ctree.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810
  1. #include <stdio.h>
  2. #include <stdlib.h>
  3. #include "kerncompat.h"
  4. #define BLOCKSIZE 4096
  5. struct key {
  6. u64 objectid;
  7. u32 flags;
  8. u64 offset;
  9. } __attribute__ ((__packed__));
  10. struct header {
  11. u64 fsid[2]; /* FS specific uuid */
  12. u64 blocknum;
  13. u64 parentid;
  14. u32 csum;
  15. u32 ham;
  16. u16 nritems;
  17. u16 flags;
  18. } __attribute__ ((__packed__));
  19. #define NODEPTRS_PER_BLOCK ((BLOCKSIZE - sizeof(struct header)) / \
  20. (sizeof(struct key) + sizeof(u64)))
  21. #define LEVEL_BITS 3
  22. #define MAX_LEVEL (1 << LEVEL_BITS)
  23. #define node_level(f) ((f) & (MAX_LEVEL-1))
  24. #define is_leaf(f) (node_level(f) == 0)
  25. struct ctree_root {
  26. struct node *node;
  27. };
  28. struct item {
  29. struct key key;
  30. u16 offset;
  31. u16 size;
  32. } __attribute__ ((__packed__));
  33. #define LEAF_DATA_SIZE (BLOCKSIZE - sizeof(struct header))
  34. struct leaf {
  35. struct header header;
  36. union {
  37. struct item items[LEAF_DATA_SIZE/sizeof(struct item)];
  38. u8 data[BLOCKSIZE-sizeof(struct header)];
  39. };
  40. } __attribute__ ((__packed__));
  41. struct node {
  42. struct header header;
  43. struct key keys[NODEPTRS_PER_BLOCK];
  44. u64 blockptrs[NODEPTRS_PER_BLOCK];
  45. } __attribute__ ((__packed__));
  46. struct ctree_path {
  47. struct node *nodes[MAX_LEVEL];
  48. int slots[MAX_LEVEL];
  49. };
  50. static inline void init_path(struct ctree_path *p)
  51. {
  52. memset(p, 0, sizeof(*p));
  53. }
  54. static inline unsigned int leaf_data_end(struct leaf *leaf)
  55. {
  56. unsigned int nr = leaf->header.nritems;
  57. if (nr == 0)
  58. return ARRAY_SIZE(leaf->data);
  59. return leaf->items[nr-1].offset;
  60. }
  61. static inline int leaf_free_space(struct leaf *leaf)
  62. {
  63. int data_end = leaf_data_end(leaf);
  64. int nritems = leaf->header.nritems;
  65. char *items_end = (char *)(leaf->items + nritems + 1);
  66. return (char *)(leaf->data + data_end) - (char *)items_end;
  67. }
  68. int comp_keys(struct key *k1, struct key *k2)
  69. {
  70. if (k1->objectid > k2->objectid)
  71. return 1;
  72. if (k1->objectid < k2->objectid)
  73. return -1;
  74. if (k1->flags > k2->flags)
  75. return 1;
  76. if (k1->flags < k2->flags)
  77. return -1;
  78. if (k1->offset > k2->offset)
  79. return 1;
  80. if (k1->offset < k2->offset)
  81. return -1;
  82. return 0;
  83. }
  84. int generic_bin_search(char *p, int item_size, struct key *key,
  85. int max, int *slot)
  86. {
  87. int low = 0;
  88. int high = max;
  89. int mid;
  90. int ret;
  91. struct key *tmp;
  92. while(low < high) {
  93. mid = (low + high) / 2;
  94. tmp = (struct key *)(p + mid * item_size);
  95. ret = comp_keys(tmp, key);
  96. if (ret < 0)
  97. low = mid + 1;
  98. else if (ret > 0)
  99. high = mid;
  100. else {
  101. *slot = mid;
  102. return 0;
  103. }
  104. }
  105. *slot = low;
  106. return 1;
  107. }
  108. int bin_search(struct node *c, struct key *key, int *slot)
  109. {
  110. if (is_leaf(c->header.flags)) {
  111. struct leaf *l = (struct leaf *)c;
  112. return generic_bin_search((void *)l->items, sizeof(struct item),
  113. key, c->header.nritems, slot);
  114. } else {
  115. return generic_bin_search((void *)c->keys, sizeof(struct key),
  116. key, c->header.nritems, slot);
  117. }
  118. return -1;
  119. }
  120. void *read_block(u64 blocknum)
  121. {
  122. return (void *)blocknum;
  123. }
  124. int search_slot(struct ctree_root *root, struct key *key, struct ctree_path *p)
  125. {
  126. struct node *c = root->node;
  127. int slot;
  128. int ret;
  129. int level;
  130. while (c) {
  131. level = node_level(c->header.flags);
  132. p->nodes[level] = c;
  133. ret = bin_search(c, key, &slot);
  134. if (!is_leaf(c->header.flags)) {
  135. if (ret && slot > 0)
  136. slot -= 1;
  137. p->slots[level] = slot;
  138. c = read_block(c->blockptrs[slot]);
  139. continue;
  140. } else {
  141. p->slots[level] = slot;
  142. return ret;
  143. }
  144. }
  145. return -1;
  146. }
  147. static void fixup_low_keys(struct ctree_path *path, struct key *key,
  148. int level)
  149. {
  150. int i;
  151. /* adjust the pointers going up the tree */
  152. for (i = level; i < MAX_LEVEL; i++) {
  153. struct node *t = path->nodes[i];
  154. int tslot = path->slots[i];
  155. if (!t)
  156. break;
  157. memcpy(t->keys + tslot, key, sizeof(*key));
  158. if (tslot != 0)
  159. break;
  160. }
  161. }
  162. int __insert_ptr(struct ctree_root *root,
  163. struct ctree_path *path, struct key *key,
  164. u64 blocknr, int slot, int level)
  165. {
  166. struct node *c;
  167. struct node *lower;
  168. struct key *lower_key;
  169. int nritems;
  170. /* need a new root */
  171. if (!path->nodes[level]) {
  172. c = malloc(sizeof(struct node));
  173. memset(c, 0, sizeof(c));
  174. c->header.nritems = 2;
  175. c->header.flags = node_level(level);
  176. lower = path->nodes[level-1];
  177. if (is_leaf(lower->header.flags))
  178. lower_key = &((struct leaf *)lower)->items[0].key;
  179. else
  180. lower_key = lower->keys;
  181. memcpy(c->keys, lower_key, sizeof(struct key));
  182. memcpy(c->keys + 1, key, sizeof(struct key));
  183. c->blockptrs[0] = (u64)lower;
  184. c->blockptrs[1] = blocknr;
  185. root->node = c;
  186. path->nodes[level] = c;
  187. path->slots[level] = 0;
  188. if (c->keys[1].objectid == 0)
  189. BUG();
  190. return 0;
  191. }
  192. lower = path->nodes[level];
  193. nritems = lower->header.nritems;
  194. if (slot > nritems)
  195. BUG();
  196. if (nritems == NODEPTRS_PER_BLOCK)
  197. BUG();
  198. if (slot != nritems) {
  199. memmove(lower->keys + slot + 1, lower->keys + slot,
  200. (nritems - slot) * sizeof(struct key));
  201. memmove(lower->blockptrs + slot + 1, lower->blockptrs + slot,
  202. (nritems - slot) * sizeof(u64));
  203. }
  204. memcpy(lower->keys + slot, key, sizeof(struct key));
  205. lower->blockptrs[slot] = blocknr;
  206. lower->header.nritems++;
  207. if (lower->keys[1].objectid == 0)
  208. BUG();
  209. return 0;
  210. }
  211. int push_node_left(struct ctree_root *root, struct ctree_path *path, int level)
  212. {
  213. int slot;
  214. struct node *left;
  215. struct node *right;
  216. int push_items = 0;
  217. int left_nritems;
  218. int right_nritems;
  219. if (level == MAX_LEVEL - 1 || path->nodes[level + 1] == 0)
  220. return 1;
  221. slot = path->slots[level + 1];
  222. if (slot == 0)
  223. return 1;
  224. left = read_block(path->nodes[level + 1]->blockptrs[slot - 1]);
  225. right = path->nodes[level];
  226. left_nritems = left->header.nritems;
  227. right_nritems = right->header.nritems;
  228. push_items = NODEPTRS_PER_BLOCK - (left_nritems + 1);
  229. if (push_items <= 0)
  230. return 1;
  231. if (right_nritems < push_items)
  232. push_items = right_nritems;
  233. memcpy(left->keys + left_nritems, right->keys,
  234. push_items * sizeof(struct key));
  235. memcpy(left->blockptrs + left_nritems, right->blockptrs,
  236. push_items * sizeof(u64));
  237. memmove(right->keys, right->keys + push_items,
  238. (right_nritems - push_items) * sizeof(struct key));
  239. memmove(right->blockptrs, right->blockptrs + push_items,
  240. (right_nritems - push_items) * sizeof(u64));
  241. right->header.nritems -= push_items;
  242. left->header.nritems += push_items;
  243. /* adjust the pointers going up the tree */
  244. fixup_low_keys(path, right->keys, level + 1);
  245. /* then fixup the leaf pointer in the path */
  246. if (path->slots[level] < push_items) {
  247. path->slots[level] += left_nritems;
  248. path->nodes[level] = (struct node*)left;
  249. path->slots[level + 1] -= 1;
  250. } else {
  251. path->slots[level] -= push_items;
  252. }
  253. return 0;
  254. }
  255. int push_node_right(struct ctree_root *root, struct ctree_path *path, int level)
  256. {
  257. int slot;
  258. struct node *dst;
  259. struct node *src;
  260. int push_items = 0;
  261. int dst_nritems;
  262. int src_nritems;
  263. if (level == MAX_LEVEL - 1 || path->nodes[level + 1] == 0)
  264. return 1;
  265. slot = path->slots[level + 1];
  266. if (slot == NODEPTRS_PER_BLOCK - 1)
  267. return 1;
  268. if (slot >= path->nodes[level + 1]->header.nritems -1)
  269. return 1;
  270. dst = read_block(path->nodes[level + 1]->blockptrs[slot + 1]);
  271. src = path->nodes[level];
  272. dst_nritems = dst->header.nritems;
  273. src_nritems = src->header.nritems;
  274. push_items = NODEPTRS_PER_BLOCK - (dst_nritems + 1);
  275. if (push_items <= 0)
  276. return 1;
  277. if (src_nritems < push_items)
  278. push_items = src_nritems;
  279. memmove(dst->keys + push_items, dst->keys,
  280. dst_nritems * sizeof(struct key));
  281. memcpy(dst->keys, src->keys + src_nritems - push_items,
  282. push_items * sizeof(struct key));
  283. memmove(dst->blockptrs + push_items, dst->blockptrs,
  284. dst_nritems * sizeof(u64));
  285. memcpy(dst->blockptrs, src->blockptrs + src_nritems - push_items,
  286. push_items * sizeof(u64));
  287. src->header.nritems -= push_items;
  288. dst->header.nritems += push_items;
  289. /* adjust the pointers going up the tree */
  290. memcpy(path->nodes[level + 1]->keys + path->slots[level + 1] + 1,
  291. dst->keys, sizeof(struct key));
  292. /* then fixup the leaf pointer in the path */
  293. if (path->slots[level] >= src->header.nritems) {
  294. path->slots[level] -= src->header.nritems;
  295. path->nodes[level] = (struct node*)dst;
  296. path->slots[level + 1] += 1;
  297. }
  298. return 0;
  299. }
  300. int insert_ptr(struct ctree_root *root,
  301. struct ctree_path *path, struct key *key,
  302. u64 blocknr, int level)
  303. {
  304. struct node *c = path->nodes[level];
  305. struct node *b;
  306. struct node *bal[MAX_LEVEL];
  307. int bal_level = level;
  308. int mid;
  309. int bal_start = -1;
  310. memset(bal, 0, ARRAY_SIZE(bal));
  311. while(c && c->header.nritems == NODEPTRS_PER_BLOCK) {
  312. if (push_node_left(root, path,
  313. node_level(c->header.flags)) == 0)
  314. break;
  315. if (push_node_right(root, path,
  316. node_level(c->header.flags)) == 0)
  317. break;
  318. bal_start = bal_level;
  319. if (bal_level == MAX_LEVEL - 1)
  320. BUG();
  321. b = malloc(sizeof(struct node));
  322. b->header.flags = c->header.flags;
  323. mid = (c->header.nritems + 1) / 2;
  324. memcpy(b->keys, c->keys + mid,
  325. (c->header.nritems - mid) * sizeof(struct key));
  326. memcpy(b->blockptrs, c->blockptrs + mid,
  327. (c->header.nritems - mid) * sizeof(u64));
  328. b->header.nritems = c->header.nritems - mid;
  329. c->header.nritems = mid;
  330. bal[bal_level] = b;
  331. if (bal_level == MAX_LEVEL - 1)
  332. break;
  333. bal_level += 1;
  334. c = path->nodes[bal_level];
  335. }
  336. while(bal_start > 0) {
  337. b = bal[bal_start];
  338. c = path->nodes[bal_start];
  339. __insert_ptr(root, path, b->keys, (u64)b,
  340. path->slots[bal_start + 1] + 1, bal_start + 1);
  341. if (path->slots[bal_start] >= c->header.nritems) {
  342. path->slots[bal_start] -= c->header.nritems;
  343. path->nodes[bal_start] = b;
  344. path->slots[bal_start + 1] += 1;
  345. }
  346. bal_start--;
  347. if (!bal[bal_start])
  348. break;
  349. }
  350. return __insert_ptr(root, path, key, blocknr, path->slots[level] + 1,
  351. level);
  352. }
  353. int leaf_space_used(struct leaf *l, int start, int nr)
  354. {
  355. int data_len;
  356. int end = start + nr - 1;
  357. if (!nr)
  358. return 0;
  359. data_len = l->items[start].offset + l->items[start].size;
  360. data_len = data_len - l->items[end].offset;
  361. data_len += sizeof(struct item) * nr;
  362. return data_len;
  363. }
  364. int push_leaf_left(struct ctree_root *root, struct ctree_path *path,
  365. int data_size)
  366. {
  367. struct leaf *right = (struct leaf *)path->nodes[0];
  368. struct leaf *left;
  369. int slot;
  370. int i;
  371. int free_space;
  372. int push_space = 0;
  373. int push_items = 0;
  374. struct item *item;
  375. int old_left_nritems;
  376. slot = path->slots[1];
  377. if (slot == 0) {
  378. return 1;
  379. }
  380. if (!path->nodes[1]) {
  381. return 1;
  382. }
  383. left = read_block(path->nodes[1]->blockptrs[slot - 1]);
  384. free_space = leaf_free_space(left);
  385. if (free_space < data_size + sizeof(struct item)) {
  386. return 1;
  387. }
  388. for (i = 0; i < right->header.nritems; i++) {
  389. item = right->items + i;
  390. if (path->slots[0] == i)
  391. push_space += data_size + sizeof(*item);
  392. if (item->size + sizeof(*item) + push_space > free_space)
  393. break;
  394. push_items++;
  395. push_space += item->size + sizeof(*item);
  396. }
  397. if (push_items == 0) {
  398. return 1;
  399. }
  400. /* push data from right to left */
  401. memcpy(left->items + left->header.nritems,
  402. right->items, push_items * sizeof(struct item));
  403. push_space = LEAF_DATA_SIZE - right->items[push_items -1].offset;
  404. memcpy(left->data + leaf_data_end(left) - push_space,
  405. right->data + right->items[push_items - 1].offset,
  406. push_space);
  407. old_left_nritems = left->header.nritems;
  408. for(i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  409. left->items[i].offset -= LEAF_DATA_SIZE -
  410. left->items[old_left_nritems -1].offset;
  411. }
  412. left->header.nritems += push_items;
  413. /* fixup right node */
  414. push_space = right->items[push_items-1].offset - leaf_data_end(right);
  415. memmove(right->data + LEAF_DATA_SIZE - push_space, right->data +
  416. leaf_data_end(right), push_space);
  417. memmove(right->items, right->items + push_items,
  418. (right->header.nritems - push_items) * sizeof(struct item));
  419. right->header.nritems -= push_items;
  420. push_space = LEAF_DATA_SIZE;
  421. for (i = 0; i < right->header.nritems; i++) {
  422. right->items[i].offset = push_space - right->items[i].size;
  423. push_space = right->items[i].offset;
  424. }
  425. fixup_low_keys(path, &right->items[0].key, 1);
  426. /* then fixup the leaf pointer in the path */
  427. if (path->slots[0] < push_items) {
  428. path->slots[0] += old_left_nritems;
  429. path->nodes[0] = (struct node*)left;
  430. path->slots[1] -= 1;
  431. } else {
  432. path->slots[0] -= push_items;
  433. }
  434. return 0;
  435. }
  436. int split_leaf(struct ctree_root *root, struct ctree_path *path, int data_size)
  437. {
  438. struct leaf *l = (struct leaf *)path->nodes[0];
  439. int nritems = l->header.nritems;
  440. int mid = (nritems + 1)/ 2;
  441. int slot = path->slots[0];
  442. struct leaf *right;
  443. int space_needed = data_size + sizeof(struct item);
  444. int data_copy_size;
  445. int rt_data_off;
  446. int i;
  447. int ret;
  448. if (push_leaf_left(root, path, data_size) == 0) {
  449. return 0;
  450. }
  451. right = malloc(sizeof(struct leaf));
  452. memset(right, 0, sizeof(*right));
  453. if (mid <= slot) {
  454. if (leaf_space_used(l, mid, nritems - mid) + space_needed >
  455. LEAF_DATA_SIZE)
  456. BUG();
  457. } else {
  458. if (leaf_space_used(l, 0, mid + 1) + space_needed >
  459. LEAF_DATA_SIZE)
  460. BUG();
  461. }
  462. right->header.nritems = nritems - mid;
  463. data_copy_size = l->items[mid].offset + l->items[mid].size -
  464. leaf_data_end(l);
  465. memcpy(right->items, l->items + mid,
  466. (nritems - mid) * sizeof(struct item));
  467. memcpy(right->data + LEAF_DATA_SIZE - data_copy_size,
  468. l->data + leaf_data_end(l), data_copy_size);
  469. rt_data_off = LEAF_DATA_SIZE -
  470. (l->items[mid].offset + l->items[mid].size);
  471. for (i = 0; i < right->header.nritems; i++) {
  472. right->items[i].offset += rt_data_off;
  473. }
  474. l->header.nritems = mid;
  475. ret = insert_ptr(root, path, &right->items[0].key,
  476. (u64)right, 1);
  477. if (mid <= slot) {
  478. path->nodes[0] = (struct node *)right;
  479. path->slots[0] -= mid;
  480. path->slots[1] += 1;
  481. }
  482. return ret;
  483. }
  484. int insert_item(struct ctree_root *root, struct key *key,
  485. void *data, int data_size)
  486. {
  487. int ret;
  488. int slot;
  489. struct leaf *leaf;
  490. unsigned int nritems;
  491. unsigned int data_end;
  492. struct ctree_path path;
  493. init_path(&path);
  494. ret = search_slot(root, key, &path);
  495. if (ret == 0)
  496. return -EEXIST;
  497. leaf = (struct leaf *)path.nodes[0];
  498. if (leaf_free_space(leaf) < sizeof(struct item) + data_size)
  499. split_leaf(root, &path, data_size);
  500. leaf = (struct leaf *)path.nodes[0];
  501. nritems = leaf->header.nritems;
  502. data_end = leaf_data_end(leaf);
  503. if (leaf_free_space(leaf) < sizeof(struct item) + data_size)
  504. BUG();
  505. slot = path.slots[0];
  506. if (slot == 0)
  507. fixup_low_keys(&path, key, 1);
  508. if (slot != nritems) {
  509. int i;
  510. unsigned int old_data = leaf->items[slot].offset +
  511. leaf->items[slot].size;
  512. /*
  513. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  514. */
  515. /* first correct the data pointers */
  516. for (i = slot; i < nritems; i++)
  517. leaf->items[i].offset -= data_size;
  518. /* shift the items */
  519. memmove(leaf->items + slot + 1, leaf->items + slot,
  520. (nritems - slot) * sizeof(struct item));
  521. /* shift the data */
  522. memmove(leaf->data + data_end - data_size, leaf->data +
  523. data_end, old_data - data_end);
  524. data_end = old_data;
  525. }
  526. memcpy(&leaf->items[slot].key, key, sizeof(struct key));
  527. leaf->items[slot].offset = data_end - data_size;
  528. leaf->items[slot].size = data_size;
  529. memcpy(leaf->data + data_end - data_size, data, data_size);
  530. leaf->header.nritems += 1;
  531. if (leaf_free_space(leaf) < 0)
  532. BUG();
  533. return 0;
  534. }
  535. int del_ptr(struct ctree_root *root, struct ctree_path *path, int level)
  536. {
  537. int slot;
  538. struct node *node;
  539. int nritems;
  540. while(1) {
  541. node = path->nodes[level];
  542. if (!node)
  543. break;
  544. slot = path->slots[level];
  545. nritems = node->header.nritems;
  546. if (slot != nritems -1) {
  547. memmove(node->keys + slot, node->keys + slot + 1,
  548. sizeof(struct key) * (nritems - slot - 1));
  549. memmove(node->blockptrs + slot,
  550. node->blockptrs + slot + 1,
  551. sizeof(u64) * (nritems - slot - 1));
  552. }
  553. node->header.nritems--;
  554. if (node->header.nritems != 0) {
  555. int tslot;
  556. if (slot == 0)
  557. fixup_low_keys(path, node->keys, level + 1);
  558. tslot = path->slots[level+1];
  559. push_node_left(root, path, level);
  560. if (node->header.nritems) {
  561. push_node_right(root, path, level);
  562. }
  563. path->slots[level+1] = tslot;
  564. if (node->header.nritems)
  565. break;
  566. }
  567. if (node == root->node) {
  568. printf("root is now null!\n");
  569. root->node = NULL;
  570. break;
  571. }
  572. level++;
  573. if (!path->nodes[level])
  574. BUG();
  575. free(node);
  576. }
  577. return 0;
  578. }
  579. int del_item(struct ctree_root *root, struct key *key)
  580. {
  581. int ret;
  582. int slot;
  583. struct leaf *leaf;
  584. struct ctree_path path;
  585. int doff;
  586. int dsize;
  587. init_path(&path);
  588. ret = search_slot(root, key, &path);
  589. if (ret != 0)
  590. return -1;
  591. leaf = (struct leaf *)path.nodes[0];
  592. slot = path.slots[0];
  593. doff = leaf->items[slot].offset;
  594. dsize = leaf->items[slot].size;
  595. if (slot != leaf->header.nritems - 1) {
  596. int i;
  597. int data_end = leaf_data_end(leaf);
  598. memmove(leaf->data + data_end + dsize,
  599. leaf->data + data_end,
  600. doff - data_end);
  601. for (i = slot + 1; i < leaf->header.nritems; i++)
  602. leaf->items[i].offset += dsize;
  603. memmove(leaf->items + slot, leaf->items + slot + 1,
  604. sizeof(struct item) *
  605. (leaf->header.nritems - slot - 1));
  606. }
  607. leaf->header.nritems -= 1;
  608. if (leaf->header.nritems == 0) {
  609. free(leaf);
  610. del_ptr(root, &path, 1);
  611. } else {
  612. if (slot == 0)
  613. fixup_low_keys(&path, &leaf->items[0].key, 1);
  614. if (leaf_space_used(leaf, 0, leaf->header.nritems) <
  615. LEAF_DATA_SIZE / 4) {
  616. /* push_leaf_left fixes the path.
  617. * make sure the path still points to our leaf
  618. * for possible call to del_ptr below
  619. */
  620. slot = path.slots[1];
  621. push_leaf_left(root, &path, 1);
  622. path.slots[1] = slot;
  623. if (leaf->header.nritems == 0) {
  624. free(leaf);
  625. del_ptr(root, &path, 1);
  626. }
  627. }
  628. }
  629. return 0;
  630. }
  631. void print_leaf(struct leaf *l)
  632. {
  633. int i;
  634. int nr = l->header.nritems;
  635. struct item *item;
  636. printf("leaf %p total ptrs %d free space %d\n", l, nr,
  637. leaf_free_space(l));
  638. fflush(stdout);
  639. for (i = 0 ; i < nr ; i++) {
  640. item = l->items + i;
  641. printf("\titem %d key (%lu %u %lu) itemoff %d itemsize %d\n",
  642. i,
  643. item->key.objectid, item->key.flags, item->key.offset,
  644. item->offset, item->size);
  645. fflush(stdout);
  646. printf("\t\titem data %.*s\n", item->size, l->data+item->offset);
  647. fflush(stdout);
  648. }
  649. }
  650. void print_tree(struct node *c)
  651. {
  652. int i;
  653. int nr;
  654. if (!c)
  655. return;
  656. nr = c->header.nritems;
  657. if (is_leaf(c->header.flags)) {
  658. print_leaf((struct leaf *)c);
  659. return;
  660. }
  661. printf("node %p level %d total ptrs %d free spc %lu\n", c,
  662. node_level(c->header.flags), c->header.nritems,
  663. NODEPTRS_PER_BLOCK - c->header.nritems);
  664. fflush(stdout);
  665. for (i = 0; i < nr; i++) {
  666. printf("\tkey %d (%lu %u %lu) block %lx\n",
  667. i,
  668. c->keys[i].objectid, c->keys[i].flags, c->keys[i].offset,
  669. c->blockptrs[i]);
  670. fflush(stdout);
  671. }
  672. for (i = 0; i < nr; i++) {
  673. struct node *next = read_block(c->blockptrs[i]);
  674. if (is_leaf(next->header.flags) &&
  675. node_level(c->header.flags) != 1)
  676. BUG();
  677. if (node_level(next->header.flags) !=
  678. node_level(c->header.flags) - 1)
  679. BUG();
  680. print_tree(next);
  681. }
  682. }
  683. /* for testing only */
  684. int next_key(int i, int max_key) {
  685. return rand() % max_key;
  686. // return i;
  687. }
  688. int main() {
  689. struct leaf *first_node = malloc(sizeof(struct leaf));
  690. struct ctree_root root;
  691. struct key ins;
  692. char *buf;
  693. int i;
  694. int num;
  695. int ret;
  696. int run_size = 10000000;
  697. int max_key = 100000000;
  698. int tree_size = 0;
  699. struct ctree_path path;
  700. srand(55);
  701. root.node = (struct node *)first_node;
  702. memset(first_node, 0, sizeof(*first_node));
  703. for (i = 0; i < run_size; i++) {
  704. buf = malloc(64);
  705. num = next_key(i, max_key);
  706. // num = i;
  707. sprintf(buf, "string-%d", num);
  708. // printf("insert %d\n", num);
  709. ins.objectid = num;
  710. ins.offset = 0;
  711. ins.flags = 0;
  712. ret = insert_item(&root, &ins, buf, strlen(buf));
  713. if (!ret)
  714. tree_size++;
  715. }
  716. srand(55);
  717. for (i = 0; i < run_size; i++) {
  718. num = next_key(i, max_key);
  719. ins.objectid = num;
  720. ins.offset = 0;
  721. ins.flags = 0;
  722. init_path(&path);
  723. ret = search_slot(&root, &ins, &path);
  724. if (ret) {
  725. print_tree(root.node);
  726. printf("unable to find %d\n", num);
  727. exit(1);
  728. }
  729. }
  730. printf("node %p level %d total ptrs %d free spc %lu\n", root.node,
  731. node_level(root.node->header.flags), root.node->header.nritems,
  732. NODEPTRS_PER_BLOCK - root.node->header.nritems);
  733. // print_tree(root.node);
  734. printf("all searches good\n");
  735. i = 0;
  736. srand(55);
  737. for (i = 0; i < run_size; i++) {
  738. num = next_key(i, max_key);
  739. ins.objectid = num;
  740. del_item(&root, &ins);
  741. }
  742. print_tree(root.node);
  743. return 0;
  744. }