security.c 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450
  1. /*
  2. * Security plug functions
  3. *
  4. * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
  5. * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
  6. * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. */
  13. #include <linux/capability.h>
  14. #include <linux/dcache.h>
  15. #include <linux/module.h>
  16. #include <linux/init.h>
  17. #include <linux/kernel.h>
  18. #include <linux/security.h>
  19. #include <linux/integrity.h>
  20. #include <linux/ima.h>
  21. #include <linux/evm.h>
  22. #include <linux/fsnotify.h>
  23. #include <linux/mman.h>
  24. #include <linux/mount.h>
  25. #include <linux/personality.h>
  26. #include <linux/backing-dev.h>
  27. #include <net/flow.h>
  28. #define MAX_LSM_EVM_XATTR 2
  29. /* Boot-time LSM user choice */
  30. static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
  31. CONFIG_DEFAULT_SECURITY;
  32. static struct security_operations *security_ops;
  33. static struct security_operations default_security_ops = {
  34. .name = "default",
  35. };
  36. static inline int __init verify(struct security_operations *ops)
  37. {
  38. /* verify the security_operations structure exists */
  39. if (!ops)
  40. return -EINVAL;
  41. security_fixup_ops(ops);
  42. return 0;
  43. }
  44. static void __init do_security_initcalls(void)
  45. {
  46. initcall_t *call;
  47. call = __security_initcall_start;
  48. while (call < __security_initcall_end) {
  49. (*call) ();
  50. call++;
  51. }
  52. }
  53. /**
  54. * security_init - initializes the security framework
  55. *
  56. * This should be called early in the kernel initialization sequence.
  57. */
  58. int __init security_init(void)
  59. {
  60. printk(KERN_INFO "Security Framework initialized\n");
  61. security_fixup_ops(&default_security_ops);
  62. security_ops = &default_security_ops;
  63. do_security_initcalls();
  64. return 0;
  65. }
  66. void reset_security_ops(void)
  67. {
  68. security_ops = &default_security_ops;
  69. }
  70. /* Save user chosen LSM */
  71. static int __init choose_lsm(char *str)
  72. {
  73. strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
  74. return 1;
  75. }
  76. __setup("security=", choose_lsm);
  77. /**
  78. * security_module_enable - Load given security module on boot ?
  79. * @ops: a pointer to the struct security_operations that is to be checked.
  80. *
  81. * Each LSM must pass this method before registering its own operations
  82. * to avoid security registration races. This method may also be used
  83. * to check if your LSM is currently loaded during kernel initialization.
  84. *
  85. * Return true if:
  86. * -The passed LSM is the one chosen by user at boot time,
  87. * -or the passed LSM is configured as the default and the user did not
  88. * choose an alternate LSM at boot time.
  89. * Otherwise, return false.
  90. */
  91. int __init security_module_enable(struct security_operations *ops)
  92. {
  93. return !strcmp(ops->name, chosen_lsm);
  94. }
  95. /**
  96. * register_security - registers a security framework with the kernel
  97. * @ops: a pointer to the struct security_options that is to be registered
  98. *
  99. * This function allows a security module to register itself with the
  100. * kernel security subsystem. Some rudimentary checking is done on the @ops
  101. * value passed to this function. You'll need to check first if your LSM
  102. * is allowed to register its @ops by calling security_module_enable(@ops).
  103. *
  104. * If there is already a security module registered with the kernel,
  105. * an error will be returned. Otherwise %0 is returned on success.
  106. */
  107. int __init register_security(struct security_operations *ops)
  108. {
  109. if (verify(ops)) {
  110. printk(KERN_DEBUG "%s could not verify "
  111. "security_operations structure.\n", __func__);
  112. return -EINVAL;
  113. }
  114. if (security_ops != &default_security_ops)
  115. return -EAGAIN;
  116. security_ops = ops;
  117. return 0;
  118. }
  119. /* Security operations */
  120. int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
  121. {
  122. #ifdef CONFIG_SECURITY_YAMA_STACKED
  123. int rc;
  124. rc = yama_ptrace_access_check(child, mode);
  125. if (rc)
  126. return rc;
  127. #endif
  128. return security_ops->ptrace_access_check(child, mode);
  129. }
  130. int security_ptrace_traceme(struct task_struct *parent)
  131. {
  132. #ifdef CONFIG_SECURITY_YAMA_STACKED
  133. int rc;
  134. rc = yama_ptrace_traceme(parent);
  135. if (rc)
  136. return rc;
  137. #endif
  138. return security_ops->ptrace_traceme(parent);
  139. }
  140. int security_capget(struct task_struct *target,
  141. kernel_cap_t *effective,
  142. kernel_cap_t *inheritable,
  143. kernel_cap_t *permitted)
  144. {
  145. return security_ops->capget(target, effective, inheritable, permitted);
  146. }
  147. int security_capset(struct cred *new, const struct cred *old,
  148. const kernel_cap_t *effective,
  149. const kernel_cap_t *inheritable,
  150. const kernel_cap_t *permitted)
  151. {
  152. return security_ops->capset(new, old,
  153. effective, inheritable, permitted);
  154. }
  155. int security_capable(const struct cred *cred, struct user_namespace *ns,
  156. int cap)
  157. {
  158. return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
  159. }
  160. int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
  161. int cap)
  162. {
  163. return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
  164. }
  165. int security_quotactl(int cmds, int type, int id, struct super_block *sb)
  166. {
  167. return security_ops->quotactl(cmds, type, id, sb);
  168. }
  169. int security_quota_on(struct dentry *dentry)
  170. {
  171. return security_ops->quota_on(dentry);
  172. }
  173. int security_syslog(int type)
  174. {
  175. return security_ops->syslog(type);
  176. }
  177. int security_settime(const struct timespec *ts, const struct timezone *tz)
  178. {
  179. return security_ops->settime(ts, tz);
  180. }
  181. int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
  182. {
  183. return security_ops->vm_enough_memory(mm, pages);
  184. }
  185. int security_bprm_set_creds(struct linux_binprm *bprm)
  186. {
  187. return security_ops->bprm_set_creds(bprm);
  188. }
  189. int security_bprm_check(struct linux_binprm *bprm)
  190. {
  191. int ret;
  192. ret = security_ops->bprm_check_security(bprm);
  193. if (ret)
  194. return ret;
  195. return ima_bprm_check(bprm);
  196. }
  197. void security_bprm_committing_creds(struct linux_binprm *bprm)
  198. {
  199. security_ops->bprm_committing_creds(bprm);
  200. }
  201. void security_bprm_committed_creds(struct linux_binprm *bprm)
  202. {
  203. security_ops->bprm_committed_creds(bprm);
  204. }
  205. int security_bprm_secureexec(struct linux_binprm *bprm)
  206. {
  207. return security_ops->bprm_secureexec(bprm);
  208. }
  209. int security_sb_alloc(struct super_block *sb)
  210. {
  211. return security_ops->sb_alloc_security(sb);
  212. }
  213. void security_sb_free(struct super_block *sb)
  214. {
  215. security_ops->sb_free_security(sb);
  216. }
  217. int security_sb_copy_data(char *orig, char *copy)
  218. {
  219. return security_ops->sb_copy_data(orig, copy);
  220. }
  221. EXPORT_SYMBOL(security_sb_copy_data);
  222. int security_sb_remount(struct super_block *sb, void *data)
  223. {
  224. return security_ops->sb_remount(sb, data);
  225. }
  226. int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
  227. {
  228. return security_ops->sb_kern_mount(sb, flags, data);
  229. }
  230. int security_sb_show_options(struct seq_file *m, struct super_block *sb)
  231. {
  232. return security_ops->sb_show_options(m, sb);
  233. }
  234. int security_sb_statfs(struct dentry *dentry)
  235. {
  236. return security_ops->sb_statfs(dentry);
  237. }
  238. int security_sb_mount(const char *dev_name, struct path *path,
  239. const char *type, unsigned long flags, void *data)
  240. {
  241. return security_ops->sb_mount(dev_name, path, type, flags, data);
  242. }
  243. int security_sb_umount(struct vfsmount *mnt, int flags)
  244. {
  245. return security_ops->sb_umount(mnt, flags);
  246. }
  247. int security_sb_pivotroot(struct path *old_path, struct path *new_path)
  248. {
  249. return security_ops->sb_pivotroot(old_path, new_path);
  250. }
  251. int security_sb_set_mnt_opts(struct super_block *sb,
  252. struct security_mnt_opts *opts,
  253. unsigned long kern_flags,
  254. unsigned long *set_kern_flags)
  255. {
  256. return security_ops->sb_set_mnt_opts(sb, opts, kern_flags,
  257. set_kern_flags);
  258. }
  259. EXPORT_SYMBOL(security_sb_set_mnt_opts);
  260. int security_sb_clone_mnt_opts(const struct super_block *oldsb,
  261. struct super_block *newsb)
  262. {
  263. return security_ops->sb_clone_mnt_opts(oldsb, newsb);
  264. }
  265. EXPORT_SYMBOL(security_sb_clone_mnt_opts);
  266. int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
  267. {
  268. return security_ops->sb_parse_opts_str(options, opts);
  269. }
  270. EXPORT_SYMBOL(security_sb_parse_opts_str);
  271. int security_inode_alloc(struct inode *inode)
  272. {
  273. inode->i_security = NULL;
  274. return security_ops->inode_alloc_security(inode);
  275. }
  276. void security_inode_free(struct inode *inode)
  277. {
  278. integrity_inode_free(inode);
  279. security_ops->inode_free_security(inode);
  280. }
  281. int security_dentry_init_security(struct dentry *dentry, int mode,
  282. struct qstr *name, void **ctx,
  283. u32 *ctxlen)
  284. {
  285. return security_ops->dentry_init_security(dentry, mode, name,
  286. ctx, ctxlen);
  287. }
  288. EXPORT_SYMBOL(security_dentry_init_security);
  289. int security_inode_init_security(struct inode *inode, struct inode *dir,
  290. const struct qstr *qstr,
  291. const initxattrs initxattrs, void *fs_data)
  292. {
  293. struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
  294. struct xattr *lsm_xattr, *evm_xattr, *xattr;
  295. int ret;
  296. if (unlikely(IS_PRIVATE(inode)))
  297. return 0;
  298. memset(new_xattrs, 0, sizeof new_xattrs);
  299. if (!initxattrs)
  300. return security_ops->inode_init_security(inode, dir, qstr,
  301. NULL, NULL, NULL);
  302. lsm_xattr = new_xattrs;
  303. ret = security_ops->inode_init_security(inode, dir, qstr,
  304. &lsm_xattr->name,
  305. &lsm_xattr->value,
  306. &lsm_xattr->value_len);
  307. if (ret)
  308. goto out;
  309. evm_xattr = lsm_xattr + 1;
  310. ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
  311. if (ret)
  312. goto out;
  313. ret = initxattrs(inode, new_xattrs, fs_data);
  314. out:
  315. for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
  316. kfree(xattr->name);
  317. kfree(xattr->value);
  318. }
  319. return (ret == -EOPNOTSUPP) ? 0 : ret;
  320. }
  321. EXPORT_SYMBOL(security_inode_init_security);
  322. int security_old_inode_init_security(struct inode *inode, struct inode *dir,
  323. const struct qstr *qstr, char **name,
  324. void **value, size_t *len)
  325. {
  326. if (unlikely(IS_PRIVATE(inode)))
  327. return -EOPNOTSUPP;
  328. return security_ops->inode_init_security(inode, dir, qstr, name, value,
  329. len);
  330. }
  331. EXPORT_SYMBOL(security_old_inode_init_security);
  332. #ifdef CONFIG_SECURITY_PATH
  333. int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
  334. unsigned int dev)
  335. {
  336. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  337. return 0;
  338. return security_ops->path_mknod(dir, dentry, mode, dev);
  339. }
  340. EXPORT_SYMBOL(security_path_mknod);
  341. int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
  342. {
  343. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  344. return 0;
  345. return security_ops->path_mkdir(dir, dentry, mode);
  346. }
  347. EXPORT_SYMBOL(security_path_mkdir);
  348. int security_path_rmdir(struct path *dir, struct dentry *dentry)
  349. {
  350. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  351. return 0;
  352. return security_ops->path_rmdir(dir, dentry);
  353. }
  354. int security_path_unlink(struct path *dir, struct dentry *dentry)
  355. {
  356. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  357. return 0;
  358. return security_ops->path_unlink(dir, dentry);
  359. }
  360. EXPORT_SYMBOL(security_path_unlink);
  361. int security_path_symlink(struct path *dir, struct dentry *dentry,
  362. const char *old_name)
  363. {
  364. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  365. return 0;
  366. return security_ops->path_symlink(dir, dentry, old_name);
  367. }
  368. int security_path_link(struct dentry *old_dentry, struct path *new_dir,
  369. struct dentry *new_dentry)
  370. {
  371. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  372. return 0;
  373. return security_ops->path_link(old_dentry, new_dir, new_dentry);
  374. }
  375. int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
  376. struct path *new_dir, struct dentry *new_dentry)
  377. {
  378. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  379. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  380. return 0;
  381. return security_ops->path_rename(old_dir, old_dentry, new_dir,
  382. new_dentry);
  383. }
  384. EXPORT_SYMBOL(security_path_rename);
  385. int security_path_truncate(struct path *path)
  386. {
  387. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  388. return 0;
  389. return security_ops->path_truncate(path);
  390. }
  391. int security_path_chmod(struct path *path, umode_t mode)
  392. {
  393. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  394. return 0;
  395. return security_ops->path_chmod(path, mode);
  396. }
  397. int security_path_chown(struct path *path, kuid_t uid, kgid_t gid)
  398. {
  399. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  400. return 0;
  401. return security_ops->path_chown(path, uid, gid);
  402. }
  403. int security_path_chroot(struct path *path)
  404. {
  405. return security_ops->path_chroot(path);
  406. }
  407. #endif
  408. int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
  409. {
  410. if (unlikely(IS_PRIVATE(dir)))
  411. return 0;
  412. return security_ops->inode_create(dir, dentry, mode);
  413. }
  414. EXPORT_SYMBOL_GPL(security_inode_create);
  415. int security_inode_link(struct dentry *old_dentry, struct inode *dir,
  416. struct dentry *new_dentry)
  417. {
  418. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  419. return 0;
  420. return security_ops->inode_link(old_dentry, dir, new_dentry);
  421. }
  422. int security_inode_unlink(struct inode *dir, struct dentry *dentry)
  423. {
  424. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  425. return 0;
  426. return security_ops->inode_unlink(dir, dentry);
  427. }
  428. int security_inode_symlink(struct inode *dir, struct dentry *dentry,
  429. const char *old_name)
  430. {
  431. if (unlikely(IS_PRIVATE(dir)))
  432. return 0;
  433. return security_ops->inode_symlink(dir, dentry, old_name);
  434. }
  435. int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
  436. {
  437. if (unlikely(IS_PRIVATE(dir)))
  438. return 0;
  439. return security_ops->inode_mkdir(dir, dentry, mode);
  440. }
  441. EXPORT_SYMBOL_GPL(security_inode_mkdir);
  442. int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
  443. {
  444. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  445. return 0;
  446. return security_ops->inode_rmdir(dir, dentry);
  447. }
  448. int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
  449. {
  450. if (unlikely(IS_PRIVATE(dir)))
  451. return 0;
  452. return security_ops->inode_mknod(dir, dentry, mode, dev);
  453. }
  454. int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
  455. struct inode *new_dir, struct dentry *new_dentry)
  456. {
  457. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  458. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  459. return 0;
  460. return security_ops->inode_rename(old_dir, old_dentry,
  461. new_dir, new_dentry);
  462. }
  463. int security_inode_readlink(struct dentry *dentry)
  464. {
  465. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  466. return 0;
  467. return security_ops->inode_readlink(dentry);
  468. }
  469. int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
  470. {
  471. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  472. return 0;
  473. return security_ops->inode_follow_link(dentry, nd);
  474. }
  475. int security_inode_permission(struct inode *inode, int mask)
  476. {
  477. if (unlikely(IS_PRIVATE(inode)))
  478. return 0;
  479. return security_ops->inode_permission(inode, mask);
  480. }
  481. int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
  482. {
  483. int ret;
  484. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  485. return 0;
  486. ret = security_ops->inode_setattr(dentry, attr);
  487. if (ret)
  488. return ret;
  489. return evm_inode_setattr(dentry, attr);
  490. }
  491. EXPORT_SYMBOL_GPL(security_inode_setattr);
  492. int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
  493. {
  494. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  495. return 0;
  496. return security_ops->inode_getattr(mnt, dentry);
  497. }
  498. int security_inode_setxattr(struct dentry *dentry, const char *name,
  499. const void *value, size_t size, int flags)
  500. {
  501. int ret;
  502. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  503. return 0;
  504. ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
  505. if (ret)
  506. return ret;
  507. ret = ima_inode_setxattr(dentry, name, value, size);
  508. if (ret)
  509. return ret;
  510. return evm_inode_setxattr(dentry, name, value, size);
  511. }
  512. void security_inode_post_setxattr(struct dentry *dentry, const char *name,
  513. const void *value, size_t size, int flags)
  514. {
  515. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  516. return;
  517. security_ops->inode_post_setxattr(dentry, name, value, size, flags);
  518. evm_inode_post_setxattr(dentry, name, value, size);
  519. }
  520. int security_inode_getxattr(struct dentry *dentry, const char *name)
  521. {
  522. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  523. return 0;
  524. return security_ops->inode_getxattr(dentry, name);
  525. }
  526. int security_inode_listxattr(struct dentry *dentry)
  527. {
  528. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  529. return 0;
  530. return security_ops->inode_listxattr(dentry);
  531. }
  532. int security_inode_removexattr(struct dentry *dentry, const char *name)
  533. {
  534. int ret;
  535. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  536. return 0;
  537. ret = security_ops->inode_removexattr(dentry, name);
  538. if (ret)
  539. return ret;
  540. ret = ima_inode_removexattr(dentry, name);
  541. if (ret)
  542. return ret;
  543. return evm_inode_removexattr(dentry, name);
  544. }
  545. int security_inode_need_killpriv(struct dentry *dentry)
  546. {
  547. return security_ops->inode_need_killpriv(dentry);
  548. }
  549. int security_inode_killpriv(struct dentry *dentry)
  550. {
  551. return security_ops->inode_killpriv(dentry);
  552. }
  553. int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
  554. {
  555. if (unlikely(IS_PRIVATE(inode)))
  556. return -EOPNOTSUPP;
  557. return security_ops->inode_getsecurity(inode, name, buffer, alloc);
  558. }
  559. int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
  560. {
  561. if (unlikely(IS_PRIVATE(inode)))
  562. return -EOPNOTSUPP;
  563. return security_ops->inode_setsecurity(inode, name, value, size, flags);
  564. }
  565. int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
  566. {
  567. if (unlikely(IS_PRIVATE(inode)))
  568. return 0;
  569. return security_ops->inode_listsecurity(inode, buffer, buffer_size);
  570. }
  571. EXPORT_SYMBOL(security_inode_listsecurity);
  572. void security_inode_getsecid(const struct inode *inode, u32 *secid)
  573. {
  574. security_ops->inode_getsecid(inode, secid);
  575. }
  576. int security_file_permission(struct file *file, int mask)
  577. {
  578. int ret;
  579. ret = security_ops->file_permission(file, mask);
  580. if (ret)
  581. return ret;
  582. return fsnotify_perm(file, mask);
  583. }
  584. int security_file_alloc(struct file *file)
  585. {
  586. return security_ops->file_alloc_security(file);
  587. }
  588. void security_file_free(struct file *file)
  589. {
  590. security_ops->file_free_security(file);
  591. }
  592. int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  593. {
  594. return security_ops->file_ioctl(file, cmd, arg);
  595. }
  596. static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
  597. {
  598. /*
  599. * Does we have PROT_READ and does the application expect
  600. * it to imply PROT_EXEC? If not, nothing to talk about...
  601. */
  602. if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
  603. return prot;
  604. if (!(current->personality & READ_IMPLIES_EXEC))
  605. return prot;
  606. /*
  607. * if that's an anonymous mapping, let it.
  608. */
  609. if (!file)
  610. return prot | PROT_EXEC;
  611. /*
  612. * ditto if it's not on noexec mount, except that on !MMU we need
  613. * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case
  614. */
  615. if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
  616. #ifndef CONFIG_MMU
  617. unsigned long caps = 0;
  618. struct address_space *mapping = file->f_mapping;
  619. if (mapping && mapping->backing_dev_info)
  620. caps = mapping->backing_dev_info->capabilities;
  621. if (!(caps & BDI_CAP_EXEC_MAP))
  622. return prot;
  623. #endif
  624. return prot | PROT_EXEC;
  625. }
  626. /* anything on noexec mount won't get PROT_EXEC */
  627. return prot;
  628. }
  629. int security_mmap_file(struct file *file, unsigned long prot,
  630. unsigned long flags)
  631. {
  632. int ret;
  633. ret = security_ops->mmap_file(file, prot,
  634. mmap_prot(file, prot), flags);
  635. if (ret)
  636. return ret;
  637. return ima_file_mmap(file, prot);
  638. }
  639. int security_mmap_addr(unsigned long addr)
  640. {
  641. return security_ops->mmap_addr(addr);
  642. }
  643. int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
  644. unsigned long prot)
  645. {
  646. return security_ops->file_mprotect(vma, reqprot, prot);
  647. }
  648. int security_file_lock(struct file *file, unsigned int cmd)
  649. {
  650. return security_ops->file_lock(file, cmd);
  651. }
  652. int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
  653. {
  654. return security_ops->file_fcntl(file, cmd, arg);
  655. }
  656. int security_file_set_fowner(struct file *file)
  657. {
  658. return security_ops->file_set_fowner(file);
  659. }
  660. int security_file_send_sigiotask(struct task_struct *tsk,
  661. struct fown_struct *fown, int sig)
  662. {
  663. return security_ops->file_send_sigiotask(tsk, fown, sig);
  664. }
  665. int security_file_receive(struct file *file)
  666. {
  667. return security_ops->file_receive(file);
  668. }
  669. int security_file_open(struct file *file, const struct cred *cred)
  670. {
  671. int ret;
  672. ret = security_ops->file_open(file, cred);
  673. if (ret)
  674. return ret;
  675. return fsnotify_perm(file, MAY_OPEN);
  676. }
  677. int security_task_create(unsigned long clone_flags)
  678. {
  679. return security_ops->task_create(clone_flags);
  680. }
  681. void security_task_free(struct task_struct *task)
  682. {
  683. #ifdef CONFIG_SECURITY_YAMA_STACKED
  684. yama_task_free(task);
  685. #endif
  686. security_ops->task_free(task);
  687. }
  688. int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
  689. {
  690. return security_ops->cred_alloc_blank(cred, gfp);
  691. }
  692. void security_cred_free(struct cred *cred)
  693. {
  694. security_ops->cred_free(cred);
  695. }
  696. int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
  697. {
  698. return security_ops->cred_prepare(new, old, gfp);
  699. }
  700. void security_transfer_creds(struct cred *new, const struct cred *old)
  701. {
  702. security_ops->cred_transfer(new, old);
  703. }
  704. int security_kernel_act_as(struct cred *new, u32 secid)
  705. {
  706. return security_ops->kernel_act_as(new, secid);
  707. }
  708. int security_kernel_create_files_as(struct cred *new, struct inode *inode)
  709. {
  710. return security_ops->kernel_create_files_as(new, inode);
  711. }
  712. int security_kernel_module_request(char *kmod_name)
  713. {
  714. return security_ops->kernel_module_request(kmod_name);
  715. }
  716. int security_kernel_module_from_file(struct file *file)
  717. {
  718. int ret;
  719. ret = security_ops->kernel_module_from_file(file);
  720. if (ret)
  721. return ret;
  722. return ima_module_check(file);
  723. }
  724. int security_task_fix_setuid(struct cred *new, const struct cred *old,
  725. int flags)
  726. {
  727. return security_ops->task_fix_setuid(new, old, flags);
  728. }
  729. int security_task_setpgid(struct task_struct *p, pid_t pgid)
  730. {
  731. return security_ops->task_setpgid(p, pgid);
  732. }
  733. int security_task_getpgid(struct task_struct *p)
  734. {
  735. return security_ops->task_getpgid(p);
  736. }
  737. int security_task_getsid(struct task_struct *p)
  738. {
  739. return security_ops->task_getsid(p);
  740. }
  741. void security_task_getsecid(struct task_struct *p, u32 *secid)
  742. {
  743. security_ops->task_getsecid(p, secid);
  744. }
  745. EXPORT_SYMBOL(security_task_getsecid);
  746. int security_task_setnice(struct task_struct *p, int nice)
  747. {
  748. return security_ops->task_setnice(p, nice);
  749. }
  750. int security_task_setioprio(struct task_struct *p, int ioprio)
  751. {
  752. return security_ops->task_setioprio(p, ioprio);
  753. }
  754. int security_task_getioprio(struct task_struct *p)
  755. {
  756. return security_ops->task_getioprio(p);
  757. }
  758. int security_task_setrlimit(struct task_struct *p, unsigned int resource,
  759. struct rlimit *new_rlim)
  760. {
  761. return security_ops->task_setrlimit(p, resource, new_rlim);
  762. }
  763. int security_task_setscheduler(struct task_struct *p)
  764. {
  765. return security_ops->task_setscheduler(p);
  766. }
  767. int security_task_getscheduler(struct task_struct *p)
  768. {
  769. return security_ops->task_getscheduler(p);
  770. }
  771. int security_task_movememory(struct task_struct *p)
  772. {
  773. return security_ops->task_movememory(p);
  774. }
  775. int security_task_kill(struct task_struct *p, struct siginfo *info,
  776. int sig, u32 secid)
  777. {
  778. return security_ops->task_kill(p, info, sig, secid);
  779. }
  780. int security_task_wait(struct task_struct *p)
  781. {
  782. return security_ops->task_wait(p);
  783. }
  784. int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
  785. unsigned long arg4, unsigned long arg5)
  786. {
  787. #ifdef CONFIG_SECURITY_YAMA_STACKED
  788. int rc;
  789. rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
  790. if (rc != -ENOSYS)
  791. return rc;
  792. #endif
  793. return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
  794. }
  795. void security_task_to_inode(struct task_struct *p, struct inode *inode)
  796. {
  797. security_ops->task_to_inode(p, inode);
  798. }
  799. int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
  800. {
  801. return security_ops->ipc_permission(ipcp, flag);
  802. }
  803. void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
  804. {
  805. security_ops->ipc_getsecid(ipcp, secid);
  806. }
  807. int security_msg_msg_alloc(struct msg_msg *msg)
  808. {
  809. return security_ops->msg_msg_alloc_security(msg);
  810. }
  811. void security_msg_msg_free(struct msg_msg *msg)
  812. {
  813. security_ops->msg_msg_free_security(msg);
  814. }
  815. int security_msg_queue_alloc(struct msg_queue *msq)
  816. {
  817. return security_ops->msg_queue_alloc_security(msq);
  818. }
  819. void security_msg_queue_free(struct msg_queue *msq)
  820. {
  821. security_ops->msg_queue_free_security(msq);
  822. }
  823. int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
  824. {
  825. return security_ops->msg_queue_associate(msq, msqflg);
  826. }
  827. int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
  828. {
  829. return security_ops->msg_queue_msgctl(msq, cmd);
  830. }
  831. int security_msg_queue_msgsnd(struct msg_queue *msq,
  832. struct msg_msg *msg, int msqflg)
  833. {
  834. return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
  835. }
  836. int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
  837. struct task_struct *target, long type, int mode)
  838. {
  839. return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
  840. }
  841. int security_shm_alloc(struct shmid_kernel *shp)
  842. {
  843. return security_ops->shm_alloc_security(shp);
  844. }
  845. void security_shm_free(struct shmid_kernel *shp)
  846. {
  847. security_ops->shm_free_security(shp);
  848. }
  849. int security_shm_associate(struct shmid_kernel *shp, int shmflg)
  850. {
  851. return security_ops->shm_associate(shp, shmflg);
  852. }
  853. int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
  854. {
  855. return security_ops->shm_shmctl(shp, cmd);
  856. }
  857. int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
  858. {
  859. return security_ops->shm_shmat(shp, shmaddr, shmflg);
  860. }
  861. int security_sem_alloc(struct sem_array *sma)
  862. {
  863. return security_ops->sem_alloc_security(sma);
  864. }
  865. void security_sem_free(struct sem_array *sma)
  866. {
  867. security_ops->sem_free_security(sma);
  868. }
  869. int security_sem_associate(struct sem_array *sma, int semflg)
  870. {
  871. return security_ops->sem_associate(sma, semflg);
  872. }
  873. int security_sem_semctl(struct sem_array *sma, int cmd)
  874. {
  875. return security_ops->sem_semctl(sma, cmd);
  876. }
  877. int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
  878. unsigned nsops, int alter)
  879. {
  880. return security_ops->sem_semop(sma, sops, nsops, alter);
  881. }
  882. void security_d_instantiate(struct dentry *dentry, struct inode *inode)
  883. {
  884. if (unlikely(inode && IS_PRIVATE(inode)))
  885. return;
  886. security_ops->d_instantiate(dentry, inode);
  887. }
  888. EXPORT_SYMBOL(security_d_instantiate);
  889. int security_getprocattr(struct task_struct *p, char *name, char **value)
  890. {
  891. return security_ops->getprocattr(p, name, value);
  892. }
  893. int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
  894. {
  895. return security_ops->setprocattr(p, name, value, size);
  896. }
  897. int security_netlink_send(struct sock *sk, struct sk_buff *skb)
  898. {
  899. return security_ops->netlink_send(sk, skb);
  900. }
  901. int security_ismaclabel(const char *name)
  902. {
  903. return security_ops->ismaclabel(name);
  904. }
  905. EXPORT_SYMBOL(security_ismaclabel);
  906. int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
  907. {
  908. return security_ops->secid_to_secctx(secid, secdata, seclen);
  909. }
  910. EXPORT_SYMBOL(security_secid_to_secctx);
  911. int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
  912. {
  913. return security_ops->secctx_to_secid(secdata, seclen, secid);
  914. }
  915. EXPORT_SYMBOL(security_secctx_to_secid);
  916. void security_release_secctx(char *secdata, u32 seclen)
  917. {
  918. security_ops->release_secctx(secdata, seclen);
  919. }
  920. EXPORT_SYMBOL(security_release_secctx);
  921. int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
  922. {
  923. return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
  924. }
  925. EXPORT_SYMBOL(security_inode_notifysecctx);
  926. int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
  927. {
  928. return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
  929. }
  930. EXPORT_SYMBOL(security_inode_setsecctx);
  931. int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
  932. {
  933. return security_ops->inode_getsecctx(inode, ctx, ctxlen);
  934. }
  935. EXPORT_SYMBOL(security_inode_getsecctx);
  936. #ifdef CONFIG_SECURITY_NETWORK
  937. int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
  938. {
  939. return security_ops->unix_stream_connect(sock, other, newsk);
  940. }
  941. EXPORT_SYMBOL(security_unix_stream_connect);
  942. int security_unix_may_send(struct socket *sock, struct socket *other)
  943. {
  944. return security_ops->unix_may_send(sock, other);
  945. }
  946. EXPORT_SYMBOL(security_unix_may_send);
  947. int security_socket_create(int family, int type, int protocol, int kern)
  948. {
  949. return security_ops->socket_create(family, type, protocol, kern);
  950. }
  951. int security_socket_post_create(struct socket *sock, int family,
  952. int type, int protocol, int kern)
  953. {
  954. return security_ops->socket_post_create(sock, family, type,
  955. protocol, kern);
  956. }
  957. int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
  958. {
  959. return security_ops->socket_bind(sock, address, addrlen);
  960. }
  961. int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
  962. {
  963. return security_ops->socket_connect(sock, address, addrlen);
  964. }
  965. int security_socket_listen(struct socket *sock, int backlog)
  966. {
  967. return security_ops->socket_listen(sock, backlog);
  968. }
  969. int security_socket_accept(struct socket *sock, struct socket *newsock)
  970. {
  971. return security_ops->socket_accept(sock, newsock);
  972. }
  973. int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
  974. {
  975. return security_ops->socket_sendmsg(sock, msg, size);
  976. }
  977. int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
  978. int size, int flags)
  979. {
  980. return security_ops->socket_recvmsg(sock, msg, size, flags);
  981. }
  982. int security_socket_getsockname(struct socket *sock)
  983. {
  984. return security_ops->socket_getsockname(sock);
  985. }
  986. int security_socket_getpeername(struct socket *sock)
  987. {
  988. return security_ops->socket_getpeername(sock);
  989. }
  990. int security_socket_getsockopt(struct socket *sock, int level, int optname)
  991. {
  992. return security_ops->socket_getsockopt(sock, level, optname);
  993. }
  994. int security_socket_setsockopt(struct socket *sock, int level, int optname)
  995. {
  996. return security_ops->socket_setsockopt(sock, level, optname);
  997. }
  998. int security_socket_shutdown(struct socket *sock, int how)
  999. {
  1000. return security_ops->socket_shutdown(sock, how);
  1001. }
  1002. int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
  1003. {
  1004. return security_ops->socket_sock_rcv_skb(sk, skb);
  1005. }
  1006. EXPORT_SYMBOL(security_sock_rcv_skb);
  1007. int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
  1008. int __user *optlen, unsigned len)
  1009. {
  1010. return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
  1011. }
  1012. int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
  1013. {
  1014. return security_ops->socket_getpeersec_dgram(sock, skb, secid);
  1015. }
  1016. EXPORT_SYMBOL(security_socket_getpeersec_dgram);
  1017. int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
  1018. {
  1019. return security_ops->sk_alloc_security(sk, family, priority);
  1020. }
  1021. void security_sk_free(struct sock *sk)
  1022. {
  1023. security_ops->sk_free_security(sk);
  1024. }
  1025. void security_sk_clone(const struct sock *sk, struct sock *newsk)
  1026. {
  1027. security_ops->sk_clone_security(sk, newsk);
  1028. }
  1029. EXPORT_SYMBOL(security_sk_clone);
  1030. void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
  1031. {
  1032. security_ops->sk_getsecid(sk, &fl->flowi_secid);
  1033. }
  1034. EXPORT_SYMBOL(security_sk_classify_flow);
  1035. void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
  1036. {
  1037. security_ops->req_classify_flow(req, fl);
  1038. }
  1039. EXPORT_SYMBOL(security_req_classify_flow);
  1040. void security_sock_graft(struct sock *sk, struct socket *parent)
  1041. {
  1042. security_ops->sock_graft(sk, parent);
  1043. }
  1044. EXPORT_SYMBOL(security_sock_graft);
  1045. int security_inet_conn_request(struct sock *sk,
  1046. struct sk_buff *skb, struct request_sock *req)
  1047. {
  1048. return security_ops->inet_conn_request(sk, skb, req);
  1049. }
  1050. EXPORT_SYMBOL(security_inet_conn_request);
  1051. void security_inet_csk_clone(struct sock *newsk,
  1052. const struct request_sock *req)
  1053. {
  1054. security_ops->inet_csk_clone(newsk, req);
  1055. }
  1056. void security_inet_conn_established(struct sock *sk,
  1057. struct sk_buff *skb)
  1058. {
  1059. security_ops->inet_conn_established(sk, skb);
  1060. }
  1061. int security_secmark_relabel_packet(u32 secid)
  1062. {
  1063. return security_ops->secmark_relabel_packet(secid);
  1064. }
  1065. EXPORT_SYMBOL(security_secmark_relabel_packet);
  1066. void security_secmark_refcount_inc(void)
  1067. {
  1068. security_ops->secmark_refcount_inc();
  1069. }
  1070. EXPORT_SYMBOL(security_secmark_refcount_inc);
  1071. void security_secmark_refcount_dec(void)
  1072. {
  1073. security_ops->secmark_refcount_dec();
  1074. }
  1075. EXPORT_SYMBOL(security_secmark_refcount_dec);
  1076. int security_tun_dev_alloc_security(void **security)
  1077. {
  1078. return security_ops->tun_dev_alloc_security(security);
  1079. }
  1080. EXPORT_SYMBOL(security_tun_dev_alloc_security);
  1081. void security_tun_dev_free_security(void *security)
  1082. {
  1083. security_ops->tun_dev_free_security(security);
  1084. }
  1085. EXPORT_SYMBOL(security_tun_dev_free_security);
  1086. int security_tun_dev_create(void)
  1087. {
  1088. return security_ops->tun_dev_create();
  1089. }
  1090. EXPORT_SYMBOL(security_tun_dev_create);
  1091. int security_tun_dev_attach_queue(void *security)
  1092. {
  1093. return security_ops->tun_dev_attach_queue(security);
  1094. }
  1095. EXPORT_SYMBOL(security_tun_dev_attach_queue);
  1096. int security_tun_dev_attach(struct sock *sk, void *security)
  1097. {
  1098. return security_ops->tun_dev_attach(sk, security);
  1099. }
  1100. EXPORT_SYMBOL(security_tun_dev_attach);
  1101. int security_tun_dev_open(void *security)
  1102. {
  1103. return security_ops->tun_dev_open(security);
  1104. }
  1105. EXPORT_SYMBOL(security_tun_dev_open);
  1106. void security_skb_owned_by(struct sk_buff *skb, struct sock *sk)
  1107. {
  1108. security_ops->skb_owned_by(skb, sk);
  1109. }
  1110. #endif /* CONFIG_SECURITY_NETWORK */
  1111. #ifdef CONFIG_SECURITY_NETWORK_XFRM
  1112. int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
  1113. {
  1114. return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
  1115. }
  1116. EXPORT_SYMBOL(security_xfrm_policy_alloc);
  1117. int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
  1118. struct xfrm_sec_ctx **new_ctxp)
  1119. {
  1120. return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
  1121. }
  1122. void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
  1123. {
  1124. security_ops->xfrm_policy_free_security(ctx);
  1125. }
  1126. EXPORT_SYMBOL(security_xfrm_policy_free);
  1127. int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
  1128. {
  1129. return security_ops->xfrm_policy_delete_security(ctx);
  1130. }
  1131. int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
  1132. {
  1133. return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
  1134. }
  1135. EXPORT_SYMBOL(security_xfrm_state_alloc);
  1136. int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
  1137. struct xfrm_sec_ctx *polsec, u32 secid)
  1138. {
  1139. if (!polsec)
  1140. return 0;
  1141. /*
  1142. * We want the context to be taken from secid which is usually
  1143. * from the sock.
  1144. */
  1145. return security_ops->xfrm_state_alloc_security(x, NULL, secid);
  1146. }
  1147. int security_xfrm_state_delete(struct xfrm_state *x)
  1148. {
  1149. return security_ops->xfrm_state_delete_security(x);
  1150. }
  1151. EXPORT_SYMBOL(security_xfrm_state_delete);
  1152. void security_xfrm_state_free(struct xfrm_state *x)
  1153. {
  1154. security_ops->xfrm_state_free_security(x);
  1155. }
  1156. int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
  1157. {
  1158. return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
  1159. }
  1160. int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
  1161. struct xfrm_policy *xp,
  1162. const struct flowi *fl)
  1163. {
  1164. return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
  1165. }
  1166. int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
  1167. {
  1168. return security_ops->xfrm_decode_session(skb, secid, 1);
  1169. }
  1170. void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
  1171. {
  1172. int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
  1173. BUG_ON(rc);
  1174. }
  1175. EXPORT_SYMBOL(security_skb_classify_flow);
  1176. #endif /* CONFIG_SECURITY_NETWORK_XFRM */
  1177. #ifdef CONFIG_KEYS
  1178. int security_key_alloc(struct key *key, const struct cred *cred,
  1179. unsigned long flags)
  1180. {
  1181. return security_ops->key_alloc(key, cred, flags);
  1182. }
  1183. void security_key_free(struct key *key)
  1184. {
  1185. security_ops->key_free(key);
  1186. }
  1187. int security_key_permission(key_ref_t key_ref,
  1188. const struct cred *cred, key_perm_t perm)
  1189. {
  1190. return security_ops->key_permission(key_ref, cred, perm);
  1191. }
  1192. int security_key_getsecurity(struct key *key, char **_buffer)
  1193. {
  1194. return security_ops->key_getsecurity(key, _buffer);
  1195. }
  1196. #endif /* CONFIG_KEYS */
  1197. #ifdef CONFIG_AUDIT
  1198. int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
  1199. {
  1200. return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
  1201. }
  1202. int security_audit_rule_known(struct audit_krule *krule)
  1203. {
  1204. return security_ops->audit_rule_known(krule);
  1205. }
  1206. void security_audit_rule_free(void *lsmrule)
  1207. {
  1208. security_ops->audit_rule_free(lsmrule);
  1209. }
  1210. int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
  1211. struct audit_context *actx)
  1212. {
  1213. return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
  1214. }
  1215. #endif /* CONFIG_AUDIT */