
  412. #ifdef CONFIG_SMP
  413. int next; /* next highest */
  414. #endif
  415. } highest_prio;
  416. #endif
  417. #ifdef CONFIG_SMP
  418. unsigned long rt_nr_migratory;
  419. int overloaded;
  420. struct plist_head pushable_tasks;
  421. #endif
  422. int rt_throttled;
  423. u64 rt_time;
  424. u64 rt_runtime;
  425. /* Nests inside the rq lock: */
  426. spinlock_t rt_runtime_lock;
  427. #ifdef CONFIG_RT_GROUP_SCHED
  428. unsigned long rt_nr_boosted;
  429. struct rq *rq;
  430. struct list_head leaf_rt_rq_list;
  431. struct task_group *tg;
  432. struct sched_rt_entity *rt_se;
  433. #endif
  434. };
  435. #ifdef CONFIG_SMP
  436. /*
  437. * We add the notion of a root-domain which will be used to define per-domain
  438. * variables. Each exclusive cpuset essentially defines an island domain by
  439. * fully partitioning the member cpus from any other cpuset. Whenever a new
  440. * exclusive cpuset is created, we also create and attach a new root-domain
  441. * object.
  442. *
  443. */
  444. struct root_domain {
  445. atomic_t refcount;
  446. cpumask_var_t span;
  447. cpumask_var_t online;
  448. /*
  449. * The "RT overload" flag: it gets set if a CPU has more than
  450. * one runnable RT task.
  451. */
  452. cpumask_var_t rto_mask;
  453. atomic_t rto_count;
  454. #ifdef CONFIG_SMP
  455. struct cpupri cpupri;
  456. #endif
  457. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  458. /*
  459. * Preferred wake up cpu nominated by sched_mc balance that will be
  460. * used when most cpus are idle in the system indicating overall very
  461. * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
  462. */
  463. unsigned int sched_mc_preferred_wakeup_cpu;
  464. #endif
  465. };
  466. /*
  467. * By default the system creates a single root-domain with all cpus as
  468. * members (mimicking the global state we have today).
  469. */
  470. static struct root_domain def_root_domain;
  471. #endif
  472. /*
  473. * This is the main, per-CPU runqueue data structure.
  474. *
  475. * Locking rule: those places that want to lock multiple runqueues
  476. * (such as the load balancing or the thread migration code), lock
  477. * acquire operations must be ordered by ascending &runqueue.
  478. */
  479. struct rq {
  480. /* runqueue lock: */
  481. spinlock_t lock;
  482. /*
  483. * nr_running and cpu_load should be in the same cacheline because
  484. * remote CPUs use both these fields when doing load calculation.
  485. */
  486. unsigned long nr_running;
  487. #define CPU_LOAD_IDX_MAX 5
  488. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  489. #ifdef CONFIG_NO_HZ
  490. unsigned long last_tick_seen;
  491. unsigned char in_nohz_recently;
  492. #endif
  493. /* capture load from *all* tasks on this cpu: */
  494. struct load_weight load;
  495. unsigned long nr_load_updates;
  496. u64 nr_switches;
  497. struct cfs_rq cfs;
  498. struct rt_rq rt;
  499. #ifdef CONFIG_FAIR_GROUP_SCHED
  500. /* list of leaf cfs_rq on this cpu: */
  501. struct list_head leaf_cfs_rq_list;
  502. #endif
  503. #ifdef CONFIG_RT_GROUP_SCHED
  504. struct list_head leaf_rt_rq_list;
  505. #endif
  506. /*
  507. * This is part of a global counter where only the total sum
  508. * over all CPUs matters. A task can increase this counter on
  509. * one CPU and if it got migrated afterwards it may decrease
  510. * it on another CPU. Always updated under the runqueue lock:
  511. */
  512. unsigned long nr_uninterruptible;
  513. struct task_struct *curr, *idle;
  514. unsigned long next_balance;
  515. struct mm_struct *prev_mm;
  516. u64 clock;
  517. atomic_t nr_iowait;
  518. #ifdef CONFIG_SMP
  519. struct root_domain *rd;
  520. struct sched_domain *sd;
  521. unsigned char idle_at_tick;
  522. /* For active balancing */
  523. int active_balance;
  524. int push_cpu;
  525. /* cpu of this runqueue: */
  526. int cpu;
  527. int online;
  528. unsigned long avg_load_per_task;
  529. struct task_struct *migration_thread;
  530. struct list_head migration_queue;
  531. #endif
  532. /* calc_load related fields */
  533. unsigned long calc_load_update;
  534. long calc_load_active;
  535. #ifdef CONFIG_SCHED_HRTICK
  536. #ifdef CONFIG_SMP
  537. int hrtick_csd_pending;
  538. struct call_single_data hrtick_csd;
  539. #endif
  540. struct hrtimer hrtick_timer;
  541. #endif
  542. #ifdef CONFIG_SCHEDSTATS
  543. /* latency stats */
  544. struct sched_info rq_sched_info;
  545. unsigned long long rq_cpu_time;
  546. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  547. /* sys_sched_yield() stats */
  548. unsigned int yld_count;
  549. /* schedule() stats */
  550. unsigned int sched_switch;
  551. unsigned int sched_count;
  552. unsigned int sched_goidle;
  553. /* try_to_wake_up() stats */
  554. unsigned int ttwu_count;
  555. unsigned int ttwu_local;
  556. /* BKL stats */
  557. unsigned int bkl_count;
  558. #endif
  559. };
  560. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  561. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  562. {
  563. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  564. }
  565. static inline int cpu_of(struct rq *rq)
  566. {
  567. #ifdef CONFIG_SMP
  568. return rq->cpu;
  569. #else
  570. return 0;
  571. #endif
  572. }
  573. /*
  574. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  575. * See detach_destroy_domains: synchronize_sched for details.
  576. *
  577. * The domain tree of any CPU may only be accessed from within
  578. * preempt-disabled sections.
  579. */
  580. #define for_each_domain(cpu, __sd) \
  581. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  582. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  583. #define this_rq() (&__get_cpu_var(runqueues))
  584. #define task_rq(p) cpu_rq(task_cpu(p))
  585. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  586. static inline void update_rq_clock(struct rq *rq)
  587. {
  588. rq->clock = sched_clock_cpu(cpu_of(rq));
  589. }
  590. /*
  591. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  592. */
  593. #ifdef CONFIG_SCHED_DEBUG
  594. # define const_debug __read_mostly
  595. #else
  596. # define const_debug static const
  597. #endif
  598. /**
  599. * runqueue_is_locked
  600. *
  601. * Returns true if the current cpu runqueue is locked.
  602. * This interface allows printk to be called with the runqueue lock
  603. * held and know whether or not it is OK to wake up the klogd.
  604. */
  605. int runqueue_is_locked(void)
  606. {
  607. int cpu = get_cpu();
  608. struct rq *rq = cpu_rq(cpu);
  609. int ret;
  610. ret = spin_is_locked(&rq->lock);
  611. put_cpu();
  612. return ret;
  613. }
  614. /*
  615. * Debugging: various feature bits
  616. */
  617. #define SCHED_FEAT(name, enabled) \
  618. __SCHED_FEAT_##name ,
  619. enum {
  620. #include "sched_features.h"
  621. };
  622. #undef SCHED_FEAT
  623. #define SCHED_FEAT(name, enabled) \
  624. (1UL << __SCHED_FEAT_##name) * enabled |
  625. const_debug unsigned int sysctl_sched_features =
  626. #include "sched_features.h"
  627. 0;
  628. #undef SCHED_FEAT
  629. #ifdef CONFIG_SCHED_DEBUG
  630. #define SCHED_FEAT(name, enabled) \
  631. #name ,
  632. static __read_mostly char *sched_feat_names[] = {
  633. #include "sched_features.h"
  634. NULL
  635. };
  636. #undef SCHED_FEAT
  637. static int sched_feat_show(struct seq_file *m, void *v)
  638. {
  639. int i;
  640. for (i = 0; sched_feat_names[i]; i++) {
  641. if (!(sysctl_sched_features & (1UL << i)))
  642. seq_puts(m, "NO_");
  643. seq_printf(m, "%s ", sched_feat_names[i]);
  644. }
  645. seq_puts(m, "\n");
  646. return 0;
  647. }
  648. static ssize_t
  649. sched_feat_write(struct file *filp, const char __user *ubuf,
  650. size_t cnt, loff_t *ppos)
  651. {
  652. char buf[64];
  653. char *cmp = buf;
  654. int neg = 0;
  655. int i;
  656. if (cnt > 63)
  657. cnt = 63;
  658. if (copy_from_user(&buf, ubuf, cnt))
  659. return -EFAULT;
  660. buf[cnt] = 0;
  661. if (strncmp(buf, "NO_", 3) == 0) {
  662. neg = 1;
  663. cmp += 3;
  664. }
  665. for (i = 0; sched_feat_names[i]; i++) {
  666. int len = strlen(sched_feat_names[i]);
  667. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  668. if (neg)
  669. sysctl_sched_features &= ~(1UL << i);
  670. else
  671. sysctl_sched_features |= (1UL << i);
  672. break;
  673. }
  674. }
  675. if (!sched_feat_names[i])
  676. return -EINVAL;
  677. filp->f_pos += cnt;
  678. return cnt;
  679. }
  680. static int sched_feat_open(struct inode *inode, struct file *filp)
  681. {
  682. return single_open(filp, sched_feat_show, NULL);
  683. }
  684. static struct file_operations sched_feat_fops = {
  685. .open = sched_feat_open,
  686. .write = sched_feat_write,
  687. .read = seq_read,
  688. .llseek = seq_lseek,
  689. .release = single_release,
  690. };
  691. static __init int sched_init_debug(void)
  692. {
  693. debugfs_create_file("sched_features", 0644, NULL, NULL,
  694. &sched_feat_fops);
  695. return 0;
  696. }
  697. late_initcall(sched_init_debug);
  698. #endif
  699. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  700. /*
  701. * Number of tasks to iterate in a single balance run.
  702. * Limited because this is done with IRQs disabled.
  703. */
  704. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  705. /*
  706. * ratelimit for updating the group shares.
  707. * default: 0.25ms
  708. */
  709. unsigned int sysctl_sched_shares_ratelimit = 250000;
  710. /*
  711. * Inject some fuzzyness into changing the per-cpu group shares
  712. * this avoids remote rq-locks at the expense of fairness.
  713. * default: 4
  714. */
  715. unsigned int sysctl_sched_shares_thresh = 4;
  716. /*
  717. * period over which we measure -rt task cpu usage in us.
  718. * default: 1s
  719. */
  720. unsigned int sysctl_sched_rt_period = 1000000;
  721. static __read_mostly int scheduler_running;
  722. /*
  723. * part of the period that we allow rt tasks to run in us.
  724. * default: 0.95s
  725. */
  726. int sysctl_sched_rt_runtime = 950000;
  727. static inline u64 global_rt_period(void)
  728. {
  729. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  730. }
  731. static inline u64 global_rt_runtime(void)
  732. {
  733. if (sysctl_sched_rt_runtime < 0)
  734. return RUNTIME_INF;
  735. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  736. }
  737. #ifndef prepare_arch_switch
  738. # define prepare_arch_switch(next) do { } while (0)
  739. #endif
  740. #ifndef finish_arch_switch
  741. # define finish_arch_switch(prev) do { } while (0)
  742. #endif
  743. static inline int task_current(struct rq *rq, struct task_struct *p)
  744. {
  745. return rq->curr == p;
  746. }
  747. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  748. static inline int task_running(struct rq *rq, struct task_struct *p)
  749. {
  750. return task_current(rq, p);
  751. }
  752. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  753. {
  754. }
  755. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  756. {
  757. #ifdef CONFIG_DEBUG_SPINLOCK
  758. /* this is a valid case when another task releases the spinlock */
  759. rq->lock.owner = current;
  760. #endif
  761. /*
  762. * If we are tracking spinlock dependencies then we have to
  763. * fix up the runqueue lock - which gets 'carried over' from
  764. * prev into current:
  765. */
  766. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  767. spin_unlock_irq(&rq->lock);
  768. }
  769. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  770. static inline int task_running(struct rq *rq, struct task_struct *p)
  771. {
  772. #ifdef CONFIG_SMP
  773. return p->oncpu;
  774. #else
  775. return task_current(rq, p);
  776. #endif
  777. }
  778. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  779. {
  780. #ifdef CONFIG_SMP
  781. /*
  782. * We can optimise this out completely for !SMP, because the
  783. * SMP rebalancing from interrupt is the only thing that cares
  784. * here.
  785. */
  786. next->oncpu = 1;
  787. #endif
  788. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  789. spin_unlock_irq(&rq->lock);
  790. #else
  791. spin_unlock(&rq->lock);
  792. #endif
  793. }
  794. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  795. {
  796. #ifdef CONFIG_SMP
  797. /*
  798. * After ->oncpu is cleared, the task can be moved to a different CPU.
  799. * We must ensure this doesn't happen until the switch is completely
  800. * finished.
  801. */
  802. smp_wmb();
  803. prev->oncpu = 0;
  804. #endif
  805. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  806. local_irq_enable();
  807. #endif
  808. }
  809. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  810. /*
  811. * __task_rq_lock - lock the runqueue a given task resides on.
  812. * Must be called interrupts disabled.
  813. */
  814. static inline struct rq *__task_rq_lock(struct task_struct *p)
  815. __acquires(rq->lock)
  816. {
  817. for (;;) {
  818. struct rq *rq = task_rq(p);
  819. spin_lock(&rq->lock);
  820. if (likely(rq == task_rq(p)))
  821. return rq;
  822. spin_unlock(&rq->lock);
  823. }
  824. }
  825. /*
  826. * task_rq_lock - lock the runqueue a given task resides on and disable
  827. * interrupts. Note the ordering: we can safely lookup the task_rq without
  828. * explicitly disabling preemption.
  829. */
  830. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  831. __acquires(rq->lock)
  832. {
  833. struct rq *rq;
  834. for (;;) {
  835. local_irq_save(*flags);
  836. rq = task_rq(p);
  837. spin_lock(&rq->lock);
  838. if (likely(rq == task_rq(p)))
  839. return rq;
  840. spin_unlock_irqrestore(&rq->lock, *flags);
  841. }
  842. }
  843. void task_rq_unlock_wait(struct task_struct *p)
  844. {
  845. struct rq *rq = task_rq(p);
  846. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  847. spin_unlock_wait(&rq->lock);
  848. }
  849. static void __task_rq_unlock(struct rq *rq)
  850. __releases(rq->lock)
  851. {
  852. spin_unlock(&rq->lock);
  853. }
  854. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  855. __releases(rq->lock)
  856. {
  857. spin_unlock_irqrestore(&rq->lock, *flags);
  858. }
  859. /*
  860. * this_rq_lock - lock this runqueue and disable interrupts.
  861. */
  862. static struct rq *this_rq_lock(void)
  863. __acquires(rq->lock)
  864. {
  865. struct rq *rq;
  866. local_irq_disable();
  867. rq = this_rq();
  868. spin_lock(&rq->lock);
  869. return rq;
  870. }
  871. #ifdef CONFIG_SCHED_HRTICK
  872. /*
  873. * Use HR-timers to deliver accurate preemption points.
  874. *
  875. * Its all a bit involved since we cannot program an hrt while holding the
  876. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  877. * reschedule event.
  878. *
  879. * When we get rescheduled we reprogram the hrtick_timer outside of the
  880. * rq->lock.
  881. */
  882. /*
  883. * Use hrtick when:
  884. * - enabled by features
  885. * - hrtimer is actually high res
  886. */
  887. static inline int hrtick_enabled(struct rq *rq)
  888. {
  889. if (!sched_feat(HRTICK))
  890. return 0;
  891. if (!cpu_active(cpu_of(rq)))
  892. return 0;
  893. return hrtimer_is_hres_active(&rq->hrtick_timer);
  894. }
  895. static void hrtick_clear(struct rq *rq)
  896. {
  897. if (hrtimer_active(&rq->hrtick_timer))
  898. hrtimer_cancel(&rq->hrtick_timer);
  899. }
  900. /*
  901. * High-resolution timer tick.
  902. * Runs from hardirq context with interrupts disabled.
  903. */
  904. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  905. {
  906. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  907. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  908. spin_lock(&rq->lock);
  909. update_rq_clock(rq);
  910. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  911. spin_unlock(&rq->lock);
  912. return HRTIMER_NORESTART;
  913. }
  914. #ifdef CONFIG_SMP
  915. /*
  916. * called from hardirq (IPI) context
  917. */
  918. static void __hrtick_start(void *arg)
  919. {
  920. struct rq *rq = arg;
  921. spin_lock(&rq->lock);
  922. hrtimer_restart(&rq->hrtick_timer);
  923. rq->hrtick_csd_pending = 0;
  924. spin_unlock(&rq->lock);
  925. }
  926. /*
  927. * Called to set the hrtick timer state.
  928. *
  929. * called with rq->lock held and irqs disabled
  930. */
  931. static void hrtick_start(struct rq *rq, u64 delay)
  932. {
  933. struct hrtimer *timer = &rq->hrtick_timer;
  934. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  935. hrtimer_set_expires(timer, time);
  936. if (rq == this_rq()) {
  937. hrtimer_restart(timer);
  938. } else if (!rq->hrtick_csd_pending) {
  939. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  940. rq->hrtick_csd_pending = 1;
  941. }
  942. }
  943. static int
  944. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  945. {
  946. int cpu = (int)(long)hcpu;
  947. switch (action) {
  948. case CPU_UP_CANCELED:
  949. case CPU_UP_CANCELED_FROZEN:
  950. case CPU_DOWN_PREPARE:
  951. case CPU_DOWN_PREPARE_FROZEN:
  952. case CPU_DEAD:
  953. case CPU_DEAD_FROZEN:
  954. hrtick_clear(cpu_rq(cpu));
  955. return NOTIFY_OK;
  956. }
  957. return NOTIFY_DONE;
  958. }
  959. static __init void init_hrtick(void)
  960. {
  961. hotcpu_notifier(hotplug_hrtick, 0);
  962. }
  963. #else
  964. /*
  965. * Called to set the hrtick timer state.
  966. *
  967. * called with rq->lock held and irqs disabled
  968. */
  969. static void hrtick_start(struct rq *rq, u64 delay)
  970. {
  971. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  972. HRTIMER_MODE_REL, 0);
  973. }
  974. static inline void init_hrtick(void)
  975. {
  976. }
  977. #endif /* CONFIG_SMP */
  978. static void init_rq_hrtick(struct rq *rq)
  979. {
  980. #ifdef CONFIG_SMP
  981. rq->hrtick_csd_pending = 0;
  982. rq->hrtick_csd.flags = 0;
  983. rq->hrtick_csd.func = __hrtick_start;
  984. rq->hrtick_csd.info = rq;
  985. #endif
  986. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  987. rq->hrtick_timer.function = hrtick;
  988. }
  989. #else /* CONFIG_SCHED_HRTICK */
  990. static inline void hrtick_clear(struct rq *rq)
  991. {
  992. }
  993. static inline void init_rq_hrtick(struct rq *rq)
  994. {
  995. }
  996. static inline void init_hrtick(void)
  997. {
  998. }
  999. #endif /* CONFIG_SCHED_HRTICK */
  1000. /*
  1001. * resched_task - mark a task 'to be rescheduled now'.
  1002. *
  1003. * On UP this means the setting of the need_resched flag, on SMP it
  1004. * might also involve a cross-CPU call to trigger the scheduler on
  1005. * the target CPU.
  1006. */
  1007. #ifdef CONFIG_SMP
  1008. #ifndef tsk_is_polling
  1009. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1010. #endif
  1011. static void resched_task(struct task_struct *p)
  1012. {
  1013. int cpu;
  1014. assert_spin_locked(&task_rq(p)->lock);
  1015. if (test_tsk_need_resched(p))
  1016. return;
  1017. set_tsk_need_resched(p);
  1018. cpu = task_cpu(p);
  1019. if (cpu == smp_processor_id())
  1020. return;
  1021. /* NEED_RESCHED must be visible before we test polling */
  1022. smp_mb();
  1023. if (!tsk_is_polling(p))
  1024. smp_send_reschedule(cpu);
  1025. }
  1026. static void resched_cpu(int cpu)
  1027. {
  1028. struct rq *rq = cpu_rq(cpu);
  1029. unsigned long flags;
  1030. if (!spin_trylock_irqsave(&rq->lock, flags))
  1031. return;
  1032. resched_task(cpu_curr(cpu));
  1033. spin_unlock_irqrestore(&rq->lock, flags);
  1034. }
  1035. #ifdef CONFIG_NO_HZ
  1036. /*
  1037. * When add_timer_on() enqueues a timer into the timer wheel of an
  1038. * idle CPU then this timer might expire before the next timer event
  1039. * which is scheduled to wake up that CPU. In case of a completely
  1040. * idle system the next event might even be infinite time into the
  1041. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1042. * leaves the inner idle loop so the newly added timer is taken into
  1043. * account when the CPU goes back to idle and evaluates the timer
  1044. * wheel for the next timer event.
  1045. */
  1046. void wake_up_idle_cpu(int cpu)
  1047. {
  1048. struct rq *rq = cpu_rq(cpu);
  1049. if (cpu == smp_processor_id())
  1050. return;
  1051. /*
  1052. * This is safe, as this function is called with the timer
  1053. * wheel base lock of (cpu) held. When the CPU is on the way
  1054. * to idle and has not yet set rq->curr to idle then it will
  1055. * be serialized on the timer wheel base lock and take the new
  1056. * timer into account automatically.
  1057. */
  1058. if (rq->curr != rq->idle)
  1059. return;
  1060. /*
  1061. * We can set TIF_RESCHED on the idle task of the other CPU
  1062. * lockless. The worst case is that the other CPU runs the
  1063. * idle task through an additional NOOP schedule()
  1064. */
  1065. set_tsk_need_resched(rq->idle);
  1066. /* NEED_RESCHED must be visible before we test polling */
  1067. smp_mb();
  1068. if (!tsk_is_polling(rq->idle))
  1069. smp_send_reschedule(cpu);
  1070. }
  1071. #endif /* CONFIG_NO_HZ */
  1072. #else /* !CONFIG_SMP */
  1073. static void resched_task(struct task_struct *p)
  1074. {
  1075. assert_spin_locked(&task_rq(p)->lock);
  1076. set_tsk_need_resched(p);
  1077. }
  1078. #endif /* CONFIG_SMP */
  1079. #if BITS_PER_LONG == 32
  1080. # define WMULT_CONST (~0UL)
  1081. #else
  1082. # define WMULT_CONST (1UL << 32)
  1083. #endif
  1084. #define WMULT_SHIFT 32
  1085. /*
  1086. * Shift right and round:
  1087. */
  1088. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1089. /*
  1090. * delta *= weight / lw
  1091. */
  1092. static unsigned long
  1093. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1094. struct load_weight *lw)
  1095. {
  1096. u64 tmp;
  1097. if (!lw->inv_weight) {
  1098. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1099. lw->inv_weight = 1;
  1100. else
  1101. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1102. / (lw->weight+1);
  1103. }
  1104. tmp = (u64)delta_exec * weight;
  1105. /*
  1106. * Check whether we'd overflow the 64-bit multiplication:
  1107. */
  1108. if (unlikely(tmp > WMULT_CONST))
  1109. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1110. WMULT_SHIFT/2);
  1111. else
  1112. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1113. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1114. }
  1115. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1116. {
  1117. lw->weight += inc;
  1118. lw->inv_weight = 0;
  1119. }
  1120. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1121. {
  1122. lw->weight -= dec;
  1123. lw->inv_weight = 0;
  1124. }
  1125. /*
  1126. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1127. * of tasks with abnormal "nice" values across CPUs the contribution that
  1128. * each task makes to its run queue's load is weighted according to its
  1129. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1130. * scaled version of the new time slice allocation that they receive on time
  1131. * slice expiry etc.
  1132. */
  1133. #define WEIGHT_IDLEPRIO 3
  1134. #define WMULT_IDLEPRIO 1431655765
  1135. /*
  1136. * Nice levels are multiplicative, with a gentle 10% change for every
  1137. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1138. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1139. * that remained on nice 0.
  1140. *
  1141. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1142. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1143. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1144. * If a task goes up by ~10% and another task goes down by ~10% then
  1145. * the relative distance between them is ~25%.)
  1146. */
  1147. static const int prio_to_weight[40] = {
  1148. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1149. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1150. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1151. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1152. /* 0 */ 1024, 820, 655, 526, 423,
  1153. /* 5 */ 335, 272, 215, 172, 137,
  1154. /* 10 */ 110, 87, 70, 56, 45,
  1155. /* 15 */ 36, 29, 23, 18, 15,
  1156. };
  1157. /*
  1158. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1159. *
  1160. * In cases where the weight does not change often, we can use the
  1161. * precalculated inverse to speed up arithmetics by turning divisions
  1162. * into multiplications:
  1163. */
  1164. static const u32 prio_to_wmult[40] = {
  1165. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1166. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1167. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1168. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1169. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1170. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1171. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1172. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1173. };
  1174. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1175. /*
  1176. * runqueue iterator, to support SMP load-balancing between different
  1177. * scheduling classes, without having to expose their internal data
  1178. * structures to the load-balancing proper:
  1179. */
  1180. struct rq_iterator {
  1181. void *arg;
  1182. struct task_struct *(*start)(void *);
  1183. struct task_struct *(*next)(void *);
  1184. };
  1185. #ifdef CONFIG_SMP
  1186. static unsigned long
  1187. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1188. unsigned long max_load_move, struct sched_domain *sd,
  1189. enum cpu_idle_type idle, int *all_pinned,
  1190. int *this_best_prio, struct rq_iterator *iterator);
  1191. static int
  1192. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1193. struct sched_domain *sd, enum cpu_idle_type idle,
  1194. struct rq_iterator *iterator);
  1195. #endif
  1196. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1197. enum cpuacct_stat_index {
  1198. CPUACCT_STAT_USER, /* ... user mode */
  1199. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1200. CPUACCT_STAT_NSTATS,
  1201. };
  1202. #ifdef CONFIG_CGROUP_CPUACCT
  1203. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1204. static void cpuacct_update_stats(struct task_struct *tsk,
  1205. enum cpuacct_stat_index idx, cputime_t val);
  1206. #else
  1207. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1208. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1209. enum cpuacct_stat_index idx, cputime_t val) {}
  1210. #endif
  1211. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1212. {
  1213. update_load_add(&rq->load, load);
  1214. }
  1215. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1216. {
  1217. update_load_sub(&rq->load, load);
  1218. }
  1219. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1220. typedef int (*tg_visitor)(struct task_group *, void *);
  1221. /*
  1222. * Iterate the full tree, calling @down when first entering a node and @up when
  1223. * leaving it for the final time.
  1224. */
  1225. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1226. {
  1227. struct task_group *parent, *child;
  1228. int ret;
  1229. rcu_read_lock();
  1230. parent = &root_task_group;
  1231. down:
  1232. ret = (*down)(parent, data);
  1233. if (ret)
  1234. goto out_unlock;
  1235. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1236. parent = child;
  1237. goto down;
  1238. up:
  1239. continue;
  1240. }
  1241. ret = (*up)(parent, data);
  1242. if (ret)
  1243. goto out_unlock;
  1244. child = parent;
  1245. parent = parent->parent;
  1246. if (parent)
  1247. goto up;
  1248. out_unlock:
  1249. rcu_read_unlock();
  1250. return ret;
  1251. }
  1252. static int tg_nop(struct task_group *tg, void *data)
  1253. {
  1254. return 0;
  1255. }
  1256. #endif
  1257. #ifdef CONFIG_SMP
  1258. static unsigned long source_load(int cpu, int type);
  1259. static unsigned long target_load(int cpu, int type);
  1260. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1261. static unsigned long cpu_avg_load_per_task(int cpu)
  1262. {
  1263. struct rq *rq = cpu_rq(cpu);
  1264. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1265. if (nr_running)
  1266. rq->avg_load_per_task = rq->load.weight / nr_running;
  1267. else
  1268. rq->avg_load_per_task = 0;
  1269. return rq->avg_load_per_task;
  1270. }
  1271. #ifdef CONFIG_FAIR_GROUP_SCHED
  1272. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1273. /*
  1274. * Calculate and set the cpu's group shares.
  1275. */
  1276. static void
  1277. update_group_shares_cpu(struct task_group *tg, int cpu,
  1278. unsigned long sd_shares, unsigned long sd_rq_weight)
  1279. {
  1280. unsigned long shares;
  1281. unsigned long rq_weight;
  1282. if (!tg->se[cpu])
  1283. return;
  1284. rq_weight = tg->cfs_rq[cpu]->rq_weight;
  1285. /*
  1286. * \Sum shares * rq_weight
  1287. * shares = -----------------------
  1288. * \Sum rq_weight
  1289. *
  1290. */
  1291. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1292. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1293. if (abs(shares - tg->se[cpu]->load.weight) >
  1294. sysctl_sched_shares_thresh) {
  1295. struct rq *rq = cpu_rq(cpu);
  1296. unsigned long flags;
  1297. spin_lock_irqsave(&rq->lock, flags);
  1298. tg->cfs_rq[cpu]->shares = shares;
  1299. __set_se_shares(tg->se[cpu], shares);
  1300. spin_unlock_irqrestore(&rq->lock, flags);
  1301. }
  1302. }
  1303. /*
  1304. * Re-compute the task group their per cpu shares over the given domain.
  1305. * This needs to be done in a bottom-up fashion because the rq weight of a
  1306. * parent group depends on the shares of its child groups.
  1307. */
  1308. static int tg_shares_up(struct task_group *tg, void *data)
  1309. {
  1310. unsigned long weight, rq_weight = 0;
  1311. unsigned long shares = 0;
  1312. struct sched_domain *sd = data;
  1313. int i;
  1314. for_each_cpu(i, sched_domain_span(sd)) {
  1315. /*
  1316. * If there are currently no tasks on the cpu pretend there
  1317. * is one of average load so that when a new task gets to
  1318. * run here it will not get delayed by group starvation.
  1319. */
  1320. weight = tg->cfs_rq[i]->load.weight;
  1321. if (!weight)
  1322. weight = NICE_0_LOAD;
  1323. tg->cfs_rq[i]->rq_weight = weight;
  1324. rq_weight += weight;
  1325. shares += tg->cfs_rq[i]->shares;
  1326. }
  1327. if ((!shares && rq_weight) || shares > tg->shares)
  1328. shares = tg->shares;
  1329. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1330. shares = tg->shares;
  1331. for_each_cpu(i, sched_domain_span(sd))
  1332. update_group_shares_cpu(tg, i, shares, rq_weight);
  1333. return 0;
  1334. }
  1335. /*
  1336. * Compute the cpu's hierarchical load factor for each task group.
  1337. * This needs to be done in a top-down fashion because the load of a child
  1338. * group is a fraction of its parents load.
  1339. */
  1340. static int tg_load_down(struct task_group *tg, void *data)
  1341. {
  1342. unsigned long load;
  1343. long cpu = (long)data;
  1344. if (!tg->parent) {
  1345. load = cpu_rq(cpu)->load.weight;
  1346. } else {
  1347. load = tg->parent->cfs_rq[cpu]->h_load;
  1348. load *= tg->cfs_rq[cpu]->shares;
  1349. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1350. }
  1351. tg->cfs_rq[cpu]->h_load = load;
  1352. return 0;
  1353. }
  1354. static void update_shares(struct sched_domain *sd)
  1355. {
  1356. u64 now = cpu_clock(raw_smp_processor_id());
  1357. s64 elapsed = now - sd->last_update;
  1358. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1359. sd->last_update = now;
  1360. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1361. }
  1362. }
  1363. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1364. {
  1365. spin_unlock(&rq->lock);
  1366. update_shares(sd);
  1367. spin_lock(&rq->lock);
  1368. }
  1369. static void update_h_load(long cpu)
  1370. {
  1371. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1372. }
  1373. #else
  1374. static inline void update_shares(struct sched_domain *sd)
  1375. {
  1376. }
  1377. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1378. {
  1379. }
  1380. #endif
  1381. #ifdef CONFIG_PREEMPT
  1382. /*
  1383. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1384. * way at the expense of forcing extra atomic operations in all
  1385. * invocations. This assures that the double_lock is acquired using the
  1386. * same underlying policy as the spinlock_t on this architecture, which
  1387. * reduces latency compared to the unfair variant below. However, it
  1388. * also adds more overhead and therefore may reduce throughput.
  1389. */
  1390. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1391. __releases(this_rq->lock)
  1392. __acquires(busiest->lock)
  1393. __acquires(this_rq->lock)
  1394. {
  1395. spin_unlock(&this_rq->lock);
  1396. double_rq_lock(this_rq, busiest);
  1397. return 1;
  1398. }
  1399. #else
  1400. /*
  1401. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1402. * latency by eliminating extra atomic operations when the locks are
  1403. * already in proper order on entry. This favors lower cpu-ids and will
  1404. * grant the double lock to lower cpus over higher ids under contention,
  1405. * regardless of entry order into the function.
  1406. */
  1407. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1408. __releases(this_rq->lock)
  1409. __acquires(busiest->lock)
  1410. __acquires(this_rq->lock)
  1411. {
  1412. int ret = 0;
  1413. if (unlikely(!spin_trylock(&busiest->lock))) {
  1414. if (busiest < this_rq) {
  1415. spin_unlock(&this_rq->lock);
  1416. spin_lock(&busiest->lock);
  1417. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1418. ret = 1;
  1419. } else
  1420. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1421. }
  1422. return ret;
  1423. }
  1424. #endif /* CONFIG_PREEMPT */
  1425. /*
  1426. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1427. */
  1428. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1429. {
  1430. if (unlikely(!irqs_disabled())) {
  1431. /* printk() doesn't work good under rq->lock */
  1432. spin_unlock(&this_rq->lock);
  1433. BUG_ON(1);
  1434. }
  1435. return _double_lock_balance(this_rq, busiest);
  1436. }
  1437. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1438. __releases(busiest->lock)
  1439. {
  1440. spin_unlock(&busiest->lock);
  1441. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1442. }
  1443. #endif
  1444. #ifdef CONFIG_FAIR_GROUP_SCHED
  1445. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1446. {
  1447. #ifdef CONFIG_SMP
  1448. cfs_rq->shares = shares;
  1449. #endif
  1450. }
  1451. #endif
  1452. static void calc_load_account_active(struct rq *this_rq);
  1453. #include "sched_stats.h"
  1454. #include "sched_idletask.c"
  1455. #include "sched_fair.c"
  1456. #include "sched_rt.c"
  1457. #ifdef CONFIG_SCHED_DEBUG
  1458. # include "sched_debug.c"
  1459. #endif
  1460. #define sched_class_highest (&rt_sched_class)
  1461. #define for_each_class(class) \
  1462. for (class = sched_class_highest; class; class = class->next)
  1463. static void inc_nr_running(struct rq *rq)
  1464. {
  1465. rq->nr_running++;
  1466. }
  1467. static void dec_nr_running(struct rq *rq)
  1468. {
  1469. rq->nr_running--;
  1470. }
  1471. static void set_load_weight(struct task_struct *p)
  1472. {
  1473. if (task_has_rt_policy(p)) {
  1474. p->se.load.weight = prio_to_weight[0] * 2;
  1475. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1476. return;
  1477. }
  1478. /*
  1479. * SCHED_IDLE tasks get minimal weight:
  1480. */
  1481. if (p->policy == SCHED_IDLE) {
  1482. p->se.load.weight = WEIGHT_IDLEPRIO;
  1483. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1484. return;
  1485. }
  1486. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1487. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1488. }
  1489. static void update_avg(u64 *avg, u64 sample)
  1490. {
  1491. s64 diff = sample - *avg;
  1492. *avg += diff >> 3;
  1493. }
  1494. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1495. {
  1496. if (wakeup)
  1497. p->se.start_runtime = p->se.sum_exec_runtime;
  1498. sched_info_queued(p);
  1499. p->sched_class->enqueue_task(rq, p, wakeup);
  1500. p->se.on_rq = 1;
  1501. }
  1502. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1503. {
  1504. if (sleep) {
  1505. if (p->se.last_wakeup) {
  1506. update_avg(&p->se.avg_overlap,
  1507. p->se.sum_exec_runtime - p->se.last_wakeup);
  1508. p->se.last_wakeup = 0;
  1509. } else {
  1510. update_avg(&p->se.avg_wakeup,
  1511. sysctl_sched_wakeup_granularity);
  1512. }
  1513. }
  1514. sched_info_dequeued(p);
  1515. p->sched_class->dequeue_task(rq, p, sleep);
  1516. p->se.on_rq = 0;
  1517. }
  1518. /*
  1519. * __normal_prio - return the priority that is based on the static prio
  1520. */
  1521. static inline int __normal_prio(struct task_struct *p)
  1522. {
  1523. return p->static_prio;
  1524. }
  1525. /*
  1526. * Calculate the expected normal priority: i.e. priority
  1527. * without taking RT-inheritance into account. Might be
  1528. * boosted by interactivity modifiers. Changes upon fork,
  1529. * setprio syscalls, and whenever the interactivity
  1530. * estimator recalculates.
  1531. */
  1532. static inline int normal_prio(struct task_struct *p)
  1533. {
  1534. int prio;
  1535. if (task_has_rt_policy(p))
  1536. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1537. else
  1538. prio = __normal_prio(p);
  1539. return prio;
  1540. }
  1541. /*
  1542. * Calculate the current priority, i.e. the priority
  1543. * taken into account by the scheduler. This value might
  1544. * be boosted by RT tasks, or might be boosted by
  1545. * interactivity modifiers. Will be RT if the task got
  1546. * RT-boosted. If not then it returns p->normal_prio.
  1547. */
  1548. static int effective_prio(struct task_struct *p)
  1549. {
  1550. p->normal_prio = normal_prio(p);
  1551. /*
  1552. * If we are RT tasks or we were boosted to RT priority,
  1553. * keep the priority unchanged. Otherwise, update priority
  1554. * to the normal priority:
  1555. */
  1556. if (!rt_prio(p->prio))
  1557. return p->normal_prio;
  1558. return p->prio;
  1559. }
  1560. /*
  1561. * activate_task - move a task to the runqueue.
  1562. */
  1563. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1564. {
  1565. if (task_contributes_to_load(p))
  1566. rq->nr_uninterruptible--;
  1567. enqueue_task(rq, p, wakeup);
  1568. inc_nr_running(rq);
  1569. }
  1570. /*
  1571. * deactivate_task - remove a task from the runqueue.
  1572. */
  1573. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1574. {
  1575. if (task_contributes_to_load(p))
  1576. rq->nr_uninterruptible++;
  1577. dequeue_task(rq, p, sleep);
  1578. dec_nr_running(rq);
  1579. }
  1580. /**
  1581. * task_curr - is this task currently executing on a CPU?
  1582. * @p: the task in question.
  1583. */
  1584. inline int task_curr(const struct task_struct *p)
  1585. {
  1586. return cpu_curr(task_cpu(p)) == p;
  1587. }
  1588. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1589. {
  1590. set_task_rq(p, cpu);
  1591. #ifdef CONFIG_SMP
  1592. /*
  1593. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1594. * successfuly executed on another CPU. We must ensure that updates of
  1595. * per-task data have been completed by this moment.
  1596. */
  1597. smp_wmb();
  1598. task_thread_info(p)->cpu = cpu;
  1599. #endif
  1600. }
  1601. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1602. const struct sched_class *prev_class,
  1603. int oldprio, int running)
  1604. {
  1605. if (prev_class != p->sched_class) {
  1606. if (prev_class->switched_from)
  1607. prev_class->switched_from(rq, p, running);
  1608. p->sched_class->switched_to(rq, p, running);
  1609. } else
  1610. p->sched_class->prio_changed(rq, p, oldprio, running);
  1611. }
  1612. #ifdef CONFIG_SMP
  1613. /* Used instead of source_load when we know the type == 0 */
  1614. static unsigned long weighted_cpuload(const int cpu)
  1615. {
  1616. return cpu_rq(cpu)->load.weight;
  1617. }
  1618. /*
  1619. * Is this task likely cache-hot:
  1620. */
  1621. static int
  1622. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1623. {
  1624. s64 delta;
  1625. /*
  1626. * Buddy candidates are cache hot:
  1627. */
  1628. if (sched_feat(CACHE_HOT_BUDDY) &&
  1629. (&p->se == cfs_rq_of(&p->se)->next ||
  1630. &p->se == cfs_rq_of(&p->se)->last))
  1631. return 1;
  1632. if (p->sched_class != &fair_sched_class)
  1633. return 0;
  1634. if (sysctl_sched_migration_cost == -1)
  1635. return 1;
  1636. if (sysctl_sched_migration_cost == 0)
  1637. return 0;
  1638. delta = now - p->se.exec_start;
  1639. return delta < (s64)sysctl_sched_migration_cost;
  1640. }
  1641. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1642. {
  1643. int old_cpu = task_cpu(p);
  1644. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1645. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1646. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1647. u64 clock_offset;
  1648. clock_offset = old_rq->clock - new_rq->clock;
  1649. trace_sched_migrate_task(p, task_cpu(p), new_cpu);
  1650. #ifdef CONFIG_SCHEDSTATS
  1651. if (p->se.wait_start)
  1652. p->se.wait_start -= clock_offset;
  1653. if (p->se.sleep_start)
  1654. p->se.sleep_start -= clock_offset;
  1655. if (p->se.block_start)
  1656. p->se.block_start -= clock_offset;
  1657. if (old_cpu != new_cpu) {
  1658. schedstat_inc(p, se.nr_migrations);
  1659. if (task_hot(p, old_rq->clock, NULL))
  1660. schedstat_inc(p, se.nr_forced2_migrations);
  1661. }
  1662. #endif
  1663. p->se.vruntime -= old_cfsrq->min_vruntime -
  1664. new_cfsrq->min_vruntime;
  1665. __set_task_cpu(p, new_cpu);
  1666. }
  1667. struct migration_req {
  1668. struct list_head list;
  1669. struct task_struct *task;
  1670. int dest_cpu;
  1671. struct completion done;
  1672. };
  1673. /*
  1674. * The task's runqueue lock must be held.
  1675. * Returns true if you have to wait for migration thread.
  1676. */
  1677. static int
  1678. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1679. {
  1680. struct rq *rq = task_rq(p);
  1681. /*
  1682. * If the task is not on a runqueue (and not running), then
  1683. * it is sufficient to simply update the task's cpu field.
  1684. */
  1685. if (!p->se.on_rq && !task_running(rq, p)) {
  1686. set_task_cpu(p, dest_cpu);
  1687. return 0;
  1688. }
  1689. init_completion(&req->done);
  1690. req->task = p;
  1691. req->dest_cpu = dest_cpu;
  1692. list_add(&req->list, &rq->migration_queue);
  1693. return 1;
  1694. }
  1695. /*
  1696. * wait_task_inactive - wait for a thread to unschedule.
  1697. *
  1698. * If @match_state is nonzero, it's the @p->state value just checked and
  1699. * not expected to change. If it changes, i.e. @p might have woken up,
  1700. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1701. * we return a positive number (its total switch count). If a second call
  1702. * a short while later returns the same number, the caller can be sure that
  1703. * @p has remained unscheduled the whole time.
  1704. *
  1705. * The caller must ensure that the task *will* unschedule sometime soon,
  1706. * else this function might spin for a *long* time. This function can't
  1707. * be called with interrupts off, or it may introduce deadlock with
  1708. * smp_call_function() if an IPI is sent by the same process we are
  1709. * waiting to become inactive.
  1710. */
  1711. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1712. {
  1713. unsigned long flags;
  1714. int running, on_rq;
  1715. unsigned long ncsw;
  1716. struct rq *rq;
  1717. for (;;) {
  1718. /*
  1719. * We do the initial early heuristics without holding
  1720. * any task-queue locks at all. We'll only try to get
  1721. * the runqueue lock when things look like they will
  1722. * work out!
  1723. */
  1724. rq = task_rq(p);
  1725. /*
  1726. * If the task is actively running on another CPU
  1727. * still, just relax and busy-wait without holding
  1728. * any locks.
  1729. *
  1730. * NOTE! Since we don't hold any locks, it's not
  1731. * even sure that "rq" stays as the right runqueue!
  1732. * But we don't care, since "task_running()" will
  1733. * return false if the runqueue has changed and p
  1734. * is actually now running somewhere else!
  1735. */
  1736. while (task_running(rq, p)) {
  1737. if (match_state && unlikely(p->state != match_state))
  1738. return 0;
  1739. cpu_relax();
  1740. }
  1741. /*
  1742. * Ok, time to look more closely! We need the rq
  1743. * lock now, to be *sure*. If we're wrong, we'll
  1744. * just go back and repeat.
  1745. */
  1746. rq = task_rq_lock(p, &flags);
  1747. trace_sched_wait_task(rq, p);
  1748. running = task_running(rq, p);
  1749. on_rq = p->se.on_rq;
  1750. ncsw = 0;
  1751. if (!match_state || p->state == match_state)
  1752. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1753. task_rq_unlock(rq, &flags);
  1754. /*
  1755. * If it changed from the expected state, bail out now.
  1756. */
  1757. if (unlikely(!ncsw))
  1758. break;
  1759. /*
  1760. * Was it really running after all now that we
  1761. * checked with the proper locks actually held?
  1762. *
  1763. * Oops. Go back and try again..
  1764. */
  1765. if (unlikely(running)) {
  1766. cpu_relax();
  1767. continue;
  1768. }
  1769. /*
  1770. * It's not enough that it's not actively running,
  1771. * it must be off the runqueue _entirely_, and not
  1772. * preempted!
  1773. *
  1774. * So if it was still runnable (but just not actively
  1775. * running right now), it's preempted, and we should
  1776. * yield - it could be a while.
  1777. */
  1778. if (unlikely(on_rq)) {
  1779. schedule_timeout_uninterruptible(1);
  1780. continue;
  1781. }
  1782. /*
  1783. * Ahh, all good. It wasn't running, and it wasn't
  1784. * runnable, which means that it will never become
  1785. * running in the future either. We're all done!
  1786. */
  1787. break;
  1788. }
  1789. return ncsw;
  1790. }
  1791. /***
  1792. * kick_process - kick a running thread to enter/exit the kernel
  1793. * @p: the to-be-kicked thread
  1794. *
  1795. * Cause a process which is running on another CPU to enter
  1796. * kernel-mode, without any delay. (to get signals handled.)
  1797. *
  1798. * NOTE: this function doesnt have to take the runqueue lock,
  1799. * because all it wants to ensure is that the remote task enters
  1800. * the kernel. If the IPI races and the task has been migrated
  1801. * to another CPU then no harm is done and the purpose has been
  1802. * achieved as well.
  1803. */
  1804. void kick_process(struct task_struct *p)
  1805. {
  1806. int cpu;
  1807. preempt_disable();
  1808. cpu = task_cpu(p);
  1809. if ((cpu != smp_processor_id()) && task_curr(p))
  1810. smp_send_reschedule(cpu);
  1811. preempt_enable();
  1812. }
  1813. /*
  1814. * Return a low guess at the load of a migration-source cpu weighted
  1815. * according to the scheduling class and "nice" value.
  1816. *
  1817. * We want to under-estimate the load of migration sources, to
  1818. * balance conservatively.
  1819. */
  1820. static unsigned long source_load(int cpu, int type)
  1821. {
  1822. struct rq *rq = cpu_rq(cpu);
  1823. unsigned long total = weighted_cpuload(cpu);
  1824. if (type == 0 || !sched_feat(LB_BIAS))
  1825. return total;
  1826. return min(rq->cpu_load[type-1], total);
  1827. }
  1828. /*
  1829. * Return a high guess at the load of a migration-target cpu weighted
  1830. * according to the scheduling class and "nice" value.
  1831. */
  1832. static unsigned long target_load(int cpu, int type)
  1833. {
  1834. struct rq *rq = cpu_rq(cpu);
  1835. unsigned long total = weighted_cpuload(cpu);
  1836. if (type == 0 || !sched_feat(LB_BIAS))
  1837. return total;
  1838. return max(rq->cpu_load[type-1], total);
  1839. }
  1840. /*
  1841. * find_idlest_group finds and returns the least busy CPU group within the
  1842. * domain.
  1843. */
  1844. static struct sched_group *
  1845. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1846. {
  1847. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1848. unsigned long min_load = ULONG_MAX, this_load = 0;
  1849. int load_idx = sd->forkexec_idx;
  1850. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1851. do {
  1852. unsigned long load, avg_load;
  1853. int local_group;
  1854. int i;
  1855. /* Skip over this group if it has no CPUs allowed */
  1856. if (!cpumask_intersects(sched_group_cpus(group),
  1857. &p->cpus_allowed))
  1858. continue;
  1859. local_group = cpumask_test_cpu(this_cpu,
  1860. sched_group_cpus(group));
  1861. /* Tally up the load of all CPUs in the group */
  1862. avg_load = 0;
  1863. for_each_cpu(i, sched_group_cpus(group)) {
  1864. /* Bias balancing toward cpus of our domain */
  1865. if (local_group)
  1866. load = source_load(i, load_idx);
  1867. else
  1868. load = target_load(i, load_idx);
  1869. avg_load += load;
  1870. }
  1871. /* Adjust by relative CPU power of the group */
  1872. avg_load = sg_div_cpu_power(group,
  1873. avg_load * SCHED_LOAD_SCALE);
  1874. if (local_group) {
  1875. this_load = avg_load;
  1876. this = group;
  1877. } else if (avg_load < min_load) {
  1878. min_load = avg_load;
  1879. idlest = group;
  1880. }
  1881. } while (group = group->next, group != sd->groups);
  1882. if (!idlest || 100*this_load < imbalance*min_load)
  1883. return NULL;
  1884. return idlest;
  1885. }
  1886. /*
  1887. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1888. */
  1889. static int
  1890. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1891. {
  1892. unsigned long load, min_load = ULONG_MAX;
  1893. int idlest = -1;
  1894. int i;
  1895. /* Traverse only the allowed CPUs */
  1896. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1897. load = weighted_cpuload(i);
  1898. if (load < min_load || (load == min_load && i == this_cpu)) {
  1899. min_load = load;
  1900. idlest = i;
  1901. }
  1902. }
  1903. return idlest;
  1904. }
  1905. /*
  1906. * sched_balance_self: balance the current task (running on cpu) in domains
  1907. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1908. * SD_BALANCE_EXEC.
  1909. *
  1910. * Balance, ie. select the least loaded group.
  1911. *
  1912. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1913. *
  1914. * preempt must be disabled.
  1915. */
  1916. static int sched_balance_self(int cpu, int flag)
  1917. {
  1918. struct task_struct *t = current;
  1919. struct sched_domain *tmp, *sd = NULL;
  1920. for_each_domain(cpu, tmp) {
  1921. /*
  1922. * If power savings logic is enabled for a domain, stop there.
  1923. */
  1924. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1925. break;
  1926. if (tmp->flags & flag)
  1927. sd = tmp;
  1928. }
  1929. if (sd)
  1930. update_shares(sd);
  1931. while (sd) {
  1932. struct sched_group *group;
  1933. int new_cpu, weight;
  1934. if (!(sd->flags & flag)) {
  1935. sd = sd->child;
  1936. continue;
  1937. }
  1938. group = find_idlest_group(sd, t, cpu);
  1939. if (!group) {
  1940. sd = sd->child;
  1941. continue;
  1942. }
  1943. new_cpu = find_idlest_cpu(group, t, cpu);
  1944. if (new_cpu == -1 || new_cpu == cpu) {
  1945. /* Now try balancing at a lower domain level of cpu */
  1946. sd = sd->child;
  1947. continue;
  1948. }
  1949. /* Now try balancing at a lower domain level of new_cpu */
  1950. cpu = new_cpu;
  1951. weight = cpumask_weight(sched_domain_span(sd));
  1952. sd = NULL;
  1953. for_each_domain(cpu, tmp) {
  1954. if (weight <= cpumask_weight(sched_domain_span(tmp)))
  1955. break;
  1956. if (tmp->flags & flag)
  1957. sd = tmp;
  1958. }
  1959. /* while loop will break here if sd == NULL */
  1960. }
  1961. return cpu;
  1962. }
  1963. #endif /* CONFIG_SMP */
  1964. /***
  1965. * try_to_wake_up - wake up a thread
  1966. * @p: the to-be-woken-up thread
  1967. * @state: the mask of task states that can be woken
  1968. * @sync: do a synchronous wakeup?
  1969. *
  1970. * Put it on the run-queue if it's not already there. The "current"
  1971. * thread is always on the run-queue (except when the actual
  1972. * re-schedule is in progress), and as such you're allowed to do
  1973. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1974. * runnable without the overhead of this.
  1975. *
  1976. * returns failure only if the task is already active.
  1977. */
  1978. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1979. {
  1980. int cpu, orig_cpu, this_cpu, success = 0;
  1981. unsigned long flags;
  1982. long old_state;
  1983. struct rq *rq;
  1984. if (!sched_feat(SYNC_WAKEUPS))
  1985. sync = 0;
  1986. #ifdef CONFIG_SMP
  1987. if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
  1988. struct sched_domain *sd;
  1989. this_cpu = raw_smp_processor_id();
  1990. cpu = task_cpu(p);
  1991. for_each_domain(this_cpu, sd) {
  1992. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1993. update_shares(sd);
  1994. break;
  1995. }
  1996. }
  1997. }
  1998. #endif
  1999. smp_wmb();
  2000. rq = task_rq_lock(p, &flags);
  2001. update_rq_clock(rq);
  2002. old_state = p->state;
  2003. if (!(old_state & state))
  2004. goto out;
  2005. if (p->se.on_rq)
  2006. goto out_running;
  2007. cpu = task_cpu(p);
  2008. orig_cpu = cpu;
  2009. this_cpu = smp_processor_id();
  2010. #ifdef CONFIG_SMP
  2011. if (unlikely(task_running(rq, p)))
  2012. goto out_activate;
  2013. cpu = p->sched_class->select_task_rq(p, sync);
  2014. if (cpu != orig_cpu) {
  2015. set_task_cpu(p, cpu);
  2016. task_rq_unlock(rq, &flags);
  2017. /* might preempt at this point */
  2018. rq = task_rq_lock(p, &flags);
  2019. old_state = p->state;
  2020. if (!(old_state & state))
  2021. goto out;
  2022. if (p->se.on_rq)
  2023. goto out_running;
  2024. this_cpu = smp_processor_id();
  2025. cpu = task_cpu(p);
  2026. }
  2027. #ifdef CONFIG_SCHEDSTATS
  2028. schedstat_inc(rq, ttwu_count);
  2029. if (cpu == this_cpu)
  2030. schedstat_inc(rq, ttwu_local);
  2031. else {
  2032. struct sched_domain *sd;
  2033. for_each_domain(this_cpu, sd) {
  2034. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2035. schedstat_inc(sd, ttwu_wake_remote);
  2036. break;
  2037. }
  2038. }
  2039. }
  2040. #endif /* CONFIG_SCHEDSTATS */
  2041. out_activate:
  2042. #endif /* CONFIG_SMP */
  2043. schedstat_inc(p, se.nr_wakeups);
  2044. if (sync)
  2045. schedstat_inc(p, se.nr_wakeups_sync);
  2046. if (orig_cpu != cpu)
  2047. schedstat_inc(p, se.nr_wakeups_migrate);
  2048. if (cpu == this_cpu)
  2049. schedstat_inc(p, se.nr_wakeups_local);
  2050. else
  2051. schedstat_inc(p, se.nr_wakeups_remote);
  2052. activate_task(rq, p, 1);
  2053. success = 1;
  2054. /*
  2055. * Only attribute actual wakeups done by this task.
  2056. */
  2057. if (!in_interrupt()) {
  2058. struct sched_entity *se = &current->se;
  2059. u64 sample = se->sum_exec_runtime;
  2060. if (se->last_wakeup)
  2061. sample -= se->last_wakeup;
  2062. else
  2063. sample -= se->start_runtime;
  2064. update_avg(&se->avg_wakeup, sample);
  2065. se->last_wakeup = se->sum_exec_runtime;
  2066. }
  2067. out_running:
  2068. trace_sched_wakeup(rq, p, success);
  2069. check_preempt_curr(rq, p, sync);
  2070. p->state = TASK_RUNNING;
  2071. #ifdef CONFIG_SMP
  2072. if (p->sched_class->task_wake_up)
  2073. p->sched_class->task_wake_up(rq, p);
  2074. #endif
  2075. out:
  2076. task_rq_unlock(rq, &flags);
  2077. return success;
  2078. }
  2079. /**
  2080. * wake_up_process - Wake up a specific process
  2081. * @p: The process to be woken up.
  2082. *
  2083. * Attempt to wake up the nominated process and move it to the set of runnable
  2084. * processes. Returns 1 if the process was woken up, 0 if it was already
  2085. * running.
  2086. *
  2087. * It may be assumed that this function implies a write memory barrier before
  2088. * changing the task state if and only if any tasks are woken up.
  2089. */
  2090. int wake_up_process(struct task_struct *p)
  2091. {
  2092. return try_to_wake_up(p, TASK_ALL, 0);
  2093. }
  2094. EXPORT_SYMBOL(wake_up_process);
  2095. int wake_up_state(struct task_struct *p, unsigned int state)
  2096. {
  2097. return try_to_wake_up(p, state, 0);
  2098. }
  2099. /*
  2100. * Perform scheduler related setup for a newly forked process p.
  2101. * p is forked by current.
  2102. *
  2103. * __sched_fork() is basic setup used by init_idle() too:
  2104. */
  2105. static void __sched_fork(struct task_struct *p)
  2106. {
  2107. p->se.exec_start = 0;
  2108. p->se.sum_exec_runtime = 0;
  2109. p->se.prev_sum_exec_runtime = 0;
  2110. p->se.last_wakeup = 0;
  2111. p->se.avg_overlap = 0;
  2112. p->se.start_runtime = 0;
  2113. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2114. #ifdef CONFIG_SCHEDSTATS
  2115. p->se.wait_start = 0;
  2116. p->se.sum_sleep_runtime = 0;
  2117. p->se.sleep_start = 0;
  2118. p->se.block_start = 0;
  2119. p->se.sleep_max = 0;
  2120. p->se.block_max = 0;
  2121. p->se.exec_max = 0;
  2122. p->se.slice_max = 0;
  2123. p->se.wait_max = 0;
  2124. #endif
  2125. INIT_LIST_HEAD(&p->rt.run_list);
  2126. p->se.on_rq = 0;
  2127. INIT_LIST_HEAD(&p->se.group_node);
  2128. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2129. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2130. #endif
  2131. /*
  2132. * We mark the process as running here, but have not actually
  2133. * inserted it onto the runqueue yet. This guarantees that
  2134. * nobody will actually run it, and a signal or other external
  2135. * event cannot wake it up and insert it on the runqueue either.
  2136. */
  2137. p->state = TASK_RUNNING;
  2138. }
  2139. /*
  2140. * fork()/clone()-time setup:
  2141. */
  2142. void sched_fork(struct task_struct *p, int clone_flags)
  2143. {
  2144. int cpu = get_cpu();
  2145. __sched_fork(p);
  2146. #ifdef CONFIG_SMP
  2147. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2148. #endif
  2149. set_task_cpu(p, cpu);
  2150. /*
  2151. * Make sure we do not leak PI boosting priority to the child:
  2152. */
  2153. p->prio = current->normal_prio;
  2154. if (!rt_prio(p->prio))
  2155. p->sched_class = &fair_sched_class;
  2156. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2157. if (likely(sched_info_on()))
  2158. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2159. #endif
  2160. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2161. p->oncpu = 0;
  2162. #endif
  2163. #ifdef CONFIG_PREEMPT
  2164. /* Want to start with kernel preemption disabled. */
  2165. task_thread_info(p)->preempt_count = 1;
  2166. #endif
  2167. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2168. put_cpu();
  2169. }
  2170. /*
  2171. * wake_up_new_task - wake up a newly created task for the first time.
  2172. *
  2173. * This function will do some initial scheduler statistics housekeeping
  2174. * that must be done for every newly created context, then puts the task
  2175. * on the runqueue and wakes it.
  2176. */
  2177. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2178. {
  2179. unsigned long flags;
  2180. struct rq *rq;
  2181. rq = task_rq_lock(p, &flags);
  2182. BUG_ON(p->state != TASK_RUNNING);
  2183. update_rq_clock(rq);
  2184. p->prio = effective_prio(p);
  2185. if (!p->sched_class->task_new || !current->se.on_rq) {
  2186. activate_task(rq, p, 0);
  2187. } else {
  2188. /*
  2189. * Let the scheduling class do new task startup
  2190. * management (if any):
  2191. */
  2192. p->sched_class->task_new(rq, p);
  2193. inc_nr_running(rq);
  2194. }
  2195. trace_sched_wakeup_new(rq, p, 1);
  2196. check_preempt_curr(rq, p, 0);
  2197. #ifdef CONFIG_SMP
  2198. if (p->sched_class->task_wake_up)
  2199. p->sched_class->task_wake_up(rq, p);
  2200. #endif
  2201. task_rq_unlock(rq, &flags);
  2202. }
  2203. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2204. /**
  2205. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2206. * @notifier: notifier struct to register
  2207. */
  2208. void preempt_notifier_register(struct preempt_notifier *notifier)
  2209. {
  2210. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2211. }
  2212. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2213. /**
  2214. * preempt_notifier_unregister - no longer interested in preemption notifications
  2215. * @notifier: notifier struct to unregister
  2216. *
  2217. * This is safe to call from within a preemption notifier.
  2218. */
  2219. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2220. {
  2221. hlist_del(&notifier->link);
  2222. }
  2223. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2224. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2225. {
  2226. struct preempt_notifier *notifier;
  2227. struct hlist_node *node;
  2228. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2229. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2230. }
  2231. static void
  2232. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2233. struct task_struct *next)
  2234. {
  2235. struct preempt_notifier *notifier;
  2236. struct hlist_node *node;
  2237. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2238. notifier->ops->sched_out(notifier, next);
  2239. }
  2240. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2241. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2242. {
  2243. }
  2244. static void
  2245. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2246. struct task_struct *next)
  2247. {
  2248. }
  2249. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2250. /**
  2251. * prepare_task_switch - prepare to switch tasks
  2252. * @rq: the runqueue preparing to switch
  2253. * @prev: the current task that is being switched out
  2254. * @next: the task we are going to switch to.
  2255. *
  2256. * This is called with the rq lock held and interrupts off. It must
  2257. * be paired with a subsequent finish_task_switch after the context
  2258. * switch.
  2259. *
  2260. * prepare_task_switch sets up locking and calls architecture specific
  2261. * hooks.
  2262. */
  2263. static inline void
  2264. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2265. struct task_struct *next)
  2266. {
  2267. fire_sched_out_preempt_notifiers(prev, next);
  2268. prepare_lock_switch(rq, next);
  2269. prepare_arch_switch(next);
  2270. }
  2271. /**
  2272. * finish_task_switch - clean up after a task-switch
  2273. * @rq: runqueue associated with task-switch
  2274. * @prev: the thread we just switched away from.
  2275. *
  2276. * finish_task_switch must be called after the context switch, paired
  2277. * with a prepare_task_switch call before the context switch.
  2278. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2279. * and do any other architecture-specific cleanup actions.
  2280. *
  2281. * Note that we may have delayed dropping an mm in context_switch(). If
  2282. * so, we finish that here outside of the runqueue lock. (Doing it
  2283. * with the lock held can cause deadlocks; see schedule() for
  2284. * details.)
  2285. */
  2286. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2287. __releases(rq->lock)
  2288. {
  2289. struct mm_struct *mm = rq->prev_mm;
  2290. long prev_state;
  2291. #ifdef CONFIG_SMP
  2292. int post_schedule = 0;
  2293. if (current->sched_class->needs_post_schedule)
  2294. post_schedule = current->sched_class->needs_post_schedule(rq);
  2295. #endif
  2296. rq->prev_mm = NULL;
  2297. /*
  2298. * A task struct has one reference for the use as "current".
  2299. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2300. * schedule one last time. The schedule call will never return, and
  2301. * the scheduled task must drop that reference.
  2302. * The test for TASK_DEAD must occur while the runqueue locks are
  2303. * still held, otherwise prev could be scheduled on another cpu, die
  2304. * there before we look at prev->state, and then the reference would
  2305. * be dropped twice.
  2306. * Manfred Spraul <manfred@colorfullife.com>
  2307. */
  2308. prev_state = prev->state;
  2309. finish_arch_switch(prev);
  2310. finish_lock_switch(rq, prev);
  2311. #ifdef CONFIG_SMP
  2312. if (post_schedule)
  2313. current->sched_class->post_schedule(rq);
  2314. #endif
  2315. fire_sched_in_preempt_notifiers(current);
  2316. if (mm)
  2317. mmdrop(mm);
  2318. if (unlikely(prev_state == TASK_DEAD)) {
  2319. /*
  2320. * Remove function-return probe instances associated with this
  2321. * task and put them back on the free list.
  2322. */
  2323. kprobe_flush_task(prev);
  2324. put_task_struct(prev);
  2325. }
  2326. }
  2327. /**
  2328. * schedule_tail - first thing a freshly forked thread must call.
  2329. * @prev: the thread we just switched away from.
  2330. */
  2331. asmlinkage void schedule_tail(struct task_struct *prev)
  2332. __releases(rq->lock)
  2333. {
  2334. struct rq *rq = this_rq();
  2335. finish_task_switch(rq, prev);
  2336. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2337. /* In this case, finish_task_switch does not reenable preemption */
  2338. preempt_enable();
  2339. #endif
  2340. if (current->set_child_tid)
  2341. put_user(task_pid_vnr(current), current->set_child_tid);
  2342. }
  2343. /*
  2344. * context_switch - switch to the new MM and the new
  2345. * thread's register state.
  2346. */
  2347. static inline void
  2348. context_switch(struct rq *rq, struct task_struct *prev,
  2349. struct task_struct *next)
  2350. {
  2351. struct mm_struct *mm, *oldmm;
  2352. prepare_task_switch(rq, prev, next);
  2353. trace_sched_switch(rq, prev, next);
  2354. mm = next->mm;
  2355. oldmm = prev->active_mm;
  2356. /*
  2357. * For paravirt, this is coupled with an exit in switch_to to
  2358. * combine the page table reload and the switch backend into
  2359. * one hypercall.
  2360. */
  2361. arch_start_context_switch(prev);
  2362. if (unlikely(!mm)) {
  2363. next->active_mm = oldmm;
  2364. atomic_inc(&oldmm->mm_count);
  2365. enter_lazy_tlb(oldmm, next);
  2366. } else
  2367. switch_mm(oldmm, mm, next);
  2368. if (unlikely(!prev->mm)) {
  2369. prev->active_mm = NULL;
  2370. rq->prev_mm = oldmm;
  2371. }
  2372. /*
  2373. * Since the runqueue lock will be released by the next
  2374. * task (which is an invalid locking op but in the case
  2375. * of the scheduler it's an obvious special-case), so we
  2376. * do an early lockdep release here:
  2377. */
  2378. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2379. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2380. #endif
  2381. /* Here we just switch the register state and the stack. */
  2382. switch_to(prev, next, prev);
  2383. barrier();
  2384. /*
  2385. * this_rq must be evaluated again because prev may have moved
  2386. * CPUs since it called schedule(), thus the 'rq' on its stack
  2387. * frame will be invalid.
  2388. */
  2389. finish_task_switch(this_rq(), prev);
  2390. }
  2391. /*
  2392. * nr_running, nr_uninterruptible and nr_context_switches:
  2393. *
  2394. * externally visible scheduler statistics: current number of runnable
  2395. * threads, current number of uninterruptible-sleeping threads, total
  2396. * number of context switches performed since bootup.
  2397. */
  2398. unsigned long nr_running(void)
  2399. {
  2400. unsigned long i, sum = 0;
  2401. for_each_online_cpu(i)
  2402. sum += cpu_rq(i)->nr_running;
  2403. return sum;
  2404. }
  2405. unsigned long nr_uninterruptible(void)
  2406. {
  2407. unsigned long i, sum = 0;
  2408. for_each_possible_cpu(i)
  2409. sum += cpu_rq(i)->nr_uninterruptible;
  2410. /*
  2411. * Since we read the counters lockless, it might be slightly
  2412. * inaccurate. Do not allow it to go below zero though:
  2413. */
  2414. if (unlikely((long)sum < 0))
  2415. sum = 0;
  2416. return sum;
  2417. }
  2418. unsigned long long nr_context_switches(void)
  2419. {
  2420. int i;
  2421. unsigned long long sum = 0;
  2422. for_each_possible_cpu(i)
  2423. sum += cpu_rq(i)->nr_switches;
  2424. return sum;
  2425. }
  2426. unsigned long nr_iowait(void)
  2427. {
  2428. unsigned long i, sum = 0;
  2429. for_each_possible_cpu(i)
  2430. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2431. return sum;
  2432. }
  2433. /* Variables and functions for calc_load */
  2434. static atomic_long_t calc_load_tasks;
  2435. static unsigned long calc_load_update;
  2436. unsigned long avenrun[3];
  2437. EXPORT_SYMBOL(avenrun);
  2438. /**
  2439. * get_avenrun - get the load average array
  2440. * @loads: pointer to dest load array
  2441. * @offset: offset to add
  2442. * @shift: shift count to shift the result left
  2443. *
  2444. * These values are estimates at best, so no need for locking.
  2445. */
  2446. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2447. {
  2448. loads[0] = (avenrun[0] + offset) << shift;
  2449. loads[1] = (avenrun[1] + offset) << shift;
  2450. loads[2] = (avenrun[2] + offset) << shift;
  2451. }
  2452. static unsigned long
  2453. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2454. {
  2455. load *= exp;
  2456. load += active * (FIXED_1 - exp);
  2457. return load >> FSHIFT;
  2458. }
  2459. /*
  2460. * calc_load - update the avenrun load estimates 10 ticks after the
  2461. * CPUs have updated calc_load_tasks.
  2462. */
  2463. void calc_global_load(void)
  2464. {
  2465. unsigned long upd = calc_load_update + 10;
  2466. long active;
  2467. if (time_before(jiffies, upd))
  2468. return;
  2469. active = atomic_long_read(&calc_load_tasks);
  2470. active = active > 0 ? active * FIXED_1 : 0;
  2471. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2472. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2473. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2474. calc_load_update += LOAD_FREQ;
  2475. }
  2476. /*
  2477. * Either called from update_cpu_load() or from a cpu going idle
  2478. */
  2479. static void calc_load_account_active(struct rq *this_rq)
  2480. {
  2481. long nr_active, delta;
  2482. nr_active = this_rq->nr_running;
  2483. nr_active += (long) this_rq->nr_uninterruptible;
  2484. if (nr_active != this_rq->calc_load_active) {
  2485. delta = nr_active - this_rq->calc_load_active;
  2486. this_rq->calc_load_active = nr_active;
  2487. atomic_long_add(delta, &calc_load_tasks);
  2488. }
  2489. }
  2490. /*
  2491. * Update rq->cpu_load[] statistics. This function is usually called every
  2492. * scheduler tick (TICK_NSEC).
  2493. */
  2494. static void update_cpu_load(struct rq *this_rq)
  2495. {
  2496. unsigned long this_load = this_rq->load.weight;
  2497. int i, scale;
  2498. this_rq->nr_load_updates++;
  2499. /* Update our load: */
  2500. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2501. unsigned long old_load, new_load;
  2502. /* scale is effectively 1 << i now, and >> i divides by scale */
  2503. old_load = this_rq->cpu_load[i];
  2504. new_load = this_load;
  2505. /*
  2506. * Round up the averaging division if load is increasing. This
  2507. * prevents us from getting stuck on 9 if the load is 10, for
  2508. * example.
  2509. */
  2510. if (new_load > old_load)
  2511. new_load += scale-1;
  2512. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2513. }
  2514. if (time_after_eq(jiffies, this_rq->calc_load_update)) {
  2515. this_rq->calc_load_update += LOAD_FREQ;
  2516. calc_load_account_active(this_rq);
  2517. }
  2518. }
  2519. #ifdef CONFIG_SMP
  2520. /*
  2521. * double_rq_lock - safely lock two runqueues
  2522. *
  2523. * Note this does not disable interrupts like task_rq_lock,
  2524. * you need to do so manually before calling.
  2525. */
  2526. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2527. __acquires(rq1->lock)
  2528. __acquires(rq2->lock)
  2529. {
  2530. BUG_ON(!irqs_disabled());
  2531. if (rq1 == rq2) {
  2532. spin_lock(&rq1->lock);
  2533. __acquire(rq2->lock); /* Fake it out ;) */
  2534. } else {
  2535. if (rq1 < rq2) {
  2536. spin_lock(&rq1->lock);
  2537. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2538. } else {
  2539. spin_lock(&rq2->lock);
  2540. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2541. }
  2542. }
  2543. update_rq_clock(rq1);
  2544. update_rq_clock(rq2);
  2545. }
  2546. /*
  2547. * double_rq_unlock - safely unlock two runqueues
  2548. *
  2549. * Note this does not restore interrupts like task_rq_unlock,
  2550. * you need to do so manually after calling.
  2551. */
  2552. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2553. __releases(rq1->lock)
  2554. __releases(rq2->lock)
  2555. {
  2556. spin_unlock(&rq1->lock);
  2557. if (rq1 != rq2)
  2558. spin_unlock(&rq2->lock);
  2559. else
  2560. __release(rq2->lock);
  2561. }
  2562. /*
  2563. * If dest_cpu is allowed for this process, migrate the task to it.
  2564. * This is accomplished by forcing the cpu_allowed mask to only
  2565. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2566. * the cpu_allowed mask is restored.
  2567. */
  2568. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2569. {
  2570. struct migration_req req;
  2571. unsigned long flags;
  2572. struct rq *rq;
  2573. rq = task_rq_lock(p, &flags);
  2574. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2575. || unlikely(!cpu_active(dest_cpu)))
  2576. goto out;
  2577. /* force the process onto the specified CPU */
  2578. if (migrate_task(p, dest_cpu, &req)) {
  2579. /* Need to wait for migration thread (might exit: take ref). */
  2580. struct task_struct *mt = rq->migration_thread;
  2581. get_task_struct(mt);
  2582. task_rq_unlock(rq, &flags);
  2583. wake_up_process(mt);
  2584. put_task_struct(mt);
  2585. wait_for_completion(&req.done);
  2586. return;
  2587. }
  2588. out:
  2589. task_rq_unlock(rq, &flags);
  2590. }
  2591. /*
  2592. * sched_exec - execve() is a valuable balancing opportunity, because at
  2593. * this point the task has the smallest effective memory and cache footprint.
  2594. */
  2595. void sched_exec(void)
  2596. {
  2597. int new_cpu, this_cpu = get_cpu();
  2598. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2599. put_cpu();
  2600. if (new_cpu != this_cpu)
  2601. sched_migrate_task(current, new_cpu);
  2602. }
  2603. /*
  2604. * pull_task - move a task from a remote runqueue to the local runqueue.
  2605. * Both runqueues must be locked.
  2606. */
  2607. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2608. struct rq *this_rq, int this_cpu)
  2609. {
  2610. deactivate_task(src_rq, p, 0);
  2611. set_task_cpu(p, this_cpu);
  2612. activate_task(this_rq, p, 0);
  2613. /*
  2614. * Note that idle threads have a prio of MAX_PRIO, for this test
  2615. * to be always true for them.
  2616. */
  2617. check_preempt_curr(this_rq, p, 0);
  2618. }
  2619. /*
  2620. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2621. */
  2622. static
  2623. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2624. struct sched_domain *sd, enum cpu_idle_type idle,
  2625. int *all_pinned)
  2626. {
  2627. int tsk_cache_hot = 0;
  2628. /*
  2629. * We do not migrate tasks that are:
  2630. * 1) running (obviously), or
  2631. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2632. * 3) are cache-hot on their current CPU.
  2633. */
  2634. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2635. schedstat_inc(p, se.nr_failed_migrations_affine);
  2636. return 0;
  2637. }
  2638. *all_pinned = 0;
  2639. if (task_running(rq, p)) {
  2640. schedstat_inc(p, se.nr_failed_migrations_running);
  2641. return 0;
  2642. }
  2643. /*
  2644. * Aggressive migration if:
  2645. * 1) task is cache cold, or
  2646. * 2) too many balance attempts have failed.
  2647. */
  2648. tsk_cache_hot = task_hot(p, rq->clock, sd);
  2649. if (!tsk_cache_hot ||
  2650. sd->nr_balance_failed > sd->cache_nice_tries) {
  2651. #ifdef CONFIG_SCHEDSTATS
  2652. if (tsk_cache_hot) {
  2653. schedstat_inc(sd, lb_hot_gained[idle]);
  2654. schedstat_inc(p, se.nr_forced_migrations);
  2655. }
  2656. #endif
  2657. return 1;
  2658. }
  2659. if (tsk_cache_hot) {
  2660. schedstat_inc(p, se.nr_failed_migrations_hot);
  2661. return 0;
  2662. }
  2663. return 1;
  2664. }
  2665. static unsigned long
  2666. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2667. unsigned long max_load_move, struct sched_domain *sd,
  2668. enum cpu_idle_type idle, int *all_pinned,
  2669. int *this_best_prio, struct rq_iterator *iterator)
  2670. {
  2671. int loops = 0, pulled = 0, pinned = 0;
  2672. struct task_struct *p;
  2673. long rem_load_move = max_load_move;
  2674. if (max_load_move == 0)
  2675. goto out;
  2676. pinned = 1;
  2677. /*
  2678. * Start the load-balancing iterator:
  2679. */
  2680. p = iterator->start(iterator->arg);
  2681. next:
  2682. if (!p || loops++ > sysctl_sched_nr_migrate)
  2683. goto out;
  2684. if ((p->se.load.weight >> 1) > rem_load_move ||
  2685. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2686. p = iterator->next(iterator->arg);
  2687. goto next;
  2688. }
  2689. pull_task(busiest, p, this_rq, this_cpu);
  2690. pulled++;
  2691. rem_load_move -= p->se.load.weight;
  2692. #ifdef CONFIG_PREEMPT
  2693. /*
  2694. * NEWIDLE balancing is a source of latency, so preemptible kernels
  2695. * will stop after the first task is pulled to minimize the critical
  2696. * section.
  2697. */
  2698. if (idle == CPU_NEWLY_IDLE)
  2699. goto out;
  2700. #endif
  2701. /*
  2702. * We only want to steal up to the prescribed amount of weighted load.
  2703. */
  2704. if (rem_load_move > 0) {
  2705. if (p->prio < *this_best_prio)
  2706. *this_best_prio = p->prio;
  2707. p = iterator->next(iterator->arg);
  2708. goto next;
  2709. }
  2710. out:
  2711. /*
  2712. * Right now, this is one of only two places pull_task() is called,
  2713. * so we can safely collect pull_task() stats here rather than
  2714. * inside pull_task().
  2715. */
  2716. schedstat_add(sd, lb_gained[idle], pulled);
  2717. if (all_pinned)
  2718. *all_pinned = pinned;
  2719. return max_load_move - rem_load_move;
  2720. }
  2721. /*
  2722. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2723. * this_rq, as part of a balancing operation within domain "sd".
  2724. * Returns 1 if successful and 0 otherwise.
  2725. *
  2726. * Called with both runqueues locked.
  2727. */
  2728. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2729. unsigned long max_load_move,
  2730. struct sched_domain *sd, enum cpu_idle_type idle,
  2731. int *all_pinned)
  2732. {
  2733. const struct sched_class *class = sched_class_highest;
  2734. unsigned long total_load_moved = 0;
  2735. int this_best_prio = this_rq->curr->prio;
  2736. do {
  2737. total_load_moved +=
  2738. class->load_balance(this_rq, this_cpu, busiest,
  2739. max_load_move - total_load_moved,
  2740. sd, idle, all_pinned, &this_best_prio);
  2741. class = class->next;
  2742. #ifdef CONFIG_PREEMPT
  2743. /*
  2744. * NEWIDLE balancing is a source of latency, so preemptible
  2745. * kernels will stop after the first task is pulled to minimize
  2746. * the critical section.
  2747. */
  2748. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2749. break;
  2750. #endif
  2751. } while (class && max_load_move > total_load_moved);
  2752. return total_load_moved > 0;
  2753. }
  2754. static int
  2755. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2756. struct sched_domain *sd, enum cpu_idle_type idle,
  2757. struct rq_iterator *iterator)
  2758. {
  2759. struct task_struct *p = iterator->start(iterator->arg);
  2760. int pinned = 0;
  2761. while (p) {
  2762. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2763. pull_task(busiest, p, this_rq, this_cpu);
  2764. /*
  2765. * Right now, this is only the second place pull_task()
  2766. * is called, so we can safely collect pull_task()
  2767. * stats here rather than inside pull_task().
  2768. */
  2769. schedstat_inc(sd, lb_gained[idle]);
  2770. return 1;
  2771. }
  2772. p = iterator->next(iterator->arg);
  2773. }
  2774. return 0;
  2775. }
  2776. /*
  2777. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2778. * part of active balancing operations within "domain".
  2779. * Returns 1 if successful and 0 otherwise.
  2780. *
  2781. * Called with both runqueues locked.
  2782. */
  2783. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2784. struct sched_domain *sd, enum cpu_idle_type idle)
  2785. {
  2786. const struct sched_class *class;
  2787. for (class = sched_class_highest; class; class = class->next)
  2788. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2789. return 1;
  2790. return 0;
  2791. }
  2792. /********** Helpers for find_busiest_group ************************/
  2793. /*
  2794. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2795. * during load balancing.
  2796. */
  2797. struct sd_lb_stats {
  2798. struct sched_group *busiest; /* Busiest group in this sd */
  2799. struct sched_group *this; /* Local group in this sd */
  2800. unsigned long total_load; /* Total load of all groups in sd */
  2801. unsigned long total_pwr; /* Total power of all groups in sd */
  2802. unsigned long avg_load; /* Average load across all groups in sd */
  2803. /** Statistics of this group */
  2804. unsigned long this_load;
  2805. unsigned long this_load_per_task;
  2806. unsigned long this_nr_running;
  2807. /* Statistics of the busiest group */
  2808. unsigned long max_load;
  2809. unsigned long busiest_load_per_task;
  2810. unsigned long busiest_nr_running;
  2811. int group_imb; /* Is there imbalance in this sd */
  2812. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2813. int power_savings_balance; /* Is powersave balance needed for this sd */
  2814. struct sched_group *group_min; /* Least loaded group in sd */
  2815. struct sched_group *group_leader; /* Group which relieves group_min */
  2816. unsigned long min_load_per_task; /* load_per_task in group_min */
  2817. unsigned long leader_nr_running; /* Nr running of group_leader */
  2818. unsigned long min_nr_running; /* Nr running of group_min */
  2819. #endif
  2820. };
  2821. /*
  2822. * sg_lb_stats - stats of a sched_group required for load_balancing
  2823. */
  2824. struct sg_lb_stats {
  2825. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2826. unsigned long group_load; /* Total load over the CPUs of the group */
  2827. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2828. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2829. unsigned long group_capacity;
  2830. int group_imb; /* Is there an imbalance in the group ? */
  2831. };
  2832. /**
  2833. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2834. * @group: The group whose first cpu is to be returned.
  2835. */
  2836. static inline unsigned int group_first_cpu(struct sched_group *group)
  2837. {
  2838. return cpumask_first(sched_group_cpus(group));
  2839. }
  2840. /**
  2841. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2842. * @sd: The sched_domain whose load_idx is to be obtained.
  2843. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2844. */
  2845. static inline int get_sd_load_idx(struct sched_domain *sd,
  2846. enum cpu_idle_type idle)
  2847. {
  2848. int load_idx;
  2849. switch (idle) {
  2850. case CPU_NOT_IDLE:
  2851. load_idx = sd->busy_idx;
  2852. break;
  2853. case CPU_NEWLY_IDLE:
  2854. load_idx = sd->newidle_idx;
  2855. break;
  2856. default:
  2857. load_idx = sd->idle_idx;
  2858. break;
  2859. }
  2860. return load_idx;
  2861. }
  2862. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2863. /**
  2864. * init_sd_power_savings_stats - Initialize power savings statistics for
  2865. * the given sched_domain, during load balancing.
  2866. *
  2867. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2868. * @sds: Variable containing the statistics for sd.
  2869. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2870. */
  2871. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2872. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2873. {
  2874. /*
  2875. * Busy processors will not participate in power savings
  2876. * balance.
  2877. */
  2878. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2879. sds->power_savings_balance = 0;
  2880. else {
  2881. sds->power_savings_balance = 1;
  2882. sds->min_nr_running = ULONG_MAX;
  2883. sds->leader_nr_running = 0;
  2884. }
  2885. }
  2886. /**
  2887. * update_sd_power_savings_stats - Update the power saving stats for a
  2888. * sched_domain while performing load balancing.
  2889. *
  2890. * @group: sched_group belonging to the sched_domain under consideration.
  2891. * @sds: Variable containing the statistics of the sched_domain
  2892. * @local_group: Does group contain the CPU for which we're performing
  2893. * load balancing ?
  2894. * @sgs: Variable containing the statistics of the group.
  2895. */
  2896. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2897. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2898. {
  2899. if (!sds->power_savings_balance)
  2900. return;
  2901. /*
  2902. * If the local group is idle or completely loaded
  2903. * no need to do power savings balance at this domain
  2904. */
  2905. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2906. !sds->this_nr_running))
  2907. sds->power_savings_balance = 0;
  2908. /*
  2909. * If a group is already running at full capacity or idle,
  2910. * don't include that group in power savings calculations
  2911. */
  2912. if (!sds->power_savings_balance ||
  2913. sgs->sum_nr_running >= sgs->group_capacity ||
  2914. !sgs->sum_nr_running)
  2915. return;
  2916. /*
  2917. * Calculate the group which has the least non-idle load.
  2918. * This is the group from where we need to pick up the load
  2919. * for saving power
  2920. */
  2921. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  2922. (sgs->sum_nr_running == sds->min_nr_running &&
  2923. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  2924. sds->group_min = group;
  2925. sds->min_nr_running = sgs->sum_nr_running;
  2926. sds->min_load_per_task = sgs->sum_weighted_load /
  2927. sgs->sum_nr_running;
  2928. }
  2929. /*
  2930. * Calculate the group which is almost near its
  2931. * capacity but still has some space to pick up some load
  2932. * from other group and save more power
  2933. */
  2934. if (sgs->sum_nr_running > sgs->group_capacity - 1)
  2935. return;
  2936. if (sgs->sum_nr_running > sds->leader_nr_running ||
  2937. (sgs->sum_nr_running == sds->leader_nr_running &&
  2938. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  2939. sds->group_leader = group;
  2940. sds->leader_nr_running = sgs->sum_nr_running;
  2941. }
  2942. }
  2943. /**
  2944. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  2945. * @sds: Variable containing the statistics of the sched_domain
  2946. * under consideration.
  2947. * @this_cpu: Cpu at which we're currently performing load-balancing.
  2948. * @imbalance: Variable to store the imbalance.
  2949. *
  2950. * Description:
  2951. * Check if we have potential to perform some power-savings balance.
  2952. * If yes, set the busiest group to be the least loaded group in the
  2953. * sched_domain, so that it's CPUs can be put to idle.
  2954. *
  2955. * Returns 1 if there is potential to perform power-savings balance.
  2956. * Else returns 0.
  2957. */
  2958. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2959. int this_cpu, unsigned long *imbalance)
  2960. {
  2961. if (!sds->power_savings_balance)
  2962. return 0;
  2963. if (sds->this != sds->group_leader ||
  2964. sds->group_leader == sds->group_min)
  2965. return 0;
  2966. *imbalance = sds->min_load_per_task;
  2967. sds->busiest = sds->group_min;
  2968. if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
  2969. cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
  2970. group_first_cpu(sds->group_leader);
  2971. }
  2972. return 1;
  2973. }
  2974. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2975. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2976. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2977. {
  2978. return;
  2979. }
  2980. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2981. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2982. {
  2983. return;
  2984. }
  2985. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2986. int this_cpu, unsigned long *imbalance)
  2987. {
  2988. return 0;
  2989. }
  2990. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2991. /**
  2992. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  2993. * @group: sched_group whose statistics are to be updated.
  2994. * @this_cpu: Cpu for which load balance is currently performed.
  2995. * @idle: Idle status of this_cpu
  2996. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  2997. * @sd_idle: Idle status of the sched_domain containing group.
  2998. * @local_group: Does group contain this_cpu.
  2999. * @cpus: Set of cpus considered for load balancing.
  3000. * @balance: Should we balance.
  3001. * @sgs: variable to hold the statistics for this group.
  3002. */
  3003. static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
  3004. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  3005. int local_group, const struct cpumask *cpus,
  3006. int *balance, struct sg_lb_stats *sgs)
  3007. {
  3008. unsigned long load, max_cpu_load, min_cpu_load;
  3009. int i;
  3010. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  3011. unsigned long sum_avg_load_per_task;
  3012. unsigned long avg_load_per_task;
  3013. if (local_group)
  3014. balance_cpu = group_first_cpu(group);
  3015. /* Tally up the load of all CPUs in the group */
  3016. sum_avg_load_per_task = avg_load_per_task = 0;
  3017. max_cpu_load = 0;
  3018. min_cpu_load = ~0UL;
  3019. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  3020. struct rq *rq = cpu_rq(i);
  3021. if (*sd_idle && rq->nr_running)
  3022. *sd_idle = 0;
  3023. /* Bias balancing toward cpus of our domain */
  3024. if (local_group) {
  3025. if (idle_cpu(i) && !first_idle_cpu) {
  3026. first_idle_cpu = 1;
  3027. balance_cpu = i;
  3028. }
  3029. load = target_load(i, load_idx);
  3030. } else {
  3031. load = source_load(i, load_idx);
  3032. if (load > max_cpu_load)
  3033. max_cpu_load = load;
  3034. if (min_cpu_load > load)
  3035. min_cpu_load = load;
  3036. }
  3037. sgs->group_load += load;
  3038. sgs->sum_nr_running += rq->nr_running;
  3039. sgs->sum_weighted_load += weighted_cpuload(i);
  3040. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  3041. }
  3042. /*
  3043. * First idle cpu or the first cpu(busiest) in this sched group
  3044. * is eligible for doing load balancing at this and above
  3045. * domains. In the newly idle case, we will allow all the cpu's
  3046. * to do the newly idle load balance.
  3047. */
  3048. if (idle != CPU_NEWLY_IDLE && local_group &&
  3049. balance_cpu != this_cpu && balance) {
  3050. *balance = 0;
  3051. return;
  3052. }
  3053. /* Adjust by relative CPU power of the group */
  3054. sgs->avg_load = sg_div_cpu_power(group,
  3055. sgs->group_load * SCHED_LOAD_SCALE);
  3056. /*
  3057. * Consider the group unbalanced when the imbalance is larger
  3058. * than the average weight of two tasks.
  3059. *
  3060. * APZ: with cgroup the avg task weight can vary wildly and
  3061. * might not be a suitable number - should we keep a
  3062. * normalized nr_running number somewhere that negates
  3063. * the hierarchy?
  3064. */
  3065. avg_load_per_task = sg_div_cpu_power(group,
  3066. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  3067. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  3068. sgs->group_imb = 1;
  3069. sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  3070. }
  3071. /**
  3072. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  3073. * @sd: sched_domain whose statistics are to be updated.
  3074. * @this_cpu: Cpu for which load balance is currently performed.
  3075. * @idle: Idle status of this_cpu
  3076. * @sd_idle: Idle status of the sched_domain containing group.
  3077. * @cpus: Set of cpus considered for load balancing.
  3078. * @balance: Should we balance.
  3079. * @sds: variable to hold the statistics for this sched_domain.
  3080. */
  3081. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3082. enum cpu_idle_type idle, int *sd_idle,
  3083. const struct cpumask *cpus, int *balance,
  3084. struct sd_lb_stats *sds)
  3085. {
  3086. struct sched_group *group = sd->groups;
  3087. struct sg_lb_stats sgs;
  3088. int load_idx;
  3089. init_sd_power_savings_stats(sd, sds, idle);
  3090. load_idx = get_sd_load_idx(sd, idle);
  3091. do {
  3092. int local_group;
  3093. local_group = cpumask_test_cpu(this_cpu,
  3094. sched_group_cpus(group));
  3095. memset(&sgs, 0, sizeof(sgs));
  3096. update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
  3097. local_group, cpus, balance, &sgs);
  3098. if (local_group && balance && !(*balance))
  3099. return;
  3100. sds->total_load += sgs.group_load;
  3101. sds->total_pwr += group->__cpu_power;
  3102. if (local_group) {
  3103. sds->this_load = sgs.avg_load;
  3104. sds->this = group;
  3105. sds->this_nr_running = sgs.sum_nr_running;
  3106. sds->this_load_per_task = sgs.sum_weighted_load;
  3107. } else if (sgs.avg_load > sds->max_load &&
  3108. (sgs.sum_nr_running > sgs.group_capacity ||
  3109. sgs.group_imb)) {
  3110. sds->max_load = sgs.avg_load;
  3111. sds->busiest = group;
  3112. sds->busiest_nr_running = sgs.sum_nr_running;
  3113. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3114. sds->group_imb = sgs.group_imb;
  3115. }
  3116. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  3117. group = group->next;
  3118. } while (group != sd->groups);
  3119. }
  3120. /**
  3121. * fix_small_imbalance - Calculate the minor imbalance that exists
  3122. * amongst the groups of a sched_domain, during
  3123. * load balancing.
  3124. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3125. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3126. * @imbalance: Variable to store the imbalance.
  3127. */
  3128. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3129. int this_cpu, unsigned long *imbalance)
  3130. {
  3131. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3132. unsigned int imbn = 2;
  3133. if (sds->this_nr_running) {
  3134. sds->this_load_per_task /= sds->this_nr_running;
  3135. if (sds->busiest_load_per_task >
  3136. sds->this_load_per_task)
  3137. imbn = 1;
  3138. } else
  3139. sds->this_load_per_task =
  3140. cpu_avg_load_per_task(this_cpu);
  3141. if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
  3142. sds->busiest_load_per_task * imbn) {
  3143. *imbalance = sds->busiest_load_per_task;
  3144. return;
  3145. }
  3146. /*
  3147. * OK, we don't have enough imbalance to justify moving tasks,
  3148. * however we may be able to increase total CPU power used by
  3149. * moving them.
  3150. */
  3151. pwr_now += sds->busiest->__cpu_power *
  3152. min(sds->busiest_load_per_task, sds->max_load);
  3153. pwr_now += sds->this->__cpu_power *
  3154. min(sds->this_load_per_task, sds->this_load);
  3155. pwr_now /= SCHED_LOAD_SCALE;
  3156. /* Amount of load we'd subtract */
  3157. tmp = sg_div_cpu_power(sds->busiest,
  3158. sds->busiest_load_per_task * SCHED_LOAD_SCALE);
  3159. if (sds->max_load > tmp)
  3160. pwr_move += sds->busiest->__cpu_power *
  3161. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3162. /* Amount of load we'd add */
  3163. if (sds->max_load * sds->busiest->__cpu_power <
  3164. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  3165. tmp = sg_div_cpu_power(sds->this,
  3166. sds->max_load * sds->busiest->__cpu_power);
  3167. else
  3168. tmp = sg_div_cpu_power(sds->this,
  3169. sds->busiest_load_per_task * SCHED_LOAD_SCALE);
  3170. pwr_move += sds->this->__cpu_power *
  3171. min(sds->this_load_per_task, sds->this_load + tmp);
  3172. pwr_move /= SCHED_LOAD_SCALE;
  3173. /* Move if we gain throughput */
  3174. if (pwr_move > pwr_now)
  3175. *imbalance = sds->busiest_load_per_task;
  3176. }
  3177. /**
  3178. * calculate_imbalance - Calculate the amount of imbalance present within the
  3179. * groups of a given sched_domain during load balance.
  3180. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3181. * @this_cpu: Cpu for which currently load balance is being performed.
  3182. * @imbalance: The variable to store the imbalance.
  3183. */
  3184. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3185. unsigned long *imbalance)
  3186. {
  3187. unsigned long max_pull;
  3188. /*
  3189. * In the presence of smp nice balancing, certain scenarios can have
  3190. * max load less than avg load(as we skip the groups at or below
  3191. * its cpu_power, while calculating max_load..)
  3192. */
  3193. if (sds->max_load < sds->avg_load) {
  3194. *imbalance = 0;
  3195. return fix_small_imbalance(sds, this_cpu, imbalance);
  3196. }
  3197. /* Don't want to pull so many tasks that a group would go idle */
  3198. max_pull = min(sds->max_load - sds->avg_load,
  3199. sds->max_load - sds->busiest_load_per_task);
  3200. /* How much load to actually move to equalise the imbalance */
  3201. *imbalance = min(max_pull * sds->busiest->__cpu_power,
  3202. (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
  3203. / SCHED_LOAD_SCALE;
  3204. /*
  3205. * if *imbalance is less than the average load per runnable task
  3206. * there is no gaurantee that any tasks will be moved so we'll have
  3207. * a think about bumping its value to force at least one task to be
  3208. * moved
  3209. */
  3210. if (*imbalance < sds->busiest_load_per_task)
  3211. return fix_small_imbalance(sds, this_cpu, imbalance);
  3212. }
  3213. /******* find_busiest_group() helpers end here *********************/
  3214. /**
  3215. * find_busiest_group - Returns the busiest group within the sched_domain
  3216. * if there is an imbalance. If there isn't an imbalance, and
  3217. * the user has opted for power-savings, it returns a group whose
  3218. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3219. * such a group exists.
  3220. *
  3221. * Also calculates the amount of weighted load which should be moved
  3222. * to restore balance.
  3223. *
  3224. * @sd: The sched_domain whose busiest group is to be returned.
  3225. * @this_cpu: The cpu for which load balancing is currently being performed.
  3226. * @imbalance: Variable which stores amount of weighted load which should
  3227. * be moved to restore balance/put a group to idle.
  3228. * @idle: The idle status of this_cpu.
  3229. * @sd_idle: The idleness of sd
  3230. * @cpus: The set of CPUs under consideration for load-balancing.
  3231. * @balance: Pointer to a variable indicating if this_cpu
  3232. * is the appropriate cpu to perform load balancing at this_level.
  3233. *
  3234. * Returns: - the busiest group if imbalance exists.
  3235. * - If no imbalance and user has opted for power-savings balance,
  3236. * return the least loaded group whose CPUs can be
  3237. * put to idle by rebalancing its tasks onto our group.
  3238. */
  3239. static struct sched_group *
  3240. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3241. unsigned long *imbalance, enum cpu_idle_type idle,
  3242. int *sd_idle, const struct cpumask *cpus, int *balance)
  3243. {
  3244. struct sd_lb_stats sds;
  3245. memset(&sds, 0, sizeof(sds));
  3246. /*
  3247. * Compute the various statistics relavent for load balancing at
  3248. * this level.
  3249. */
  3250. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  3251. balance, &sds);
  3252. /* Cases where imbalance does not exist from POV of this_cpu */
  3253. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  3254. * at this level.
  3255. * 2) There is no busy sibling group to pull from.
  3256. * 3) This group is the busiest group.
  3257. * 4) This group is more busy than the avg busieness at this
  3258. * sched_domain.
  3259. * 5) The imbalance is within the specified limit.
  3260. * 6) Any rebalance would lead to ping-pong
  3261. */
  3262. if (balance && !(*balance))
  3263. goto ret;
  3264. if (!sds.busiest || sds.busiest_nr_running == 0)
  3265. goto out_balanced;
  3266. if (sds.this_load >= sds.max_load)
  3267. goto out_balanced;
  3268. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  3269. if (sds.this_load >= sds.avg_load)
  3270. goto out_balanced;
  3271. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3272. goto out_balanced;
  3273. sds.busiest_load_per_task /= sds.busiest_nr_running;
  3274. if (sds.group_imb)
  3275. sds.busiest_load_per_task =
  3276. min(sds.busiest_load_per_task, sds.avg_load);
  3277. /*
  3278. * We're trying to get all the cpus to the average_load, so we don't
  3279. * want to push ourselves above the average load, nor do we wish to
  3280. * reduce the max loaded cpu below the average load, as either of these
  3281. * actions would just result in more rebalancing later, and ping-pong
  3282. * tasks around. Thus we look for the minimum possible imbalance.
  3283. * Negative imbalances (*we* are more loaded than anyone else) will
  3284. * be counted as no imbalance for these purposes -- we can't fix that
  3285. * by pulling tasks to us. Be careful of negative numbers as they'll
  3286. * appear as very large values with unsigned longs.
  3287. */
  3288. if (sds.max_load <= sds.busiest_load_per_task)
  3289. goto out_balanced;
  3290. /* Looks like there is an imbalance. Compute it */
  3291. calculate_imbalance(&sds, this_cpu, imbalance);
  3292. return sds.busiest;
  3293. out_balanced:
  3294. /*
  3295. * There is no obvious imbalance. But check if we can do some balancing
  3296. * to save power.
  3297. */
  3298. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3299. return sds.busiest;
  3300. ret:
  3301. *imbalance = 0;
  3302. return NULL;
  3303. }
  3304. /*
  3305. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3306. */
  3307. static struct rq *
  3308. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3309. unsigned long imbalance, const struct cpumask *cpus)
  3310. {
  3311. struct rq *busiest = NULL, *rq;
  3312. unsigned long max_load = 0;
  3313. int i;
  3314. for_each_cpu(i, sched_group_cpus(group)) {
  3315. unsigned long wl;
  3316. if (!cpumask_test_cpu(i, cpus))
  3317. continue;
  3318. rq = cpu_rq(i);
  3319. wl = weighted_cpuload(i);
  3320. if (rq->nr_running == 1 && wl > imbalance)
  3321. continue;
  3322. if (wl > max_load) {
  3323. max_load = wl;
  3324. busiest = rq;
  3325. }
  3326. }
  3327. return busiest;
  3328. }
  3329. /*
  3330. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3331. * so long as it is large enough.
  3332. */
  3333. #define MAX_PINNED_INTERVAL 512
  3334. /* Working cpumask for load_balance and load_balance_newidle. */
  3335. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3336. /*
  3337. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3338. * tasks if there is an imbalance.
  3339. */
  3340. static int load_balance(int this_cpu, struct rq *this_rq,
  3341. struct sched_domain *sd, enum cpu_idle_type idle,
  3342. int *balance)
  3343. {
  3344. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3345. struct sched_group *group;
  3346. unsigned long imbalance;
  3347. struct rq *busiest;
  3348. unsigned long flags;
  3349. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3350. cpumask_setall(cpus);
  3351. /*
  3352. * When power savings policy is enabled for the parent domain, idle
  3353. * sibling can pick up load irrespective of busy siblings. In this case,
  3354. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3355. * portraying it as CPU_NOT_IDLE.
  3356. */
  3357. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3358. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3359. sd_idle = 1;
  3360. schedstat_inc(sd, lb_count[idle]);
  3361. redo:
  3362. update_shares(sd);
  3363. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3364. cpus, balance);
  3365. if (*balance == 0)
  3366. goto out_balanced;
  3367. if (!group) {
  3368. schedstat_inc(sd, lb_nobusyg[idle]);
  3369. goto out_balanced;
  3370. }
  3371. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3372. if (!busiest) {
  3373. schedstat_inc(sd, lb_nobusyq[idle]);
  3374. goto out_balanced;
  3375. }
  3376. BUG_ON(busiest == this_rq);
  3377. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3378. ld_moved = 0;
  3379. if (busiest->nr_running > 1) {
  3380. /*
  3381. * Attempt to move tasks. If find_busiest_group has found
  3382. * an imbalance but busiest->nr_running <= 1, the group is
  3383. * still unbalanced. ld_moved simply stays zero, so it is
  3384. * correctly treated as an imbalance.
  3385. */
  3386. local_irq_save(flags);
  3387. double_rq_lock(this_rq, busiest);
  3388. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3389. imbalance, sd, idle, &all_pinned);
  3390. double_rq_unlock(this_rq, busiest);
  3391. local_irq_restore(flags);
  3392. /*
  3393. * some other cpu did the load balance for us.
  3394. */
  3395. if (ld_moved && this_cpu != smp_processor_id())
  3396. resched_cpu(this_cpu);
  3397. /* All tasks on this runqueue were pinned by CPU affinity */
  3398. if (unlikely(all_pinned)) {
  3399. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3400. if (!cpumask_empty(cpus))
  3401. goto redo;
  3402. goto out_balanced;
  3403. }
  3404. }
  3405. if (!ld_moved) {
  3406. schedstat_inc(sd, lb_failed[idle]);
  3407. sd->nr_balance_failed++;
  3408. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3409. spin_lock_irqsave(&busiest->lock, flags);
  3410. /* don't kick the migration_thread, if the curr
  3411. * task on busiest cpu can't be moved to this_cpu
  3412. */
  3413. if (!cpumask_test_cpu(this_cpu,
  3414. &busiest->curr->cpus_allowed)) {
  3415. spin_unlock_irqrestore(&busiest->lock, flags);
  3416. all_pinned = 1;
  3417. goto out_one_pinned;
  3418. }
  3419. if (!busiest->active_balance) {
  3420. busiest->active_balance = 1;
  3421. busiest->push_cpu = this_cpu;
  3422. active_balance = 1;
  3423. }
  3424. spin_unlock_irqrestore(&busiest->lock, flags);
  3425. if (active_balance)
  3426. wake_up_process(busiest->migration_thread);
  3427. /*
  3428. * We've kicked active balancing, reset the failure
  3429. * counter.
  3430. */
  3431. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3432. }
  3433. } else
  3434. sd->nr_balance_failed = 0;
  3435. if (likely(!active_balance)) {
  3436. /* We were unbalanced, so reset the balancing interval */
  3437. sd->balance_interval = sd->min_interval;
  3438. } else {
  3439. /*
  3440. * If we've begun active balancing, start to back off. This
  3441. * case may not be covered by the all_pinned logic if there
  3442. * is only 1 task on the busy runqueue (because we don't call
  3443. * move_tasks).
  3444. */
  3445. if (sd->balance_interval < sd->max_interval)
  3446. sd->balance_interval *= 2;
  3447. }
  3448. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3449. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3450. ld_moved = -1;
  3451. goto out;
  3452. out_balanced:
  3453. schedstat_inc(sd, lb_balanced[idle]);
  3454. sd->nr_balance_failed = 0;
  3455. out_one_pinned:
  3456. /* tune up the balancing interval */
  3457. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3458. (sd->balance_interval < sd->max_interval))
  3459. sd->balance_interval *= 2;
  3460. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3461. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3462. ld_moved = -1;
  3463. else
  3464. ld_moved = 0;
  3465. out:
  3466. if (ld_moved)
  3467. update_shares(sd);
  3468. return ld_moved;
  3469. }
  3470. /*
  3471. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3472. * tasks if there is an imbalance.
  3473. *
  3474. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3475. * this_rq is locked.
  3476. */
  3477. static int
  3478. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  3479. {
  3480. struct sched_group *group;
  3481. struct rq *busiest = NULL;
  3482. unsigned long imbalance;
  3483. int ld_moved = 0;
  3484. int sd_idle = 0;
  3485. int all_pinned = 0;
  3486. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3487. cpumask_setall(cpus);
  3488. /*
  3489. * When power savings policy is enabled for the parent domain, idle
  3490. * sibling can pick up load irrespective of busy siblings. In this case,
  3491. * let the state of idle sibling percolate up as IDLE, instead of
  3492. * portraying it as CPU_NOT_IDLE.
  3493. */
  3494. if (sd->flags & SD_SHARE_CPUPOWER &&
  3495. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3496. sd_idle = 1;
  3497. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3498. redo:
  3499. update_shares_locked(this_rq, sd);
  3500. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3501. &sd_idle, cpus, NULL);
  3502. if (!group) {
  3503. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3504. goto out_balanced;
  3505. }
  3506. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3507. if (!busiest) {
  3508. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3509. goto out_balanced;
  3510. }
  3511. BUG_ON(busiest == this_rq);
  3512. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3513. ld_moved = 0;
  3514. if (busiest->nr_running > 1) {
  3515. /* Attempt to move tasks */
  3516. double_lock_balance(this_rq, busiest);
  3517. /* this_rq->clock is already updated */
  3518. update_rq_clock(busiest);
  3519. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3520. imbalance, sd, CPU_NEWLY_IDLE,
  3521. &all_pinned);
  3522. double_unlock_balance(this_rq, busiest);
  3523. if (unlikely(all_pinned)) {
  3524. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3525. if (!cpumask_empty(cpus))
  3526. goto redo;
  3527. }
  3528. }
  3529. if (!ld_moved) {
  3530. int active_balance = 0;
  3531. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3532. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3533. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3534. return -1;
  3535. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3536. return -1;
  3537. if (sd->nr_balance_failed++ < 2)
  3538. return -1;
  3539. /*
  3540. * The only task running in a non-idle cpu can be moved to this
  3541. * cpu in an attempt to completely freeup the other CPU
  3542. * package. The same method used to move task in load_balance()
  3543. * have been extended for load_balance_newidle() to speedup
  3544. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3545. *
  3546. * The package power saving logic comes from
  3547. * find_busiest_group(). If there are no imbalance, then
  3548. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3549. * f_b_g() will select a group from which a running task may be
  3550. * pulled to this cpu in order to make the other package idle.
  3551. * If there is no opportunity to make a package idle and if
  3552. * there are no imbalance, then f_b_g() will return NULL and no
  3553. * action will be taken in load_balance_newidle().
  3554. *
  3555. * Under normal task pull operation due to imbalance, there
  3556. * will be more than one task in the source run queue and
  3557. * move_tasks() will succeed. ld_moved will be true and this
  3558. * active balance code will not be triggered.
  3559. */
  3560. /* Lock busiest in correct order while this_rq is held */
  3561. double_lock_balance(this_rq, busiest);
  3562. /*
  3563. * don't kick the migration_thread, if the curr
  3564. * task on busiest cpu can't be moved to this_cpu
  3565. */
  3566. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3567. double_unlock_balance(this_rq, busiest);
  3568. all_pinned = 1;
  3569. return ld_moved;
  3570. }
  3571. if (!busiest->active_balance) {
  3572. busiest->active_balance = 1;
  3573. busiest->push_cpu = this_cpu;
  3574. active_balance = 1;
  3575. }
  3576. double_unlock_balance(this_rq, busiest);
  3577. /*
  3578. * Should not call ttwu while holding a rq->lock
  3579. */
  3580. spin_unlock(&this_rq->lock);
  3581. if (active_balance)
  3582. wake_up_process(busiest->migration_thread);
  3583. spin_lock(&this_rq->lock);
  3584. } else
  3585. sd->nr_balance_failed = 0;
  3586. update_shares_locked(this_rq, sd);
  3587. return ld_moved;
  3588. out_balanced:
  3589. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3590. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3591. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3592. return -1;
  3593. sd->nr_balance_failed = 0;
  3594. return 0;
  3595. }
  3596. /*
  3597. * idle_balance is called by schedule() if this_cpu is about to become
  3598. * idle. Attempts to pull tasks from other CPUs.
  3599. */
  3600. static void idle_balance(int this_cpu, struct rq *this_rq)
  3601. {
  3602. struct sched_domain *sd;
  3603. int pulled_task = 0;
  3604. unsigned long next_balance = jiffies + HZ;
  3605. for_each_domain(this_cpu, sd) {
  3606. unsigned long interval;
  3607. if (!(sd->flags & SD_LOAD_BALANCE))
  3608. continue;
  3609. if (sd->flags & SD_BALANCE_NEWIDLE)
  3610. /* If we've pulled tasks over stop searching: */
  3611. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3612. sd);
  3613. interval = msecs_to_jiffies(sd->balance_interval);
  3614. if (time_after(next_balance, sd->last_balance + interval))
  3615. next_balance = sd->last_balance + interval;
  3616. if (pulled_task)
  3617. break;
  3618. }
  3619. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3620. /*
  3621. * We are going idle. next_balance may be set based on
  3622. * a busy processor. So reset next_balance.
  3623. */
  3624. this_rq->next_balance = next_balance;
  3625. }
  3626. }
  3627. /*
  3628. * active_load_balance is run by migration threads. It pushes running tasks
  3629. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3630. * running on each physical CPU where possible, and avoids physical /
  3631. * logical imbalances.
  3632. *
  3633. * Called with busiest_rq locked.
  3634. */
  3635. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3636. {
  3637. int target_cpu = busiest_rq->push_cpu;
  3638. struct sched_domain *sd;
  3639. struct rq *target_rq;
  3640. /* Is there any task to move? */
  3641. if (busiest_rq->nr_running <= 1)
  3642. return;
  3643. target_rq = cpu_rq(target_cpu);
  3644. /*
  3645. * This condition is "impossible", if it occurs
  3646. * we need to fix it. Originally reported by
  3647. * Bjorn Helgaas on a 128-cpu setup.
  3648. */
  3649. BUG_ON(busiest_rq == target_rq);
  3650. /* move a task from busiest_rq to target_rq */
  3651. double_lock_balance(busiest_rq, target_rq);
  3652. update_rq_clock(busiest_rq);
  3653. update_rq_clock(target_rq);
  3654. /* Search for an sd spanning us and the target CPU. */
  3655. for_each_domain(target_cpu, sd) {
  3656. if ((sd->flags & SD_LOAD_BALANCE) &&
  3657. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3658. break;
  3659. }
  3660. if (likely(sd)) {
  3661. schedstat_inc(sd, alb_count);
  3662. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3663. sd, CPU_IDLE))
  3664. schedstat_inc(sd, alb_pushed);
  3665. else
  3666. schedstat_inc(sd, alb_failed);
  3667. }
  3668. double_unlock_balance(busiest_rq, target_rq);
  3669. }
  3670. #ifdef CONFIG_NO_HZ
  3671. static struct {
  3672. atomic_t load_balancer;
  3673. cpumask_var_t cpu_mask;
  3674. cpumask_var_t ilb_grp_nohz_mask;
  3675. } nohz ____cacheline_aligned = {
  3676. .load_balancer = ATOMIC_INIT(-1),
  3677. };
  3678. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3679. /**
  3680. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3681. * @cpu: The cpu whose lowest level of sched domain is to
  3682. * be returned.
  3683. * @flag: The flag to check for the lowest sched_domain
  3684. * for the given cpu.
  3685. *
  3686. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3687. */
  3688. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3689. {
  3690. struct sched_domain *sd;
  3691. for_each_domain(cpu, sd)
  3692. if (sd && (sd->flags & flag))
  3693. break;
  3694. return sd;
  3695. }
  3696. /**
  3697. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3698. * @cpu: The cpu whose domains we're iterating over.
  3699. * @sd: variable holding the value of the power_savings_sd
  3700. * for cpu.
  3701. * @flag: The flag to filter the sched_domains to be iterated.
  3702. *
  3703. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3704. * set, starting from the lowest sched_domain to the highest.
  3705. */
  3706. #define for_each_flag_domain(cpu, sd, flag) \
  3707. for (sd = lowest_flag_domain(cpu, flag); \
  3708. (sd && (sd->flags & flag)); sd = sd->parent)
  3709. /**
  3710. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3711. * @ilb_group: group to be checked for semi-idleness
  3712. *
  3713. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3714. *
  3715. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3716. * and atleast one non-idle CPU. This helper function checks if the given
  3717. * sched_group is semi-idle or not.
  3718. */
  3719. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3720. {
  3721. cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
  3722. sched_group_cpus(ilb_group));
  3723. /*
  3724. * A sched_group is semi-idle when it has atleast one busy cpu
  3725. * and atleast one idle cpu.
  3726. */
  3727. if (cpumask_empty(nohz.ilb_grp_nohz_mask))
  3728. return 0;
  3729. if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
  3730. return 0;
  3731. return 1;
  3732. }
  3733. /**
  3734. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3735. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3736. *
  3737. * Returns: Returns the id of the idle load balancer if it exists,
  3738. * Else, returns >= nr_cpu_ids.
  3739. *
  3740. * This algorithm picks the idle load balancer such that it belongs to a
  3741. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3742. * completely idle packages/cores just for the purpose of idle load balancing
  3743. * when there are other idle cpu's which are better suited for that job.
  3744. */
  3745. static int find_new_ilb(int cpu)
  3746. {
  3747. struct sched_domain *sd;
  3748. struct sched_group *ilb_group;
  3749. /*
  3750. * Have idle load balancer selection from semi-idle packages only
  3751. * when power-aware load balancing is enabled
  3752. */
  3753. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3754. goto out_done;
  3755. /*
  3756. * Optimize for the case when we have no idle CPUs or only one
  3757. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3758. */
  3759. if (cpumask_weight(nohz.cpu_mask) < 2)
  3760. goto out_done;
  3761. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3762. ilb_group = sd->groups;
  3763. do {
  3764. if (is_semi_idle_group(ilb_group))
  3765. return cpumask_first(nohz.ilb_grp_nohz_mask);
  3766. ilb_group = ilb_group->next;
  3767. } while (ilb_group != sd->groups);
  3768. }
  3769. out_done:
  3770. return cpumask_first(nohz.cpu_mask);
  3771. }
  3772. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3773. static inline int find_new_ilb(int call_cpu)
  3774. {
  3775. return cpumask_first(nohz.cpu_mask);
  3776. }
  3777. #endif
  3778. /*
  3779. * This routine will try to nominate the ilb (idle load balancing)
  3780. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3781. * load balancing on behalf of all those cpus. If all the cpus in the system
  3782. * go into this tickless mode, then there will be no ilb owner (as there is
  3783. * no need for one) and all the cpus will sleep till the next wakeup event
  3784. * arrives...
  3785. *
  3786. * For the ilb owner, tick is not stopped. And this tick will be used
  3787. * for idle load balancing. ilb owner will still be part of
  3788. * nohz.cpu_mask..
  3789. *
  3790. * While stopping the tick, this cpu will become the ilb owner if there
  3791. * is no other owner. And will be the owner till that cpu becomes busy
  3792. * or if all cpus in the system stop their ticks at which point
  3793. * there is no need for ilb owner.
  3794. *
  3795. * When the ilb owner becomes busy, it nominates another owner, during the
  3796. * next busy scheduler_tick()
  3797. */
  3798. int select_nohz_load_balancer(int stop_tick)
  3799. {
  3800. int cpu = smp_processor_id();
  3801. if (stop_tick) {
  3802. cpu_rq(cpu)->in_nohz_recently = 1;
  3803. if (!cpu_active(cpu)) {
  3804. if (atomic_read(&nohz.load_balancer) != cpu)
  3805. return 0;
  3806. /*
  3807. * If we are going offline and still the leader,
  3808. * give up!
  3809. */
  3810. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3811. BUG();
  3812. return 0;
  3813. }
  3814. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3815. /* time for ilb owner also to sleep */
  3816. if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3817. if (atomic_read(&nohz.load_balancer) == cpu)
  3818. atomic_set(&nohz.load_balancer, -1);
  3819. return 0;
  3820. }
  3821. if (atomic_read(&nohz.load_balancer) == -1) {
  3822. /* make me the ilb owner */
  3823. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3824. return 1;
  3825. } else if (atomic_read(&nohz.load_balancer) == cpu) {
  3826. int new_ilb;
  3827. if (!(sched_smt_power_savings ||
  3828. sched_mc_power_savings))
  3829. return 1;
  3830. /*
  3831. * Check to see if there is a more power-efficient
  3832. * ilb.
  3833. */
  3834. new_ilb = find_new_ilb(cpu);
  3835. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  3836. atomic_set(&nohz.load_balancer, -1);
  3837. resched_cpu(new_ilb);
  3838. return 0;
  3839. }
  3840. return 1;
  3841. }
  3842. } else {
  3843. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  3844. return 0;
  3845. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3846. if (atomic_read(&nohz.load_balancer) == cpu)
  3847. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3848. BUG();
  3849. }
  3850. return 0;
  3851. }
  3852. #endif
  3853. static DEFINE_SPINLOCK(balancing);
  3854. /*
  3855. * It checks each scheduling domain to see if it is due to be balanced,
  3856. * and initiates a balancing operation if so.
  3857. *
  3858. * Balancing parameters are set up in arch_init_sched_domains.
  3859. */
  3860. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3861. {
  3862. int balance = 1;
  3863. struct rq *rq = cpu_rq(cpu);
  3864. unsigned long interval;
  3865. struct sched_domain *sd;
  3866. /* Earliest time when we have to do rebalance again */
  3867. unsigned long next_balance = jiffies + 60*HZ;
  3868. int update_next_balance = 0;
  3869. int need_serialize;
  3870. for_each_domain(cpu, sd) {
  3871. if (!(sd->flags & SD_LOAD_BALANCE))
  3872. continue;
  3873. interval = sd->balance_interval;
  3874. if (idle != CPU_IDLE)
  3875. interval *= sd->busy_factor;
  3876. /* scale ms to jiffies */
  3877. interval = msecs_to_jiffies(interval);
  3878. if (unlikely(!interval))
  3879. interval = 1;
  3880. if (interval > HZ*NR_CPUS/10)
  3881. interval = HZ*NR_CPUS/10;
  3882. need_serialize = sd->flags & SD_SERIALIZE;
  3883. if (need_serialize) {
  3884. if (!spin_trylock(&balancing))
  3885. goto out;
  3886. }
  3887. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3888. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3889. /*
  3890. * We've pulled tasks over so either we're no
  3891. * longer idle, or one of our SMT siblings is
  3892. * not idle.
  3893. */
  3894. idle = CPU_NOT_IDLE;
  3895. }
  3896. sd->last_balance = jiffies;
  3897. }
  3898. if (need_serialize)
  3899. spin_unlock(&balancing);
  3900. out:
  3901. if (time_after(next_balance, sd->last_balance + interval)) {
  3902. next_balance = sd->last_balance + interval;
  3903. update_next_balance = 1;
  3904. }
  3905. /*
  3906. * Stop the load balance at this level. There is another
  3907. * CPU in our sched group which is doing load balancing more
  3908. * actively.
  3909. */
  3910. if (!balance)
  3911. break;
  3912. }
  3913. /*
  3914. * next_balance will be updated only when there is a need.
  3915. * When the cpu is attached to null domain for ex, it will not be
  3916. * updated.
  3917. */
  3918. if (likely(update_next_balance))
  3919. rq->next_balance = next_balance;
  3920. }
  3921. /*
  3922. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3923. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3924. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3925. */
  3926. static void run_rebalance_domains(struct softirq_action *h)
  3927. {
  3928. int this_cpu = smp_processor_id();
  3929. struct rq *this_rq = cpu_rq(this_cpu);
  3930. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3931. CPU_IDLE : CPU_NOT_IDLE;
  3932. rebalance_domains(this_cpu, idle);
  3933. #ifdef CONFIG_NO_HZ
  3934. /*
  3935. * If this cpu is the owner for idle load balancing, then do the
  3936. * balancing on behalf of the other idle cpus whose ticks are
  3937. * stopped.
  3938. */
  3939. if (this_rq->idle_at_tick &&
  3940. atomic_read(&nohz.load_balancer) == this_cpu) {
  3941. struct rq *rq;
  3942. int balance_cpu;
  3943. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  3944. if (balance_cpu == this_cpu)
  3945. continue;
  3946. /*
  3947. * If this cpu gets work to do, stop the load balancing
  3948. * work being done for other cpus. Next load
  3949. * balancing owner will pick it up.
  3950. */
  3951. if (need_resched())
  3952. break;
  3953. rebalance_domains(balance_cpu, CPU_IDLE);
  3954. rq = cpu_rq(balance_cpu);
  3955. if (time_after(this_rq->next_balance, rq->next_balance))
  3956. this_rq->next_balance = rq->next_balance;
  3957. }
  3958. }
  3959. #endif
  3960. }
  3961. static inline int on_null_domain(int cpu)
  3962. {
  3963. return !rcu_dereference(cpu_rq(cpu)->sd);
  3964. }
  3965. /*
  3966. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3967. *
  3968. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3969. * idle load balancing owner or decide to stop the periodic load balancing,
  3970. * if the whole system is idle.
  3971. */
  3972. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3973. {
  3974. #ifdef CONFIG_NO_HZ
  3975. /*
  3976. * If we were in the nohz mode recently and busy at the current
  3977. * scheduler tick, then check if we need to nominate new idle
  3978. * load balancer.
  3979. */
  3980. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3981. rq->in_nohz_recently = 0;
  3982. if (atomic_read(&nohz.load_balancer) == cpu) {
  3983. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3984. atomic_set(&nohz.load_balancer, -1);
  3985. }
  3986. if (atomic_read(&nohz.load_balancer) == -1) {
  3987. int ilb = find_new_ilb(cpu);
  3988. if (ilb < nr_cpu_ids)
  3989. resched_cpu(ilb);
  3990. }
  3991. }
  3992. /*
  3993. * If this cpu is idle and doing idle load balancing for all the
  3994. * cpus with ticks stopped, is it time for that to stop?
  3995. */
  3996. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3997. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3998. resched_cpu(cpu);
  3999. return;
  4000. }
  4001. /*
  4002. * If this cpu is idle and the idle load balancing is done by
  4003. * someone else, then no need raise the SCHED_SOFTIRQ
  4004. */
  4005. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  4006. cpumask_test_cpu(cpu, nohz.cpu_mask))
  4007. return;
  4008. #endif
  4009. /* Don't need to rebalance while attached to NULL domain */
  4010. if (time_after_eq(jiffies, rq->next_balance) &&
  4011. likely(!on_null_domain(cpu)))
  4012. raise_softirq(SCHED_SOFTIRQ);
  4013. }
  4014. #else /* CONFIG_SMP */
  4015. /*
  4016. * on UP we do not need to balance between CPUs:
  4017. */
  4018. static inline void idle_balance(int cpu, struct rq *rq)
  4019. {
  4020. }
  4021. #endif
  4022. DEFINE_PER_CPU(struct kernel_stat, kstat);
  4023. EXPORT_PER_CPU_SYMBOL(kstat);
  4024. /*
  4025. * Return any ns on the sched_clock that have not yet been accounted in
  4026. * @p in case that task is currently running.
  4027. *
  4028. * Called with task_rq_lock() held on @rq.
  4029. */
  4030. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  4031. {
  4032. u64 ns = 0;
  4033. if (task_current(rq, p)) {
  4034. update_rq_clock(rq);
  4035. ns = rq->clock - p->se.exec_start;
  4036. if ((s64)ns < 0)
  4037. ns = 0;
  4038. }
  4039. return ns;
  4040. }
  4041. unsigned long long task_delta_exec(struct task_struct *p)
  4042. {
  4043. unsigned long flags;
  4044. struct rq *rq;
  4045. u64 ns = 0;
  4046. rq = task_rq_lock(p, &flags);
  4047. ns = do_task_delta_exec(p, rq);
  4048. task_rq_unlock(rq, &flags);
  4049. return ns;
  4050. }
  4051. /*
  4052. * Return accounted runtime for the task.
  4053. * In case the task is currently running, return the runtime plus current's
  4054. * pending runtime that have not been accounted yet.
  4055. */
  4056. unsigned long long task_sched_runtime(struct task_struct *p)
  4057. {
  4058. unsigned long flags;
  4059. struct rq *rq;
  4060. u64 ns = 0;
  4061. rq = task_rq_lock(p, &flags);
  4062. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  4063. task_rq_unlock(rq, &flags);
  4064. return ns;
  4065. }
  4066. /*
  4067. * Return sum_exec_runtime for the thread group.
  4068. * In case the task is currently running, return the sum plus current's
  4069. * pending runtime that have not been accounted yet.
  4070. *
  4071. * Note that the thread group might have other running tasks as well,
  4072. * so the return value not includes other pending runtime that other
  4073. * running tasks might have.
  4074. */
  4075. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  4076. {
  4077. struct task_cputime totals;
  4078. unsigned long flags;
  4079. struct rq *rq;
  4080. u64 ns;
  4081. rq = task_rq_lock(p, &flags);
  4082. thread_group_cputime(p, &totals);
  4083. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  4084. task_rq_unlock(rq, &flags);
  4085. return ns;
  4086. }
  4087. /*
  4088. * Account user cpu time to a process.
  4089. * @p: the process that the cpu time gets accounted to
  4090. * @cputime: the cpu time spent in user space since the last update
  4091. * @cputime_scaled: cputime scaled by cpu frequency
  4092. */
  4093. void account_user_time(struct task_struct *p, cputime_t cputime,
  4094. cputime_t cputime_scaled)
  4095. {
  4096. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4097. cputime64_t tmp;
  4098. /* Add user time to process. */
  4099. p->utime = cputime_add(p->utime, cputime);
  4100. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4101. account_group_user_time(p, cputime);
  4102. /* Add user time to cpustat. */
  4103. tmp = cputime_to_cputime64(cputime);
  4104. if (TASK_NICE(p) > 0)
  4105. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4106. else
  4107. cpustat->user = cputime64_add(cpustat->user, tmp);
  4108. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  4109. /* Account for user time used */
  4110. acct_update_integrals(p);
  4111. }
  4112. /*
  4113. * Account guest cpu time to a process.
  4114. * @p: the process that the cpu time gets accounted to
  4115. * @cputime: the cpu time spent in virtual machine since the last update
  4116. * @cputime_scaled: cputime scaled by cpu frequency
  4117. */
  4118. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  4119. cputime_t cputime_scaled)
  4120. {
  4121. cputime64_t tmp;
  4122. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4123. tmp = cputime_to_cputime64(cputime);
  4124. /* Add guest time to process. */
  4125. p->utime = cputime_add(p->utime, cputime);
  4126. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4127. account_group_user_time(p, cputime);
  4128. p->gtime = cputime_add(p->gtime, cputime);
  4129. /* Add guest time to cpustat. */
  4130. cpustat->user = cputime64_add(cpustat->user, tmp);
  4131. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  4132. }
  4133. /*
  4134. * Account system cpu time to a process.
  4135. * @p: the process that the cpu time gets accounted to
  4136. * @hardirq_offset: the offset to subtract from hardirq_count()
  4137. * @cputime: the cpu time spent in kernel space since the last update
  4138. * @cputime_scaled: cputime scaled by cpu frequency
  4139. */
  4140. void account_system_time(struct task_struct *p, int hardirq_offset,
  4141. cputime_t cputime, cputime_t cputime_scaled)
  4142. {
  4143. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4144. cputime64_t tmp;
  4145. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  4146. account_guest_time(p, cputime, cputime_scaled);
  4147. return;
  4148. }
  4149. /* Add system time to process. */
  4150. p->stime = cputime_add(p->stime, cputime);
  4151. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  4152. account_group_system_time(p, cputime);
  4153. /* Add system time to cpustat. */
  4154. tmp = cputime_to_cputime64(cputime);
  4155. if (hardirq_count() - hardirq_offset)
  4156. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  4157. else if (softirq_count())
  4158. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  4159. else
  4160. cpustat->system = cputime64_add(cpustat->system, tmp);
  4161. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  4162. /* Account for system time used */
  4163. acct_update_integrals(p);
  4164. }
  4165. /*
  4166. * Account for involuntary wait time.
  4167. * @steal: the cpu time spent in involuntary wait
  4168. */
  4169. void account_steal_time(cputime_t cputime)
  4170. {
  4171. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4172. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4173. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  4174. }
  4175. /*
  4176. * Account for idle time.
  4177. * @cputime: the cpu time spent in idle wait
  4178. */
  4179. void account_idle_time(cputime_t cputime)
  4180. {
  4181. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4182. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4183. struct rq *rq = this_rq();
  4184. if (atomic_read(&rq->nr_iowait) > 0)
  4185. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  4186. else
  4187. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  4188. }
  4189. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  4190. /*
  4191. * Account a single tick of cpu time.
  4192. * @p: the process that the cpu time gets accounted to
  4193. * @user_tick: indicates if the tick is a user or a system tick
  4194. */
  4195. void account_process_tick(struct task_struct *p, int user_tick)
  4196. {
  4197. cputime_t one_jiffy = jiffies_to_cputime(1);
  4198. cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
  4199. struct rq *rq = this_rq();
  4200. if (user_tick)
  4201. account_user_time(p, one_jiffy, one_jiffy_scaled);
  4202. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  4203. account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
  4204. one_jiffy_scaled);
  4205. else
  4206. account_idle_time(one_jiffy);
  4207. }
  4208. /*
  4209. * Account multiple ticks of steal time.
  4210. * @p: the process from which the cpu time has been stolen
  4211. * @ticks: number of stolen ticks
  4212. */
  4213. void account_steal_ticks(unsigned long ticks)
  4214. {
  4215. account_steal_time(jiffies_to_cputime(ticks));
  4216. }
  4217. /*
  4218. * Account multiple ticks of idle time.
  4219. * @ticks: number of stolen ticks
  4220. */
  4221. void account_idle_ticks(unsigned long ticks)
  4222. {
  4223. account_idle_time(jiffies_to_cputime(ticks));
  4224. }
  4225. #endif
  4226. /*
  4227. * Use precise platform statistics if available:
  4228. */
  4229. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  4230. cputime_t task_utime(struct task_struct *p)
  4231. {
  4232. return p->utime;
  4233. }
  4234. cputime_t task_stime(struct task_struct *p)
  4235. {
  4236. return p->stime;
  4237. }
  4238. #else
  4239. cputime_t task_utime(struct task_struct *p)
  4240. {
  4241. clock_t utime = cputime_to_clock_t(p->utime),
  4242. total = utime + cputime_to_clock_t(p->stime);
  4243. u64 temp;
  4244. /*
  4245. * Use CFS's precise accounting:
  4246. */
  4247. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  4248. if (total) {
  4249. temp *= utime;
  4250. do_div(temp, total);
  4251. }
  4252. utime = (clock_t)temp;
  4253. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  4254. return p->prev_utime;
  4255. }
  4256. cputime_t task_stime(struct task_struct *p)
  4257. {
  4258. clock_t stime;
  4259. /*
  4260. * Use CFS's precise accounting. (we subtract utime from
  4261. * the total, to make sure the total observed by userspace
  4262. * grows monotonically - apps rely on that):
  4263. */
  4264. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  4265. cputime_to_clock_t(task_utime(p));
  4266. if (stime >= 0)
  4267. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  4268. return p->prev_stime;
  4269. }
  4270. #endif
  4271. inline cputime_t task_gtime(struct task_struct *p)
  4272. {
  4273. return p->gtime;
  4274. }
  4275. /*
  4276. * This function gets called by the timer code, with HZ frequency.
  4277. * We call it with interrupts disabled.
  4278. *
  4279. * It also gets called by the fork code, when changing the parent's
  4280. * timeslices.
  4281. */
  4282. void scheduler_tick(void)
  4283. {
  4284. int cpu = smp_processor_id();
  4285. struct rq *rq = cpu_rq(cpu);
  4286. struct task_struct *curr = rq->curr;
  4287. sched_clock_tick();
  4288. spin_lock(&rq->lock);
  4289. update_rq_clock(rq);
  4290. update_cpu_load(rq);
  4291. curr->sched_class->task_tick(rq, curr, 0);
  4292. spin_unlock(&rq->lock);
  4293. #ifdef CONFIG_SMP
  4294. rq->idle_at_tick = idle_cpu(cpu);
  4295. trigger_load_balance(rq, cpu);
  4296. #endif
  4297. }
  4298. notrace unsigned long get_parent_ip(unsigned long addr)
  4299. {
  4300. if (in_lock_functions(addr)) {
  4301. addr = CALLER_ADDR2;
  4302. if (in_lock_functions(addr))
  4303. addr = CALLER_ADDR3;
  4304. }
  4305. return addr;
  4306. }
  4307. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  4308. defined(CONFIG_PREEMPT_TRACER))
  4309. void __kprobes add_preempt_count(int val)
  4310. {
  4311. #ifdef CONFIG_DEBUG_PREEMPT
  4312. /*
  4313. * Underflow?
  4314. */
  4315. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  4316. return;
  4317. #endif
  4318. preempt_count() += val;
  4319. #ifdef CONFIG_DEBUG_PREEMPT
  4320. /*
  4321. * Spinlock count overflowing soon?
  4322. */
  4323. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  4324. PREEMPT_MASK - 10);
  4325. #endif
  4326. if (preempt_count() == val)
  4327. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4328. }
  4329. EXPORT_SYMBOL(add_preempt_count);
  4330. void __kprobes sub_preempt_count(int val)
  4331. {
  4332. #ifdef CONFIG_DEBUG_PREEMPT
  4333. /*
  4334. * Underflow?
  4335. */
  4336. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  4337. return;
  4338. /*
  4339. * Is the spinlock portion underflowing?
  4340. */
  4341. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  4342. !(preempt_count() & PREEMPT_MASK)))
  4343. return;
  4344. #endif
  4345. if (preempt_count() == val)
  4346. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4347. preempt_count() -= val;
  4348. }
  4349. EXPORT_SYMBOL(sub_preempt_count);
  4350. #endif
  4351. /*
  4352. * Print scheduling while atomic bug:
  4353. */
  4354. static noinline void __schedule_bug(struct task_struct *prev)
  4355. {
  4356. struct pt_regs *regs = get_irq_regs();
  4357. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  4358. prev->comm, prev->pid, preempt_count());
  4359. debug_show_held_locks(prev);
  4360. print_modules();
  4361. if (irqs_disabled())
  4362. print_irqtrace_events(prev);
  4363. if (regs)
  4364. show_regs(regs);
  4365. else
  4366. dump_stack();
  4367. }
  4368. /*
  4369. * Various schedule()-time debugging checks and statistics:
  4370. */
  4371. static inline void schedule_debug(struct task_struct *prev)
  4372. {
  4373. /*
  4374. * Test if we are atomic. Since do_exit() needs to call into
  4375. * schedule() atomically, we ignore that path for now.
  4376. * Otherwise, whine if we are scheduling when we should not be.
  4377. */
  4378. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  4379. __schedule_bug(prev);
  4380. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  4381. schedstat_inc(this_rq(), sched_count);
  4382. #ifdef CONFIG_SCHEDSTATS
  4383. if (unlikely(prev->lock_depth >= 0)) {
  4384. schedstat_inc(this_rq(), bkl_count);
  4385. schedstat_inc(prev, sched_info.bkl_count);
  4386. }
  4387. #endif
  4388. }
  4389. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  4390. {
  4391. if (prev->state == TASK_RUNNING) {
  4392. u64 runtime = prev->se.sum_exec_runtime;
  4393. runtime -= prev->se.prev_sum_exec_runtime;
  4394. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  4395. /*
  4396. * In order to avoid avg_overlap growing stale when we are
  4397. * indeed overlapping and hence not getting put to sleep, grow
  4398. * the avg_overlap on preemption.
  4399. *
  4400. * We use the average preemption runtime because that
  4401. * correlates to the amount of cache footprint a task can
  4402. * build up.
  4403. */
  4404. update_avg(&prev->se.avg_overlap, runtime);
  4405. }
  4406. prev->sched_class->put_prev_task(rq, prev);
  4407. }
  4408. /*
  4409. * Pick up the highest-prio task:
  4410. */
  4411. static inline struct task_struct *
  4412. pick_next_task(struct rq *rq)
  4413. {
  4414. const struct sched_class *class;
  4415. struct task_struct *p;
  4416. /*
  4417. * Optimization: we know that if all tasks are in
  4418. * the fair class we can call that function directly:
  4419. */
  4420. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  4421. p = fair_sched_class.pick_next_task(rq);
  4422. if (likely(p))
  4423. return p;
  4424. }
  4425. class = sched_class_highest;
  4426. for ( ; ; ) {
  4427. p = class->pick_next_task(rq);
  4428. if (p)
  4429. return p;
  4430. /*
  4431. * Will never be NULL as the idle class always
  4432. * returns a non-NULL p:
  4433. */
  4434. class = class->next;
  4435. }
  4436. }
  4437. /*
  4438. * schedule() is the main scheduler function.
  4439. */
  4440. asmlinkage void __sched schedule(void)
  4441. {
  4442. struct task_struct *prev, *next;
  4443. unsigned long *switch_count;
  4444. struct rq *rq;
  4445. int cpu;
  4446. need_resched:
  4447. preempt_disable();
  4448. cpu = smp_processor_id();
  4449. rq = cpu_rq(cpu);
  4450. rcu_qsctr_inc(cpu);
  4451. prev = rq->curr;
  4452. switch_count = &prev->nivcsw;
  4453. release_kernel_lock(prev);
  4454. need_resched_nonpreemptible:
  4455. schedule_debug(prev);
  4456. if (sched_feat(HRTICK))
  4457. hrtick_clear(rq);
  4458. spin_lock_irq(&rq->lock);
  4459. update_rq_clock(rq);
  4460. clear_tsk_need_resched(prev);
  4461. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  4462. if (unlikely(signal_pending_state(prev->state, prev)))
  4463. prev->state = TASK_RUNNING;
  4464. else
  4465. deactivate_task(rq, prev, 1);
  4466. switch_count = &prev->nvcsw;
  4467. }
  4468. #ifdef CONFIG_SMP
  4469. if (prev->sched_class->pre_schedule)
  4470. prev->sched_class->pre_schedule(rq, prev);
  4471. #endif
  4472. if (unlikely(!rq->nr_running))
  4473. idle_balance(cpu, rq);
  4474. put_prev_task(rq, prev);
  4475. next = pick_next_task(rq);
  4476. if (likely(prev != next)) {
  4477. sched_info_switch(prev, next);
  4478. rq->nr_switches++;
  4479. rq->curr = next;
  4480. ++*switch_count;
  4481. context_switch(rq, prev, next); /* unlocks the rq */
  4482. /*
  4483. * the context switch might have flipped the stack from under
  4484. * us, hence refresh the local variables.
  4485. */
  4486. cpu = smp_processor_id();
  4487. rq = cpu_rq(cpu);
  4488. } else
  4489. spin_unlock_irq(&rq->lock);
  4490. if (unlikely(reacquire_kernel_lock(current) < 0))
  4491. goto need_resched_nonpreemptible;
  4492. preempt_enable_no_resched();
  4493. if (need_resched())
  4494. goto need_resched;
  4495. }
  4496. EXPORT_SYMBOL(schedule);
  4497. #ifdef CONFIG_SMP
  4498. /*
  4499. * Look out! "owner" is an entirely speculative pointer
  4500. * access and not reliable.
  4501. */
  4502. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  4503. {
  4504. unsigned int cpu;
  4505. struct rq *rq;
  4506. if (!sched_feat(OWNER_SPIN))
  4507. return 0;
  4508. #ifdef CONFIG_DEBUG_PAGEALLOC
  4509. /*
  4510. * Need to access the cpu field knowing that
  4511. * DEBUG_PAGEALLOC could have unmapped it if
  4512. * the mutex owner just released it and exited.
  4513. */
  4514. if (probe_kernel_address(&owner->cpu, cpu))
  4515. goto out;
  4516. #else
  4517. cpu = owner->cpu;
  4518. #endif
  4519. /*
  4520. * Even if the access succeeded (likely case),
  4521. * the cpu field may no longer be valid.
  4522. */
  4523. if (cpu >= nr_cpumask_bits)
  4524. goto out;
  4525. /*
  4526. * We need to validate that we can do a
  4527. * get_cpu() and that we have the percpu area.
  4528. */
  4529. if (!cpu_online(cpu))
  4530. goto out;
  4531. rq = cpu_rq(cpu);
  4532. for (;;) {
  4533. /*
  4534. * Owner changed, break to re-assess state.
  4535. */
  4536. if (lock->owner != owner)
  4537. break;
  4538. /*
  4539. * Is that owner really running on that cpu?
  4540. */
  4541. if (task_thread_info(rq->curr) != owner || need_resched())
  4542. return 0;
  4543. cpu_relax();
  4544. }
  4545. out:
  4546. return 1;
  4547. }
  4548. #endif
  4549. #ifdef CONFIG_PREEMPT
  4550. /*
  4551. * this is the entry point to schedule() from in-kernel preemption
  4552. * off of preempt_enable. Kernel preemptions off return from interrupt
  4553. * occur there and call schedule directly.
  4554. */
  4555. asmlinkage void __sched preempt_schedule(void)
  4556. {
  4557. struct thread_info *ti = current_thread_info();
  4558. /*
  4559. * If there is a non-zero preempt_count or interrupts are disabled,
  4560. * we do not want to preempt the current task. Just return..
  4561. */
  4562. if (likely(ti->preempt_count || irqs_disabled()))
  4563. return;
  4564. do {
  4565. add_preempt_count(PREEMPT_ACTIVE);
  4566. schedule();
  4567. sub_preempt_count(PREEMPT_ACTIVE);
  4568. /*
  4569. * Check again in case we missed a preemption opportunity
  4570. * between schedule and now.
  4571. */
  4572. barrier();
  4573. } while (need_resched());
  4574. }
  4575. EXPORT_SYMBOL(preempt_schedule);
  4576. /*
  4577. * this is the entry point to schedule() from kernel preemption
  4578. * off of irq context.
  4579. * Note, that this is called and return with irqs disabled. This will
  4580. * protect us against recursive calling from irq.
  4581. */
  4582. asmlinkage void __sched preempt_schedule_irq(void)
  4583. {
  4584. struct thread_info *ti = current_thread_info();
  4585. /* Catch callers which need to be fixed */
  4586. BUG_ON(ti->preempt_count || !irqs_disabled());
  4587. do {
  4588. add_preempt_count(PREEMPT_ACTIVE);
  4589. local_irq_enable();
  4590. schedule();
  4591. local_irq_disable();
  4592. sub_preempt_count(PREEMPT_ACTIVE);
  4593. /*
  4594. * Check again in case we missed a preemption opportunity
  4595. * between schedule and now.
  4596. */
  4597. barrier();
  4598. } while (need_resched());
  4599. }
  4600. #endif /* CONFIG_PREEMPT */
  4601. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  4602. void *key)
  4603. {
  4604. return try_to_wake_up(curr->private, mode, sync);
  4605. }
  4606. EXPORT_SYMBOL(default_wake_function);
  4607. /*
  4608. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4609. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4610. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4611. *
  4612. * There are circumstances in which we can try to wake a task which has already
  4613. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4614. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4615. */
  4616. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4617. int nr_exclusive, int sync, void *key)
  4618. {
  4619. wait_queue_t *curr, *next;
  4620. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4621. unsigned flags = curr->flags;
  4622. if (curr->func(curr, mode, sync, key) &&
  4623. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4624. break;
  4625. }
  4626. }
  4627. /**
  4628. * __wake_up - wake up threads blocked on a waitqueue.
  4629. * @q: the waitqueue
  4630. * @mode: which threads
  4631. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4632. * @key: is directly passed to the wakeup function
  4633. *
  4634. * It may be assumed that this function implies a write memory barrier before
  4635. * changing the task state if and only if any tasks are woken up.
  4636. */
  4637. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4638. int nr_exclusive, void *key)
  4639. {
  4640. unsigned long flags;
  4641. spin_lock_irqsave(&q->lock, flags);
  4642. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4643. spin_unlock_irqrestore(&q->lock, flags);
  4644. }
  4645. EXPORT_SYMBOL(__wake_up);
  4646. /*
  4647. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4648. */
  4649. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4650. {
  4651. __wake_up_common(q, mode, 1, 0, NULL);
  4652. }
  4653. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  4654. {
  4655. __wake_up_common(q, mode, 1, 0, key);
  4656. }
  4657. /**
  4658. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  4659. * @q: the waitqueue
  4660. * @mode: which threads
  4661. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4662. * @key: opaque value to be passed to wakeup targets
  4663. *
  4664. * The sync wakeup differs that the waker knows that it will schedule
  4665. * away soon, so while the target thread will be woken up, it will not
  4666. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4667. * with each other. This can prevent needless bouncing between CPUs.
  4668. *
  4669. * On UP it can prevent extra preemption.
  4670. *
  4671. * It may be assumed that this function implies a write memory barrier before
  4672. * changing the task state if and only if any tasks are woken up.
  4673. */
  4674. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  4675. int nr_exclusive, void *key)
  4676. {
  4677. unsigned long flags;
  4678. int sync = 1;
  4679. if (unlikely(!q))
  4680. return;
  4681. if (unlikely(!nr_exclusive))
  4682. sync = 0;
  4683. spin_lock_irqsave(&q->lock, flags);
  4684. __wake_up_common(q, mode, nr_exclusive, sync, key);
  4685. spin_unlock_irqrestore(&q->lock, flags);
  4686. }
  4687. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  4688. /*
  4689. * __wake_up_sync - see __wake_up_sync_key()
  4690. */
  4691. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4692. {
  4693. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  4694. }
  4695. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4696. /**
  4697. * complete: - signals a single thread waiting on this completion
  4698. * @x: holds the state of this particular completion
  4699. *
  4700. * This will wake up a single thread waiting on this completion. Threads will be
  4701. * awakened in the same order in which they were queued.
  4702. *
  4703. * See also complete_all(), wait_for_completion() and related routines.
  4704. *
  4705. * It may be assumed that this function implies a write memory barrier before
  4706. * changing the task state if and only if any tasks are woken up.
  4707. */
  4708. void complete(struct completion *x)
  4709. {
  4710. unsigned long flags;
  4711. spin_lock_irqsave(&x->wait.lock, flags);
  4712. x->done++;
  4713. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4714. spin_unlock_irqrestore(&x->wait.lock, flags);
  4715. }
  4716. EXPORT_SYMBOL(complete);
  4717. /**
  4718. * complete_all: - signals all threads waiting on this completion
  4719. * @x: holds the state of this particular completion
  4720. *
  4721. * This will wake up all threads waiting on this particular completion event.
  4722. *
  4723. * It may be assumed that this function implies a write memory barrier before
  4724. * changing the task state if and only if any tasks are woken up.
  4725. */
  4726. void complete_all(struct completion *x)
  4727. {
  4728. unsigned long flags;
  4729. spin_lock_irqsave(&x->wait.lock, flags);
  4730. x->done += UINT_MAX/2;
  4731. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4732. spin_unlock_irqrestore(&x->wait.lock, flags);
  4733. }
  4734. EXPORT_SYMBOL(complete_all);
  4735. static inline long __sched
  4736. do_wait_for_common(struct completion *x, long timeout, int state)
  4737. {
  4738. if (!x->done) {
  4739. DECLARE_WAITQUEUE(wait, current);
  4740. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4741. __add_wait_queue_tail(&x->wait, &wait);
  4742. do {
  4743. if (signal_pending_state(state, current)) {
  4744. timeout = -ERESTARTSYS;
  4745. break;
  4746. }
  4747. __set_current_state(state);
  4748. spin_unlock_irq(&x->wait.lock);
  4749. timeout = schedule_timeout(timeout);
  4750. spin_lock_irq(&x->wait.lock);
  4751. } while (!x->done && timeout);
  4752. __remove_wait_queue(&x->wait, &wait);
  4753. if (!x->done)
  4754. return timeout;
  4755. }
  4756. x->done--;
  4757. return timeout ?: 1;
  4758. }
  4759. static long __sched
  4760. wait_for_common(struct completion *x, long timeout, int state)
  4761. {
  4762. might_sleep();
  4763. spin_lock_irq(&x->wait.lock);
  4764. timeout = do_wait_for_common(x, timeout, state);
  4765. spin_unlock_irq(&x->wait.lock);
  4766. return timeout;
  4767. }
  4768. /**
  4769. * wait_for_completion: - waits for completion of a task
  4770. * @x: holds the state of this particular completion
  4771. *
  4772. * This waits to be signaled for completion of a specific task. It is NOT
  4773. * interruptible and there is no timeout.
  4774. *
  4775. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4776. * and interrupt capability. Also see complete().
  4777. */
  4778. void __sched wait_for_completion(struct completion *x)
  4779. {
  4780. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4781. }
  4782. EXPORT_SYMBOL(wait_for_completion);
  4783. /**
  4784. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4785. * @x: holds the state of this particular completion
  4786. * @timeout: timeout value in jiffies
  4787. *
  4788. * This waits for either a completion of a specific task to be signaled or for a
  4789. * specified timeout to expire. The timeout is in jiffies. It is not
  4790. * interruptible.
  4791. */
  4792. unsigned long __sched
  4793. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4794. {
  4795. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4796. }
  4797. EXPORT_SYMBOL(wait_for_completion_timeout);
  4798. /**
  4799. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4800. * @x: holds the state of this particular completion
  4801. *
  4802. * This waits for completion of a specific task to be signaled. It is
  4803. * interruptible.
  4804. */
  4805. int __sched wait_for_completion_interruptible(struct completion *x)
  4806. {
  4807. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4808. if (t == -ERESTARTSYS)
  4809. return t;
  4810. return 0;
  4811. }
  4812. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4813. /**
  4814. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4815. * @x: holds the state of this particular completion
  4816. * @timeout: timeout value in jiffies
  4817. *
  4818. * This waits for either a completion of a specific task to be signaled or for a
  4819. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4820. */
  4821. unsigned long __sched
  4822. wait_for_completion_interruptible_timeout(struct completion *x,
  4823. unsigned long timeout)
  4824. {
  4825. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4826. }
  4827. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4828. /**
  4829. * wait_for_completion_killable: - waits for completion of a task (killable)
  4830. * @x: holds the state of this particular completion
  4831. *
  4832. * This waits to be signaled for completion of a specific task. It can be
  4833. * interrupted by a kill signal.
  4834. */
  4835. int __sched wait_for_completion_killable(struct completion *x)
  4836. {
  4837. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4838. if (t == -ERESTARTSYS)
  4839. return t;
  4840. return 0;
  4841. }
  4842. EXPORT_SYMBOL(wait_for_completion_killable);
  4843. /**
  4844. * try_wait_for_completion - try to decrement a completion without blocking
  4845. * @x: completion structure
  4846. *
  4847. * Returns: 0 if a decrement cannot be done without blocking
  4848. * 1 if a decrement succeeded.
  4849. *
  4850. * If a completion is being used as a counting completion,
  4851. * attempt to decrement the counter without blocking. This
  4852. * enables us to avoid waiting if the resource the completion
  4853. * is protecting is not available.
  4854. */
  4855. bool try_wait_for_completion(struct completion *x)
  4856. {
  4857. int ret = 1;
  4858. spin_lock_irq(&x->wait.lock);
  4859. if (!x->done)
  4860. ret = 0;
  4861. else
  4862. x->done--;
  4863. spin_unlock_irq(&x->wait.lock);
  4864. return ret;
  4865. }
  4866. EXPORT_SYMBOL(try_wait_for_completion);
  4867. /**
  4868. * completion_done - Test to see if a completion has any waiters
  4869. * @x: completion structure
  4870. *
  4871. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4872. * 1 if there are no waiters.
  4873. *
  4874. */
  4875. bool completion_done(struct completion *x)
  4876. {
  4877. int ret = 1;
  4878. spin_lock_irq(&x->wait.lock);
  4879. if (!x->done)
  4880. ret = 0;
  4881. spin_unlock_irq(&x->wait.lock);
  4882. return ret;
  4883. }
  4884. EXPORT_SYMBOL(completion_done);
  4885. static long __sched
  4886. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4887. {
  4888. unsigned long flags;
  4889. wait_queue_t wait;
  4890. init_waitqueue_entry(&wait, current);
  4891. __set_current_state(state);
  4892. spin_lock_irqsave(&q->lock, flags);
  4893. __add_wait_queue(q, &wait);
  4894. spin_unlock(&q->lock);
  4895. timeout = schedule_timeout(timeout);
  4896. spin_lock_irq(&q->lock);
  4897. __remove_wait_queue(q, &wait);
  4898. spin_unlock_irqrestore(&q->lock, flags);
  4899. return timeout;
  4900. }
  4901. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4902. {
  4903. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4904. }
  4905. EXPORT_SYMBOL(interruptible_sleep_on);
  4906. long __sched
  4907. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4908. {
  4909. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4910. }
  4911. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4912. void __sched sleep_on(wait_queue_head_t *q)
  4913. {
  4914. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4915. }
  4916. EXPORT_SYMBOL(sleep_on);
  4917. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4918. {
  4919. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4920. }
  4921. EXPORT_SYMBOL(sleep_on_timeout);
  4922. #ifdef CONFIG_RT_MUTEXES
  4923. /*
  4924. * rt_mutex_setprio - set the current priority of a task
  4925. * @p: task
  4926. * @prio: prio value (kernel-internal form)
  4927. *
  4928. * This function changes the 'effective' priority of a task. It does
  4929. * not touch ->normal_prio like __setscheduler().
  4930. *
  4931. * Used by the rt_mutex code to implement priority inheritance logic.
  4932. */
  4933. void rt_mutex_setprio(struct task_struct *p, int prio)
  4934. {
  4935. unsigned long flags;
  4936. int oldprio, on_rq, running;
  4937. struct rq *rq;
  4938. const struct sched_class *prev_class = p->sched_class;
  4939. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4940. rq = task_rq_lock(p, &flags);
  4941. update_rq_clock(rq);
  4942. oldprio = p->prio;
  4943. on_rq = p->se.on_rq;
  4944. running = task_current(rq, p);
  4945. if (on_rq)
  4946. dequeue_task(rq, p, 0);
  4947. if (running)
  4948. p->sched_class->put_prev_task(rq, p);
  4949. if (rt_prio(prio))
  4950. p->sched_class = &rt_sched_class;
  4951. else
  4952. p->sched_class = &fair_sched_class;
  4953. p->prio = prio;
  4954. if (running)
  4955. p->sched_class->set_curr_task(rq);
  4956. if (on_rq) {
  4957. enqueue_task(rq, p, 0);
  4958. check_class_changed(rq, p, prev_class, oldprio, running);
  4959. }
  4960. task_rq_unlock(rq, &flags);
  4961. }
  4962. #endif
  4963. void set_user_nice(struct task_struct *p, long nice)
  4964. {
  4965. int old_prio, delta, on_rq;
  4966. unsigned long flags;
  4967. struct rq *rq;
  4968. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4969. return;
  4970. /*
  4971. * We have to be careful, if called from sys_setpriority(),
  4972. * the task might be in the middle of scheduling on another CPU.
  4973. */
  4974. rq = task_rq_lock(p, &flags);
  4975. update_rq_clock(rq);
  4976. /*
  4977. * The RT priorities are set via sched_setscheduler(), but we still
  4978. * allow the 'normal' nice value to be set - but as expected
  4979. * it wont have any effect on scheduling until the task is
  4980. * SCHED_FIFO/SCHED_RR:
  4981. */
  4982. if (task_has_rt_policy(p)) {
  4983. p->static_prio = NICE_TO_PRIO(nice);
  4984. goto out_unlock;
  4985. }
  4986. on_rq = p->se.on_rq;
  4987. if (on_rq)
  4988. dequeue_task(rq, p, 0);
  4989. p->static_prio = NICE_TO_PRIO(nice);
  4990. set_load_weight(p);
  4991. old_prio = p->prio;
  4992. p->prio = effective_prio(p);
  4993. delta = p->prio - old_prio;
  4994. if (on_rq) {
  4995. enqueue_task(rq, p, 0);
  4996. /*
  4997. * If the task increased its priority or is running and
  4998. * lowered its priority, then reschedule its CPU:
  4999. */
  5000. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  5001. resched_task(rq->curr);
  5002. }
  5003. out_unlock:
  5004. task_rq_unlock(rq, &flags);
  5005. }
  5006. EXPORT_SYMBOL(set_user_nice);
  5007. /*
  5008. * can_nice - check if a task can reduce its nice value
  5009. * @p: task
  5010. * @nice: nice value
  5011. */
  5012. int can_nice(const struct task_struct *p, const int nice)
  5013. {
  5014. /* convert nice value [19,-20] to rlimit style value [1,40] */
  5015. int nice_rlim = 20 - nice;
  5016. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  5017. capable(CAP_SYS_NICE));
  5018. }
  5019. #ifdef __ARCH_WANT_SYS_NICE
  5020. /*
  5021. * sys_nice - change the priority of the current process.
  5022. * @increment: priority increment
  5023. *
  5024. * sys_setpriority is a more generic, but much slower function that
  5025. * does similar things.
  5026. */
  5027. SYSCALL_DEFINE1(nice, int, increment)
  5028. {
  5029. long nice, retval;
  5030. /*
  5031. * Setpriority might change our priority at the same moment.
  5032. * We don't have to worry. Conceptually one call occurs first
  5033. * and we have a single winner.
  5034. */
  5035. if (increment < -40)
  5036. increment = -40;
  5037. if (increment > 40)
  5038. increment = 40;
  5039. nice = TASK_NICE(current) + increment;
  5040. if (nice < -20)
  5041. nice = -20;
  5042. if (nice > 19)
  5043. nice = 19;
  5044. if (increment < 0 && !can_nice(current, nice))
  5045. return -EPERM;
  5046. retval = security_task_setnice(current, nice);
  5047. if (retval)
  5048. return retval;
  5049. set_user_nice(current, nice);
  5050. return 0;
  5051. }
  5052. #endif
  5053. /**
  5054. * task_prio - return the priority value of a given task.
  5055. * @p: the task in question.
  5056. *
  5057. * This is the priority value as seen by users in /proc.
  5058. * RT tasks are offset by -200. Normal tasks are centered
  5059. * around 0, value goes from -16 to +15.
  5060. */
  5061. int task_prio(const struct task_struct *p)
  5062. {
  5063. return p->prio - MAX_RT_PRIO;
  5064. }
  5065. /**
  5066. * task_nice - return the nice value of a given task.
  5067. * @p: the task in question.
  5068. */
  5069. int task_nice(const struct task_struct *p)
  5070. {
  5071. return TASK_NICE(p);
  5072. }
  5073. EXPORT_SYMBOL(task_nice);
  5074. /**
  5075. * idle_cpu - is a given cpu idle currently?
  5076. * @cpu: the processor in question.
  5077. */
  5078. int idle_cpu(int cpu)
  5079. {
  5080. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  5081. }
  5082. /**
  5083. * idle_task - return the idle task for a given cpu.
  5084. * @cpu: the processor in question.
  5085. */
  5086. struct task_struct *idle_task(int cpu)
  5087. {
  5088. return cpu_rq(cpu)->idle;
  5089. }
  5090. /**
  5091. * find_process_by_pid - find a process with a matching PID value.
  5092. * @pid: the pid in question.
  5093. */
  5094. static struct task_struct *find_process_by_pid(pid_t pid)
  5095. {
  5096. return pid ? find_task_by_vpid(pid) : current;
  5097. }
  5098. /* Actually do priority change: must hold rq lock. */
  5099. static void
  5100. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  5101. {
  5102. BUG_ON(p->se.on_rq);
  5103. p->policy = policy;
  5104. switch (p->policy) {
  5105. case SCHED_NORMAL:
  5106. case SCHED_BATCH:
  5107. case SCHED_IDLE:
  5108. p->sched_class = &fair_sched_class;
  5109. break;
  5110. case SCHED_FIFO:
  5111. case SCHED_RR:
  5112. p->sched_class = &rt_sched_class;
  5113. break;
  5114. }
  5115. p->rt_priority = prio;
  5116. p->normal_prio = normal_prio(p);
  5117. /* we are holding p->pi_lock already */
  5118. p->prio = rt_mutex_getprio(p);
  5119. set_load_weight(p);
  5120. }
  5121. /*
  5122. * check the target process has a UID that matches the current process's
  5123. */
  5124. static bool check_same_owner(struct task_struct *p)
  5125. {
  5126. const struct cred *cred = current_cred(), *pcred;
  5127. bool match;
  5128. rcu_read_lock();
  5129. pcred = __task_cred(p);
  5130. match = (cred->euid == pcred->euid ||
  5131. cred->euid == pcred->uid);
  5132. rcu_read_unlock();
  5133. return match;
  5134. }
  5135. static int __sched_setscheduler(struct task_struct *p, int policy,
  5136. struct sched_param *param, bool user)
  5137. {
  5138. int retval, oldprio, oldpolicy = -1, on_rq, running;
  5139. unsigned long flags;
  5140. const struct sched_class *prev_class = p->sched_class;
  5141. struct rq *rq;
  5142. /* may grab non-irq protected spin_locks */
  5143. BUG_ON(in_interrupt());
  5144. recheck:
  5145. /* double check policy once rq lock held */
  5146. if (policy < 0)
  5147. policy = oldpolicy = p->policy;
  5148. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  5149. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  5150. policy != SCHED_IDLE)
  5151. return -EINVAL;
  5152. /*
  5153. * Valid priorities for SCHED_FIFO and SCHED_RR are
  5154. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  5155. * SCHED_BATCH and SCHED_IDLE is 0.
  5156. */
  5157. if (param->sched_priority < 0 ||
  5158. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  5159. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  5160. return -EINVAL;
  5161. if (rt_policy(policy) != (param->sched_priority != 0))
  5162. return -EINVAL;
  5163. /*
  5164. * Allow unprivileged RT tasks to decrease priority:
  5165. */
  5166. if (user && !capable(CAP_SYS_NICE)) {
  5167. if (rt_policy(policy)) {
  5168. unsigned long rlim_rtprio;
  5169. if (!lock_task_sighand(p, &flags))
  5170. return -ESRCH;
  5171. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  5172. unlock_task_sighand(p, &flags);
  5173. /* can't set/change the rt policy */
  5174. if (policy != p->policy && !rlim_rtprio)
  5175. return -EPERM;
  5176. /* can't increase priority */
  5177. if (param->sched_priority > p->rt_priority &&
  5178. param->sched_priority > rlim_rtprio)
  5179. return -EPERM;
  5180. }
  5181. /*
  5182. * Like positive nice levels, dont allow tasks to
  5183. * move out of SCHED_IDLE either:
  5184. */
  5185. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  5186. return -EPERM;
  5187. /* can't change other user's priorities */
  5188. if (!check_same_owner(p))
  5189. return -EPERM;
  5190. }
  5191. if (user) {
  5192. #ifdef CONFIG_RT_GROUP_SCHED
  5193. /*
  5194. * Do not allow realtime tasks into groups that have no runtime
  5195. * assigned.
  5196. */
  5197. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  5198. task_group(p)->rt_bandwidth.rt_runtime == 0)
  5199. return -EPERM;
  5200. #endif
  5201. retval = security_task_setscheduler(p, policy, param);
  5202. if (retval)
  5203. return retval;
  5204. }
  5205. /*
  5206. * make sure no PI-waiters arrive (or leave) while we are
  5207. * changing the priority of the task:
  5208. */
  5209. spin_lock_irqsave(&p->pi_lock, flags);
  5210. /*
  5211. * To be able to change p->policy safely, the apropriate
  5212. * runqueue lock must be held.
  5213. */
  5214. rq = __task_rq_lock(p);
  5215. /* recheck policy now with rq lock held */
  5216. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  5217. policy = oldpolicy = -1;
  5218. __task_rq_unlock(rq);
  5219. spin_unlock_irqrestore(&p->pi_lock, flags);
  5220. goto recheck;
  5221. }
  5222. update_rq_clock(rq);
  5223. on_rq = p->se.on_rq;
  5224. running = task_current(rq, p);
  5225. if (on_rq)
  5226. deactivate_task(rq, p, 0);
  5227. if (running)
  5228. p->sched_class->put_prev_task(rq, p);
  5229. oldprio = p->prio;
  5230. __setscheduler(rq, p, policy, param->sched_priority);
  5231. if (running)
  5232. p->sched_class->set_curr_task(rq);
  5233. if (on_rq) {
  5234. activate_task(rq, p, 0);
  5235. check_class_changed(rq, p, prev_class, oldprio, running);
  5236. }
  5237. __task_rq_unlock(rq);
  5238. spin_unlock_irqrestore(&p->pi_lock, flags);
  5239. rt_mutex_adjust_pi(p);
  5240. return 0;
  5241. }
  5242. /**
  5243. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  5244. * @p: the task in question.
  5245. * @policy: new policy.
  5246. * @param: structure containing the new RT priority.
  5247. *
  5248. * NOTE that the task may be already dead.
  5249. */
  5250. int sched_setscheduler(struct task_struct *p, int policy,
  5251. struct sched_param *param)
  5252. {
  5253. return __sched_setscheduler(p, policy, param, true);
  5254. }
  5255. EXPORT_SYMBOL_GPL(sched_setscheduler);
  5256. /**
  5257. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  5258. * @p: the task in question.
  5259. * @policy: new policy.
  5260. * @param: structure containing the new RT priority.
  5261. *
  5262. * Just like sched_setscheduler, only don't bother checking if the
  5263. * current context has permission. For example, this is needed in
  5264. * stop_machine(): we create temporary high priority worker threads,
  5265. * but our caller might not have that capability.
  5266. */
  5267. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  5268. struct sched_param *param)
  5269. {
  5270. return __sched_setscheduler(p, policy, param, false);
  5271. }
  5272. static int
  5273. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  5274. {
  5275. struct sched_param lparam;
  5276. struct task_struct *p;
  5277. int retval;
  5278. if (!param || pid < 0)
  5279. return -EINVAL;
  5280. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  5281. return -EFAULT;
  5282. rcu_read_lock();
  5283. retval = -ESRCH;
  5284. p = find_process_by_pid(pid);
  5285. if (p != NULL)
  5286. retval = sched_setscheduler(p, policy, &lparam);
  5287. rcu_read_unlock();
  5288. return retval;
  5289. }
  5290. /**
  5291. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  5292. * @pid: the pid in question.
  5293. * @policy: new policy.
  5294. * @param: structure containing the new RT priority.
  5295. */
  5296. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  5297. struct sched_param __user *, param)
  5298. {
  5299. /* negative values for policy are not valid */
  5300. if (policy < 0)
  5301. return -EINVAL;
  5302. return do_sched_setscheduler(pid, policy, param);
  5303. }
  5304. /**
  5305. * sys_sched_setparam - set/change the RT priority of a thread
  5306. * @pid: the pid in question.
  5307. * @param: structure containing the new RT priority.
  5308. */
  5309. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  5310. {
  5311. return do_sched_setscheduler(pid, -1, param);
  5312. }
  5313. /**
  5314. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  5315. * @pid: the pid in question.
  5316. */
  5317. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  5318. {
  5319. struct task_struct *p;
  5320. int retval;
  5321. if (pid < 0)
  5322. return -EINVAL;
  5323. retval = -ESRCH;
  5324. read_lock(&tasklist_lock);
  5325. p = find_process_by_pid(pid);
  5326. if (p) {
  5327. retval = security_task_getscheduler(p);
  5328. if (!retval)
  5329. retval = p->policy;
  5330. }
  5331. read_unlock(&tasklist_lock);
  5332. return retval;
  5333. }
  5334. /**
  5335. * sys_sched_getscheduler - get the RT priority of a thread
  5336. * @pid: the pid in question.
  5337. * @param: structure containing the RT priority.
  5338. */
  5339. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  5340. {
  5341. struct sched_param lp;
  5342. struct task_struct *p;
  5343. int retval;
  5344. if (!param || pid < 0)
  5345. return -EINVAL;
  5346. read_lock(&tasklist_lock);
  5347. p = find_process_by_pid(pid);
  5348. retval = -ESRCH;
  5349. if (!p)
  5350. goto out_unlock;
  5351. retval = security_task_getscheduler(p);
  5352. if (retval)
  5353. goto out_unlock;
  5354. lp.sched_priority = p->rt_priority;
  5355. read_unlock(&tasklist_lock);
  5356. /*
  5357. * This one might sleep, we cannot do it with a spinlock held ...
  5358. */
  5359. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  5360. return retval;
  5361. out_unlock:
  5362. read_unlock(&tasklist_lock);
  5363. return retval;
  5364. }
  5365. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  5366. {
  5367. cpumask_var_t cpus_allowed, new_mask;
  5368. struct task_struct *p;
  5369. int retval;
  5370. get_online_cpus();
  5371. read_lock(&tasklist_lock);
  5372. p = find_process_by_pid(pid);
  5373. if (!p) {
  5374. read_unlock(&tasklist_lock);
  5375. put_online_cpus();
  5376. return -ESRCH;
  5377. }
  5378. /*
  5379. * It is not safe to call set_cpus_allowed with the
  5380. * tasklist_lock held. We will bump the task_struct's
  5381. * usage count and then drop tasklist_lock.
  5382. */
  5383. get_task_struct(p);
  5384. read_unlock(&tasklist_lock);
  5385. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  5386. retval = -ENOMEM;
  5387. goto out_put_task;
  5388. }
  5389. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  5390. retval = -ENOMEM;
  5391. goto out_free_cpus_allowed;
  5392. }
  5393. retval = -EPERM;
  5394. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  5395. goto out_unlock;
  5396. retval = security_task_setscheduler(p, 0, NULL);
  5397. if (retval)
  5398. goto out_unlock;
  5399. cpuset_cpus_allowed(p, cpus_allowed);
  5400. cpumask_and(new_mask, in_mask, cpus_allowed);
  5401. again:
  5402. retval = set_cpus_allowed_ptr(p, new_mask);
  5403. if (!retval) {
  5404. cpuset_cpus_allowed(p, cpus_allowed);
  5405. if (!cpumask_subset(new_mask, cpus_allowed)) {
  5406. /*
  5407. * We must have raced with a concurrent cpuset
  5408. * update. Just reset the cpus_allowed to the
  5409. * cpuset's cpus_allowed
  5410. */
  5411. cpumask_copy(new_mask, cpus_allowed);
  5412. goto again;
  5413. }
  5414. }
  5415. out_unlock:
  5416. free_cpumask_var(new_mask);
  5417. out_free_cpus_allowed:
  5418. free_cpumask_var(cpus_allowed);
  5419. out_put_task:
  5420. put_task_struct(p);
  5421. put_online_cpus();
  5422. return retval;
  5423. }
  5424. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  5425. struct cpumask *new_mask)
  5426. {
  5427. if (len < cpumask_size())
  5428. cpumask_clear(new_mask);
  5429. else if (len > cpumask_size())
  5430. len = cpumask_size();
  5431. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  5432. }
  5433. /**
  5434. * sys_sched_setaffinity - set the cpu affinity of a process
  5435. * @pid: pid of the process
  5436. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5437. * @user_mask_ptr: user-space pointer to the new cpu mask
  5438. */
  5439. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  5440. unsigned long __user *, user_mask_ptr)
  5441. {
  5442. cpumask_var_t new_mask;
  5443. int retval;
  5444. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  5445. return -ENOMEM;
  5446. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  5447. if (retval == 0)
  5448. retval = sched_setaffinity(pid, new_mask);
  5449. free_cpumask_var(new_mask);
  5450. return retval;
  5451. }
  5452. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  5453. {
  5454. struct task_struct *p;
  5455. int retval;
  5456. get_online_cpus();
  5457. read_lock(&tasklist_lock);
  5458. retval = -ESRCH;
  5459. p = find_process_by_pid(pid);
  5460. if (!p)
  5461. goto out_unlock;
  5462. retval = security_task_getscheduler(p);
  5463. if (retval)
  5464. goto out_unlock;
  5465. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  5466. out_unlock:
  5467. read_unlock(&tasklist_lock);
  5468. put_online_cpus();
  5469. return retval;
  5470. }
  5471. /**
  5472. * sys_sched_getaffinity - get the cpu affinity of a process
  5473. * @pid: pid of the process
  5474. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5475. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  5476. */
  5477. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  5478. unsigned long __user *, user_mask_ptr)
  5479. {
  5480. int ret;
  5481. cpumask_var_t mask;
  5482. if (len < cpumask_size())
  5483. return -EINVAL;
  5484. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  5485. return -ENOMEM;
  5486. ret = sched_getaffinity(pid, mask);
  5487. if (ret == 0) {
  5488. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  5489. ret = -EFAULT;
  5490. else
  5491. ret = cpumask_size();
  5492. }
  5493. free_cpumask_var(mask);
  5494. return ret;
  5495. }
  5496. /**
  5497. * sys_sched_yield - yield the current processor to other threads.
  5498. *
  5499. * This function yields the current CPU to other tasks. If there are no
  5500. * other threads running on this CPU then this function will return.
  5501. */
  5502. SYSCALL_DEFINE0(sched_yield)
  5503. {
  5504. struct rq *rq = this_rq_lock();
  5505. schedstat_inc(rq, yld_count);
  5506. current->sched_class->yield_task(rq);
  5507. /*
  5508. * Since we are going to call schedule() anyway, there's
  5509. * no need to preempt or enable interrupts:
  5510. */
  5511. __release(rq->lock);
  5512. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  5513. _raw_spin_unlock(&rq->lock);
  5514. preempt_enable_no_resched();
  5515. schedule();
  5516. return 0;
  5517. }
  5518. static void __cond_resched(void)
  5519. {
  5520. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5521. __might_sleep(__FILE__, __LINE__);
  5522. #endif
  5523. /*
  5524. * The BKS might be reacquired before we have dropped
  5525. * PREEMPT_ACTIVE, which could trigger a second
  5526. * cond_resched() call.
  5527. */
  5528. do {
  5529. add_preempt_count(PREEMPT_ACTIVE);
  5530. schedule();
  5531. sub_preempt_count(PREEMPT_ACTIVE);
  5532. } while (need_resched());
  5533. }
  5534. int __sched _cond_resched(void)
  5535. {
  5536. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  5537. system_state == SYSTEM_RUNNING) {
  5538. __cond_resched();
  5539. return 1;
  5540. }
  5541. return 0;
  5542. }
  5543. EXPORT_SYMBOL(_cond_resched);
  5544. /*
  5545. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  5546. * call schedule, and on return reacquire the lock.
  5547. *
  5548. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  5549. * operations here to prevent schedule() from being called twice (once via
  5550. * spin_unlock(), once by hand).
  5551. */
  5552. int cond_resched_lock(spinlock_t *lock)
  5553. {
  5554. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  5555. int ret = 0;
  5556. if (spin_needbreak(lock) || resched) {
  5557. spin_unlock(lock);
  5558. if (resched && need_resched())
  5559. __cond_resched();
  5560. else
  5561. cpu_relax();
  5562. ret = 1;
  5563. spin_lock(lock);
  5564. }
  5565. return ret;
  5566. }
  5567. EXPORT_SYMBOL(cond_resched_lock);
  5568. int __sched cond_resched_softirq(void)
  5569. {
  5570. BUG_ON(!in_softirq());
  5571. if (need_resched() && system_state == SYSTEM_RUNNING) {
  5572. local_bh_enable();
  5573. __cond_resched();
  5574. local_bh_disable();
  5575. return 1;
  5576. }
  5577. return 0;
  5578. }
  5579. EXPORT_SYMBOL(cond_resched_softirq);
  5580. /**
  5581. * yield - yield the current processor to other threads.
  5582. *
  5583. * This is a shortcut for kernel-space yielding - it marks the
  5584. * thread runnable and calls sys_sched_yield().
  5585. */
  5586. void __sched yield(void)
  5587. {
  5588. set_current_state(TASK_RUNNING);
  5589. sys_sched_yield();
  5590. }
  5591. EXPORT_SYMBOL(yield);
  5592. /*
  5593. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5594. * that process accounting knows that this is a task in IO wait state.
  5595. *
  5596. * But don't do that if it is a deliberate, throttling IO wait (this task
  5597. * has set its backing_dev_info: the queue against which it should throttle)
  5598. */
  5599. void __sched io_schedule(void)
  5600. {
  5601. struct rq *rq = &__raw_get_cpu_var(runqueues);
  5602. delayacct_blkio_start();
  5603. atomic_inc(&rq->nr_iowait);
  5604. schedule();
  5605. atomic_dec(&rq->nr_iowait);
  5606. delayacct_blkio_end();
  5607. }
  5608. EXPORT_SYMBOL(io_schedule);
  5609. long __sched io_schedule_timeout(long timeout)
  5610. {
  5611. struct rq *rq = &__raw_get_cpu_var(runqueues);
  5612. long ret;
  5613. delayacct_blkio_start();
  5614. atomic_inc(&rq->nr_iowait);
  5615. ret = schedule_timeout(timeout);
  5616. atomic_dec(&rq->nr_iowait);
  5617. delayacct_blkio_end();
  5618. return ret;
  5619. }
  5620. /**
  5621. * sys_sched_get_priority_max - return maximum RT priority.
  5622. * @policy: scheduling class.
  5623. *
  5624. * this syscall returns the maximum rt_priority that can be used
  5625. * by a given scheduling class.
  5626. */
  5627. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5628. {
  5629. int ret = -EINVAL;
  5630. switch (policy) {
  5631. case SCHED_FIFO:
  5632. case SCHED_RR:
  5633. ret = MAX_USER_RT_PRIO-1;
  5634. break;
  5635. case SCHED_NORMAL:
  5636. case SCHED_BATCH:
  5637. case SCHED_IDLE:
  5638. ret = 0;
  5639. break;
  5640. }
  5641. return ret;
  5642. }
  5643. /**
  5644. * sys_sched_get_priority_min - return minimum RT priority.
  5645. * @policy: scheduling class.
  5646. *
  5647. * this syscall returns the minimum rt_priority that can be used
  5648. * by a given scheduling class.
  5649. */
  5650. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5651. {
  5652. int ret = -EINVAL;
  5653. switch (policy) {
  5654. case SCHED_FIFO:
  5655. case SCHED_RR:
  5656. ret = 1;
  5657. break;
  5658. case SCHED_NORMAL:
  5659. case SCHED_BATCH:
  5660. case SCHED_IDLE:
  5661. ret = 0;
  5662. }
  5663. return ret;
  5664. }
  5665. /**
  5666. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5667. * @pid: pid of the process.
  5668. * @interval: userspace pointer to the timeslice value.
  5669. *
  5670. * this syscall writes the default timeslice value of a given process
  5671. * into the user-space timespec buffer. A value of '0' means infinity.
  5672. */
  5673. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5674. struct timespec __user *, interval)
  5675. {
  5676. struct task_struct *p;
  5677. unsigned int time_slice;
  5678. int retval;
  5679. struct timespec t;
  5680. if (pid < 0)
  5681. return -EINVAL;
  5682. retval = -ESRCH;
  5683. read_lock(&tasklist_lock);
  5684. p = find_process_by_pid(pid);
  5685. if (!p)
  5686. goto out_unlock;
  5687. retval = security_task_getscheduler(p);
  5688. if (retval)
  5689. goto out_unlock;
  5690. /*
  5691. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  5692. * tasks that are on an otherwise idle runqueue:
  5693. */
  5694. time_slice = 0;
  5695. if (p->policy == SCHED_RR) {
  5696. time_slice = DEF_TIMESLICE;
  5697. } else if (p->policy != SCHED_FIFO) {
  5698. struct sched_entity *se = &p->se;
  5699. unsigned long flags;
  5700. struct rq *rq;
  5701. rq = task_rq_lock(p, &flags);
  5702. if (rq->cfs.load.weight)
  5703. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  5704. task_rq_unlock(rq, &flags);
  5705. }
  5706. read_unlock(&tasklist_lock);
  5707. jiffies_to_timespec(time_slice, &t);
  5708. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5709. return retval;
  5710. out_unlock:
  5711. read_unlock(&tasklist_lock);
  5712. return retval;
  5713. }
  5714. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5715. void sched_show_task(struct task_struct *p)
  5716. {
  5717. unsigned long free = 0;
  5718. unsigned state;
  5719. state = p->state ? __ffs(p->state) + 1 : 0;
  5720. printk(KERN_INFO "%-13.13s %c", p->comm,
  5721. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5722. #if BITS_PER_LONG == 32
  5723. if (state == TASK_RUNNING)
  5724. printk(KERN_CONT " running ");
  5725. else
  5726. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5727. #else
  5728. if (state == TASK_RUNNING)
  5729. printk(KERN_CONT " running task ");
  5730. else
  5731. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5732. #endif
  5733. #ifdef CONFIG_DEBUG_STACK_USAGE
  5734. free = stack_not_used(p);
  5735. #endif
  5736. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  5737. task_pid_nr(p), task_pid_nr(p->real_parent),
  5738. (unsigned long)task_thread_info(p)->flags);
  5739. show_stack(p, NULL);
  5740. }
  5741. void show_state_filter(unsigned long state_filter)
  5742. {
  5743. struct task_struct *g, *p;
  5744. #if BITS_PER_LONG == 32
  5745. printk(KERN_INFO
  5746. " task PC stack pid father\n");
  5747. #else
  5748. printk(KERN_INFO
  5749. " task PC stack pid father\n");
  5750. #endif
  5751. read_lock(&tasklist_lock);
  5752. do_each_thread(g, p) {
  5753. /*
  5754. * reset the NMI-timeout, listing all files on a slow
  5755. * console might take alot of time:
  5756. */
  5757. touch_nmi_watchdog();
  5758. if (!state_filter || (p->state & state_filter))
  5759. sched_show_task(p);
  5760. } while_each_thread(g, p);
  5761. touch_all_softlockup_watchdogs();
  5762. #ifdef CONFIG_SCHED_DEBUG
  5763. sysrq_sched_debug_show();
  5764. #endif
  5765. read_unlock(&tasklist_lock);
  5766. /*
  5767. * Only show locks if all tasks are dumped:
  5768. */
  5769. if (state_filter == -1)
  5770. debug_show_all_locks();
  5771. }
  5772. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5773. {
  5774. idle->sched_class = &idle_sched_class;
  5775. }
  5776. /**
  5777. * init_idle - set up an idle thread for a given CPU
  5778. * @idle: task in question
  5779. * @cpu: cpu the idle task belongs to
  5780. *
  5781. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5782. * flag, to make booting more robust.
  5783. */
  5784. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5785. {
  5786. struct rq *rq = cpu_rq(cpu);
  5787. unsigned long flags;
  5788. spin_lock_irqsave(&rq->lock, flags);
  5789. __sched_fork(idle);
  5790. idle->se.exec_start = sched_clock();
  5791. idle->prio = idle->normal_prio = MAX_PRIO;
  5792. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5793. __set_task_cpu(idle, cpu);
  5794. rq->curr = rq->idle = idle;
  5795. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5796. idle->oncpu = 1;
  5797. #endif
  5798. spin_unlock_irqrestore(&rq->lock, flags);
  5799. /* Set the preempt count _outside_ the spinlocks! */
  5800. #if defined(CONFIG_PREEMPT)
  5801. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5802. #else
  5803. task_thread_info(idle)->preempt_count = 0;
  5804. #endif
  5805. /*
  5806. * The idle tasks have their own, simple scheduling class:
  5807. */
  5808. idle->sched_class = &idle_sched_class;
  5809. ftrace_graph_init_task(idle);
  5810. }
  5811. /*
  5812. * In a system that switches off the HZ timer nohz_cpu_mask
  5813. * indicates which cpus entered this state. This is used
  5814. * in the rcu update to wait only for active cpus. For system
  5815. * which do not switch off the HZ timer nohz_cpu_mask should
  5816. * always be CPU_BITS_NONE.
  5817. */
  5818. cpumask_var_t nohz_cpu_mask;
  5819. /*
  5820. * Increase the granularity value when there are more CPUs,
  5821. * because with more CPUs the 'effective latency' as visible
  5822. * to users decreases. But the relationship is not linear,
  5823. * so pick a second-best guess by going with the log2 of the
  5824. * number of CPUs.
  5825. *
  5826. * This idea comes from the SD scheduler of Con Kolivas:
  5827. */
  5828. static inline void sched_init_granularity(void)
  5829. {
  5830. unsigned int factor = 1 + ilog2(num_online_cpus());
  5831. const unsigned long limit = 200000000;
  5832. sysctl_sched_min_granularity *= factor;
  5833. if (sysctl_sched_min_granularity > limit)
  5834. sysctl_sched_min_granularity = limit;
  5835. sysctl_sched_latency *= factor;
  5836. if (sysctl_sched_latency > limit)
  5837. sysctl_sched_latency = limit;
  5838. sysctl_sched_wakeup_granularity *= factor;
  5839. sysctl_sched_shares_ratelimit *= factor;
  5840. }
  5841. #ifdef CONFIG_SMP
  5842. /*
  5843. * This is how migration works:
  5844. *
  5845. * 1) we queue a struct migration_req structure in the source CPU's
  5846. * runqueue and wake up that CPU's migration thread.
  5847. * 2) we down() the locked semaphore => thread blocks.
  5848. * 3) migration thread wakes up (implicitly it forces the migrated
  5849. * thread off the CPU)
  5850. * 4) it gets the migration request and checks whether the migrated
  5851. * task is still in the wrong runqueue.
  5852. * 5) if it's in the wrong runqueue then the migration thread removes
  5853. * it and puts it into the right queue.
  5854. * 6) migration thread up()s the semaphore.
  5855. * 7) we wake up and the migration is done.
  5856. */
  5857. /*
  5858. * Change a given task's CPU affinity. Migrate the thread to a
  5859. * proper CPU and schedule it away if the CPU it's executing on
  5860. * is removed from the allowed bitmask.
  5861. *
  5862. * NOTE: the caller must have a valid reference to the task, the
  5863. * task must not exit() & deallocate itself prematurely. The
  5864. * call is not atomic; no spinlocks may be held.
  5865. */
  5866. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5867. {
  5868. struct migration_req req;
  5869. unsigned long flags;
  5870. struct rq *rq;
  5871. int ret = 0;
  5872. rq = task_rq_lock(p, &flags);
  5873. if (!cpumask_intersects(new_mask, cpu_online_mask)) {
  5874. ret = -EINVAL;
  5875. goto out;
  5876. }
  5877. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5878. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  5879. ret = -EINVAL;
  5880. goto out;
  5881. }
  5882. if (p->sched_class->set_cpus_allowed)
  5883. p->sched_class->set_cpus_allowed(p, new_mask);
  5884. else {
  5885. cpumask_copy(&p->cpus_allowed, new_mask);
  5886. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5887. }
  5888. /* Can the task run on the task's current CPU? If so, we're done */
  5889. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5890. goto out;
  5891. if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
  5892. /* Need help from migration thread: drop lock and wait. */
  5893. task_rq_unlock(rq, &flags);
  5894. wake_up_process(rq->migration_thread);
  5895. wait_for_completion(&req.done);
  5896. tlb_migrate_finish(p->mm);
  5897. return 0;
  5898. }
  5899. out:
  5900. task_rq_unlock(rq, &flags);
  5901. return ret;
  5902. }
  5903. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5904. /*
  5905. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5906. * this because either it can't run here any more (set_cpus_allowed()
  5907. * away from this CPU, or CPU going down), or because we're
  5908. * attempting to rebalance this task on exec (sched_exec).
  5909. *
  5910. * So we race with normal scheduler movements, but that's OK, as long
  5911. * as the task is no longer on this CPU.
  5912. *
  5913. * Returns non-zero if task was successfully migrated.
  5914. */
  5915. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5916. {
  5917. struct rq *rq_dest, *rq_src;
  5918. int ret = 0, on_rq;
  5919. if (unlikely(!cpu_active(dest_cpu)))
  5920. return ret;
  5921. rq_src = cpu_rq(src_cpu);
  5922. rq_dest = cpu_rq(dest_cpu);
  5923. double_rq_lock(rq_src, rq_dest);
  5924. /* Already moved. */
  5925. if (task_cpu(p) != src_cpu)
  5926. goto done;
  5927. /* Affinity changed (again). */
  5928. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5929. goto fail;
  5930. on_rq = p->se.on_rq;
  5931. if (on_rq)
  5932. deactivate_task(rq_src, p, 0);
  5933. set_task_cpu(p, dest_cpu);
  5934. if (on_rq) {
  5935. activate_task(rq_dest, p, 0);
  5936. check_preempt_curr(rq_dest, p, 0);
  5937. }
  5938. done:
  5939. ret = 1;
  5940. fail:
  5941. double_rq_unlock(rq_src, rq_dest);
  5942. return ret;
  5943. }
  5944. /*
  5945. * migration_thread - this is a highprio system thread that performs
  5946. * thread migration by bumping thread off CPU then 'pushing' onto
  5947. * another runqueue.
  5948. */
  5949. static int migration_thread(void *data)
  5950. {
  5951. int cpu = (long)data;
  5952. struct rq *rq;
  5953. rq = cpu_rq(cpu);
  5954. BUG_ON(rq->migration_thread != current);
  5955. set_current_state(TASK_INTERRUPTIBLE);
  5956. while (!kthread_should_stop()) {
  5957. struct migration_req *req;
  5958. struct list_head *head;
  5959. spin_lock_irq(&rq->lock);
  5960. if (cpu_is_offline(cpu)) {
  5961. spin_unlock_irq(&rq->lock);
  5962. goto wait_to_die;
  5963. }
  5964. if (rq->active_balance) {
  5965. active_load_balance(rq, cpu);
  5966. rq->active_balance = 0;
  5967. }
  5968. head = &rq->migration_queue;
  5969. if (list_empty(head)) {
  5970. spin_unlock_irq(&rq->lock);
  5971. schedule();
  5972. set_current_state(TASK_INTERRUPTIBLE);
  5973. continue;
  5974. }
  5975. req = list_entry(head->next, struct migration_req, list);
  5976. list_del_init(head->next);
  5977. spin_unlock(&rq->lock);
  5978. __migrate_task(req->task, cpu, req->dest_cpu);
  5979. local_irq_enable();
  5980. complete(&req->done);
  5981. }
  5982. __set_current_state(TASK_RUNNING);
  5983. return 0;
  5984. wait_to_die:
  5985. /* Wait for kthread_stop */
  5986. set_current_state(TASK_INTERRUPTIBLE);
  5987. while (!kthread_should_stop()) {
  5988. schedule();
  5989. set_current_state(TASK_INTERRUPTIBLE);
  5990. }
  5991. __set_current_state(TASK_RUNNING);
  5992. return 0;
  5993. }
  5994. #ifdef CONFIG_HOTPLUG_CPU
  5995. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5996. {
  5997. int ret;
  5998. local_irq_disable();
  5999. ret = __migrate_task(p, src_cpu, dest_cpu);
  6000. local_irq_enable();
  6001. return ret;
  6002. }
  6003. /*
  6004. * Figure out where task on dead CPU should go, use force if necessary.
  6005. */
  6006. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  6007. {
  6008. int dest_cpu;
  6009. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
  6010. again:
  6011. /* Look for allowed, online CPU in same node. */
  6012. for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
  6013. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6014. goto move;
  6015. /* Any allowed, online CPU? */
  6016. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
  6017. if (dest_cpu < nr_cpu_ids)
  6018. goto move;
  6019. /* No more Mr. Nice Guy. */
  6020. if (dest_cpu >= nr_cpu_ids) {
  6021. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  6022. dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
  6023. /*
  6024. * Don't tell them about moving exiting tasks or
  6025. * kernel threads (both mm NULL), since they never
  6026. * leave kernel.
  6027. */
  6028. if (p->mm && printk_ratelimit()) {
  6029. printk(KERN_INFO "process %d (%s) no "
  6030. "longer affine to cpu%d\n",
  6031. task_pid_nr(p), p->comm, dead_cpu);
  6032. }
  6033. }
  6034. move:
  6035. /* It can have affinity changed while we were choosing. */
  6036. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  6037. goto again;
  6038. }
  6039. /*
  6040. * While a dead CPU has no uninterruptible tasks queued at this point,
  6041. * it might still have a nonzero ->nr_uninterruptible counter, because
  6042. * for performance reasons the counter is not stricly tracking tasks to
  6043. * their home CPUs. So we just add the counter to another CPU's counter,
  6044. * to keep the global sum constant after CPU-down:
  6045. */
  6046. static void migrate_nr_uninterruptible(struct rq *rq_src)
  6047. {
  6048. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
  6049. unsigned long flags;
  6050. local_irq_save(flags);
  6051. double_rq_lock(rq_src, rq_dest);
  6052. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  6053. rq_src->nr_uninterruptible = 0;
  6054. double_rq_unlock(rq_src, rq_dest);
  6055. local_irq_restore(flags);
  6056. }
  6057. /* Run through task list and migrate tasks from the dead cpu. */
  6058. static void migrate_live_tasks(int src_cpu)
  6059. {
  6060. struct task_struct *p, *t;
  6061. read_lock(&tasklist_lock);
  6062. do_each_thread(t, p) {
  6063. if (p == current)
  6064. continue;
  6065. if (task_cpu(p) == src_cpu)
  6066. move_task_off_dead_cpu(src_cpu, p);
  6067. } while_each_thread(t, p);
  6068. read_unlock(&tasklist_lock);
  6069. }
  6070. /*
  6071. * Schedules idle task to be the next runnable task on current CPU.
  6072. * It does so by boosting its priority to highest possible.
  6073. * Used by CPU offline code.
  6074. */
  6075. void sched_idle_next(void)
  6076. {
  6077. int this_cpu = smp_processor_id();
  6078. struct rq *rq = cpu_rq(this_cpu);
  6079. struct task_struct *p = rq->idle;
  6080. unsigned long flags;
  6081. /* cpu has to be offline */
  6082. BUG_ON(cpu_online(this_cpu));
  6083. /*
  6084. * Strictly not necessary since rest of the CPUs are stopped by now
  6085. * and interrupts disabled on the current cpu.
  6086. */
  6087. spin_lock_irqsave(&rq->lock, flags);
  6088. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6089. update_rq_clock(rq);
  6090. activate_task(rq, p, 0);
  6091. spin_unlock_irqrestore(&rq->lock, flags);
  6092. }
  6093. /*
  6094. * Ensures that the idle task is using init_mm right before its cpu goes
  6095. * offline.
  6096. */
  6097. void idle_task_exit(void)
  6098. {
  6099. struct mm_struct *mm = current->active_mm;
  6100. BUG_ON(cpu_online(smp_processor_id()));
  6101. if (mm != &init_mm)
  6102. switch_mm(mm, &init_mm, current);
  6103. mmdrop(mm);
  6104. }
  6105. /* called under rq->lock with disabled interrupts */
  6106. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  6107. {
  6108. struct rq *rq = cpu_rq(dead_cpu);
  6109. /* Must be exiting, otherwise would be on tasklist. */
  6110. BUG_ON(!p->exit_state);
  6111. /* Cannot have done final schedule yet: would have vanished. */
  6112. BUG_ON(p->state == TASK_DEAD);
  6113. get_task_struct(p);
  6114. /*
  6115. * Drop lock around migration; if someone else moves it,
  6116. * that's OK. No task can be added to this CPU, so iteration is
  6117. * fine.
  6118. */
  6119. spin_unlock_irq(&rq->lock);
  6120. move_task_off_dead_cpu(dead_cpu, p);
  6121. spin_lock_irq(&rq->lock);
  6122. put_task_struct(p);
  6123. }
  6124. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  6125. static void migrate_dead_tasks(unsigned int dead_cpu)
  6126. {
  6127. struct rq *rq = cpu_rq(dead_cpu);
  6128. struct task_struct *next;
  6129. for ( ; ; ) {
  6130. if (!rq->nr_running)
  6131. break;
  6132. update_rq_clock(rq);
  6133. next = pick_next_task(rq);
  6134. if (!next)
  6135. break;
  6136. next->sched_class->put_prev_task(rq, next);
  6137. migrate_dead(dead_cpu, next);
  6138. }
  6139. }
  6140. /*
  6141. * remove the tasks which were accounted by rq from calc_load_tasks.
  6142. */
  6143. static void calc_global_load_remove(struct rq *rq)
  6144. {
  6145. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  6146. }
  6147. #endif /* CONFIG_HOTPLUG_CPU */
  6148. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  6149. static struct ctl_table sd_ctl_dir[] = {
  6150. {
  6151. .procname = "sched_domain",
  6152. .mode = 0555,
  6153. },
  6154. {0, },
  6155. };
  6156. static struct ctl_table sd_ctl_root[] = {
  6157. {
  6158. .ctl_name = CTL_KERN,
  6159. .procname = "kernel",
  6160. .mode = 0555,
  6161. .child = sd_ctl_dir,
  6162. },
  6163. {0, },
  6164. };
  6165. static struct ctl_table *sd_alloc_ctl_entry(int n)
  6166. {
  6167. struct ctl_table *entry =
  6168. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  6169. return entry;
  6170. }
  6171. static void sd_free_ctl_entry(struct ctl_table **tablep)
  6172. {
  6173. struct ctl_table *entry;
  6174. /*
  6175. * In the intermediate directories, both the child directory and
  6176. * procname are dynamically allocated and could fail but the mode
  6177. * will always be set. In the lowest directory the names are
  6178. * static strings and all have proc handlers.
  6179. */
  6180. for (entry = *tablep; entry->mode; entry++) {
  6181. if (entry->child)
  6182. sd_free_ctl_entry(&entry->child);
  6183. if (entry->proc_handler == NULL)
  6184. kfree(entry->procname);
  6185. }
  6186. kfree(*tablep);
  6187. *tablep = NULL;
  6188. }
  6189. static void
  6190. set_table_entry(struct ctl_table *entry,
  6191. const char *procname, void *data, int maxlen,
  6192. mode_t mode, proc_handler *proc_handler)
  6193. {
  6194. entry->procname = procname;
  6195. entry->data = data;
  6196. entry->maxlen = maxlen;
  6197. entry->mode = mode;
  6198. entry->proc_handler = proc_handler;
  6199. }
  6200. static struct ctl_table *
  6201. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  6202. {
  6203. struct ctl_table *table = sd_alloc_ctl_entry(13);
  6204. if (table == NULL)
  6205. return NULL;
  6206. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  6207. sizeof(long), 0644, proc_doulongvec_minmax);
  6208. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  6209. sizeof(long), 0644, proc_doulongvec_minmax);
  6210. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  6211. sizeof(int), 0644, proc_dointvec_minmax);
  6212. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  6213. sizeof(int), 0644, proc_dointvec_minmax);
  6214. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  6215. sizeof(int), 0644, proc_dointvec_minmax);
  6216. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  6217. sizeof(int), 0644, proc_dointvec_minmax);
  6218. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  6219. sizeof(int), 0644, proc_dointvec_minmax);
  6220. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  6221. sizeof(int), 0644, proc_dointvec_minmax);
  6222. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  6223. sizeof(int), 0644, proc_dointvec_minmax);
  6224. set_table_entry(&table[9], "cache_nice_tries",
  6225. &sd->cache_nice_tries,
  6226. sizeof(int), 0644, proc_dointvec_minmax);
  6227. set_table_entry(&table[10], "flags", &sd->flags,
  6228. sizeof(int), 0644, proc_dointvec_minmax);
  6229. set_table_entry(&table[11], "name", sd->name,
  6230. CORENAME_MAX_SIZE, 0444, proc_dostring);
  6231. /* &table[12] is terminator */
  6232. return table;
  6233. }
  6234. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  6235. {
  6236. struct ctl_table *entry, *table;
  6237. struct sched_domain *sd;
  6238. int domain_num = 0, i;
  6239. char buf[32];
  6240. for_each_domain(cpu, sd)
  6241. domain_num++;
  6242. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  6243. if (table == NULL)
  6244. return NULL;
  6245. i = 0;
  6246. for_each_domain(cpu, sd) {
  6247. snprintf(buf, 32, "domain%d", i);
  6248. entry->procname = kstrdup(buf, GFP_KERNEL);
  6249. entry->mode = 0555;
  6250. entry->child = sd_alloc_ctl_domain_table(sd);
  6251. entry++;
  6252. i++;
  6253. }
  6254. return table;
  6255. }
  6256. static struct ctl_table_header *sd_sysctl_header;
  6257. static void register_sched_domain_sysctl(void)
  6258. {
  6259. int i, cpu_num = num_online_cpus();
  6260. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  6261. char buf[32];
  6262. WARN_ON(sd_ctl_dir[0].child);
  6263. sd_ctl_dir[0].child = entry;
  6264. if (entry == NULL)
  6265. return;
  6266. for_each_online_cpu(i) {
  6267. snprintf(buf, 32, "cpu%d", i);
  6268. entry->procname = kstrdup(buf, GFP_KERNEL);
  6269. entry->mode = 0555;
  6270. entry->child = sd_alloc_ctl_cpu_table(i);
  6271. entry++;
  6272. }
  6273. WARN_ON(sd_sysctl_header);
  6274. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  6275. }
  6276. /* may be called multiple times per register */
  6277. static void unregister_sched_domain_sysctl(void)
  6278. {
  6279. if (sd_sysctl_header)
  6280. unregister_sysctl_table(sd_sysctl_header);
  6281. sd_sysctl_header = NULL;
  6282. if (sd_ctl_dir[0].child)
  6283. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  6284. }
  6285. #else
  6286. static void register_sched_domain_sysctl(void)
  6287. {
  6288. }
  6289. static void unregister_sched_domain_sysctl(void)
  6290. {
  6291. }
  6292. #endif
  6293. static void set_rq_online(struct rq *rq)
  6294. {
  6295. if (!rq->online) {
  6296. const struct sched_class *class;
  6297. cpumask_set_cpu(rq->cpu, rq->rd->online);
  6298. rq->online = 1;
  6299. for_each_class(class) {
  6300. if (class->rq_online)
  6301. class->rq_online(rq);
  6302. }
  6303. }
  6304. }
  6305. static void set_rq_offline(struct rq *rq)
  6306. {
  6307. if (rq->online) {
  6308. const struct sched_class *class;
  6309. for_each_class(class) {
  6310. if (class->rq_offline)
  6311. class->rq_offline(rq);
  6312. }
  6313. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  6314. rq->online = 0;
  6315. }
  6316. }
  6317. /*
  6318. * migration_call - callback that gets triggered when a CPU is added.
  6319. * Here we can start up the necessary migration thread for the new CPU.
  6320. */
  6321. static int __cpuinit
  6322. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  6323. {
  6324. struct task_struct *p;
  6325. int cpu = (long)hcpu;
  6326. unsigned long flags;
  6327. struct rq *rq;
  6328. switch (action) {
  6329. case CPU_UP_PREPARE:
  6330. case CPU_UP_PREPARE_FROZEN:
  6331. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  6332. if (IS_ERR(p))
  6333. return NOTIFY_BAD;
  6334. kthread_bind(p, cpu);
  6335. /* Must be high prio: stop_machine expects to yield to it. */
  6336. rq = task_rq_lock(p, &flags);
  6337. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6338. task_rq_unlock(rq, &flags);
  6339. cpu_rq(cpu)->migration_thread = p;
  6340. break;
  6341. case CPU_ONLINE:
  6342. case CPU_ONLINE_FROZEN:
  6343. /* Strictly unnecessary, as first user will wake it. */
  6344. wake_up_process(cpu_rq(cpu)->migration_thread);
  6345. /* Update our root-domain */
  6346. rq = cpu_rq(cpu);
  6347. spin_lock_irqsave(&rq->lock, flags);
  6348. rq->calc_load_update = calc_load_update;
  6349. rq->calc_load_active = 0;
  6350. if (rq->rd) {
  6351. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6352. set_rq_online(rq);
  6353. }
  6354. spin_unlock_irqrestore(&rq->lock, flags);
  6355. break;
  6356. #ifdef CONFIG_HOTPLUG_CPU
  6357. case CPU_UP_CANCELED:
  6358. case CPU_UP_CANCELED_FROZEN:
  6359. if (!cpu_rq(cpu)->migration_thread)
  6360. break;
  6361. /* Unbind it from offline cpu so it can run. Fall thru. */
  6362. kthread_bind(cpu_rq(cpu)->migration_thread,
  6363. cpumask_any(cpu_online_mask));
  6364. kthread_stop(cpu_rq(cpu)->migration_thread);
  6365. cpu_rq(cpu)->migration_thread = NULL;
  6366. break;
  6367. case CPU_DEAD:
  6368. case CPU_DEAD_FROZEN:
  6369. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  6370. migrate_live_tasks(cpu);
  6371. rq = cpu_rq(cpu);
  6372. kthread_stop(rq->migration_thread);
  6373. rq->migration_thread = NULL;
  6374. /* Idle task back to normal (off runqueue, low prio) */
  6375. spin_lock_irq(&rq->lock);
  6376. update_rq_clock(rq);
  6377. deactivate_task(rq, rq->idle, 0);
  6378. rq->idle->static_prio = MAX_PRIO;
  6379. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  6380. rq->idle->sched_class = &idle_sched_class;
  6381. migrate_dead_tasks(cpu);
  6382. spin_unlock_irq(&rq->lock);
  6383. cpuset_unlock();
  6384. migrate_nr_uninterruptible(rq);
  6385. BUG_ON(rq->nr_running != 0);
  6386. calc_global_load_remove(rq);
  6387. /*
  6388. * No need to migrate the tasks: it was best-effort if
  6389. * they didn't take sched_hotcpu_mutex. Just wake up
  6390. * the requestors.
  6391. */
  6392. spin_lock_irq(&rq->lock);
  6393. while (!list_empty(&rq->migration_queue)) {
  6394. struct migration_req *req;
  6395. req = list_entry(rq->migration_queue.next,
  6396. struct migration_req, list);
  6397. list_del_init(&req->list);
  6398. spin_unlock_irq(&rq->lock);
  6399. complete(&req->done);
  6400. spin_lock_irq(&rq->lock);
  6401. }
  6402. spin_unlock_irq(&rq->lock);
  6403. break;
  6404. case CPU_DYING:
  6405. case CPU_DYING_FROZEN:
  6406. /* Update our root-domain */
  6407. rq = cpu_rq(cpu);
  6408. spin_lock_irqsave(&rq->lock, flags);
  6409. if (rq->rd) {
  6410. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6411. set_rq_offline(rq);
  6412. }
  6413. spin_unlock_irqrestore(&rq->lock, flags);
  6414. break;
  6415. #endif
  6416. }
  6417. return NOTIFY_OK;
  6418. }
  6419. /* Register at highest priority so that task migration (migrate_all_tasks)
  6420. * happens before everything else.
  6421. */
  6422. static struct notifier_block __cpuinitdata migration_notifier = {
  6423. .notifier_call = migration_call,
  6424. .priority = 10
  6425. };
  6426. static int __init migration_init(void)
  6427. {
  6428. void *cpu = (void *)(long)smp_processor_id();
  6429. int err;
  6430. /* Start one for the boot CPU: */
  6431. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  6432. BUG_ON(err == NOTIFY_BAD);
  6433. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  6434. register_cpu_notifier(&migration_notifier);
  6435. return err;
  6436. }
  6437. early_initcall(migration_init);
  6438. #endif
  6439. #ifdef CONFIG_SMP
  6440. #ifdef CONFIG_SCHED_DEBUG
  6441. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  6442. struct cpumask *groupmask)
  6443. {
  6444. struct sched_group *group = sd->groups;
  6445. char str[256];
  6446. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  6447. cpumask_clear(groupmask);
  6448. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  6449. if (!(sd->flags & SD_LOAD_BALANCE)) {
  6450. printk("does not load-balance\n");
  6451. if (sd->parent)
  6452. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  6453. " has parent");
  6454. return -1;
  6455. }
  6456. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  6457. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  6458. printk(KERN_ERR "ERROR: domain->span does not contain "
  6459. "CPU%d\n", cpu);
  6460. }
  6461. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  6462. printk(KERN_ERR "ERROR: domain->groups does not contain"
  6463. " CPU%d\n", cpu);
  6464. }
  6465. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  6466. do {
  6467. if (!group) {
  6468. printk("\n");
  6469. printk(KERN_ERR "ERROR: group is NULL\n");
  6470. break;
  6471. }
  6472. if (!group->__cpu_power) {
  6473. printk(KERN_CONT "\n");
  6474. printk(KERN_ERR "ERROR: domain->cpu_power not "
  6475. "set\n");
  6476. break;
  6477. }
  6478. if (!cpumask_weight(sched_group_cpus(group))) {
  6479. printk(KERN_CONT "\n");
  6480. printk(KERN_ERR "ERROR: empty group\n");
  6481. break;
  6482. }
  6483. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  6484. printk(KERN_CONT "\n");
  6485. printk(KERN_ERR "ERROR: repeated CPUs\n");
  6486. break;
  6487. }
  6488. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  6489. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  6490. printk(KERN_CONT " %s", str);
  6491. if (group->__cpu_power != SCHED_LOAD_SCALE) {
  6492. printk(KERN_CONT " (__cpu_power = %d)",
  6493. group->__cpu_power);
  6494. }
  6495. group = group->next;
  6496. } while (group != sd->groups);
  6497. printk(KERN_CONT "\n");
  6498. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  6499. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  6500. if (sd->parent &&
  6501. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  6502. printk(KERN_ERR "ERROR: parent span is not a superset "
  6503. "of domain->span\n");
  6504. return 0;
  6505. }
  6506. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  6507. {
  6508. cpumask_var_t groupmask;
  6509. int level = 0;
  6510. if (!sd) {
  6511. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  6512. return;
  6513. }
  6514. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  6515. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  6516. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  6517. return;
  6518. }
  6519. for (;;) {
  6520. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  6521. break;
  6522. level++;
  6523. sd = sd->parent;
  6524. if (!sd)
  6525. break;
  6526. }
  6527. free_cpumask_var(groupmask);
  6528. }
  6529. #else /* !CONFIG_SCHED_DEBUG */
  6530. # define sched_domain_debug(sd, cpu) do { } while (0)
  6531. #endif /* CONFIG_SCHED_DEBUG */
  6532. static int sd_degenerate(struct sched_domain *sd)
  6533. {
  6534. if (cpumask_weight(sched_domain_span(sd)) == 1)
  6535. return 1;
  6536. /* Following flags need at least 2 groups */
  6537. if (sd->flags & (SD_LOAD_BALANCE |
  6538. SD_BALANCE_NEWIDLE |
  6539. SD_BALANCE_FORK |
  6540. SD_BALANCE_EXEC |
  6541. SD_SHARE_CPUPOWER |
  6542. SD_SHARE_PKG_RESOURCES)) {
  6543. if (sd->groups != sd->groups->next)
  6544. return 0;
  6545. }
  6546. /* Following flags don't use groups */
  6547. if (sd->flags & (SD_WAKE_IDLE |
  6548. SD_WAKE_AFFINE |
  6549. SD_WAKE_BALANCE))
  6550. return 0;
  6551. return 1;
  6552. }
  6553. static int
  6554. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  6555. {
  6556. unsigned long cflags = sd->flags, pflags = parent->flags;
  6557. if (sd_degenerate(parent))
  6558. return 1;
  6559. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  6560. return 0;
  6561. /* Does parent contain flags not in child? */
  6562. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  6563. if (cflags & SD_WAKE_AFFINE)
  6564. pflags &= ~SD_WAKE_BALANCE;
  6565. /* Flags needing groups don't count if only 1 group in parent */
  6566. if (parent->groups == parent->groups->next) {
  6567. pflags &= ~(SD_LOAD_BALANCE |
  6568. SD_BALANCE_NEWIDLE |
  6569. SD_BALANCE_FORK |
  6570. SD_BALANCE_EXEC |
  6571. SD_SHARE_CPUPOWER |
  6572. SD_SHARE_PKG_RESOURCES);
  6573. if (nr_node_ids == 1)
  6574. pflags &= ~SD_SERIALIZE;
  6575. }
  6576. if (~cflags & pflags)
  6577. return 0;
  6578. return 1;
  6579. }
  6580. static void free_rootdomain(struct root_domain *rd)
  6581. {
  6582. cpupri_cleanup(&rd->cpupri);
  6583. free_cpumask_var(rd->rto_mask);
  6584. free_cpumask_var(rd->online);
  6585. free_cpumask_var(rd->span);
  6586. kfree(rd);
  6587. }
  6588. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  6589. {
  6590. struct root_domain *old_rd = NULL;
  6591. unsigned long flags;
  6592. spin_lock_irqsave(&rq->lock, flags);
  6593. if (rq->rd) {
  6594. old_rd = rq->rd;
  6595. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  6596. set_rq_offline(rq);
  6597. cpumask_clear_cpu(rq->cpu, old_rd->span);
  6598. /*
  6599. * If we dont want to free the old_rt yet then
  6600. * set old_rd to NULL to skip the freeing later
  6601. * in this function:
  6602. */
  6603. if (!atomic_dec_and_test(&old_rd->refcount))
  6604. old_rd = NULL;
  6605. }
  6606. atomic_inc(&rd->refcount);
  6607. rq->rd = rd;
  6608. cpumask_set_cpu(rq->cpu, rd->span);
  6609. if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
  6610. set_rq_online(rq);
  6611. spin_unlock_irqrestore(&rq->lock, flags);
  6612. if (old_rd)
  6613. free_rootdomain(old_rd);
  6614. }
  6615. static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
  6616. {
  6617. memset(rd, 0, sizeof(*rd));
  6618. if (bootmem) {
  6619. alloc_bootmem_cpumask_var(&def_root_domain.span);
  6620. alloc_bootmem_cpumask_var(&def_root_domain.online);
  6621. alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
  6622. cpupri_init(&rd->cpupri, true);
  6623. return 0;
  6624. }
  6625. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  6626. goto out;
  6627. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  6628. goto free_span;
  6629. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  6630. goto free_online;
  6631. if (cpupri_init(&rd->cpupri, false) != 0)
  6632. goto free_rto_mask;
  6633. return 0;
  6634. free_rto_mask:
  6635. free_cpumask_var(rd->rto_mask);
  6636. free_online:
  6637. free_cpumask_var(rd->online);
  6638. free_span:
  6639. free_cpumask_var(rd->span);
  6640. out:
  6641. return -ENOMEM;
  6642. }
  6643. static void init_defrootdomain(void)
  6644. {
  6645. init_rootdomain(&def_root_domain, true);
  6646. atomic_set(&def_root_domain.refcount, 1);
  6647. }
  6648. static struct root_domain *alloc_rootdomain(void)
  6649. {
  6650. struct root_domain *rd;
  6651. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6652. if (!rd)
  6653. return NULL;
  6654. if (init_rootdomain(rd, false) != 0) {
  6655. kfree(rd);
  6656. return NULL;
  6657. }
  6658. return rd;
  6659. }
  6660. /*
  6661. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6662. * hold the hotplug lock.
  6663. */
  6664. static void
  6665. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6666. {
  6667. struct rq *rq = cpu_rq(cpu);
  6668. struct sched_domain *tmp;
  6669. /* Remove the sched domains which do not contribute to scheduling. */
  6670. for (tmp = sd; tmp; ) {
  6671. struct sched_domain *parent = tmp->parent;
  6672. if (!parent)
  6673. break;
  6674. if (sd_parent_degenerate(tmp, parent)) {
  6675. tmp->parent = parent->parent;
  6676. if (parent->parent)
  6677. parent->parent->child = tmp;
  6678. } else
  6679. tmp = tmp->parent;
  6680. }
  6681. if (sd && sd_degenerate(sd)) {
  6682. sd = sd->parent;
  6683. if (sd)
  6684. sd->child = NULL;
  6685. }
  6686. sched_domain_debug(sd, cpu);
  6687. rq_attach_root(rq, rd);
  6688. rcu_assign_pointer(rq->sd, sd);
  6689. }
  6690. /* cpus with isolated domains */
  6691. static cpumask_var_t cpu_isolated_map;
  6692. /* Setup the mask of cpus configured for isolated domains */
  6693. static int __init isolated_cpu_setup(char *str)
  6694. {
  6695. cpulist_parse(str, cpu_isolated_map);
  6696. return 1;
  6697. }
  6698. __setup("isolcpus=", isolated_cpu_setup);
  6699. /*
  6700. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6701. * to a function which identifies what group(along with sched group) a CPU
  6702. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6703. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6704. *
  6705. * init_sched_build_groups will build a circular linked list of the groups
  6706. * covered by the given span, and will set each group's ->cpumask correctly,
  6707. * and ->cpu_power to 0.
  6708. */
  6709. static void
  6710. init_sched_build_groups(const struct cpumask *span,
  6711. const struct cpumask *cpu_map,
  6712. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6713. struct sched_group **sg,
  6714. struct cpumask *tmpmask),
  6715. struct cpumask *covered, struct cpumask *tmpmask)
  6716. {
  6717. struct sched_group *first = NULL, *last = NULL;
  6718. int i;
  6719. cpumask_clear(covered);
  6720. for_each_cpu(i, span) {
  6721. struct sched_group *sg;
  6722. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6723. int j;
  6724. if (cpumask_test_cpu(i, covered))
  6725. continue;
  6726. cpumask_clear(sched_group_cpus(sg));
  6727. sg->__cpu_power = 0;
  6728. for_each_cpu(j, span) {
  6729. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6730. continue;
  6731. cpumask_set_cpu(j, covered);
  6732. cpumask_set_cpu(j, sched_group_cpus(sg));
  6733. }
  6734. if (!first)
  6735. first = sg;
  6736. if (last)
  6737. last->next = sg;
  6738. last = sg;
  6739. }
  6740. last->next = first;
  6741. }
  6742. #define SD_NODES_PER_DOMAIN 16
  6743. #ifdef CONFIG_NUMA
  6744. /**
  6745. * find_next_best_node - find the next node to include in a sched_domain
  6746. * @node: node whose sched_domain we're building
  6747. * @used_nodes: nodes already in the sched_domain
  6748. *
  6749. * Find the next node to include in a given scheduling domain. Simply
  6750. * finds the closest node not already in the @used_nodes map.
  6751. *
  6752. * Should use nodemask_t.
  6753. */
  6754. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6755. {
  6756. int i, n, val, min_val, best_node = 0;
  6757. min_val = INT_MAX;
  6758. for (i = 0; i < nr_node_ids; i++) {
  6759. /* Start at @node */
  6760. n = (node + i) % nr_node_ids;
  6761. if (!nr_cpus_node(n))
  6762. continue;
  6763. /* Skip already used nodes */
  6764. if (node_isset(n, *used_nodes))
  6765. continue;
  6766. /* Simple min distance search */
  6767. val = node_distance(node, n);
  6768. if (val < min_val) {
  6769. min_val = val;
  6770. best_node = n;
  6771. }
  6772. }
  6773. node_set(best_node, *used_nodes);
  6774. return best_node;
  6775. }
  6776. /**
  6777. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6778. * @node: node whose cpumask we're constructing
  6779. * @span: resulting cpumask
  6780. *
  6781. * Given a node, construct a good cpumask for its sched_domain to span. It
  6782. * should be one that prevents unnecessary balancing, but also spreads tasks
  6783. * out optimally.
  6784. */
  6785. static void sched_domain_node_span(int node, struct cpumask *span)
  6786. {
  6787. nodemask_t used_nodes;
  6788. int i;
  6789. cpumask_clear(span);
  6790. nodes_clear(used_nodes);
  6791. cpumask_or(span, span, cpumask_of_node(node));
  6792. node_set(node, used_nodes);
  6793. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6794. int next_node = find_next_best_node(node, &used_nodes);
  6795. cpumask_or(span, span, cpumask_of_node(next_node));
  6796. }
  6797. }
  6798. #endif /* CONFIG_NUMA */
  6799. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6800. /*
  6801. * The cpus mask in sched_group and sched_domain hangs off the end.
  6802. *
  6803. * ( See the the comments in include/linux/sched.h:struct sched_group
  6804. * and struct sched_domain. )
  6805. */
  6806. struct static_sched_group {
  6807. struct sched_group sg;
  6808. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  6809. };
  6810. struct static_sched_domain {
  6811. struct sched_domain sd;
  6812. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  6813. };
  6814. /*
  6815. * SMT sched-domains:
  6816. */
  6817. #ifdef CONFIG_SCHED_SMT
  6818. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  6819. static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
  6820. static int
  6821. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  6822. struct sched_group **sg, struct cpumask *unused)
  6823. {
  6824. if (sg)
  6825. *sg = &per_cpu(sched_group_cpus, cpu).sg;
  6826. return cpu;
  6827. }
  6828. #endif /* CONFIG_SCHED_SMT */
  6829. /*
  6830. * multi-core sched-domains:
  6831. */
  6832. #ifdef CONFIG_SCHED_MC
  6833. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  6834. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  6835. #endif /* CONFIG_SCHED_MC */
  6836. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6837. static int
  6838. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6839. struct sched_group **sg, struct cpumask *mask)
  6840. {
  6841. int group;
  6842. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  6843. group = cpumask_first(mask);
  6844. if (sg)
  6845. *sg = &per_cpu(sched_group_core, group).sg;
  6846. return group;
  6847. }
  6848. #elif defined(CONFIG_SCHED_MC)
  6849. static int
  6850. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6851. struct sched_group **sg, struct cpumask *unused)
  6852. {
  6853. if (sg)
  6854. *sg = &per_cpu(sched_group_core, cpu).sg;
  6855. return cpu;
  6856. }
  6857. #endif
  6858. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  6859. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  6860. static int
  6861. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  6862. struct sched_group **sg, struct cpumask *mask)
  6863. {
  6864. int group;
  6865. #ifdef CONFIG_SCHED_MC
  6866. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  6867. group = cpumask_first(mask);
  6868. #elif defined(CONFIG_SCHED_SMT)
  6869. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  6870. group = cpumask_first(mask);
  6871. #else
  6872. group = cpu;
  6873. #endif
  6874. if (sg)
  6875. *sg = &per_cpu(sched_group_phys, group).sg;
  6876. return group;
  6877. }
  6878. #ifdef CONFIG_NUMA
  6879. /*
  6880. * The init_sched_build_groups can't handle what we want to do with node
  6881. * groups, so roll our own. Now each node has its own list of groups which
  6882. * gets dynamically allocated.
  6883. */
  6884. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  6885. static struct sched_group ***sched_group_nodes_bycpu;
  6886. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  6887. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  6888. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  6889. struct sched_group **sg,
  6890. struct cpumask *nodemask)
  6891. {
  6892. int group;
  6893. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  6894. group = cpumask_first(nodemask);
  6895. if (sg)
  6896. *sg = &per_cpu(sched_group_allnodes, group).sg;
  6897. return group;
  6898. }
  6899. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6900. {
  6901. struct sched_group *sg = group_head;
  6902. int j;
  6903. if (!sg)
  6904. return;
  6905. do {
  6906. for_each_cpu(j, sched_group_cpus(sg)) {
  6907. struct sched_domain *sd;
  6908. sd = &per_cpu(phys_domains, j).sd;
  6909. if (j != group_first_cpu(sd->groups)) {
  6910. /*
  6911. * Only add "power" once for each
  6912. * physical package.
  6913. */
  6914. continue;
  6915. }
  6916. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6917. }
  6918. sg = sg->next;
  6919. } while (sg != group_head);
  6920. }
  6921. #endif /* CONFIG_NUMA */
  6922. #ifdef CONFIG_NUMA
  6923. /* Free memory allocated for various sched_group structures */
  6924. static void free_sched_groups(const struct cpumask *cpu_map,
  6925. struct cpumask *nodemask)
  6926. {
  6927. int cpu, i;
  6928. for_each_cpu(cpu, cpu_map) {
  6929. struct sched_group **sched_group_nodes
  6930. = sched_group_nodes_bycpu[cpu];
  6931. if (!sched_group_nodes)
  6932. continue;
  6933. for (i = 0; i < nr_node_ids; i++) {
  6934. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6935. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6936. if (cpumask_empty(nodemask))
  6937. continue;
  6938. if (sg == NULL)
  6939. continue;
  6940. sg = sg->next;
  6941. next_sg:
  6942. oldsg = sg;
  6943. sg = sg->next;
  6944. kfree(oldsg);
  6945. if (oldsg != sched_group_nodes[i])
  6946. goto next_sg;
  6947. }
  6948. kfree(sched_group_nodes);
  6949. sched_group_nodes_bycpu[cpu] = NULL;
  6950. }
  6951. }
  6952. #else /* !CONFIG_NUMA */
  6953. static void free_sched_groups(const struct cpumask *cpu_map,
  6954. struct cpumask *nodemask)
  6955. {
  6956. }
  6957. #endif /* CONFIG_NUMA */
  6958. /*
  6959. * Initialize sched groups cpu_power.
  6960. *
  6961. * cpu_power indicates the capacity of sched group, which is used while
  6962. * distributing the load between different sched groups in a sched domain.
  6963. * Typically cpu_power for all the groups in a sched domain will be same unless
  6964. * there are asymmetries in the topology. If there are asymmetries, group
  6965. * having more cpu_power will pickup more load compared to the group having
  6966. * less cpu_power.
  6967. *
  6968. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6969. * the maximum number of tasks a group can handle in the presence of other idle
  6970. * or lightly loaded groups in the same sched domain.
  6971. */
  6972. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6973. {
  6974. struct sched_domain *child;
  6975. struct sched_group *group;
  6976. WARN_ON(!sd || !sd->groups);
  6977. if (cpu != group_first_cpu(sd->groups))
  6978. return;
  6979. child = sd->child;
  6980. sd->groups->__cpu_power = 0;
  6981. /*
  6982. * For perf policy, if the groups in child domain share resources
  6983. * (for example cores sharing some portions of the cache hierarchy
  6984. * or SMT), then set this domain groups cpu_power such that each group
  6985. * can handle only one task, when there are other idle groups in the
  6986. * same sched domain.
  6987. */
  6988. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6989. (child->flags &
  6990. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6991. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6992. return;
  6993. }
  6994. /*
  6995. * add cpu_power of each child group to this groups cpu_power
  6996. */
  6997. group = child->groups;
  6998. do {
  6999. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  7000. group = group->next;
  7001. } while (group != child->groups);
  7002. }
  7003. /*
  7004. * Initializers for schedule domains
  7005. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  7006. */
  7007. #ifdef CONFIG_SCHED_DEBUG
  7008. # define SD_INIT_NAME(sd, type) sd->name = #type
  7009. #else
  7010. # define SD_INIT_NAME(sd, type) do { } while (0)
  7011. #endif
  7012. #define SD_INIT(sd, type) sd_init_##type(sd)
  7013. #define SD_INIT_FUNC(type) \
  7014. static noinline void sd_init_##type(struct sched_domain *sd) \
  7015. { \
  7016. memset(sd, 0, sizeof(*sd)); \
  7017. *sd = SD_##type##_INIT; \
  7018. sd->level = SD_LV_##type; \
  7019. SD_INIT_NAME(sd, type); \
  7020. }
  7021. SD_INIT_FUNC(CPU)
  7022. #ifdef CONFIG_NUMA
  7023. SD_INIT_FUNC(ALLNODES)
  7024. SD_INIT_FUNC(NODE)
  7025. #endif
  7026. #ifdef CONFIG_SCHED_SMT
  7027. SD_INIT_FUNC(SIBLING)
  7028. #endif
  7029. #ifdef CONFIG_SCHED_MC
  7030. SD_INIT_FUNC(MC)
  7031. #endif
  7032. static int default_relax_domain_level = -1;
  7033. static int __init setup_relax_domain_level(char *str)
  7034. {
  7035. unsigned long val;
  7036. val = simple_strtoul(str, NULL, 0);
  7037. if (val < SD_LV_MAX)
  7038. default_relax_domain_level = val;
  7039. return 1;
  7040. }
  7041. __setup("relax_domain_level=", setup_relax_domain_level);
  7042. static void set_domain_attribute(struct sched_domain *sd,
  7043. struct sched_domain_attr *attr)
  7044. {
  7045. int request;
  7046. if (!attr || attr->relax_domain_level < 0) {
  7047. if (default_relax_domain_level < 0)
  7048. return;
  7049. else
  7050. request = default_relax_domain_level;
  7051. } else
  7052. request = attr->relax_domain_level;
  7053. if (request < sd->level) {
  7054. /* turn off idle balance on this domain */
  7055. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  7056. } else {
  7057. /* turn on idle balance on this domain */
  7058. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  7059. }
  7060. }
  7061. /*
  7062. * Build sched domains for a given set of cpus and attach the sched domains
  7063. * to the individual cpus
  7064. */
  7065. static int __build_sched_domains(const struct cpumask *cpu_map,
  7066. struct sched_domain_attr *attr)
  7067. {
  7068. int i, err = -ENOMEM;
  7069. struct root_domain *rd;
  7070. cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
  7071. tmpmask;
  7072. #ifdef CONFIG_NUMA
  7073. cpumask_var_t domainspan, covered, notcovered;
  7074. struct sched_group **sched_group_nodes = NULL;
  7075. int sd_allnodes = 0;
  7076. if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
  7077. goto out;
  7078. if (!alloc_cpumask_var(&covered, GFP_KERNEL))
  7079. goto free_domainspan;
  7080. if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
  7081. goto free_covered;
  7082. #endif
  7083. if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
  7084. goto free_notcovered;
  7085. if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
  7086. goto free_nodemask;
  7087. if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
  7088. goto free_this_sibling_map;
  7089. if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
  7090. goto free_this_core_map;
  7091. if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
  7092. goto free_send_covered;
  7093. #ifdef CONFIG_NUMA
  7094. /*
  7095. * Allocate the per-node list of sched groups
  7096. */
  7097. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  7098. GFP_KERNEL);
  7099. if (!sched_group_nodes) {
  7100. printk(KERN_WARNING "Can not alloc sched group node list\n");
  7101. goto free_tmpmask;
  7102. }
  7103. #endif
  7104. rd = alloc_rootdomain();
  7105. if (!rd) {
  7106. printk(KERN_WARNING "Cannot alloc root domain\n");
  7107. goto free_sched_groups;
  7108. }
  7109. #ifdef CONFIG_NUMA
  7110. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
  7111. #endif
  7112. /*
  7113. * Set up domains for cpus specified by the cpu_map.
  7114. */
  7115. for_each_cpu(i, cpu_map) {
  7116. struct sched_domain *sd = NULL, *p;
  7117. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
  7118. #ifdef CONFIG_NUMA
  7119. if (cpumask_weight(cpu_map) >
  7120. SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
  7121. sd = &per_cpu(allnodes_domains, i).sd;
  7122. SD_INIT(sd, ALLNODES);
  7123. set_domain_attribute(sd, attr);
  7124. cpumask_copy(sched_domain_span(sd), cpu_map);
  7125. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  7126. p = sd;
  7127. sd_allnodes = 1;
  7128. } else
  7129. p = NULL;
  7130. sd = &per_cpu(node_domains, i).sd;
  7131. SD_INIT(sd, NODE);
  7132. set_domain_attribute(sd, attr);
  7133. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  7134. sd->parent = p;
  7135. if (p)
  7136. p->child = sd;
  7137. cpumask_and(sched_domain_span(sd),
  7138. sched_domain_span(sd), cpu_map);
  7139. #endif
  7140. p = sd;
  7141. sd = &per_cpu(phys_domains, i).sd;
  7142. SD_INIT(sd, CPU);
  7143. set_domain_attribute(sd, attr);
  7144. cpumask_copy(sched_domain_span(sd), nodemask);
  7145. sd->parent = p;
  7146. if (p)
  7147. p->child = sd;
  7148. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  7149. #ifdef CONFIG_SCHED_MC
  7150. p = sd;
  7151. sd = &per_cpu(core_domains, i).sd;
  7152. SD_INIT(sd, MC);
  7153. set_domain_attribute(sd, attr);
  7154. cpumask_and(sched_domain_span(sd), cpu_map,
  7155. cpu_coregroup_mask(i));
  7156. sd->parent = p;
  7157. p->child = sd;
  7158. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  7159. #endif
  7160. #ifdef CONFIG_SCHED_SMT
  7161. p = sd;
  7162. sd = &per_cpu(cpu_domains, i).sd;
  7163. SD_INIT(sd, SIBLING);
  7164. set_domain_attribute(sd, attr);
  7165. cpumask_and(sched_domain_span(sd),
  7166. topology_thread_cpumask(i), cpu_map);
  7167. sd->parent = p;
  7168. p->child = sd;
  7169. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  7170. #endif
  7171. }
  7172. #ifdef CONFIG_SCHED_SMT
  7173. /* Set up CPU (sibling) groups */
  7174. for_each_cpu(i, cpu_map) {
  7175. cpumask_and(this_sibling_map,
  7176. topology_thread_cpumask(i), cpu_map);
  7177. if (i != cpumask_first(this_sibling_map))
  7178. continue;
  7179. init_sched_build_groups(this_sibling_map, cpu_map,
  7180. &cpu_to_cpu_group,
  7181. send_covered, tmpmask);
  7182. }
  7183. #endif
  7184. #ifdef CONFIG_SCHED_MC
  7185. /* Set up multi-core groups */
  7186. for_each_cpu(i, cpu_map) {
  7187. cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
  7188. if (i != cpumask_first(this_core_map))
  7189. continue;
  7190. init_sched_build_groups(this_core_map, cpu_map,
  7191. &cpu_to_core_group,
  7192. send_covered, tmpmask);
  7193. }
  7194. #endif
  7195. /* Set up physical groups */
  7196. for (i = 0; i < nr_node_ids; i++) {
  7197. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7198. if (cpumask_empty(nodemask))
  7199. continue;
  7200. init_sched_build_groups(nodemask, cpu_map,
  7201. &cpu_to_phys_group,
  7202. send_covered, tmpmask);
  7203. }
  7204. #ifdef CONFIG_NUMA
  7205. /* Set up node groups */
  7206. if (sd_allnodes) {
  7207. init_sched_build_groups(cpu_map, cpu_map,
  7208. &cpu_to_allnodes_group,
  7209. send_covered, tmpmask);
  7210. }
  7211. for (i = 0; i < nr_node_ids; i++) {
  7212. /* Set up node groups */
  7213. struct sched_group *sg, *prev;
  7214. int j;
  7215. cpumask_clear(covered);
  7216. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7217. if (cpumask_empty(nodemask)) {
  7218. sched_group_nodes[i] = NULL;
  7219. continue;
  7220. }
  7221. sched_domain_node_span(i, domainspan);
  7222. cpumask_and(domainspan, domainspan, cpu_map);
  7223. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7224. GFP_KERNEL, i);
  7225. if (!sg) {
  7226. printk(KERN_WARNING "Can not alloc domain group for "
  7227. "node %d\n", i);
  7228. goto error;
  7229. }
  7230. sched_group_nodes[i] = sg;
  7231. for_each_cpu(j, nodemask) {
  7232. struct sched_domain *sd;
  7233. sd = &per_cpu(node_domains, j).sd;
  7234. sd->groups = sg;
  7235. }
  7236. sg->__cpu_power = 0;
  7237. cpumask_copy(sched_group_cpus(sg), nodemask);
  7238. sg->next = sg;
  7239. cpumask_or(covered, covered, nodemask);
  7240. prev = sg;
  7241. for (j = 0; j < nr_node_ids; j++) {
  7242. int n = (i + j) % nr_node_ids;
  7243. cpumask_complement(notcovered, covered);
  7244. cpumask_and(tmpmask, notcovered, cpu_map);
  7245. cpumask_and(tmpmask, tmpmask, domainspan);
  7246. if (cpumask_empty(tmpmask))
  7247. break;
  7248. cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
  7249. if (cpumask_empty(tmpmask))
  7250. continue;
  7251. sg = kmalloc_node(sizeof(struct sched_group) +
  7252. cpumask_size(),
  7253. GFP_KERNEL, i);
  7254. if (!sg) {
  7255. printk(KERN_WARNING
  7256. "Can not alloc domain group for node %d\n", j);
  7257. goto error;
  7258. }
  7259. sg->__cpu_power = 0;
  7260. cpumask_copy(sched_group_cpus(sg), tmpmask);
  7261. sg->next = prev->next;
  7262. cpumask_or(covered, covered, tmpmask);
  7263. prev->next = sg;
  7264. prev = sg;
  7265. }
  7266. }
  7267. #endif
  7268. /* Calculate CPU power for physical packages and nodes */
  7269. #ifdef CONFIG_SCHED_SMT
  7270. for_each_cpu(i, cpu_map) {
  7271. struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
  7272. init_sched_groups_power(i, sd);
  7273. }
  7274. #endif
  7275. #ifdef CONFIG_SCHED_MC
  7276. for_each_cpu(i, cpu_map) {
  7277. struct sched_domain *sd = &per_cpu(core_domains, i).sd;
  7278. init_sched_groups_power(i, sd);
  7279. }
  7280. #endif
  7281. for_each_cpu(i, cpu_map) {
  7282. struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
  7283. init_sched_groups_power(i, sd);
  7284. }
  7285. #ifdef CONFIG_NUMA
  7286. for (i = 0; i < nr_node_ids; i++)
  7287. init_numa_sched_groups_power(sched_group_nodes[i]);
  7288. if (sd_allnodes) {
  7289. struct sched_group *sg;
  7290. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  7291. tmpmask);
  7292. init_numa_sched_groups_power(sg);
  7293. }
  7294. #endif
  7295. /* Attach the domains */
  7296. for_each_cpu(i, cpu_map) {
  7297. struct sched_domain *sd;
  7298. #ifdef CONFIG_SCHED_SMT
  7299. sd = &per_cpu(cpu_domains, i).sd;
  7300. #elif defined(CONFIG_SCHED_MC)
  7301. sd = &per_cpu(core_domains, i).sd;
  7302. #else
  7303. sd = &per_cpu(phys_domains, i).sd;
  7304. #endif
  7305. cpu_attach_domain(sd, rd, i);
  7306. }
  7307. err = 0;
  7308. free_tmpmask:
  7309. free_cpumask_var(tmpmask);
  7310. free_send_covered:
  7311. free_cpumask_var(send_covered);
  7312. free_this_core_map:
  7313. free_cpumask_var(this_core_map);
  7314. free_this_sibling_map:
  7315. free_cpumask_var(this_sibling_map);
  7316. free_nodemask:
  7317. free_cpumask_var(nodemask);
  7318. free_notcovered:
  7319. #ifdef CONFIG_NUMA
  7320. free_cpumask_var(notcovered);
  7321. free_covered:
  7322. free_cpumask_var(covered);
  7323. free_domainspan:
  7324. free_cpumask_var(domainspan);
  7325. out:
  7326. #endif
  7327. return err;
  7328. free_sched_groups:
  7329. #ifdef CONFIG_NUMA
  7330. kfree(sched_group_nodes);
  7331. #endif
  7332. goto free_tmpmask;
  7333. #ifdef CONFIG_NUMA
  7334. error:
  7335. free_sched_groups(cpu_map, tmpmask);
  7336. free_rootdomain(rd);
  7337. goto free_tmpmask;
  7338. #endif
  7339. }
  7340. static int build_sched_domains(const struct cpumask *cpu_map)
  7341. {
  7342. return __build_sched_domains(cpu_map, NULL);
  7343. }
  7344. static struct cpumask *doms_cur; /* current sched domains */
  7345. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  7346. static struct sched_domain_attr *dattr_cur;
  7347. /* attribues of custom domains in 'doms_cur' */
  7348. /*
  7349. * Special case: If a kmalloc of a doms_cur partition (array of
  7350. * cpumask) fails, then fallback to a single sched domain,
  7351. * as determined by the single cpumask fallback_doms.
  7352. */
  7353. static cpumask_var_t fallback_doms;
  7354. /*
  7355. * arch_update_cpu_topology lets virtualized architectures update the
  7356. * cpu core maps. It is supposed to return 1 if the topology changed
  7357. * or 0 if it stayed the same.
  7358. */
  7359. int __attribute__((weak)) arch_update_cpu_topology(void)
  7360. {
  7361. return 0;
  7362. }
  7363. /*
  7364. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  7365. * For now this just excludes isolated cpus, but could be used to
  7366. * exclude other special cases in the future.
  7367. */
  7368. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  7369. {
  7370. int err;
  7371. arch_update_cpu_topology();
  7372. ndoms_cur = 1;
  7373. doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
  7374. if (!doms_cur)
  7375. doms_cur = fallback_doms;
  7376. cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
  7377. dattr_cur = NULL;
  7378. err = build_sched_domains(doms_cur);
  7379. register_sched_domain_sysctl();
  7380. return err;
  7381. }
  7382. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  7383. struct cpumask *tmpmask)
  7384. {
  7385. free_sched_groups(cpu_map, tmpmask);
  7386. }
  7387. /*
  7388. * Detach sched domains from a group of cpus specified in cpu_map
  7389. * These cpus will now be attached to the NULL domain
  7390. */
  7391. static void detach_destroy_domains(const struct cpumask *cpu_map)
  7392. {
  7393. /* Save because hotplug lock held. */
  7394. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  7395. int i;
  7396. for_each_cpu(i, cpu_map)
  7397. cpu_attach_domain(NULL, &def_root_domain, i);
  7398. synchronize_sched();
  7399. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  7400. }
  7401. /* handle null as "default" */
  7402. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  7403. struct sched_domain_attr *new, int idx_new)
  7404. {
  7405. struct sched_domain_attr tmp;
  7406. /* fast path */
  7407. if (!new && !cur)
  7408. return 1;
  7409. tmp = SD_ATTR_INIT;
  7410. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  7411. new ? (new + idx_new) : &tmp,
  7412. sizeof(struct sched_domain_attr));
  7413. }
  7414. /*
  7415. * Partition sched domains as specified by the 'ndoms_new'
  7416. * cpumasks in the array doms_new[] of cpumasks. This compares
  7417. * doms_new[] to the current sched domain partitioning, doms_cur[].
  7418. * It destroys each deleted domain and builds each new domain.
  7419. *
  7420. * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
  7421. * The masks don't intersect (don't overlap.) We should setup one
  7422. * sched domain for each mask. CPUs not in any of the cpumasks will
  7423. * not be load balanced. If the same cpumask appears both in the
  7424. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  7425. * it as it is.
  7426. *
  7427. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  7428. * ownership of it and will kfree it when done with it. If the caller
  7429. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  7430. * ndoms_new == 1, and partition_sched_domains() will fallback to
  7431. * the single partition 'fallback_doms', it also forces the domains
  7432. * to be rebuilt.
  7433. *
  7434. * If doms_new == NULL it will be replaced with cpu_online_mask.
  7435. * ndoms_new == 0 is a special case for destroying existing domains,
  7436. * and it will not create the default domain.
  7437. *
  7438. * Call with hotplug lock held
  7439. */
  7440. /* FIXME: Change to struct cpumask *doms_new[] */
  7441. void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
  7442. struct sched_domain_attr *dattr_new)
  7443. {
  7444. int i, j, n;
  7445. int new_topology;
  7446. mutex_lock(&sched_domains_mutex);
  7447. /* always unregister in case we don't destroy any domains */
  7448. unregister_sched_domain_sysctl();
  7449. /* Let architecture update cpu core mappings. */
  7450. new_topology = arch_update_cpu_topology();
  7451. n = doms_new ? ndoms_new : 0;
  7452. /* Destroy deleted domains */
  7453. for (i = 0; i < ndoms_cur; i++) {
  7454. for (j = 0; j < n && !new_topology; j++) {
  7455. if (cpumask_equal(&doms_cur[i], &doms_new[j])
  7456. && dattrs_equal(dattr_cur, i, dattr_new, j))
  7457. goto match1;
  7458. }
  7459. /* no match - a current sched domain not in new doms_new[] */
  7460. detach_destroy_domains(doms_cur + i);
  7461. match1:
  7462. ;
  7463. }
  7464. if (doms_new == NULL) {
  7465. ndoms_cur = 0;
  7466. doms_new = fallback_doms;
  7467. cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
  7468. WARN_ON_ONCE(dattr_new);
  7469. }
  7470. /* Build new domains */
  7471. for (i = 0; i < ndoms_new; i++) {
  7472. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  7473. if (cpumask_equal(&doms_new[i], &doms_cur[j])
  7474. && dattrs_equal(dattr_new, i, dattr_cur, j))
  7475. goto match2;
  7476. }
  7477. /* no match - add a new doms_new */
  7478. __build_sched_domains(doms_new + i,
  7479. dattr_new ? dattr_new + i : NULL);
  7480. match2:
  7481. ;
  7482. }
  7483. /* Remember the new sched domains */
  7484. if (doms_cur != fallback_doms)
  7485. kfree(doms_cur);
  7486. kfree(dattr_cur); /* kfree(NULL) is safe */
  7487. doms_cur = doms_new;
  7488. dattr_cur = dattr_new;
  7489. ndoms_cur = ndoms_new;
  7490. register_sched_domain_sysctl();
  7491. mutex_unlock(&sched_domains_mutex);
  7492. }
  7493. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  7494. static void arch_reinit_sched_domains(void)
  7495. {
  7496. get_online_cpus();
  7497. /* Destroy domains first to force the rebuild */
  7498. partition_sched_domains(0, NULL, NULL);
  7499. rebuild_sched_domains();
  7500. put_online_cpus();
  7501. }
  7502. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  7503. {
  7504. unsigned int level = 0;
  7505. if (sscanf(buf, "%u", &level) != 1)
  7506. return -EINVAL;
  7507. /*
  7508. * level is always be positive so don't check for
  7509. * level < POWERSAVINGS_BALANCE_NONE which is 0
  7510. * What happens on 0 or 1 byte write,
  7511. * need to check for count as well?
  7512. */
  7513. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  7514. return -EINVAL;
  7515. if (smt)
  7516. sched_smt_power_savings = level;
  7517. else
  7518. sched_mc_power_savings = level;
  7519. arch_reinit_sched_domains();
  7520. return count;
  7521. }
  7522. #ifdef CONFIG_SCHED_MC
  7523. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  7524. char *page)
  7525. {
  7526. return sprintf(page, "%u\n", sched_mc_power_savings);
  7527. }
  7528. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  7529. const char *buf, size_t count)
  7530. {
  7531. return sched_power_savings_store(buf, count, 0);
  7532. }
  7533. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  7534. sched_mc_power_savings_show,
  7535. sched_mc_power_savings_store);
  7536. #endif
  7537. #ifdef CONFIG_SCHED_SMT
  7538. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  7539. char *page)
  7540. {
  7541. return sprintf(page, "%u\n", sched_smt_power_savings);
  7542. }
  7543. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  7544. const char *buf, size_t count)
  7545. {
  7546. return sched_power_savings_store(buf, count, 1);
  7547. }
  7548. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  7549. sched_smt_power_savings_show,
  7550. sched_smt_power_savings_store);
  7551. #endif
  7552. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  7553. {
  7554. int err = 0;
  7555. #ifdef CONFIG_SCHED_SMT
  7556. if (smt_capable())
  7557. err = sysfs_create_file(&cls->kset.kobj,
  7558. &attr_sched_smt_power_savings.attr);
  7559. #endif
  7560. #ifdef CONFIG_SCHED_MC
  7561. if (!err && mc_capable())
  7562. err = sysfs_create_file(&cls->kset.kobj,
  7563. &attr_sched_mc_power_savings.attr);
  7564. #endif
  7565. return err;
  7566. }
  7567. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  7568. #ifndef CONFIG_CPUSETS
  7569. /*
  7570. * Add online and remove offline CPUs from the scheduler domains.
  7571. * When cpusets are enabled they take over this function.
  7572. */
  7573. static int update_sched_domains(struct notifier_block *nfb,
  7574. unsigned long action, void *hcpu)
  7575. {
  7576. switch (action) {
  7577. case CPU_ONLINE:
  7578. case CPU_ONLINE_FROZEN:
  7579. case CPU_DEAD:
  7580. case CPU_DEAD_FROZEN:
  7581. partition_sched_domains(1, NULL, NULL);
  7582. return NOTIFY_OK;
  7583. default:
  7584. return NOTIFY_DONE;
  7585. }
  7586. }
  7587. #endif
  7588. static int update_runtime(struct notifier_block *nfb,
  7589. unsigned long action, void *hcpu)
  7590. {
  7591. int cpu = (int)(long)hcpu;
  7592. switch (action) {
  7593. case CPU_DOWN_PREPARE:
  7594. case CPU_DOWN_PREPARE_FROZEN:
  7595. disable_runtime(cpu_rq(cpu));
  7596. return NOTIFY_OK;
  7597. case CPU_DOWN_FAILED:
  7598. case CPU_DOWN_FAILED_FROZEN:
  7599. case CPU_ONLINE:
  7600. case CPU_ONLINE_FROZEN:
  7601. enable_runtime(cpu_rq(cpu));
  7602. return NOTIFY_OK;
  7603. default:
  7604. return NOTIFY_DONE;
  7605. }
  7606. }
  7607. void __init sched_init_smp(void)
  7608. {
  7609. cpumask_var_t non_isolated_cpus;
  7610. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7611. #if defined(CONFIG_NUMA)
  7612. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7613. GFP_KERNEL);
  7614. BUG_ON(sched_group_nodes_bycpu == NULL);
  7615. #endif
  7616. get_online_cpus();
  7617. mutex_lock(&sched_domains_mutex);
  7618. arch_init_sched_domains(cpu_online_mask);
  7619. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7620. if (cpumask_empty(non_isolated_cpus))
  7621. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7622. mutex_unlock(&sched_domains_mutex);
  7623. put_online_cpus();
  7624. #ifndef CONFIG_CPUSETS
  7625. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7626. hotcpu_notifier(update_sched_domains, 0);
  7627. #endif
  7628. /* RT runtime code needs to handle some hotplug events */
  7629. hotcpu_notifier(update_runtime, 0);
  7630. init_hrtick();
  7631. /* Move init over to a non-isolated CPU */
  7632. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7633. BUG();
  7634. sched_init_granularity();
  7635. free_cpumask_var(non_isolated_cpus);
  7636. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7637. init_sched_rt_class();
  7638. }
  7639. #else
  7640. void __init sched_init_smp(void)
  7641. {
  7642. sched_init_granularity();
  7643. }
  7644. #endif /* CONFIG_SMP */
  7645. int in_sched_functions(unsigned long addr)
  7646. {
  7647. return in_lock_functions(addr) ||
  7648. (addr >= (unsigned long)__sched_text_start
  7649. && addr < (unsigned long)__sched_text_end);
  7650. }
  7651. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7652. {
  7653. cfs_rq->tasks_timeline = RB_ROOT;
  7654. INIT_LIST_HEAD(&cfs_rq->tasks);
  7655. #ifdef CONFIG_FAIR_GROUP_SCHED
  7656. cfs_rq->rq = rq;
  7657. #endif
  7658. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7659. }
  7660. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7661. {
  7662. struct rt_prio_array *array;
  7663. int i;
  7664. array = &rt_rq->active;
  7665. for (i = 0; i < MAX_RT_PRIO; i++) {
  7666. INIT_LIST_HEAD(array->queue + i);
  7667. __clear_bit(i, array->bitmap);
  7668. }
  7669. /* delimiter for bitsearch: */
  7670. __set_bit(MAX_RT_PRIO, array->bitmap);
  7671. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  7672. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  7673. #ifdef CONFIG_SMP
  7674. rt_rq->highest_prio.next = MAX_RT_PRIO;
  7675. #endif
  7676. #endif
  7677. #ifdef CONFIG_SMP
  7678. rt_rq->rt_nr_migratory = 0;
  7679. rt_rq->overloaded = 0;
  7680. plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
  7681. #endif
  7682. rt_rq->rt_time = 0;
  7683. rt_rq->rt_throttled = 0;
  7684. rt_rq->rt_runtime = 0;
  7685. spin_lock_init(&rt_rq->rt_runtime_lock);
  7686. #ifdef CONFIG_RT_GROUP_SCHED
  7687. rt_rq->rt_nr_boosted = 0;
  7688. rt_rq->rq = rq;
  7689. #endif
  7690. }
  7691. #ifdef CONFIG_FAIR_GROUP_SCHED
  7692. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  7693. struct sched_entity *se, int cpu, int add,
  7694. struct sched_entity *parent)
  7695. {
  7696. struct rq *rq = cpu_rq(cpu);
  7697. tg->cfs_rq[cpu] = cfs_rq;
  7698. init_cfs_rq(cfs_rq, rq);
  7699. cfs_rq->tg = tg;
  7700. if (add)
  7701. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  7702. tg->se[cpu] = se;
  7703. /* se could be NULL for init_task_group */
  7704. if (!se)
  7705. return;
  7706. if (!parent)
  7707. se->cfs_rq = &rq->cfs;
  7708. else
  7709. se->cfs_rq = parent->my_q;
  7710. se->my_q = cfs_rq;
  7711. se->load.weight = tg->shares;
  7712. se->load.inv_weight = 0;
  7713. se->parent = parent;
  7714. }
  7715. #endif
  7716. #ifdef CONFIG_RT_GROUP_SCHED
  7717. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  7718. struct sched_rt_entity *rt_se, int cpu, int add,
  7719. struct sched_rt_entity *parent)
  7720. {
  7721. struct rq *rq = cpu_rq(cpu);
  7722. tg->rt_rq[cpu] = rt_rq;
  7723. init_rt_rq(rt_rq, rq);
  7724. rt_rq->tg = tg;
  7725. rt_rq->rt_se = rt_se;
  7726. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  7727. if (add)
  7728. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  7729. tg->rt_se[cpu] = rt_se;
  7730. if (!rt_se)
  7731. return;
  7732. if (!parent)
  7733. rt_se->rt_rq = &rq->rt;
  7734. else
  7735. rt_se->rt_rq = parent->my_q;
  7736. rt_se->my_q = rt_rq;
  7737. rt_se->parent = parent;
  7738. INIT_LIST_HEAD(&rt_se->run_list);
  7739. }
  7740. #endif
  7741. void __init sched_init(void)
  7742. {
  7743. int i, j;
  7744. unsigned long alloc_size = 0, ptr;
  7745. #ifdef CONFIG_FAIR_GROUP_SCHED
  7746. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7747. #endif
  7748. #ifdef CONFIG_RT_GROUP_SCHED
  7749. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7750. #endif
  7751. #ifdef CONFIG_USER_SCHED
  7752. alloc_size *= 2;
  7753. #endif
  7754. #ifdef CONFIG_CPUMASK_OFFSTACK
  7755. alloc_size += num_possible_cpus() * cpumask_size();
  7756. #endif
  7757. /*
  7758. * As sched_init() is called before page_alloc is setup,
  7759. * we use alloc_bootmem().
  7760. */
  7761. if (alloc_size) {
  7762. ptr = (unsigned long)alloc_bootmem(alloc_size);
  7763. #ifdef CONFIG_FAIR_GROUP_SCHED
  7764. init_task_group.se = (struct sched_entity **)ptr;
  7765. ptr += nr_cpu_ids * sizeof(void **);
  7766. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7767. ptr += nr_cpu_ids * sizeof(void **);
  7768. #ifdef CONFIG_USER_SCHED
  7769. root_task_group.se = (struct sched_entity **)ptr;
  7770. ptr += nr_cpu_ids * sizeof(void **);
  7771. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7772. ptr += nr_cpu_ids * sizeof(void **);
  7773. #endif /* CONFIG_USER_SCHED */
  7774. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7775. #ifdef CONFIG_RT_GROUP_SCHED
  7776. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7777. ptr += nr_cpu_ids * sizeof(void **);
  7778. init_task_group.rt_rq = (struct rt_rq **)ptr;
  7779. ptr += nr_cpu_ids * sizeof(void **);
  7780. #ifdef CONFIG_USER_SCHED
  7781. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7782. ptr += nr_cpu_ids * sizeof(void **);
  7783. root_task_group.rt_rq = (struct rt_rq **)ptr;
  7784. ptr += nr_cpu_ids * sizeof(void **);
  7785. #endif /* CONFIG_USER_SCHED */
  7786. #endif /* CONFIG_RT_GROUP_SCHED */
  7787. #ifdef CONFIG_CPUMASK_OFFSTACK
  7788. for_each_possible_cpu(i) {
  7789. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  7790. ptr += cpumask_size();
  7791. }
  7792. #endif /* CONFIG_CPUMASK_OFFSTACK */
  7793. }
  7794. #ifdef CONFIG_SMP
  7795. init_defrootdomain();
  7796. #endif
  7797. init_rt_bandwidth(&def_rt_bandwidth,
  7798. global_rt_period(), global_rt_runtime());
  7799. #ifdef CONFIG_RT_GROUP_SCHED
  7800. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  7801. global_rt_period(), global_rt_runtime());
  7802. #ifdef CONFIG_USER_SCHED
  7803. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  7804. global_rt_period(), RUNTIME_INF);
  7805. #endif /* CONFIG_USER_SCHED */
  7806. #endif /* CONFIG_RT_GROUP_SCHED */
  7807. #ifdef CONFIG_GROUP_SCHED
  7808. list_add(&init_task_group.list, &task_groups);
  7809. INIT_LIST_HEAD(&init_task_group.children);
  7810. #ifdef CONFIG_USER_SCHED
  7811. INIT_LIST_HEAD(&root_task_group.children);
  7812. init_task_group.parent = &root_task_group;
  7813. list_add(&init_task_group.siblings, &root_task_group.children);
  7814. #endif /* CONFIG_USER_SCHED */
  7815. #endif /* CONFIG_GROUP_SCHED */
  7816. for_each_possible_cpu(i) {
  7817. struct rq *rq;
  7818. rq = cpu_rq(i);
  7819. spin_lock_init(&rq->lock);
  7820. rq->nr_running = 0;
  7821. rq->calc_load_active = 0;
  7822. rq->calc_load_update = jiffies + LOAD_FREQ;
  7823. init_cfs_rq(&rq->cfs, rq);
  7824. init_rt_rq(&rq->rt, rq);
  7825. #ifdef CONFIG_FAIR_GROUP_SCHED
  7826. init_task_group.shares = init_task_group_load;
  7827. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  7828. #ifdef CONFIG_CGROUP_SCHED
  7829. /*
  7830. * How much cpu bandwidth does init_task_group get?
  7831. *
  7832. * In case of task-groups formed thr' the cgroup filesystem, it
  7833. * gets 100% of the cpu resources in the system. This overall
  7834. * system cpu resource is divided among the tasks of
  7835. * init_task_group and its child task-groups in a fair manner,
  7836. * based on each entity's (task or task-group's) weight
  7837. * (se->load.weight).
  7838. *
  7839. * In other words, if init_task_group has 10 tasks of weight
  7840. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7841. * then A0's share of the cpu resource is:
  7842. *
  7843. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7844. *
  7845. * We achieve this by letting init_task_group's tasks sit
  7846. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  7847. */
  7848. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  7849. #elif defined CONFIG_USER_SCHED
  7850. root_task_group.shares = NICE_0_LOAD;
  7851. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  7852. /*
  7853. * In case of task-groups formed thr' the user id of tasks,
  7854. * init_task_group represents tasks belonging to root user.
  7855. * Hence it forms a sibling of all subsequent groups formed.
  7856. * In this case, init_task_group gets only a fraction of overall
  7857. * system cpu resource, based on the weight assigned to root
  7858. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  7859. * by letting tasks of init_task_group sit in a separate cfs_rq
  7860. * (init_cfs_rq) and having one entity represent this group of
  7861. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  7862. */
  7863. init_tg_cfs_entry(&init_task_group,
  7864. &per_cpu(init_cfs_rq, i),
  7865. &per_cpu(init_sched_entity, i), i, 1,
  7866. root_task_group.se[i]);
  7867. #endif
  7868. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7869. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7870. #ifdef CONFIG_RT_GROUP_SCHED
  7871. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7872. #ifdef CONFIG_CGROUP_SCHED
  7873. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7874. #elif defined CONFIG_USER_SCHED
  7875. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  7876. init_tg_rt_entry(&init_task_group,
  7877. &per_cpu(init_rt_rq, i),
  7878. &per_cpu(init_sched_rt_entity, i), i, 1,
  7879. root_task_group.rt_se[i]);
  7880. #endif
  7881. #endif
  7882. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7883. rq->cpu_load[j] = 0;
  7884. #ifdef CONFIG_SMP
  7885. rq->sd = NULL;
  7886. rq->rd = NULL;
  7887. rq->active_balance = 0;
  7888. rq->next_balance = jiffies;
  7889. rq->push_cpu = 0;
  7890. rq->cpu = i;
  7891. rq->online = 0;
  7892. rq->migration_thread = NULL;
  7893. INIT_LIST_HEAD(&rq->migration_queue);
  7894. rq_attach_root(rq, &def_root_domain);
  7895. #endif
  7896. init_rq_hrtick(rq);
  7897. atomic_set(&rq->nr_iowait, 0);
  7898. }
  7899. set_load_weight(&init_task);
  7900. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7901. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7902. #endif
  7903. #ifdef CONFIG_SMP
  7904. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7905. #endif
  7906. #ifdef CONFIG_RT_MUTEXES
  7907. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  7908. #endif
  7909. /*
  7910. * The boot idle thread does lazy MMU switching as well:
  7911. */
  7912. atomic_inc(&init_mm.mm_count);
  7913. enter_lazy_tlb(&init_mm, current);
  7914. /*
  7915. * Make us the idle thread. Technically, schedule() should not be
  7916. * called from this thread, however somewhere below it might be,
  7917. * but because we are the idle thread, we just pick up running again
  7918. * when this runqueue becomes "idle".
  7919. */
  7920. init_idle(current, smp_processor_id());
  7921. calc_load_update = jiffies + LOAD_FREQ;
  7922. /*
  7923. * During early bootup we pretend to be a normal task:
  7924. */
  7925. current->sched_class = &fair_sched_class;
  7926. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  7927. alloc_bootmem_cpumask_var(&nohz_cpu_mask);
  7928. #ifdef CONFIG_SMP
  7929. #ifdef CONFIG_NO_HZ
  7930. alloc_bootmem_cpumask_var(&nohz.cpu_mask);
  7931. alloc_bootmem_cpumask_var(&nohz.ilb_grp_nohz_mask);
  7932. #endif
  7933. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  7934. #endif /* SMP */
  7935. scheduler_running = 1;
  7936. }
  7937. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7938. void __might_sleep(char *file, int line)
  7939. {
  7940. #ifdef in_atomic
  7941. static unsigned long prev_jiffy; /* ratelimiting */
  7942. if ((!in_atomic() && !irqs_disabled()) ||
  7943. system_state != SYSTEM_RUNNING || oops_in_progress)
  7944. return;
  7945. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7946. return;
  7947. prev_jiffy = jiffies;
  7948. printk(KERN_ERR
  7949. "BUG: sleeping function called from invalid context at %s:%d\n",
  7950. file, line);
  7951. printk(KERN_ERR
  7952. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7953. in_atomic(), irqs_disabled(),
  7954. current->pid, current->comm);
  7955. debug_show_held_locks(current);
  7956. if (irqs_disabled())
  7957. print_irqtrace_events(current);
  7958. dump_stack();
  7959. #endif
  7960. }
  7961. EXPORT_SYMBOL(__might_sleep);
  7962. #endif
  7963. #ifdef CONFIG_MAGIC_SYSRQ
  7964. static void normalize_task(struct rq *rq, struct task_struct *p)
  7965. {
  7966. int on_rq;
  7967. update_rq_clock(rq);
  7968. on_rq = p->se.on_rq;
  7969. if (on_rq)
  7970. deactivate_task(rq, p, 0);
  7971. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7972. if (on_rq) {
  7973. activate_task(rq, p, 0);
  7974. resched_task(rq->curr);
  7975. }
  7976. }
  7977. void normalize_rt_tasks(void)
  7978. {
  7979. struct task_struct *g, *p;
  7980. unsigned long flags;
  7981. struct rq *rq;
  7982. read_lock_irqsave(&tasklist_lock, flags);
  7983. do_each_thread(g, p) {
  7984. /*
  7985. * Only normalize user tasks:
  7986. */
  7987. if (!p->mm)
  7988. continue;
  7989. p->se.exec_start = 0;
  7990. #ifdef CONFIG_SCHEDSTATS
  7991. p->se.wait_start = 0;
  7992. p->se.sleep_start = 0;
  7993. p->se.block_start = 0;
  7994. #endif
  7995. if (!rt_task(p)) {
  7996. /*
  7997. * Renice negative nice level userspace
  7998. * tasks back to 0:
  7999. */
  8000. if (TASK_NICE(p) < 0 && p->mm)
  8001. set_user_nice(p, 0);
  8002. continue;
  8003. }
  8004. spin_lock(&p->pi_lock);
  8005. rq = __task_rq_lock(p);
  8006. normalize_task(rq, p);
  8007. __task_rq_unlock(rq);
  8008. spin_unlock(&p->pi_lock);
  8009. } while_each_thread(g, p);
  8010. read_unlock_irqrestore(&tasklist_lock, flags);
  8011. }
  8012. #endif /* CONFIG_MAGIC_SYSRQ */
  8013. #ifdef CONFIG_IA64
  8014. /*
  8015. * These functions are only useful for the IA64 MCA handling.
  8016. *
  8017. * They can only be called when the whole system has been
  8018. * stopped - every CPU needs to be quiescent, and no scheduling
  8019. * activity can take place. Using them for anything else would
  8020. * be a serious bug, and as a result, they aren't even visible
  8021. * under any other configuration.
  8022. */
  8023. /**
  8024. * curr_task - return the current task for a given cpu.
  8025. * @cpu: the processor in question.
  8026. *
  8027. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8028. */
  8029. struct task_struct *curr_task(int cpu)
  8030. {
  8031. return cpu_curr(cpu);
  8032. }
  8033. /**
  8034. * set_curr_task - set the current task for a given cpu.
  8035. * @cpu: the processor in question.
  8036. * @p: the task pointer to set.
  8037. *
  8038. * Description: This function must only be used when non-maskable interrupts
  8039. * are serviced on a separate stack. It allows the architecture to switch the
  8040. * notion of the current task on a cpu in a non-blocking manner. This function
  8041. * must be called with all CPU's synchronized, and interrupts disabled, the
  8042. * and caller must save the original value of the current task (see
  8043. * curr_task() above) and restore that value before reenabling interrupts and
  8044. * re-starting the system.
  8045. *
  8046. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8047. */
  8048. void set_curr_task(int cpu, struct task_struct *p)
  8049. {
  8050. cpu_curr(cpu) = p;
  8051. }
  8052. #endif
  8053. #ifdef CONFIG_FAIR_GROUP_SCHED
  8054. static void free_fair_sched_group(struct task_group *tg)
  8055. {
  8056. int i;
  8057. for_each_possible_cpu(i) {
  8058. if (tg->cfs_rq)
  8059. kfree(tg->cfs_rq[i]);
  8060. if (tg->se)
  8061. kfree(tg->se[i]);
  8062. }
  8063. kfree(tg->cfs_rq);
  8064. kfree(tg->se);
  8065. }
  8066. static
  8067. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8068. {
  8069. struct cfs_rq *cfs_rq;
  8070. struct sched_entity *se;
  8071. struct rq *rq;
  8072. int i;
  8073. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  8074. if (!tg->cfs_rq)
  8075. goto err;
  8076. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  8077. if (!tg->se)
  8078. goto err;
  8079. tg->shares = NICE_0_LOAD;
  8080. for_each_possible_cpu(i) {
  8081. rq = cpu_rq(i);
  8082. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  8083. GFP_KERNEL, cpu_to_node(i));
  8084. if (!cfs_rq)
  8085. goto err;
  8086. se = kzalloc_node(sizeof(struct sched_entity),
  8087. GFP_KERNEL, cpu_to_node(i));
  8088. if (!se)
  8089. goto err;
  8090. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  8091. }
  8092. return 1;
  8093. err:
  8094. return 0;
  8095. }
  8096. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8097. {
  8098. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  8099. &cpu_rq(cpu)->leaf_cfs_rq_list);
  8100. }
  8101. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8102. {
  8103. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  8104. }
  8105. #else /* !CONFG_FAIR_GROUP_SCHED */
  8106. static inline void free_fair_sched_group(struct task_group *tg)
  8107. {
  8108. }
  8109. static inline
  8110. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8111. {
  8112. return 1;
  8113. }
  8114. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8115. {
  8116. }
  8117. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8118. {
  8119. }
  8120. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8121. #ifdef CONFIG_RT_GROUP_SCHED
  8122. static void free_rt_sched_group(struct task_group *tg)
  8123. {
  8124. int i;
  8125. destroy_rt_bandwidth(&tg->rt_bandwidth);
  8126. for_each_possible_cpu(i) {
  8127. if (tg->rt_rq)
  8128. kfree(tg->rt_rq[i]);
  8129. if (tg->rt_se)
  8130. kfree(tg->rt_se[i]);
  8131. }
  8132. kfree(tg->rt_rq);
  8133. kfree(tg->rt_se);
  8134. }
  8135. static
  8136. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8137. {
  8138. struct rt_rq *rt_rq;
  8139. struct sched_rt_entity *rt_se;
  8140. struct rq *rq;
  8141. int i;
  8142. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  8143. if (!tg->rt_rq)
  8144. goto err;
  8145. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  8146. if (!tg->rt_se)
  8147. goto err;
  8148. init_rt_bandwidth(&tg->rt_bandwidth,
  8149. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  8150. for_each_possible_cpu(i) {
  8151. rq = cpu_rq(i);
  8152. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  8153. GFP_KERNEL, cpu_to_node(i));
  8154. if (!rt_rq)
  8155. goto err;
  8156. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  8157. GFP_KERNEL, cpu_to_node(i));
  8158. if (!rt_se)
  8159. goto err;
  8160. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  8161. }
  8162. return 1;
  8163. err:
  8164. return 0;
  8165. }
  8166. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8167. {
  8168. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  8169. &cpu_rq(cpu)->leaf_rt_rq_list);
  8170. }
  8171. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8172. {
  8173. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  8174. }
  8175. #else /* !CONFIG_RT_GROUP_SCHED */
  8176. static inline void free_rt_sched_group(struct task_group *tg)
  8177. {
  8178. }
  8179. static inline
  8180. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8181. {
  8182. return 1;
  8183. }
  8184. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8185. {
  8186. }
  8187. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8188. {
  8189. }
  8190. #endif /* CONFIG_RT_GROUP_SCHED */
  8191. #ifdef CONFIG_GROUP_SCHED
  8192. static void free_sched_group(struct task_group *tg)
  8193. {
  8194. free_fair_sched_group(tg);
  8195. free_rt_sched_group(tg);
  8196. kfree(tg);
  8197. }
  8198. /* allocate runqueue etc for a new task group */
  8199. struct task_group *sched_create_group(struct task_group *parent)
  8200. {
  8201. struct task_group *tg;
  8202. unsigned long flags;
  8203. int i;
  8204. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  8205. if (!tg)
  8206. return ERR_PTR(-ENOMEM);
  8207. if (!alloc_fair_sched_group(tg, parent))
  8208. goto err;
  8209. if (!alloc_rt_sched_group(tg, parent))
  8210. goto err;
  8211. spin_lock_irqsave(&task_group_lock, flags);
  8212. for_each_possible_cpu(i) {
  8213. register_fair_sched_group(tg, i);
  8214. register_rt_sched_group(tg, i);
  8215. }
  8216. list_add_rcu(&tg->list, &task_groups);
  8217. WARN_ON(!parent); /* root should already exist */
  8218. tg->parent = parent;
  8219. INIT_LIST_HEAD(&tg->children);
  8220. list_add_rcu(&tg->siblings, &parent->children);
  8221. spin_unlock_irqrestore(&task_group_lock, flags);
  8222. return tg;
  8223. err:
  8224. free_sched_group(tg);
  8225. return ERR_PTR(-ENOMEM);
  8226. }
  8227. /* rcu callback to free various structures associated with a task group */
  8228. static void free_sched_group_rcu(struct rcu_head *rhp)
  8229. {
  8230. /* now it should be safe to free those cfs_rqs */
  8231. free_sched_group(container_of(rhp, struct task_group, rcu));
  8232. }
  8233. /* Destroy runqueue etc associated with a task group */
  8234. void sched_destroy_group(struct task_group *tg)
  8235. {
  8236. unsigned long flags;
  8237. int i;
  8238. spin_lock_irqsave(&task_group_lock, flags);
  8239. for_each_possible_cpu(i) {
  8240. unregister_fair_sched_group(tg, i);
  8241. unregister_rt_sched_group(tg, i);
  8242. }
  8243. list_del_rcu(&tg->list);
  8244. list_del_rcu(&tg->siblings);
  8245. spin_unlock_irqrestore(&task_group_lock, flags);
  8246. /* wait for possible concurrent references to cfs_rqs complete */
  8247. call_rcu(&tg->rcu, free_sched_group_rcu);
  8248. }
  8249. /* change task's runqueue when it moves between groups.
  8250. * The caller of this function should have put the task in its new group
  8251. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  8252. * reflect its new group.
  8253. */
  8254. void sched_move_task(struct task_struct *tsk)
  8255. {
  8256. int on_rq, running;
  8257. unsigned long flags;
  8258. struct rq *rq;
  8259. rq = task_rq_lock(tsk, &flags);
  8260. update_rq_clock(rq);
  8261. running = task_current(rq, tsk);
  8262. on_rq = tsk->se.on_rq;
  8263. if (on_rq)
  8264. dequeue_task(rq, tsk, 0);
  8265. if (unlikely(running))
  8266. tsk->sched_class->put_prev_task(rq, tsk);
  8267. set_task_rq(tsk, task_cpu(tsk));
  8268. #ifdef CONFIG_FAIR_GROUP_SCHED
  8269. if (tsk->sched_class->moved_group)
  8270. tsk->sched_class->moved_group(tsk);
  8271. #endif
  8272. if (unlikely(running))
  8273. tsk->sched_class->set_curr_task(rq);
  8274. if (on_rq)
  8275. enqueue_task(rq, tsk, 0);
  8276. task_rq_unlock(rq, &flags);
  8277. }
  8278. #endif /* CONFIG_GROUP_SCHED */
  8279. #ifdef CONFIG_FAIR_GROUP_SCHED
  8280. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  8281. {
  8282. struct cfs_rq *cfs_rq = se->cfs_rq;
  8283. int on_rq;
  8284. on_rq = se->on_rq;
  8285. if (on_rq)
  8286. dequeue_entity(cfs_rq, se, 0);
  8287. se->load.weight = shares;
  8288. se->load.inv_weight = 0;
  8289. if (on_rq)
  8290. enqueue_entity(cfs_rq, se, 0);
  8291. }
  8292. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  8293. {
  8294. struct cfs_rq *cfs_rq = se->cfs_rq;
  8295. struct rq *rq = cfs_rq->rq;
  8296. unsigned long flags;
  8297. spin_lock_irqsave(&rq->lock, flags);
  8298. __set_se_shares(se, shares);
  8299. spin_unlock_irqrestore(&rq->lock, flags);
  8300. }
  8301. static DEFINE_MUTEX(shares_mutex);
  8302. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  8303. {
  8304. int i;
  8305. unsigned long flags;
  8306. /*
  8307. * We can't change the weight of the root cgroup.
  8308. */
  8309. if (!tg->se[0])
  8310. return -EINVAL;
  8311. if (shares < MIN_SHARES)
  8312. shares = MIN_SHARES;
  8313. else if (shares > MAX_SHARES)
  8314. shares = MAX_SHARES;
  8315. mutex_lock(&shares_mutex);
  8316. if (tg->shares == shares)
  8317. goto done;
  8318. spin_lock_irqsave(&task_group_lock, flags);
  8319. for_each_possible_cpu(i)
  8320. unregister_fair_sched_group(tg, i);
  8321. list_del_rcu(&tg->siblings);
  8322. spin_unlock_irqrestore(&task_group_lock, flags);
  8323. /* wait for any ongoing reference to this group to finish */
  8324. synchronize_sched();
  8325. /*
  8326. * Now we are free to modify the group's share on each cpu
  8327. * w/o tripping rebalance_share or load_balance_fair.
  8328. */
  8329. tg->shares = shares;
  8330. for_each_possible_cpu(i) {
  8331. /*
  8332. * force a rebalance
  8333. */
  8334. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  8335. set_se_shares(tg->se[i], shares);
  8336. }
  8337. /*
  8338. * Enable load balance activity on this group, by inserting it back on
  8339. * each cpu's rq->leaf_cfs_rq_list.
  8340. */
  8341. spin_lock_irqsave(&task_group_lock, flags);
  8342. for_each_possible_cpu(i)
  8343. register_fair_sched_group(tg, i);
  8344. list_add_rcu(&tg->siblings, &tg->parent->children);
  8345. spin_unlock_irqrestore(&task_group_lock, flags);
  8346. done:
  8347. mutex_unlock(&shares_mutex);
  8348. return 0;
  8349. }
  8350. unsigned long sched_group_shares(struct task_group *tg)
  8351. {
  8352. return tg->shares;
  8353. }
  8354. #endif
  8355. #ifdef CONFIG_RT_GROUP_SCHED
  8356. /*
  8357. * Ensure that the real time constraints are schedulable.
  8358. */
  8359. static DEFINE_MUTEX(rt_constraints_mutex);
  8360. static unsigned long to_ratio(u64 period, u64 runtime)
  8361. {
  8362. if (runtime == RUNTIME_INF)
  8363. return 1ULL << 20;
  8364. return div64_u64(runtime << 20, period);
  8365. }
  8366. /* Must be called with tasklist_lock held */
  8367. static inline int tg_has_rt_tasks(struct task_group *tg)
  8368. {
  8369. struct task_struct *g, *p;
  8370. do_each_thread(g, p) {
  8371. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  8372. return 1;
  8373. } while_each_thread(g, p);
  8374. return 0;
  8375. }
  8376. struct rt_schedulable_data {
  8377. struct task_group *tg;
  8378. u64 rt_period;
  8379. u64 rt_runtime;
  8380. };
  8381. static int tg_schedulable(struct task_group *tg, void *data)
  8382. {
  8383. struct rt_schedulable_data *d = data;
  8384. struct task_group *child;
  8385. unsigned long total, sum = 0;
  8386. u64 period, runtime;
  8387. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8388. runtime = tg->rt_bandwidth.rt_runtime;
  8389. if (tg == d->tg) {
  8390. period = d->rt_period;
  8391. runtime = d->rt_runtime;
  8392. }
  8393. #ifdef CONFIG_USER_SCHED
  8394. if (tg == &root_task_group) {
  8395. period = global_rt_period();
  8396. runtime = global_rt_runtime();
  8397. }
  8398. #endif
  8399. /*
  8400. * Cannot have more runtime than the period.
  8401. */
  8402. if (runtime > period && runtime != RUNTIME_INF)
  8403. return -EINVAL;
  8404. /*
  8405. * Ensure we don't starve existing RT tasks.
  8406. */
  8407. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  8408. return -EBUSY;
  8409. total = to_ratio(period, runtime);
  8410. /*
  8411. * Nobody can have more than the global setting allows.
  8412. */
  8413. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  8414. return -EINVAL;
  8415. /*
  8416. * The sum of our children's runtime should not exceed our own.
  8417. */
  8418. list_for_each_entry_rcu(child, &tg->children, siblings) {
  8419. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  8420. runtime = child->rt_bandwidth.rt_runtime;
  8421. if (child == d->tg) {
  8422. period = d->rt_period;
  8423. runtime = d->rt_runtime;
  8424. }
  8425. sum += to_ratio(period, runtime);
  8426. }
  8427. if (sum > total)
  8428. return -EINVAL;
  8429. return 0;
  8430. }
  8431. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  8432. {
  8433. struct rt_schedulable_data data = {
  8434. .tg = tg,
  8435. .rt_period = period,
  8436. .rt_runtime = runtime,
  8437. };
  8438. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  8439. }
  8440. static int tg_set_bandwidth(struct task_group *tg,
  8441. u64 rt_period, u64 rt_runtime)
  8442. {
  8443. int i, err = 0;
  8444. mutex_lock(&rt_constraints_mutex);
  8445. read_lock(&tasklist_lock);
  8446. err = __rt_schedulable(tg, rt_period, rt_runtime);
  8447. if (err)
  8448. goto unlock;
  8449. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8450. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  8451. tg->rt_bandwidth.rt_runtime = rt_runtime;
  8452. for_each_possible_cpu(i) {
  8453. struct rt_rq *rt_rq = tg->rt_rq[i];
  8454. spin_lock(&rt_rq->rt_runtime_lock);
  8455. rt_rq->rt_runtime = rt_runtime;
  8456. spin_unlock(&rt_rq->rt_runtime_lock);
  8457. }
  8458. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8459. unlock:
  8460. read_unlock(&tasklist_lock);
  8461. mutex_unlock(&rt_constraints_mutex);
  8462. return err;
  8463. }
  8464. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  8465. {
  8466. u64 rt_runtime, rt_period;
  8467. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8468. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  8469. if (rt_runtime_us < 0)
  8470. rt_runtime = RUNTIME_INF;
  8471. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8472. }
  8473. long sched_group_rt_runtime(struct task_group *tg)
  8474. {
  8475. u64 rt_runtime_us;
  8476. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  8477. return -1;
  8478. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  8479. do_div(rt_runtime_us, NSEC_PER_USEC);
  8480. return rt_runtime_us;
  8481. }
  8482. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  8483. {
  8484. u64 rt_runtime, rt_period;
  8485. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  8486. rt_runtime = tg->rt_bandwidth.rt_runtime;
  8487. if (rt_period == 0)
  8488. return -EINVAL;
  8489. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8490. }
  8491. long sched_group_rt_period(struct task_group *tg)
  8492. {
  8493. u64 rt_period_us;
  8494. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8495. do_div(rt_period_us, NSEC_PER_USEC);
  8496. return rt_period_us;
  8497. }
  8498. static int sched_rt_global_constraints(void)
  8499. {
  8500. u64 runtime, period;
  8501. int ret = 0;
  8502. if (sysctl_sched_rt_period <= 0)
  8503. return -EINVAL;
  8504. runtime = global_rt_runtime();
  8505. period = global_rt_period();
  8506. /*
  8507. * Sanity check on the sysctl variables.
  8508. */
  8509. if (runtime > period && runtime != RUNTIME_INF)
  8510. return -EINVAL;
  8511. mutex_lock(&rt_constraints_mutex);
  8512. read_lock(&tasklist_lock);
  8513. ret = __rt_schedulable(NULL, 0, 0);
  8514. read_unlock(&tasklist_lock);
  8515. mutex_unlock(&rt_constraints_mutex);
  8516. return ret;
  8517. }
  8518. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  8519. {
  8520. /* Don't accept realtime tasks when there is no way for them to run */
  8521. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  8522. return 0;
  8523. return 1;
  8524. }
  8525. #else /* !CONFIG_RT_GROUP_SCHED */
  8526. static int sched_rt_global_constraints(void)
  8527. {
  8528. unsigned long flags;
  8529. int i;
  8530. if (sysctl_sched_rt_period <= 0)
  8531. return -EINVAL;
  8532. /*
  8533. * There's always some RT tasks in the root group
  8534. * -- migration, kstopmachine etc..
  8535. */
  8536. if (sysctl_sched_rt_runtime == 0)
  8537. return -EBUSY;
  8538. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  8539. for_each_possible_cpu(i) {
  8540. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  8541. spin_lock(&rt_rq->rt_runtime_lock);
  8542. rt_rq->rt_runtime = global_rt_runtime();
  8543. spin_unlock(&rt_rq->rt_runtime_lock);
  8544. }
  8545. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  8546. return 0;
  8547. }
  8548. #endif /* CONFIG_RT_GROUP_SCHED */
  8549. int sched_rt_handler(struct ctl_table *table, int write,
  8550. struct file *filp, void __user *buffer, size_t *lenp,
  8551. loff_t *ppos)
  8552. {
  8553. int ret;
  8554. int old_period, old_runtime;
  8555. static DEFINE_MUTEX(mutex);
  8556. mutex_lock(&mutex);
  8557. old_period = sysctl_sched_rt_period;
  8558. old_runtime = sysctl_sched_rt_runtime;
  8559. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  8560. if (!ret && write) {
  8561. ret = sched_rt_global_constraints();
  8562. if (ret) {
  8563. sysctl_sched_rt_period = old_period;
  8564. sysctl_sched_rt_runtime = old_runtime;
  8565. } else {
  8566. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  8567. def_rt_bandwidth.rt_period =
  8568. ns_to_ktime(global_rt_period());
  8569. }
  8570. }
  8571. mutex_unlock(&mutex);
  8572. return ret;
  8573. }
  8574. #ifdef CONFIG_CGROUP_SCHED
  8575. /* return corresponding task_group object of a cgroup */
  8576. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  8577. {
  8578. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  8579. struct task_group, css);
  8580. }
  8581. static struct cgroup_subsys_state *
  8582. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8583. {
  8584. struct task_group *tg, *parent;
  8585. if (!cgrp->parent) {
  8586. /* This is early initialization for the top cgroup */
  8587. return &init_task_group.css;
  8588. }
  8589. parent = cgroup_tg(cgrp->parent);
  8590. tg = sched_create_group(parent);
  8591. if (IS_ERR(tg))
  8592. return ERR_PTR(-ENOMEM);
  8593. return &tg->css;
  8594. }
  8595. static void
  8596. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8597. {
  8598. struct task_group *tg = cgroup_tg(cgrp);
  8599. sched_destroy_group(tg);
  8600. }
  8601. static int
  8602. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8603. struct task_struct *tsk)
  8604. {
  8605. #ifdef CONFIG_RT_GROUP_SCHED
  8606. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  8607. return -EINVAL;
  8608. #else
  8609. /* We don't support RT-tasks being in separate groups */
  8610. if (tsk->sched_class != &fair_sched_class)
  8611. return -EINVAL;
  8612. #endif
  8613. return 0;
  8614. }
  8615. static void
  8616. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8617. struct cgroup *old_cont, struct task_struct *tsk)
  8618. {
  8619. sched_move_task(tsk);
  8620. }
  8621. #ifdef CONFIG_FAIR_GROUP_SCHED
  8622. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  8623. u64 shareval)
  8624. {
  8625. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  8626. }
  8627. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  8628. {
  8629. struct task_group *tg = cgroup_tg(cgrp);
  8630. return (u64) tg->shares;
  8631. }
  8632. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8633. #ifdef CONFIG_RT_GROUP_SCHED
  8634. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  8635. s64 val)
  8636. {
  8637. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  8638. }
  8639. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  8640. {
  8641. return sched_group_rt_runtime(cgroup_tg(cgrp));
  8642. }
  8643. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  8644. u64 rt_period_us)
  8645. {
  8646. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  8647. }
  8648. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  8649. {
  8650. return sched_group_rt_period(cgroup_tg(cgrp));
  8651. }
  8652. #endif /* CONFIG_RT_GROUP_SCHED */
  8653. static struct cftype cpu_files[] = {
  8654. #ifdef CONFIG_FAIR_GROUP_SCHED
  8655. {
  8656. .name = "shares",
  8657. .read_u64 = cpu_shares_read_u64,
  8658. .write_u64 = cpu_shares_write_u64,
  8659. },
  8660. #endif
  8661. #ifdef CONFIG_RT_GROUP_SCHED
  8662. {
  8663. .name = "rt_runtime_us",
  8664. .read_s64 = cpu_rt_runtime_read,
  8665. .write_s64 = cpu_rt_runtime_write,
  8666. },
  8667. {
  8668. .name = "rt_period_us",
  8669. .read_u64 = cpu_rt_period_read_uint,
  8670. .write_u64 = cpu_rt_period_write_uint,
  8671. },
  8672. #endif
  8673. };
  8674. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  8675. {
  8676. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  8677. }
  8678. struct cgroup_subsys cpu_cgroup_subsys = {
  8679. .name = "cpu",
  8680. .create = cpu_cgroup_create,
  8681. .destroy = cpu_cgroup_destroy,
  8682. .can_attach = cpu_cgroup_can_attach,
  8683. .attach = cpu_cgroup_attach,
  8684. .populate = cpu_cgroup_populate,
  8685. .subsys_id = cpu_cgroup_subsys_id,
  8686. .early_init = 1,
  8687. };
  8688. #endif /* CONFIG_CGROUP_SCHED */
  8689. #ifdef CONFIG_CGROUP_CPUACCT
  8690. /*
  8691. * CPU accounting code for task groups.
  8692. *
  8693. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  8694. * (balbir@in.ibm.com).
  8695. */
  8696. /* track cpu usage of a group of tasks and its child groups */
  8697. struct cpuacct {
  8698. struct cgroup_subsys_state css;
  8699. /* cpuusage holds pointer to a u64-type object on every cpu */
  8700. u64 *cpuusage;
  8701. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  8702. struct cpuacct *parent;
  8703. };
  8704. struct cgroup_subsys cpuacct_subsys;
  8705. /* return cpu accounting group corresponding to this container */
  8706. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  8707. {
  8708. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  8709. struct cpuacct, css);
  8710. }
  8711. /* return cpu accounting group to which this task belongs */
  8712. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  8713. {
  8714. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  8715. struct cpuacct, css);
  8716. }
  8717. /* create a new cpu accounting group */
  8718. static struct cgroup_subsys_state *cpuacct_create(
  8719. struct cgroup_subsys *ss, struct cgroup *cgrp)
  8720. {
  8721. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  8722. int i;
  8723. if (!ca)
  8724. goto out;
  8725. ca->cpuusage = alloc_percpu(u64);
  8726. if (!ca->cpuusage)
  8727. goto out_free_ca;
  8728. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8729. if (percpu_counter_init(&ca->cpustat[i], 0))
  8730. goto out_free_counters;
  8731. if (cgrp->parent)
  8732. ca->parent = cgroup_ca(cgrp->parent);
  8733. return &ca->css;
  8734. out_free_counters:
  8735. while (--i >= 0)
  8736. percpu_counter_destroy(&ca->cpustat[i]);
  8737. free_percpu(ca->cpuusage);
  8738. out_free_ca:
  8739. kfree(ca);
  8740. out:
  8741. return ERR_PTR(-ENOMEM);
  8742. }
  8743. /* destroy an existing cpu accounting group */
  8744. static void
  8745. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8746. {
  8747. struct cpuacct *ca = cgroup_ca(cgrp);
  8748. int i;
  8749. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8750. percpu_counter_destroy(&ca->cpustat[i]);
  8751. free_percpu(ca->cpuusage);
  8752. kfree(ca);
  8753. }
  8754. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  8755. {
  8756. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8757. u64 data;
  8758. #ifndef CONFIG_64BIT
  8759. /*
  8760. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  8761. */
  8762. spin_lock_irq(&cpu_rq(cpu)->lock);
  8763. data = *cpuusage;
  8764. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8765. #else
  8766. data = *cpuusage;
  8767. #endif
  8768. return data;
  8769. }
  8770. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  8771. {
  8772. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8773. #ifndef CONFIG_64BIT
  8774. /*
  8775. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  8776. */
  8777. spin_lock_irq(&cpu_rq(cpu)->lock);
  8778. *cpuusage = val;
  8779. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8780. #else
  8781. *cpuusage = val;
  8782. #endif
  8783. }
  8784. /* return total cpu usage (in nanoseconds) of a group */
  8785. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  8786. {
  8787. struct cpuacct *ca = cgroup_ca(cgrp);
  8788. u64 totalcpuusage = 0;
  8789. int i;
  8790. for_each_present_cpu(i)
  8791. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  8792. return totalcpuusage;
  8793. }
  8794. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  8795. u64 reset)
  8796. {
  8797. struct cpuacct *ca = cgroup_ca(cgrp);
  8798. int err = 0;
  8799. int i;
  8800. if (reset) {
  8801. err = -EINVAL;
  8802. goto out;
  8803. }
  8804. for_each_present_cpu(i)
  8805. cpuacct_cpuusage_write(ca, i, 0);
  8806. out:
  8807. return err;
  8808. }
  8809. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  8810. struct seq_file *m)
  8811. {
  8812. struct cpuacct *ca = cgroup_ca(cgroup);
  8813. u64 percpu;
  8814. int i;
  8815. for_each_present_cpu(i) {
  8816. percpu = cpuacct_cpuusage_read(ca, i);
  8817. seq_printf(m, "%llu ", (unsigned long long) percpu);
  8818. }
  8819. seq_printf(m, "\n");
  8820. return 0;
  8821. }
  8822. static const char *cpuacct_stat_desc[] = {
  8823. [CPUACCT_STAT_USER] = "user",
  8824. [CPUACCT_STAT_SYSTEM] = "system",
  8825. };
  8826. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  8827. struct cgroup_map_cb *cb)
  8828. {
  8829. struct cpuacct *ca = cgroup_ca(cgrp);
  8830. int i;
  8831. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  8832. s64 val = percpu_counter_read(&ca->cpustat[i]);
  8833. val = cputime64_to_clock_t(val);
  8834. cb->fill(cb, cpuacct_stat_desc[i], val);
  8835. }
  8836. return 0;
  8837. }
  8838. static struct cftype files[] = {
  8839. {
  8840. .name = "usage",
  8841. .read_u64 = cpuusage_read,
  8842. .write_u64 = cpuusage_write,
  8843. },
  8844. {
  8845. .name = "usage_percpu",
  8846. .read_seq_string = cpuacct_percpu_seq_read,
  8847. },
  8848. {
  8849. .name = "stat",
  8850. .read_map = cpuacct_stats_show,
  8851. },
  8852. };
  8853. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8854. {
  8855. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  8856. }
  8857. /*
  8858. * charge this task's execution time to its accounting group.
  8859. *
  8860. * called with rq->lock held.
  8861. */
  8862. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  8863. {
  8864. struct cpuacct *ca;
  8865. int cpu;
  8866. if (unlikely(!cpuacct_subsys.active))
  8867. return;
  8868. cpu = task_cpu(tsk);
  8869. rcu_read_lock();
  8870. ca = task_ca(tsk);
  8871. for (; ca; ca = ca->parent) {
  8872. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8873. *cpuusage += cputime;
  8874. }
  8875. rcu_read_unlock();
  8876. }
  8877. /*
  8878. * Charge the system/user time to the task's accounting group.
  8879. */
  8880. static void cpuacct_update_stats(struct task_struct *tsk,
  8881. enum cpuacct_stat_index idx, cputime_t val)
  8882. {
  8883. struct cpuacct *ca;
  8884. if (unlikely(!cpuacct_subsys.active))
  8885. return;
  8886. rcu_read_lock();
  8887. ca = task_ca(tsk);
  8888. do {
  8889. percpu_counter_add(&ca->cpustat[idx], val);
  8890. ca = ca->parent;
  8891. } while (ca);
  8892. rcu_read_unlock();
  8893. }
  8894. struct cgroup_subsys cpuacct_subsys = {
  8895. .name = "cpuacct",
  8896. .create = cpuacct_create,
  8897. .destroy = cpuacct_destroy,
  8898. .populate = cpuacct_populate,
  8899. .subsys_id = cpuacct_subsys_id,
  8900. };
  8901. #endif /* CONFIG_CGROUP_CPUACCT */