file.c 63 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/highmem.h>
  21. #include <linux/time.h>
  22. #include <linux/init.h>
  23. #include <linux/string.h>
  24. #include <linux/backing-dev.h>
  25. #include <linux/mpage.h>
  26. #include <linux/falloc.h>
  27. #include <linux/swap.h>
  28. #include <linux/writeback.h>
  29. #include <linux/statfs.h>
  30. #include <linux/compat.h>
  31. #include <linux/slab.h>
  32. #include <linux/btrfs.h>
  33. #include "ctree.h"
  34. #include "disk-io.h"
  35. #include "transaction.h"
  36. #include "btrfs_inode.h"
  37. #include "print-tree.h"
  38. #include "tree-log.h"
  39. #include "locking.h"
  40. #include "compat.h"
  41. #include "volumes.h"
  42. static struct kmem_cache *btrfs_inode_defrag_cachep;
  43. /*
  44. * when auto defrag is enabled we
  45. * queue up these defrag structs to remember which
  46. * inodes need defragging passes
  47. */
  48. struct inode_defrag {
  49. struct rb_node rb_node;
  50. /* objectid */
  51. u64 ino;
  52. /*
  53. * transid where the defrag was added, we search for
  54. * extents newer than this
  55. */
  56. u64 transid;
  57. /* root objectid */
  58. u64 root;
  59. /* last offset we were able to defrag */
  60. u64 last_offset;
  61. /* if we've wrapped around back to zero once already */
  62. int cycled;
  63. };
  64. static int __compare_inode_defrag(struct inode_defrag *defrag1,
  65. struct inode_defrag *defrag2)
  66. {
  67. if (defrag1->root > defrag2->root)
  68. return 1;
  69. else if (defrag1->root < defrag2->root)
  70. return -1;
  71. else if (defrag1->ino > defrag2->ino)
  72. return 1;
  73. else if (defrag1->ino < defrag2->ino)
  74. return -1;
  75. else
  76. return 0;
  77. }
  78. /* pop a record for an inode into the defrag tree. The lock
  79. * must be held already
  80. *
  81. * If you're inserting a record for an older transid than an
  82. * existing record, the transid already in the tree is lowered
  83. *
  84. * If an existing record is found the defrag item you
  85. * pass in is freed
  86. */
  87. static int __btrfs_add_inode_defrag(struct inode *inode,
  88. struct inode_defrag *defrag)
  89. {
  90. struct btrfs_root *root = BTRFS_I(inode)->root;
  91. struct inode_defrag *entry;
  92. struct rb_node **p;
  93. struct rb_node *parent = NULL;
  94. int ret;
  95. p = &root->fs_info->defrag_inodes.rb_node;
  96. while (*p) {
  97. parent = *p;
  98. entry = rb_entry(parent, struct inode_defrag, rb_node);
  99. ret = __compare_inode_defrag(defrag, entry);
  100. if (ret < 0)
  101. p = &parent->rb_left;
  102. else if (ret > 0)
  103. p = &parent->rb_right;
  104. else {
  105. /* if we're reinserting an entry for
  106. * an old defrag run, make sure to
  107. * lower the transid of our existing record
  108. */
  109. if (defrag->transid < entry->transid)
  110. entry->transid = defrag->transid;
  111. if (defrag->last_offset > entry->last_offset)
  112. entry->last_offset = defrag->last_offset;
  113. return -EEXIST;
  114. }
  115. }
  116. set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
  117. rb_link_node(&defrag->rb_node, parent, p);
  118. rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
  119. return 0;
  120. }
  121. static inline int __need_auto_defrag(struct btrfs_root *root)
  122. {
  123. if (!btrfs_test_opt(root, AUTO_DEFRAG))
  124. return 0;
  125. if (btrfs_fs_closing(root->fs_info))
  126. return 0;
  127. return 1;
  128. }
  129. /*
  130. * insert a defrag record for this inode if auto defrag is
  131. * enabled
  132. */
  133. int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
  134. struct inode *inode)
  135. {
  136. struct btrfs_root *root = BTRFS_I(inode)->root;
  137. struct inode_defrag *defrag;
  138. u64 transid;
  139. int ret;
  140. if (!__need_auto_defrag(root))
  141. return 0;
  142. if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
  143. return 0;
  144. if (trans)
  145. transid = trans->transid;
  146. else
  147. transid = BTRFS_I(inode)->root->last_trans;
  148. defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
  149. if (!defrag)
  150. return -ENOMEM;
  151. defrag->ino = btrfs_ino(inode);
  152. defrag->transid = transid;
  153. defrag->root = root->root_key.objectid;
  154. spin_lock(&root->fs_info->defrag_inodes_lock);
  155. if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
  156. /*
  157. * If we set IN_DEFRAG flag and evict the inode from memory,
  158. * and then re-read this inode, this new inode doesn't have
  159. * IN_DEFRAG flag. At the case, we may find the existed defrag.
  160. */
  161. ret = __btrfs_add_inode_defrag(inode, defrag);
  162. if (ret)
  163. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  164. } else {
  165. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  166. }
  167. spin_unlock(&root->fs_info->defrag_inodes_lock);
  168. return 0;
  169. }
  170. /*
  171. * Requeue the defrag object. If there is a defrag object that points to
  172. * the same inode in the tree, we will merge them together (by
  173. * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
  174. */
  175. void btrfs_requeue_inode_defrag(struct inode *inode,
  176. struct inode_defrag *defrag)
  177. {
  178. struct btrfs_root *root = BTRFS_I(inode)->root;
  179. int ret;
  180. if (!__need_auto_defrag(root))
  181. goto out;
  182. /*
  183. * Here we don't check the IN_DEFRAG flag, because we need merge
  184. * them together.
  185. */
  186. spin_lock(&root->fs_info->defrag_inodes_lock);
  187. ret = __btrfs_add_inode_defrag(inode, defrag);
  188. spin_unlock(&root->fs_info->defrag_inodes_lock);
  189. if (ret)
  190. goto out;
  191. return;
  192. out:
  193. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  194. }
  195. /*
  196. * pick the defragable inode that we want, if it doesn't exist, we will get
  197. * the next one.
  198. */
  199. static struct inode_defrag *
  200. btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
  201. {
  202. struct inode_defrag *entry = NULL;
  203. struct inode_defrag tmp;
  204. struct rb_node *p;
  205. struct rb_node *parent = NULL;
  206. int ret;
  207. tmp.ino = ino;
  208. tmp.root = root;
  209. spin_lock(&fs_info->defrag_inodes_lock);
  210. p = fs_info->defrag_inodes.rb_node;
  211. while (p) {
  212. parent = p;
  213. entry = rb_entry(parent, struct inode_defrag, rb_node);
  214. ret = __compare_inode_defrag(&tmp, entry);
  215. if (ret < 0)
  216. p = parent->rb_left;
  217. else if (ret > 0)
  218. p = parent->rb_right;
  219. else
  220. goto out;
  221. }
  222. if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
  223. parent = rb_next(parent);
  224. if (parent)
  225. entry = rb_entry(parent, struct inode_defrag, rb_node);
  226. else
  227. entry = NULL;
  228. }
  229. out:
  230. if (entry)
  231. rb_erase(parent, &fs_info->defrag_inodes);
  232. spin_unlock(&fs_info->defrag_inodes_lock);
  233. return entry;
  234. }
  235. void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
  236. {
  237. struct inode_defrag *defrag;
  238. struct rb_node *node;
  239. spin_lock(&fs_info->defrag_inodes_lock);
  240. node = rb_first(&fs_info->defrag_inodes);
  241. while (node) {
  242. rb_erase(node, &fs_info->defrag_inodes);
  243. defrag = rb_entry(node, struct inode_defrag, rb_node);
  244. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  245. if (need_resched()) {
  246. spin_unlock(&fs_info->defrag_inodes_lock);
  247. cond_resched();
  248. spin_lock(&fs_info->defrag_inodes_lock);
  249. }
  250. node = rb_first(&fs_info->defrag_inodes);
  251. }
  252. spin_unlock(&fs_info->defrag_inodes_lock);
  253. }
  254. #define BTRFS_DEFRAG_BATCH 1024
  255. static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
  256. struct inode_defrag *defrag)
  257. {
  258. struct btrfs_root *inode_root;
  259. struct inode *inode;
  260. struct btrfs_key key;
  261. struct btrfs_ioctl_defrag_range_args range;
  262. int num_defrag;
  263. int index;
  264. int ret;
  265. /* get the inode */
  266. key.objectid = defrag->root;
  267. btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
  268. key.offset = (u64)-1;
  269. index = srcu_read_lock(&fs_info->subvol_srcu);
  270. inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
  271. if (IS_ERR(inode_root)) {
  272. ret = PTR_ERR(inode_root);
  273. goto cleanup;
  274. }
  275. if (btrfs_root_refs(&inode_root->root_item) == 0) {
  276. ret = -ENOENT;
  277. goto cleanup;
  278. }
  279. key.objectid = defrag->ino;
  280. btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
  281. key.offset = 0;
  282. inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
  283. if (IS_ERR(inode)) {
  284. ret = PTR_ERR(inode);
  285. goto cleanup;
  286. }
  287. srcu_read_unlock(&fs_info->subvol_srcu, index);
  288. /* do a chunk of defrag */
  289. clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
  290. memset(&range, 0, sizeof(range));
  291. range.len = (u64)-1;
  292. range.start = defrag->last_offset;
  293. sb_start_write(fs_info->sb);
  294. num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
  295. BTRFS_DEFRAG_BATCH);
  296. sb_end_write(fs_info->sb);
  297. /*
  298. * if we filled the whole defrag batch, there
  299. * must be more work to do. Queue this defrag
  300. * again
  301. */
  302. if (num_defrag == BTRFS_DEFRAG_BATCH) {
  303. defrag->last_offset = range.start;
  304. btrfs_requeue_inode_defrag(inode, defrag);
  305. } else if (defrag->last_offset && !defrag->cycled) {
  306. /*
  307. * we didn't fill our defrag batch, but
  308. * we didn't start at zero. Make sure we loop
  309. * around to the start of the file.
  310. */
  311. defrag->last_offset = 0;
  312. defrag->cycled = 1;
  313. btrfs_requeue_inode_defrag(inode, defrag);
  314. } else {
  315. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  316. }
  317. iput(inode);
  318. return 0;
  319. cleanup:
  320. srcu_read_unlock(&fs_info->subvol_srcu, index);
  321. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  322. return ret;
  323. }
  324. /*
  325. * run through the list of inodes in the FS that need
  326. * defragging
  327. */
  328. int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
  329. {
  330. struct inode_defrag *defrag;
  331. u64 first_ino = 0;
  332. u64 root_objectid = 0;
  333. atomic_inc(&fs_info->defrag_running);
  334. while(1) {
  335. /* Pause the auto defragger. */
  336. if (test_bit(BTRFS_FS_STATE_REMOUNTING,
  337. &fs_info->fs_state))
  338. break;
  339. if (!__need_auto_defrag(fs_info->tree_root))
  340. break;
  341. /* find an inode to defrag */
  342. defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
  343. first_ino);
  344. if (!defrag) {
  345. if (root_objectid || first_ino) {
  346. root_objectid = 0;
  347. first_ino = 0;
  348. continue;
  349. } else {
  350. break;
  351. }
  352. }
  353. first_ino = defrag->ino + 1;
  354. root_objectid = defrag->root;
  355. __btrfs_run_defrag_inode(fs_info, defrag);
  356. }
  357. atomic_dec(&fs_info->defrag_running);
  358. /*
  359. * during unmount, we use the transaction_wait queue to
  360. * wait for the defragger to stop
  361. */
  362. wake_up(&fs_info->transaction_wait);
  363. return 0;
  364. }
  365. /* simple helper to fault in pages and copy. This should go away
  366. * and be replaced with calls into generic code.
  367. */
  368. static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
  369. size_t write_bytes,
  370. struct page **prepared_pages,
  371. struct iov_iter *i)
  372. {
  373. size_t copied = 0;
  374. size_t total_copied = 0;
  375. int pg = 0;
  376. int offset = pos & (PAGE_CACHE_SIZE - 1);
  377. while (write_bytes > 0) {
  378. size_t count = min_t(size_t,
  379. PAGE_CACHE_SIZE - offset, write_bytes);
  380. struct page *page = prepared_pages[pg];
  381. /*
  382. * Copy data from userspace to the current page
  383. *
  384. * Disable pagefault to avoid recursive lock since
  385. * the pages are already locked
  386. */
  387. pagefault_disable();
  388. copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
  389. pagefault_enable();
  390. /* Flush processor's dcache for this page */
  391. flush_dcache_page(page);
  392. /*
  393. * if we get a partial write, we can end up with
  394. * partially up to date pages. These add
  395. * a lot of complexity, so make sure they don't
  396. * happen by forcing this copy to be retried.
  397. *
  398. * The rest of the btrfs_file_write code will fall
  399. * back to page at a time copies after we return 0.
  400. */
  401. if (!PageUptodate(page) && copied < count)
  402. copied = 0;
  403. iov_iter_advance(i, copied);
  404. write_bytes -= copied;
  405. total_copied += copied;
  406. /* Return to btrfs_file_aio_write to fault page */
  407. if (unlikely(copied == 0))
  408. break;
  409. if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
  410. offset += copied;
  411. } else {
  412. pg++;
  413. offset = 0;
  414. }
  415. }
  416. return total_copied;
  417. }
  418. /*
  419. * unlocks pages after btrfs_file_write is done with them
  420. */
  421. void btrfs_drop_pages(struct page **pages, size_t num_pages)
  422. {
  423. size_t i;
  424. for (i = 0; i < num_pages; i++) {
  425. /* page checked is some magic around finding pages that
  426. * have been modified without going through btrfs_set_page_dirty
  427. * clear it here
  428. */
  429. ClearPageChecked(pages[i]);
  430. unlock_page(pages[i]);
  431. mark_page_accessed(pages[i]);
  432. page_cache_release(pages[i]);
  433. }
  434. }
  435. /*
  436. * after copy_from_user, pages need to be dirtied and we need to make
  437. * sure holes are created between the current EOF and the start of
  438. * any next extents (if required).
  439. *
  440. * this also makes the decision about creating an inline extent vs
  441. * doing real data extents, marking pages dirty and delalloc as required.
  442. */
  443. int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
  444. struct page **pages, size_t num_pages,
  445. loff_t pos, size_t write_bytes,
  446. struct extent_state **cached)
  447. {
  448. int err = 0;
  449. int i;
  450. u64 num_bytes;
  451. u64 start_pos;
  452. u64 end_of_last_block;
  453. u64 end_pos = pos + write_bytes;
  454. loff_t isize = i_size_read(inode);
  455. start_pos = pos & ~((u64)root->sectorsize - 1);
  456. num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
  457. end_of_last_block = start_pos + num_bytes - 1;
  458. err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
  459. cached);
  460. if (err)
  461. return err;
  462. for (i = 0; i < num_pages; i++) {
  463. struct page *p = pages[i];
  464. SetPageUptodate(p);
  465. ClearPageChecked(p);
  466. set_page_dirty(p);
  467. }
  468. /*
  469. * we've only changed i_size in ram, and we haven't updated
  470. * the disk i_size. There is no need to log the inode
  471. * at this time.
  472. */
  473. if (end_pos > isize)
  474. i_size_write(inode, end_pos);
  475. return 0;
  476. }
  477. /*
  478. * this drops all the extents in the cache that intersect the range
  479. * [start, end]. Existing extents are split as required.
  480. */
  481. void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
  482. int skip_pinned)
  483. {
  484. struct extent_map *em;
  485. struct extent_map *split = NULL;
  486. struct extent_map *split2 = NULL;
  487. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  488. u64 len = end - start + 1;
  489. u64 gen;
  490. int ret;
  491. int testend = 1;
  492. unsigned long flags;
  493. int compressed = 0;
  494. WARN_ON(end < start);
  495. if (end == (u64)-1) {
  496. len = (u64)-1;
  497. testend = 0;
  498. }
  499. while (1) {
  500. int no_splits = 0;
  501. if (!split)
  502. split = alloc_extent_map();
  503. if (!split2)
  504. split2 = alloc_extent_map();
  505. if (!split || !split2)
  506. no_splits = 1;
  507. write_lock(&em_tree->lock);
  508. em = lookup_extent_mapping(em_tree, start, len);
  509. if (!em) {
  510. write_unlock(&em_tree->lock);
  511. break;
  512. }
  513. flags = em->flags;
  514. gen = em->generation;
  515. if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
  516. if (testend && em->start + em->len >= start + len) {
  517. free_extent_map(em);
  518. write_unlock(&em_tree->lock);
  519. break;
  520. }
  521. start = em->start + em->len;
  522. if (testend)
  523. len = start + len - (em->start + em->len);
  524. free_extent_map(em);
  525. write_unlock(&em_tree->lock);
  526. continue;
  527. }
  528. compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
  529. clear_bit(EXTENT_FLAG_PINNED, &em->flags);
  530. remove_extent_mapping(em_tree, em);
  531. if (no_splits)
  532. goto next;
  533. if (em->block_start < EXTENT_MAP_LAST_BYTE &&
  534. em->start < start) {
  535. split->start = em->start;
  536. split->len = start - em->start;
  537. split->orig_start = em->orig_start;
  538. split->block_start = em->block_start;
  539. if (compressed)
  540. split->block_len = em->block_len;
  541. else
  542. split->block_len = split->len;
  543. split->orig_block_len = max(split->block_len,
  544. em->orig_block_len);
  545. split->generation = gen;
  546. split->bdev = em->bdev;
  547. split->flags = flags;
  548. split->compress_type = em->compress_type;
  549. ret = add_extent_mapping(em_tree, split);
  550. BUG_ON(ret); /* Logic error */
  551. list_move(&split->list, &em_tree->modified_extents);
  552. free_extent_map(split);
  553. split = split2;
  554. split2 = NULL;
  555. }
  556. if (em->block_start < EXTENT_MAP_LAST_BYTE &&
  557. testend && em->start + em->len > start + len) {
  558. u64 diff = start + len - em->start;
  559. split->start = start + len;
  560. split->len = em->start + em->len - (start + len);
  561. split->bdev = em->bdev;
  562. split->flags = flags;
  563. split->compress_type = em->compress_type;
  564. split->generation = gen;
  565. split->orig_block_len = max(em->block_len,
  566. em->orig_block_len);
  567. if (compressed) {
  568. split->block_len = em->block_len;
  569. split->block_start = em->block_start;
  570. split->orig_start = em->orig_start;
  571. } else {
  572. split->block_len = split->len;
  573. split->block_start = em->block_start + diff;
  574. split->orig_start = em->orig_start;
  575. }
  576. ret = add_extent_mapping(em_tree, split);
  577. BUG_ON(ret); /* Logic error */
  578. list_move(&split->list, &em_tree->modified_extents);
  579. free_extent_map(split);
  580. split = NULL;
  581. }
  582. next:
  583. write_unlock(&em_tree->lock);
  584. /* once for us */
  585. free_extent_map(em);
  586. /* once for the tree*/
  587. free_extent_map(em);
  588. }
  589. if (split)
  590. free_extent_map(split);
  591. if (split2)
  592. free_extent_map(split2);
  593. }
  594. /*
  595. * this is very complex, but the basic idea is to drop all extents
  596. * in the range start - end. hint_block is filled in with a block number
  597. * that would be a good hint to the block allocator for this file.
  598. *
  599. * If an extent intersects the range but is not entirely inside the range
  600. * it is either truncated or split. Anything entirely inside the range
  601. * is deleted from the tree.
  602. */
  603. int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
  604. struct btrfs_root *root, struct inode *inode,
  605. struct btrfs_path *path, u64 start, u64 end,
  606. u64 *drop_end, int drop_cache)
  607. {
  608. struct extent_buffer *leaf;
  609. struct btrfs_file_extent_item *fi;
  610. struct btrfs_key key;
  611. struct btrfs_key new_key;
  612. u64 ino = btrfs_ino(inode);
  613. u64 search_start = start;
  614. u64 disk_bytenr = 0;
  615. u64 num_bytes = 0;
  616. u64 extent_offset = 0;
  617. u64 extent_end = 0;
  618. int del_nr = 0;
  619. int del_slot = 0;
  620. int extent_type;
  621. int recow;
  622. int ret;
  623. int modify_tree = -1;
  624. int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
  625. int found = 0;
  626. if (drop_cache)
  627. btrfs_drop_extent_cache(inode, start, end - 1, 0);
  628. if (start >= BTRFS_I(inode)->disk_i_size)
  629. modify_tree = 0;
  630. while (1) {
  631. recow = 0;
  632. ret = btrfs_lookup_file_extent(trans, root, path, ino,
  633. search_start, modify_tree);
  634. if (ret < 0)
  635. break;
  636. if (ret > 0 && path->slots[0] > 0 && search_start == start) {
  637. leaf = path->nodes[0];
  638. btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
  639. if (key.objectid == ino &&
  640. key.type == BTRFS_EXTENT_DATA_KEY)
  641. path->slots[0]--;
  642. }
  643. ret = 0;
  644. next_slot:
  645. leaf = path->nodes[0];
  646. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  647. BUG_ON(del_nr > 0);
  648. ret = btrfs_next_leaf(root, path);
  649. if (ret < 0)
  650. break;
  651. if (ret > 0) {
  652. ret = 0;
  653. break;
  654. }
  655. leaf = path->nodes[0];
  656. recow = 1;
  657. }
  658. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  659. if (key.objectid > ino ||
  660. key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
  661. break;
  662. fi = btrfs_item_ptr(leaf, path->slots[0],
  663. struct btrfs_file_extent_item);
  664. extent_type = btrfs_file_extent_type(leaf, fi);
  665. if (extent_type == BTRFS_FILE_EXTENT_REG ||
  666. extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
  667. disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  668. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  669. extent_offset = btrfs_file_extent_offset(leaf, fi);
  670. extent_end = key.offset +
  671. btrfs_file_extent_num_bytes(leaf, fi);
  672. } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  673. extent_end = key.offset +
  674. btrfs_file_extent_inline_len(leaf, fi);
  675. } else {
  676. WARN_ON(1);
  677. extent_end = search_start;
  678. }
  679. if (extent_end <= search_start) {
  680. path->slots[0]++;
  681. goto next_slot;
  682. }
  683. found = 1;
  684. search_start = max(key.offset, start);
  685. if (recow || !modify_tree) {
  686. modify_tree = -1;
  687. btrfs_release_path(path);
  688. continue;
  689. }
  690. /*
  691. * | - range to drop - |
  692. * | -------- extent -------- |
  693. */
  694. if (start > key.offset && end < extent_end) {
  695. BUG_ON(del_nr > 0);
  696. BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
  697. memcpy(&new_key, &key, sizeof(new_key));
  698. new_key.offset = start;
  699. ret = btrfs_duplicate_item(trans, root, path,
  700. &new_key);
  701. if (ret == -EAGAIN) {
  702. btrfs_release_path(path);
  703. continue;
  704. }
  705. if (ret < 0)
  706. break;
  707. leaf = path->nodes[0];
  708. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  709. struct btrfs_file_extent_item);
  710. btrfs_set_file_extent_num_bytes(leaf, fi,
  711. start - key.offset);
  712. fi = btrfs_item_ptr(leaf, path->slots[0],
  713. struct btrfs_file_extent_item);
  714. extent_offset += start - key.offset;
  715. btrfs_set_file_extent_offset(leaf, fi, extent_offset);
  716. btrfs_set_file_extent_num_bytes(leaf, fi,
  717. extent_end - start);
  718. btrfs_mark_buffer_dirty(leaf);
  719. if (update_refs && disk_bytenr > 0) {
  720. ret = btrfs_inc_extent_ref(trans, root,
  721. disk_bytenr, num_bytes, 0,
  722. root->root_key.objectid,
  723. new_key.objectid,
  724. start - extent_offset, 0);
  725. BUG_ON(ret); /* -ENOMEM */
  726. }
  727. key.offset = start;
  728. }
  729. /*
  730. * | ---- range to drop ----- |
  731. * | -------- extent -------- |
  732. */
  733. if (start <= key.offset && end < extent_end) {
  734. BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
  735. memcpy(&new_key, &key, sizeof(new_key));
  736. new_key.offset = end;
  737. btrfs_set_item_key_safe(trans, root, path, &new_key);
  738. extent_offset += end - key.offset;
  739. btrfs_set_file_extent_offset(leaf, fi, extent_offset);
  740. btrfs_set_file_extent_num_bytes(leaf, fi,
  741. extent_end - end);
  742. btrfs_mark_buffer_dirty(leaf);
  743. if (update_refs && disk_bytenr > 0)
  744. inode_sub_bytes(inode, end - key.offset);
  745. break;
  746. }
  747. search_start = extent_end;
  748. /*
  749. * | ---- range to drop ----- |
  750. * | -------- extent -------- |
  751. */
  752. if (start > key.offset && end >= extent_end) {
  753. BUG_ON(del_nr > 0);
  754. BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
  755. btrfs_set_file_extent_num_bytes(leaf, fi,
  756. start - key.offset);
  757. btrfs_mark_buffer_dirty(leaf);
  758. if (update_refs && disk_bytenr > 0)
  759. inode_sub_bytes(inode, extent_end - start);
  760. if (end == extent_end)
  761. break;
  762. path->slots[0]++;
  763. goto next_slot;
  764. }
  765. /*
  766. * | ---- range to drop ----- |
  767. * | ------ extent ------ |
  768. */
  769. if (start <= key.offset && end >= extent_end) {
  770. if (del_nr == 0) {
  771. del_slot = path->slots[0];
  772. del_nr = 1;
  773. } else {
  774. BUG_ON(del_slot + del_nr != path->slots[0]);
  775. del_nr++;
  776. }
  777. if (update_refs &&
  778. extent_type == BTRFS_FILE_EXTENT_INLINE) {
  779. inode_sub_bytes(inode,
  780. extent_end - key.offset);
  781. extent_end = ALIGN(extent_end,
  782. root->sectorsize);
  783. } else if (update_refs && disk_bytenr > 0) {
  784. ret = btrfs_free_extent(trans, root,
  785. disk_bytenr, num_bytes, 0,
  786. root->root_key.objectid,
  787. key.objectid, key.offset -
  788. extent_offset, 0);
  789. BUG_ON(ret); /* -ENOMEM */
  790. inode_sub_bytes(inode,
  791. extent_end - key.offset);
  792. }
  793. if (end == extent_end)
  794. break;
  795. if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
  796. path->slots[0]++;
  797. goto next_slot;
  798. }
  799. ret = btrfs_del_items(trans, root, path, del_slot,
  800. del_nr);
  801. if (ret) {
  802. btrfs_abort_transaction(trans, root, ret);
  803. break;
  804. }
  805. del_nr = 0;
  806. del_slot = 0;
  807. btrfs_release_path(path);
  808. continue;
  809. }
  810. BUG_ON(1);
  811. }
  812. if (!ret && del_nr > 0) {
  813. ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
  814. if (ret)
  815. btrfs_abort_transaction(trans, root, ret);
  816. }
  817. if (drop_end)
  818. *drop_end = found ? min(end, extent_end) : end;
  819. btrfs_release_path(path);
  820. return ret;
  821. }
  822. int btrfs_drop_extents(struct btrfs_trans_handle *trans,
  823. struct btrfs_root *root, struct inode *inode, u64 start,
  824. u64 end, int drop_cache)
  825. {
  826. struct btrfs_path *path;
  827. int ret;
  828. path = btrfs_alloc_path();
  829. if (!path)
  830. return -ENOMEM;
  831. ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
  832. drop_cache);
  833. btrfs_free_path(path);
  834. return ret;
  835. }
  836. static int extent_mergeable(struct extent_buffer *leaf, int slot,
  837. u64 objectid, u64 bytenr, u64 orig_offset,
  838. u64 *start, u64 *end)
  839. {
  840. struct btrfs_file_extent_item *fi;
  841. struct btrfs_key key;
  842. u64 extent_end;
  843. if (slot < 0 || slot >= btrfs_header_nritems(leaf))
  844. return 0;
  845. btrfs_item_key_to_cpu(leaf, &key, slot);
  846. if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
  847. return 0;
  848. fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
  849. if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
  850. btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
  851. btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
  852. btrfs_file_extent_compression(leaf, fi) ||
  853. btrfs_file_extent_encryption(leaf, fi) ||
  854. btrfs_file_extent_other_encoding(leaf, fi))
  855. return 0;
  856. extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
  857. if ((*start && *start != key.offset) || (*end && *end != extent_end))
  858. return 0;
  859. *start = key.offset;
  860. *end = extent_end;
  861. return 1;
  862. }
  863. /*
  864. * Mark extent in the range start - end as written.
  865. *
  866. * This changes extent type from 'pre-allocated' to 'regular'. If only
  867. * part of extent is marked as written, the extent will be split into
  868. * two or three.
  869. */
  870. int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
  871. struct inode *inode, u64 start, u64 end)
  872. {
  873. struct btrfs_root *root = BTRFS_I(inode)->root;
  874. struct extent_buffer *leaf;
  875. struct btrfs_path *path;
  876. struct btrfs_file_extent_item *fi;
  877. struct btrfs_key key;
  878. struct btrfs_key new_key;
  879. u64 bytenr;
  880. u64 num_bytes;
  881. u64 extent_end;
  882. u64 orig_offset;
  883. u64 other_start;
  884. u64 other_end;
  885. u64 split;
  886. int del_nr = 0;
  887. int del_slot = 0;
  888. int recow;
  889. int ret;
  890. u64 ino = btrfs_ino(inode);
  891. path = btrfs_alloc_path();
  892. if (!path)
  893. return -ENOMEM;
  894. again:
  895. recow = 0;
  896. split = start;
  897. key.objectid = ino;
  898. key.type = BTRFS_EXTENT_DATA_KEY;
  899. key.offset = split;
  900. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  901. if (ret < 0)
  902. goto out;
  903. if (ret > 0 && path->slots[0] > 0)
  904. path->slots[0]--;
  905. leaf = path->nodes[0];
  906. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  907. BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
  908. fi = btrfs_item_ptr(leaf, path->slots[0],
  909. struct btrfs_file_extent_item);
  910. BUG_ON(btrfs_file_extent_type(leaf, fi) !=
  911. BTRFS_FILE_EXTENT_PREALLOC);
  912. extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
  913. BUG_ON(key.offset > start || extent_end < end);
  914. bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  915. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  916. orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
  917. memcpy(&new_key, &key, sizeof(new_key));
  918. if (start == key.offset && end < extent_end) {
  919. other_start = 0;
  920. other_end = start;
  921. if (extent_mergeable(leaf, path->slots[0] - 1,
  922. ino, bytenr, orig_offset,
  923. &other_start, &other_end)) {
  924. new_key.offset = end;
  925. btrfs_set_item_key_safe(trans, root, path, &new_key);
  926. fi = btrfs_item_ptr(leaf, path->slots[0],
  927. struct btrfs_file_extent_item);
  928. btrfs_set_file_extent_generation(leaf, fi,
  929. trans->transid);
  930. btrfs_set_file_extent_num_bytes(leaf, fi,
  931. extent_end - end);
  932. btrfs_set_file_extent_offset(leaf, fi,
  933. end - orig_offset);
  934. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  935. struct btrfs_file_extent_item);
  936. btrfs_set_file_extent_generation(leaf, fi,
  937. trans->transid);
  938. btrfs_set_file_extent_num_bytes(leaf, fi,
  939. end - other_start);
  940. btrfs_mark_buffer_dirty(leaf);
  941. goto out;
  942. }
  943. }
  944. if (start > key.offset && end == extent_end) {
  945. other_start = end;
  946. other_end = 0;
  947. if (extent_mergeable(leaf, path->slots[0] + 1,
  948. ino, bytenr, orig_offset,
  949. &other_start, &other_end)) {
  950. fi = btrfs_item_ptr(leaf, path->slots[0],
  951. struct btrfs_file_extent_item);
  952. btrfs_set_file_extent_num_bytes(leaf, fi,
  953. start - key.offset);
  954. btrfs_set_file_extent_generation(leaf, fi,
  955. trans->transid);
  956. path->slots[0]++;
  957. new_key.offset = start;
  958. btrfs_set_item_key_safe(trans, root, path, &new_key);
  959. fi = btrfs_item_ptr(leaf, path->slots[0],
  960. struct btrfs_file_extent_item);
  961. btrfs_set_file_extent_generation(leaf, fi,
  962. trans->transid);
  963. btrfs_set_file_extent_num_bytes(leaf, fi,
  964. other_end - start);
  965. btrfs_set_file_extent_offset(leaf, fi,
  966. start - orig_offset);
  967. btrfs_mark_buffer_dirty(leaf);
  968. goto out;
  969. }
  970. }
  971. while (start > key.offset || end < extent_end) {
  972. if (key.offset == start)
  973. split = end;
  974. new_key.offset = split;
  975. ret = btrfs_duplicate_item(trans, root, path, &new_key);
  976. if (ret == -EAGAIN) {
  977. btrfs_release_path(path);
  978. goto again;
  979. }
  980. if (ret < 0) {
  981. btrfs_abort_transaction(trans, root, ret);
  982. goto out;
  983. }
  984. leaf = path->nodes[0];
  985. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  986. struct btrfs_file_extent_item);
  987. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  988. btrfs_set_file_extent_num_bytes(leaf, fi,
  989. split - key.offset);
  990. fi = btrfs_item_ptr(leaf, path->slots[0],
  991. struct btrfs_file_extent_item);
  992. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  993. btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
  994. btrfs_set_file_extent_num_bytes(leaf, fi,
  995. extent_end - split);
  996. btrfs_mark_buffer_dirty(leaf);
  997. ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
  998. root->root_key.objectid,
  999. ino, orig_offset, 0);
  1000. BUG_ON(ret); /* -ENOMEM */
  1001. if (split == start) {
  1002. key.offset = start;
  1003. } else {
  1004. BUG_ON(start != key.offset);
  1005. path->slots[0]--;
  1006. extent_end = end;
  1007. }
  1008. recow = 1;
  1009. }
  1010. other_start = end;
  1011. other_end = 0;
  1012. if (extent_mergeable(leaf, path->slots[0] + 1,
  1013. ino, bytenr, orig_offset,
  1014. &other_start, &other_end)) {
  1015. if (recow) {
  1016. btrfs_release_path(path);
  1017. goto again;
  1018. }
  1019. extent_end = other_end;
  1020. del_slot = path->slots[0] + 1;
  1021. del_nr++;
  1022. ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
  1023. 0, root->root_key.objectid,
  1024. ino, orig_offset, 0);
  1025. BUG_ON(ret); /* -ENOMEM */
  1026. }
  1027. other_start = 0;
  1028. other_end = start;
  1029. if (extent_mergeable(leaf, path->slots[0] - 1,
  1030. ino, bytenr, orig_offset,
  1031. &other_start, &other_end)) {
  1032. if (recow) {
  1033. btrfs_release_path(path);
  1034. goto again;
  1035. }
  1036. key.offset = other_start;
  1037. del_slot = path->slots[0];
  1038. del_nr++;
  1039. ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
  1040. 0, root->root_key.objectid,
  1041. ino, orig_offset, 0);
  1042. BUG_ON(ret); /* -ENOMEM */
  1043. }
  1044. if (del_nr == 0) {
  1045. fi = btrfs_item_ptr(leaf, path->slots[0],
  1046. struct btrfs_file_extent_item);
  1047. btrfs_set_file_extent_type(leaf, fi,
  1048. BTRFS_FILE_EXTENT_REG);
  1049. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1050. btrfs_mark_buffer_dirty(leaf);
  1051. } else {
  1052. fi = btrfs_item_ptr(leaf, del_slot - 1,
  1053. struct btrfs_file_extent_item);
  1054. btrfs_set_file_extent_type(leaf, fi,
  1055. BTRFS_FILE_EXTENT_REG);
  1056. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1057. btrfs_set_file_extent_num_bytes(leaf, fi,
  1058. extent_end - key.offset);
  1059. btrfs_mark_buffer_dirty(leaf);
  1060. ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
  1061. if (ret < 0) {
  1062. btrfs_abort_transaction(trans, root, ret);
  1063. goto out;
  1064. }
  1065. }
  1066. out:
  1067. btrfs_free_path(path);
  1068. return 0;
  1069. }
  1070. /*
  1071. * on error we return an unlocked page and the error value
  1072. * on success we return a locked page and 0
  1073. */
  1074. static int prepare_uptodate_page(struct page *page, u64 pos,
  1075. bool force_uptodate)
  1076. {
  1077. int ret = 0;
  1078. if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
  1079. !PageUptodate(page)) {
  1080. ret = btrfs_readpage(NULL, page);
  1081. if (ret)
  1082. return ret;
  1083. lock_page(page);
  1084. if (!PageUptodate(page)) {
  1085. unlock_page(page);
  1086. return -EIO;
  1087. }
  1088. }
  1089. return 0;
  1090. }
  1091. /*
  1092. * this gets pages into the page cache and locks them down, it also properly
  1093. * waits for data=ordered extents to finish before allowing the pages to be
  1094. * modified.
  1095. */
  1096. static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
  1097. struct page **pages, size_t num_pages,
  1098. loff_t pos, unsigned long first_index,
  1099. size_t write_bytes, bool force_uptodate)
  1100. {
  1101. struct extent_state *cached_state = NULL;
  1102. int i;
  1103. unsigned long index = pos >> PAGE_CACHE_SHIFT;
  1104. struct inode *inode = file_inode(file);
  1105. gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
  1106. int err = 0;
  1107. int faili = 0;
  1108. u64 start_pos;
  1109. u64 last_pos;
  1110. start_pos = pos & ~((u64)root->sectorsize - 1);
  1111. last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
  1112. again:
  1113. for (i = 0; i < num_pages; i++) {
  1114. pages[i] = find_or_create_page(inode->i_mapping, index + i,
  1115. mask | __GFP_WRITE);
  1116. if (!pages[i]) {
  1117. faili = i - 1;
  1118. err = -ENOMEM;
  1119. goto fail;
  1120. }
  1121. if (i == 0)
  1122. err = prepare_uptodate_page(pages[i], pos,
  1123. force_uptodate);
  1124. if (i == num_pages - 1)
  1125. err = prepare_uptodate_page(pages[i],
  1126. pos + write_bytes, false);
  1127. if (err) {
  1128. page_cache_release(pages[i]);
  1129. faili = i - 1;
  1130. goto fail;
  1131. }
  1132. wait_on_page_writeback(pages[i]);
  1133. }
  1134. err = 0;
  1135. if (start_pos < inode->i_size) {
  1136. struct btrfs_ordered_extent *ordered;
  1137. lock_extent_bits(&BTRFS_I(inode)->io_tree,
  1138. start_pos, last_pos - 1, 0, &cached_state);
  1139. ordered = btrfs_lookup_first_ordered_extent(inode,
  1140. last_pos - 1);
  1141. if (ordered &&
  1142. ordered->file_offset + ordered->len > start_pos &&
  1143. ordered->file_offset < last_pos) {
  1144. btrfs_put_ordered_extent(ordered);
  1145. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  1146. start_pos, last_pos - 1,
  1147. &cached_state, GFP_NOFS);
  1148. for (i = 0; i < num_pages; i++) {
  1149. unlock_page(pages[i]);
  1150. page_cache_release(pages[i]);
  1151. }
  1152. btrfs_wait_ordered_range(inode, start_pos,
  1153. last_pos - start_pos);
  1154. goto again;
  1155. }
  1156. if (ordered)
  1157. btrfs_put_ordered_extent(ordered);
  1158. clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
  1159. last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
  1160. EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
  1161. 0, 0, &cached_state, GFP_NOFS);
  1162. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  1163. start_pos, last_pos - 1, &cached_state,
  1164. GFP_NOFS);
  1165. }
  1166. for (i = 0; i < num_pages; i++) {
  1167. if (clear_page_dirty_for_io(pages[i]))
  1168. account_page_redirty(pages[i]);
  1169. set_page_extent_mapped(pages[i]);
  1170. WARN_ON(!PageLocked(pages[i]));
  1171. }
  1172. return 0;
  1173. fail:
  1174. while (faili >= 0) {
  1175. unlock_page(pages[faili]);
  1176. page_cache_release(pages[faili]);
  1177. faili--;
  1178. }
  1179. return err;
  1180. }
  1181. static noinline ssize_t __btrfs_buffered_write(struct file *file,
  1182. struct iov_iter *i,
  1183. loff_t pos)
  1184. {
  1185. struct inode *inode = file_inode(file);
  1186. struct btrfs_root *root = BTRFS_I(inode)->root;
  1187. struct page **pages = NULL;
  1188. unsigned long first_index;
  1189. size_t num_written = 0;
  1190. int nrptrs;
  1191. int ret = 0;
  1192. bool force_page_uptodate = false;
  1193. nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
  1194. PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
  1195. (sizeof(struct page *)));
  1196. nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
  1197. nrptrs = max(nrptrs, 8);
  1198. pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
  1199. if (!pages)
  1200. return -ENOMEM;
  1201. first_index = pos >> PAGE_CACHE_SHIFT;
  1202. while (iov_iter_count(i) > 0) {
  1203. size_t offset = pos & (PAGE_CACHE_SIZE - 1);
  1204. size_t write_bytes = min(iov_iter_count(i),
  1205. nrptrs * (size_t)PAGE_CACHE_SIZE -
  1206. offset);
  1207. size_t num_pages = (write_bytes + offset +
  1208. PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  1209. size_t dirty_pages;
  1210. size_t copied;
  1211. WARN_ON(num_pages > nrptrs);
  1212. /*
  1213. * Fault pages before locking them in prepare_pages
  1214. * to avoid recursive lock
  1215. */
  1216. if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
  1217. ret = -EFAULT;
  1218. break;
  1219. }
  1220. ret = btrfs_delalloc_reserve_space(inode,
  1221. num_pages << PAGE_CACHE_SHIFT);
  1222. if (ret)
  1223. break;
  1224. /*
  1225. * This is going to setup the pages array with the number of
  1226. * pages we want, so we don't really need to worry about the
  1227. * contents of pages from loop to loop
  1228. */
  1229. ret = prepare_pages(root, file, pages, num_pages,
  1230. pos, first_index, write_bytes,
  1231. force_page_uptodate);
  1232. if (ret) {
  1233. btrfs_delalloc_release_space(inode,
  1234. num_pages << PAGE_CACHE_SHIFT);
  1235. break;
  1236. }
  1237. copied = btrfs_copy_from_user(pos, num_pages,
  1238. write_bytes, pages, i);
  1239. /*
  1240. * if we have trouble faulting in the pages, fall
  1241. * back to one page at a time
  1242. */
  1243. if (copied < write_bytes)
  1244. nrptrs = 1;
  1245. if (copied == 0) {
  1246. force_page_uptodate = true;
  1247. dirty_pages = 0;
  1248. } else {
  1249. force_page_uptodate = false;
  1250. dirty_pages = (copied + offset +
  1251. PAGE_CACHE_SIZE - 1) >>
  1252. PAGE_CACHE_SHIFT;
  1253. }
  1254. /*
  1255. * If we had a short copy we need to release the excess delaloc
  1256. * bytes we reserved. We need to increment outstanding_extents
  1257. * because btrfs_delalloc_release_space will decrement it, but
  1258. * we still have an outstanding extent for the chunk we actually
  1259. * managed to copy.
  1260. */
  1261. if (num_pages > dirty_pages) {
  1262. if (copied > 0) {
  1263. spin_lock(&BTRFS_I(inode)->lock);
  1264. BTRFS_I(inode)->outstanding_extents++;
  1265. spin_unlock(&BTRFS_I(inode)->lock);
  1266. }
  1267. btrfs_delalloc_release_space(inode,
  1268. (num_pages - dirty_pages) <<
  1269. PAGE_CACHE_SHIFT);
  1270. }
  1271. if (copied > 0) {
  1272. ret = btrfs_dirty_pages(root, inode, pages,
  1273. dirty_pages, pos, copied,
  1274. NULL);
  1275. if (ret) {
  1276. btrfs_delalloc_release_space(inode,
  1277. dirty_pages << PAGE_CACHE_SHIFT);
  1278. btrfs_drop_pages(pages, num_pages);
  1279. break;
  1280. }
  1281. }
  1282. btrfs_drop_pages(pages, num_pages);
  1283. cond_resched();
  1284. balance_dirty_pages_ratelimited(inode->i_mapping);
  1285. if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
  1286. btrfs_btree_balance_dirty(root);
  1287. pos += copied;
  1288. num_written += copied;
  1289. }
  1290. kfree(pages);
  1291. return num_written ? num_written : ret;
  1292. }
  1293. static ssize_t __btrfs_direct_write(struct kiocb *iocb,
  1294. const struct iovec *iov,
  1295. unsigned long nr_segs, loff_t pos,
  1296. loff_t *ppos, size_t count, size_t ocount)
  1297. {
  1298. struct file *file = iocb->ki_filp;
  1299. struct iov_iter i;
  1300. ssize_t written;
  1301. ssize_t written_buffered;
  1302. loff_t endbyte;
  1303. int err;
  1304. written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
  1305. count, ocount);
  1306. if (written < 0 || written == count)
  1307. return written;
  1308. pos += written;
  1309. count -= written;
  1310. iov_iter_init(&i, iov, nr_segs, count, written);
  1311. written_buffered = __btrfs_buffered_write(file, &i, pos);
  1312. if (written_buffered < 0) {
  1313. err = written_buffered;
  1314. goto out;
  1315. }
  1316. endbyte = pos + written_buffered - 1;
  1317. err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
  1318. if (err)
  1319. goto out;
  1320. written += written_buffered;
  1321. *ppos = pos + written_buffered;
  1322. invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
  1323. endbyte >> PAGE_CACHE_SHIFT);
  1324. out:
  1325. return written ? written : err;
  1326. }
  1327. static void update_time_for_write(struct inode *inode)
  1328. {
  1329. struct timespec now;
  1330. if (IS_NOCMTIME(inode))
  1331. return;
  1332. now = current_fs_time(inode->i_sb);
  1333. if (!timespec_equal(&inode->i_mtime, &now))
  1334. inode->i_mtime = now;
  1335. if (!timespec_equal(&inode->i_ctime, &now))
  1336. inode->i_ctime = now;
  1337. if (IS_I_VERSION(inode))
  1338. inode_inc_iversion(inode);
  1339. }
  1340. static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
  1341. const struct iovec *iov,
  1342. unsigned long nr_segs, loff_t pos)
  1343. {
  1344. struct file *file = iocb->ki_filp;
  1345. struct inode *inode = file_inode(file);
  1346. struct btrfs_root *root = BTRFS_I(inode)->root;
  1347. loff_t *ppos = &iocb->ki_pos;
  1348. u64 start_pos;
  1349. ssize_t num_written = 0;
  1350. ssize_t err = 0;
  1351. size_t count, ocount;
  1352. bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
  1353. sb_start_write(inode->i_sb);
  1354. mutex_lock(&inode->i_mutex);
  1355. err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
  1356. if (err) {
  1357. mutex_unlock(&inode->i_mutex);
  1358. goto out;
  1359. }
  1360. count = ocount;
  1361. current->backing_dev_info = inode->i_mapping->backing_dev_info;
  1362. err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
  1363. if (err) {
  1364. mutex_unlock(&inode->i_mutex);
  1365. goto out;
  1366. }
  1367. if (count == 0) {
  1368. mutex_unlock(&inode->i_mutex);
  1369. goto out;
  1370. }
  1371. err = file_remove_suid(file);
  1372. if (err) {
  1373. mutex_unlock(&inode->i_mutex);
  1374. goto out;
  1375. }
  1376. /*
  1377. * If BTRFS flips readonly due to some impossible error
  1378. * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
  1379. * although we have opened a file as writable, we have
  1380. * to stop this write operation to ensure FS consistency.
  1381. */
  1382. if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
  1383. mutex_unlock(&inode->i_mutex);
  1384. err = -EROFS;
  1385. goto out;
  1386. }
  1387. /*
  1388. * We reserve space for updating the inode when we reserve space for the
  1389. * extent we are going to write, so we will enospc out there. We don't
  1390. * need to start yet another transaction to update the inode as we will
  1391. * update the inode when we finish writing whatever data we write.
  1392. */
  1393. update_time_for_write(inode);
  1394. start_pos = round_down(pos, root->sectorsize);
  1395. if (start_pos > i_size_read(inode)) {
  1396. err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
  1397. if (err) {
  1398. mutex_unlock(&inode->i_mutex);
  1399. goto out;
  1400. }
  1401. }
  1402. if (sync)
  1403. atomic_inc(&BTRFS_I(inode)->sync_writers);
  1404. if (unlikely(file->f_flags & O_DIRECT)) {
  1405. num_written = __btrfs_direct_write(iocb, iov, nr_segs,
  1406. pos, ppos, count, ocount);
  1407. } else {
  1408. struct iov_iter i;
  1409. iov_iter_init(&i, iov, nr_segs, count, num_written);
  1410. num_written = __btrfs_buffered_write(file, &i, pos);
  1411. if (num_written > 0)
  1412. *ppos = pos + num_written;
  1413. }
  1414. mutex_unlock(&inode->i_mutex);
  1415. /*
  1416. * we want to make sure fsync finds this change
  1417. * but we haven't joined a transaction running right now.
  1418. *
  1419. * Later on, someone is sure to update the inode and get the
  1420. * real transid recorded.
  1421. *
  1422. * We set last_trans now to the fs_info generation + 1,
  1423. * this will either be one more than the running transaction
  1424. * or the generation used for the next transaction if there isn't
  1425. * one running right now.
  1426. *
  1427. * We also have to set last_sub_trans to the current log transid,
  1428. * otherwise subsequent syncs to a file that's been synced in this
  1429. * transaction will appear to have already occured.
  1430. */
  1431. BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
  1432. BTRFS_I(inode)->last_sub_trans = root->log_transid;
  1433. if (num_written > 0 || num_written == -EIOCBQUEUED) {
  1434. err = generic_write_sync(file, pos, num_written);
  1435. if (err < 0 && num_written > 0)
  1436. num_written = err;
  1437. }
  1438. if (sync)
  1439. atomic_dec(&BTRFS_I(inode)->sync_writers);
  1440. out:
  1441. sb_end_write(inode->i_sb);
  1442. current->backing_dev_info = NULL;
  1443. return num_written ? num_written : err;
  1444. }
  1445. int btrfs_release_file(struct inode *inode, struct file *filp)
  1446. {
  1447. /*
  1448. * ordered_data_close is set by settattr when we are about to truncate
  1449. * a file from a non-zero size to a zero size. This tries to
  1450. * flush down new bytes that may have been written if the
  1451. * application were using truncate to replace a file in place.
  1452. */
  1453. if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
  1454. &BTRFS_I(inode)->runtime_flags)) {
  1455. struct btrfs_trans_handle *trans;
  1456. struct btrfs_root *root = BTRFS_I(inode)->root;
  1457. /*
  1458. * We need to block on a committing transaction to keep us from
  1459. * throwing a ordered operation on to the list and causing
  1460. * something like sync to deadlock trying to flush out this
  1461. * inode.
  1462. */
  1463. trans = btrfs_start_transaction(root, 0);
  1464. if (IS_ERR(trans))
  1465. return PTR_ERR(trans);
  1466. btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
  1467. btrfs_end_transaction(trans, root);
  1468. if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
  1469. filemap_flush(inode->i_mapping);
  1470. }
  1471. if (filp->private_data)
  1472. btrfs_ioctl_trans_end(filp);
  1473. return 0;
  1474. }
  1475. /*
  1476. * fsync call for both files and directories. This logs the inode into
  1477. * the tree log instead of forcing full commits whenever possible.
  1478. *
  1479. * It needs to call filemap_fdatawait so that all ordered extent updates are
  1480. * in the metadata btree are up to date for copying to the log.
  1481. *
  1482. * It drops the inode mutex before doing the tree log commit. This is an
  1483. * important optimization for directories because holding the mutex prevents
  1484. * new operations on the dir while we write to disk.
  1485. */
  1486. int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  1487. {
  1488. struct dentry *dentry = file->f_path.dentry;
  1489. struct inode *inode = dentry->d_inode;
  1490. struct btrfs_root *root = BTRFS_I(inode)->root;
  1491. int ret = 0;
  1492. struct btrfs_trans_handle *trans;
  1493. bool full_sync = 0;
  1494. trace_btrfs_sync_file(file, datasync);
  1495. /*
  1496. * We write the dirty pages in the range and wait until they complete
  1497. * out of the ->i_mutex. If so, we can flush the dirty pages by
  1498. * multi-task, and make the performance up. See
  1499. * btrfs_wait_ordered_range for an explanation of the ASYNC check.
  1500. */
  1501. atomic_inc(&BTRFS_I(inode)->sync_writers);
  1502. ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
  1503. if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
  1504. &BTRFS_I(inode)->runtime_flags))
  1505. ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
  1506. atomic_dec(&BTRFS_I(inode)->sync_writers);
  1507. if (ret)
  1508. return ret;
  1509. mutex_lock(&inode->i_mutex);
  1510. /*
  1511. * We flush the dirty pages again to avoid some dirty pages in the
  1512. * range being left.
  1513. */
  1514. atomic_inc(&root->log_batch);
  1515. full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1516. &BTRFS_I(inode)->runtime_flags);
  1517. if (full_sync)
  1518. btrfs_wait_ordered_range(inode, start, end - start + 1);
  1519. atomic_inc(&root->log_batch);
  1520. /*
  1521. * check the transaction that last modified this inode
  1522. * and see if its already been committed
  1523. */
  1524. if (!BTRFS_I(inode)->last_trans) {
  1525. mutex_unlock(&inode->i_mutex);
  1526. goto out;
  1527. }
  1528. /*
  1529. * if the last transaction that changed this file was before
  1530. * the current transaction, we can bail out now without any
  1531. * syncing
  1532. */
  1533. smp_mb();
  1534. if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
  1535. BTRFS_I(inode)->last_trans <=
  1536. root->fs_info->last_trans_committed) {
  1537. BTRFS_I(inode)->last_trans = 0;
  1538. /*
  1539. * We'v had everything committed since the last time we were
  1540. * modified so clear this flag in case it was set for whatever
  1541. * reason, it's no longer relevant.
  1542. */
  1543. clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1544. &BTRFS_I(inode)->runtime_flags);
  1545. mutex_unlock(&inode->i_mutex);
  1546. goto out;
  1547. }
  1548. /*
  1549. * ok we haven't committed the transaction yet, lets do a commit
  1550. */
  1551. if (file->private_data)
  1552. btrfs_ioctl_trans_end(file);
  1553. trans = btrfs_start_transaction(root, 0);
  1554. if (IS_ERR(trans)) {
  1555. ret = PTR_ERR(trans);
  1556. mutex_unlock(&inode->i_mutex);
  1557. goto out;
  1558. }
  1559. ret = btrfs_log_dentry_safe(trans, root, dentry);
  1560. if (ret < 0) {
  1561. mutex_unlock(&inode->i_mutex);
  1562. goto out;
  1563. }
  1564. /* we've logged all the items and now have a consistent
  1565. * version of the file in the log. It is possible that
  1566. * someone will come in and modify the file, but that's
  1567. * fine because the log is consistent on disk, and we
  1568. * have references to all of the file's extents
  1569. *
  1570. * It is possible that someone will come in and log the
  1571. * file again, but that will end up using the synchronization
  1572. * inside btrfs_sync_log to keep things safe.
  1573. */
  1574. mutex_unlock(&inode->i_mutex);
  1575. if (ret != BTRFS_NO_LOG_SYNC) {
  1576. if (ret > 0) {
  1577. /*
  1578. * If we didn't already wait for ordered extents we need
  1579. * to do that now.
  1580. */
  1581. if (!full_sync)
  1582. btrfs_wait_ordered_range(inode, start,
  1583. end - start + 1);
  1584. ret = btrfs_commit_transaction(trans, root);
  1585. } else {
  1586. ret = btrfs_sync_log(trans, root);
  1587. if (ret == 0) {
  1588. ret = btrfs_end_transaction(trans, root);
  1589. } else {
  1590. if (!full_sync)
  1591. btrfs_wait_ordered_range(inode, start,
  1592. end -
  1593. start + 1);
  1594. ret = btrfs_commit_transaction(trans, root);
  1595. }
  1596. }
  1597. } else {
  1598. ret = btrfs_end_transaction(trans, root);
  1599. }
  1600. out:
  1601. return ret > 0 ? -EIO : ret;
  1602. }
  1603. static const struct vm_operations_struct btrfs_file_vm_ops = {
  1604. .fault = filemap_fault,
  1605. .page_mkwrite = btrfs_page_mkwrite,
  1606. .remap_pages = generic_file_remap_pages,
  1607. };
  1608. static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
  1609. {
  1610. struct address_space *mapping = filp->f_mapping;
  1611. if (!mapping->a_ops->readpage)
  1612. return -ENOEXEC;
  1613. file_accessed(filp);
  1614. vma->vm_ops = &btrfs_file_vm_ops;
  1615. return 0;
  1616. }
  1617. static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
  1618. int slot, u64 start, u64 end)
  1619. {
  1620. struct btrfs_file_extent_item *fi;
  1621. struct btrfs_key key;
  1622. if (slot < 0 || slot >= btrfs_header_nritems(leaf))
  1623. return 0;
  1624. btrfs_item_key_to_cpu(leaf, &key, slot);
  1625. if (key.objectid != btrfs_ino(inode) ||
  1626. key.type != BTRFS_EXTENT_DATA_KEY)
  1627. return 0;
  1628. fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
  1629. if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
  1630. return 0;
  1631. if (btrfs_file_extent_disk_bytenr(leaf, fi))
  1632. return 0;
  1633. if (key.offset == end)
  1634. return 1;
  1635. if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
  1636. return 1;
  1637. return 0;
  1638. }
  1639. static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
  1640. struct btrfs_path *path, u64 offset, u64 end)
  1641. {
  1642. struct btrfs_root *root = BTRFS_I(inode)->root;
  1643. struct extent_buffer *leaf;
  1644. struct btrfs_file_extent_item *fi;
  1645. struct extent_map *hole_em;
  1646. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  1647. struct btrfs_key key;
  1648. int ret;
  1649. key.objectid = btrfs_ino(inode);
  1650. key.type = BTRFS_EXTENT_DATA_KEY;
  1651. key.offset = offset;
  1652. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  1653. if (ret < 0)
  1654. return ret;
  1655. BUG_ON(!ret);
  1656. leaf = path->nodes[0];
  1657. if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
  1658. u64 num_bytes;
  1659. path->slots[0]--;
  1660. fi = btrfs_item_ptr(leaf, path->slots[0],
  1661. struct btrfs_file_extent_item);
  1662. num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
  1663. end - offset;
  1664. btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
  1665. btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
  1666. btrfs_set_file_extent_offset(leaf, fi, 0);
  1667. btrfs_mark_buffer_dirty(leaf);
  1668. goto out;
  1669. }
  1670. if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
  1671. u64 num_bytes;
  1672. path->slots[0]++;
  1673. key.offset = offset;
  1674. btrfs_set_item_key_safe(trans, root, path, &key);
  1675. fi = btrfs_item_ptr(leaf, path->slots[0],
  1676. struct btrfs_file_extent_item);
  1677. num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
  1678. offset;
  1679. btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
  1680. btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
  1681. btrfs_set_file_extent_offset(leaf, fi, 0);
  1682. btrfs_mark_buffer_dirty(leaf);
  1683. goto out;
  1684. }
  1685. btrfs_release_path(path);
  1686. ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
  1687. 0, 0, end - offset, 0, end - offset,
  1688. 0, 0, 0);
  1689. if (ret)
  1690. return ret;
  1691. out:
  1692. btrfs_release_path(path);
  1693. hole_em = alloc_extent_map();
  1694. if (!hole_em) {
  1695. btrfs_drop_extent_cache(inode, offset, end - 1, 0);
  1696. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1697. &BTRFS_I(inode)->runtime_flags);
  1698. } else {
  1699. hole_em->start = offset;
  1700. hole_em->len = end - offset;
  1701. hole_em->orig_start = offset;
  1702. hole_em->block_start = EXTENT_MAP_HOLE;
  1703. hole_em->block_len = 0;
  1704. hole_em->orig_block_len = 0;
  1705. hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
  1706. hole_em->compress_type = BTRFS_COMPRESS_NONE;
  1707. hole_em->generation = trans->transid;
  1708. do {
  1709. btrfs_drop_extent_cache(inode, offset, end - 1, 0);
  1710. write_lock(&em_tree->lock);
  1711. ret = add_extent_mapping(em_tree, hole_em);
  1712. if (!ret)
  1713. list_move(&hole_em->list,
  1714. &em_tree->modified_extents);
  1715. write_unlock(&em_tree->lock);
  1716. } while (ret == -EEXIST);
  1717. free_extent_map(hole_em);
  1718. if (ret)
  1719. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1720. &BTRFS_I(inode)->runtime_flags);
  1721. }
  1722. return 0;
  1723. }
  1724. static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
  1725. {
  1726. struct btrfs_root *root = BTRFS_I(inode)->root;
  1727. struct extent_state *cached_state = NULL;
  1728. struct btrfs_path *path;
  1729. struct btrfs_block_rsv *rsv;
  1730. struct btrfs_trans_handle *trans;
  1731. u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
  1732. u64 lockend = round_down(offset + len,
  1733. BTRFS_I(inode)->root->sectorsize) - 1;
  1734. u64 cur_offset = lockstart;
  1735. u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
  1736. u64 drop_end;
  1737. int ret = 0;
  1738. int err = 0;
  1739. bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
  1740. ((offset + len - 1) >> PAGE_CACHE_SHIFT));
  1741. btrfs_wait_ordered_range(inode, offset, len);
  1742. mutex_lock(&inode->i_mutex);
  1743. /*
  1744. * We needn't truncate any page which is beyond the end of the file
  1745. * because we are sure there is no data there.
  1746. */
  1747. /*
  1748. * Only do this if we are in the same page and we aren't doing the
  1749. * entire page.
  1750. */
  1751. if (same_page && len < PAGE_CACHE_SIZE) {
  1752. if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE))
  1753. ret = btrfs_truncate_page(inode, offset, len, 0);
  1754. mutex_unlock(&inode->i_mutex);
  1755. return ret;
  1756. }
  1757. /* zero back part of the first page */
  1758. if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
  1759. ret = btrfs_truncate_page(inode, offset, 0, 0);
  1760. if (ret) {
  1761. mutex_unlock(&inode->i_mutex);
  1762. return ret;
  1763. }
  1764. }
  1765. /* zero the front end of the last page */
  1766. if (offset + len < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
  1767. ret = btrfs_truncate_page(inode, offset + len, 0, 1);
  1768. if (ret) {
  1769. mutex_unlock(&inode->i_mutex);
  1770. return ret;
  1771. }
  1772. }
  1773. if (lockend < lockstart) {
  1774. mutex_unlock(&inode->i_mutex);
  1775. return 0;
  1776. }
  1777. while (1) {
  1778. struct btrfs_ordered_extent *ordered;
  1779. truncate_pagecache_range(inode, lockstart, lockend);
  1780. lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  1781. 0, &cached_state);
  1782. ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
  1783. /*
  1784. * We need to make sure we have no ordered extents in this range
  1785. * and nobody raced in and read a page in this range, if we did
  1786. * we need to try again.
  1787. */
  1788. if ((!ordered ||
  1789. (ordered->file_offset + ordered->len < lockstart ||
  1790. ordered->file_offset > lockend)) &&
  1791. !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
  1792. lockend, EXTENT_UPTODATE, 0,
  1793. cached_state)) {
  1794. if (ordered)
  1795. btrfs_put_ordered_extent(ordered);
  1796. break;
  1797. }
  1798. if (ordered)
  1799. btrfs_put_ordered_extent(ordered);
  1800. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
  1801. lockend, &cached_state, GFP_NOFS);
  1802. btrfs_wait_ordered_range(inode, lockstart,
  1803. lockend - lockstart + 1);
  1804. }
  1805. path = btrfs_alloc_path();
  1806. if (!path) {
  1807. ret = -ENOMEM;
  1808. goto out;
  1809. }
  1810. rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
  1811. if (!rsv) {
  1812. ret = -ENOMEM;
  1813. goto out_free;
  1814. }
  1815. rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
  1816. rsv->failfast = 1;
  1817. /*
  1818. * 1 - update the inode
  1819. * 1 - removing the extents in the range
  1820. * 1 - adding the hole extent
  1821. */
  1822. trans = btrfs_start_transaction(root, 3);
  1823. if (IS_ERR(trans)) {
  1824. err = PTR_ERR(trans);
  1825. goto out_free;
  1826. }
  1827. ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
  1828. min_size);
  1829. BUG_ON(ret);
  1830. trans->block_rsv = rsv;
  1831. while (cur_offset < lockend) {
  1832. ret = __btrfs_drop_extents(trans, root, inode, path,
  1833. cur_offset, lockend + 1,
  1834. &drop_end, 1);
  1835. if (ret != -ENOSPC)
  1836. break;
  1837. trans->block_rsv = &root->fs_info->trans_block_rsv;
  1838. ret = fill_holes(trans, inode, path, cur_offset, drop_end);
  1839. if (ret) {
  1840. err = ret;
  1841. break;
  1842. }
  1843. cur_offset = drop_end;
  1844. ret = btrfs_update_inode(trans, root, inode);
  1845. if (ret) {
  1846. err = ret;
  1847. break;
  1848. }
  1849. btrfs_end_transaction(trans, root);
  1850. btrfs_btree_balance_dirty(root);
  1851. trans = btrfs_start_transaction(root, 3);
  1852. if (IS_ERR(trans)) {
  1853. ret = PTR_ERR(trans);
  1854. trans = NULL;
  1855. break;
  1856. }
  1857. ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
  1858. rsv, min_size);
  1859. BUG_ON(ret); /* shouldn't happen */
  1860. trans->block_rsv = rsv;
  1861. }
  1862. if (ret) {
  1863. err = ret;
  1864. goto out_trans;
  1865. }
  1866. trans->block_rsv = &root->fs_info->trans_block_rsv;
  1867. ret = fill_holes(trans, inode, path, cur_offset, drop_end);
  1868. if (ret) {
  1869. err = ret;
  1870. goto out_trans;
  1871. }
  1872. out_trans:
  1873. if (!trans)
  1874. goto out_free;
  1875. inode_inc_iversion(inode);
  1876. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  1877. trans->block_rsv = &root->fs_info->trans_block_rsv;
  1878. ret = btrfs_update_inode(trans, root, inode);
  1879. btrfs_end_transaction(trans, root);
  1880. btrfs_btree_balance_dirty(root);
  1881. out_free:
  1882. btrfs_free_path(path);
  1883. btrfs_free_block_rsv(root, rsv);
  1884. out:
  1885. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  1886. &cached_state, GFP_NOFS);
  1887. mutex_unlock(&inode->i_mutex);
  1888. if (ret && !err)
  1889. err = ret;
  1890. return err;
  1891. }
  1892. static long btrfs_fallocate(struct file *file, int mode,
  1893. loff_t offset, loff_t len)
  1894. {
  1895. struct inode *inode = file_inode(file);
  1896. struct extent_state *cached_state = NULL;
  1897. u64 cur_offset;
  1898. u64 last_byte;
  1899. u64 alloc_start;
  1900. u64 alloc_end;
  1901. u64 alloc_hint = 0;
  1902. u64 locked_end;
  1903. struct extent_map *em;
  1904. int blocksize = BTRFS_I(inode)->root->sectorsize;
  1905. int ret;
  1906. alloc_start = round_down(offset, blocksize);
  1907. alloc_end = round_up(offset + len, blocksize);
  1908. /* Make sure we aren't being give some crap mode */
  1909. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
  1910. return -EOPNOTSUPP;
  1911. if (mode & FALLOC_FL_PUNCH_HOLE)
  1912. return btrfs_punch_hole(inode, offset, len);
  1913. /*
  1914. * Make sure we have enough space before we do the
  1915. * allocation.
  1916. */
  1917. ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
  1918. if (ret)
  1919. return ret;
  1920. /*
  1921. * wait for ordered IO before we have any locks. We'll loop again
  1922. * below with the locks held.
  1923. */
  1924. btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
  1925. mutex_lock(&inode->i_mutex);
  1926. ret = inode_newsize_ok(inode, alloc_end);
  1927. if (ret)
  1928. goto out;
  1929. if (alloc_start > inode->i_size) {
  1930. ret = btrfs_cont_expand(inode, i_size_read(inode),
  1931. alloc_start);
  1932. if (ret)
  1933. goto out;
  1934. }
  1935. locked_end = alloc_end - 1;
  1936. while (1) {
  1937. struct btrfs_ordered_extent *ordered;
  1938. /* the extent lock is ordered inside the running
  1939. * transaction
  1940. */
  1941. lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
  1942. locked_end, 0, &cached_state);
  1943. ordered = btrfs_lookup_first_ordered_extent(inode,
  1944. alloc_end - 1);
  1945. if (ordered &&
  1946. ordered->file_offset + ordered->len > alloc_start &&
  1947. ordered->file_offset < alloc_end) {
  1948. btrfs_put_ordered_extent(ordered);
  1949. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  1950. alloc_start, locked_end,
  1951. &cached_state, GFP_NOFS);
  1952. /*
  1953. * we can't wait on the range with the transaction
  1954. * running or with the extent lock held
  1955. */
  1956. btrfs_wait_ordered_range(inode, alloc_start,
  1957. alloc_end - alloc_start);
  1958. } else {
  1959. if (ordered)
  1960. btrfs_put_ordered_extent(ordered);
  1961. break;
  1962. }
  1963. }
  1964. cur_offset = alloc_start;
  1965. while (1) {
  1966. u64 actual_end;
  1967. em = btrfs_get_extent(inode, NULL, 0, cur_offset,
  1968. alloc_end - cur_offset, 0);
  1969. if (IS_ERR_OR_NULL(em)) {
  1970. if (!em)
  1971. ret = -ENOMEM;
  1972. else
  1973. ret = PTR_ERR(em);
  1974. break;
  1975. }
  1976. last_byte = min(extent_map_end(em), alloc_end);
  1977. actual_end = min_t(u64, extent_map_end(em), offset + len);
  1978. last_byte = ALIGN(last_byte, blocksize);
  1979. if (em->block_start == EXTENT_MAP_HOLE ||
  1980. (cur_offset >= inode->i_size &&
  1981. !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
  1982. ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
  1983. last_byte - cur_offset,
  1984. 1 << inode->i_blkbits,
  1985. offset + len,
  1986. &alloc_hint);
  1987. if (ret < 0) {
  1988. free_extent_map(em);
  1989. break;
  1990. }
  1991. } else if (actual_end > inode->i_size &&
  1992. !(mode & FALLOC_FL_KEEP_SIZE)) {
  1993. /*
  1994. * We didn't need to allocate any more space, but we
  1995. * still extended the size of the file so we need to
  1996. * update i_size.
  1997. */
  1998. inode->i_ctime = CURRENT_TIME;
  1999. i_size_write(inode, actual_end);
  2000. btrfs_ordered_update_i_size(inode, actual_end, NULL);
  2001. }
  2002. free_extent_map(em);
  2003. cur_offset = last_byte;
  2004. if (cur_offset >= alloc_end) {
  2005. ret = 0;
  2006. break;
  2007. }
  2008. }
  2009. unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
  2010. &cached_state, GFP_NOFS);
  2011. out:
  2012. mutex_unlock(&inode->i_mutex);
  2013. /* Let go of our reservation. */
  2014. btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
  2015. return ret;
  2016. }
  2017. static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
  2018. {
  2019. struct btrfs_root *root = BTRFS_I(inode)->root;
  2020. struct extent_map *em;
  2021. struct extent_state *cached_state = NULL;
  2022. u64 lockstart = *offset;
  2023. u64 lockend = i_size_read(inode);
  2024. u64 start = *offset;
  2025. u64 orig_start = *offset;
  2026. u64 len = i_size_read(inode);
  2027. u64 last_end = 0;
  2028. int ret = 0;
  2029. lockend = max_t(u64, root->sectorsize, lockend);
  2030. if (lockend <= lockstart)
  2031. lockend = lockstart + root->sectorsize;
  2032. lockend--;
  2033. len = lockend - lockstart + 1;
  2034. len = max_t(u64, len, root->sectorsize);
  2035. if (inode->i_size == 0)
  2036. return -ENXIO;
  2037. lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
  2038. &cached_state);
  2039. /*
  2040. * Delalloc is such a pain. If we have a hole and we have pending
  2041. * delalloc for a portion of the hole we will get back a hole that
  2042. * exists for the entire range since it hasn't been actually written
  2043. * yet. So to take care of this case we need to look for an extent just
  2044. * before the position we want in case there is outstanding delalloc
  2045. * going on here.
  2046. */
  2047. if (whence == SEEK_HOLE && start != 0) {
  2048. if (start <= root->sectorsize)
  2049. em = btrfs_get_extent_fiemap(inode, NULL, 0, 0,
  2050. root->sectorsize, 0);
  2051. else
  2052. em = btrfs_get_extent_fiemap(inode, NULL, 0,
  2053. start - root->sectorsize,
  2054. root->sectorsize, 0);
  2055. if (IS_ERR(em)) {
  2056. ret = PTR_ERR(em);
  2057. goto out;
  2058. }
  2059. last_end = em->start + em->len;
  2060. if (em->block_start == EXTENT_MAP_DELALLOC)
  2061. last_end = min_t(u64, last_end, inode->i_size);
  2062. free_extent_map(em);
  2063. }
  2064. while (1) {
  2065. em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
  2066. if (IS_ERR(em)) {
  2067. ret = PTR_ERR(em);
  2068. break;
  2069. }
  2070. if (em->block_start == EXTENT_MAP_HOLE) {
  2071. if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
  2072. if (last_end <= orig_start) {
  2073. free_extent_map(em);
  2074. ret = -ENXIO;
  2075. break;
  2076. }
  2077. }
  2078. if (whence == SEEK_HOLE) {
  2079. *offset = start;
  2080. free_extent_map(em);
  2081. break;
  2082. }
  2083. } else {
  2084. if (whence == SEEK_DATA) {
  2085. if (em->block_start == EXTENT_MAP_DELALLOC) {
  2086. if (start >= inode->i_size) {
  2087. free_extent_map(em);
  2088. ret = -ENXIO;
  2089. break;
  2090. }
  2091. }
  2092. if (!test_bit(EXTENT_FLAG_PREALLOC,
  2093. &em->flags)) {
  2094. *offset = start;
  2095. free_extent_map(em);
  2096. break;
  2097. }
  2098. }
  2099. }
  2100. start = em->start + em->len;
  2101. last_end = em->start + em->len;
  2102. if (em->block_start == EXTENT_MAP_DELALLOC)
  2103. last_end = min_t(u64, last_end, inode->i_size);
  2104. if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
  2105. free_extent_map(em);
  2106. ret = -ENXIO;
  2107. break;
  2108. }
  2109. free_extent_map(em);
  2110. cond_resched();
  2111. }
  2112. if (!ret)
  2113. *offset = min(*offset, inode->i_size);
  2114. out:
  2115. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  2116. &cached_state, GFP_NOFS);
  2117. return ret;
  2118. }
  2119. static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
  2120. {
  2121. struct inode *inode = file->f_mapping->host;
  2122. int ret;
  2123. mutex_lock(&inode->i_mutex);
  2124. switch (whence) {
  2125. case SEEK_END:
  2126. case SEEK_CUR:
  2127. offset = generic_file_llseek(file, offset, whence);
  2128. goto out;
  2129. case SEEK_DATA:
  2130. case SEEK_HOLE:
  2131. if (offset >= i_size_read(inode)) {
  2132. mutex_unlock(&inode->i_mutex);
  2133. return -ENXIO;
  2134. }
  2135. ret = find_desired_extent(inode, &offset, whence);
  2136. if (ret) {
  2137. mutex_unlock(&inode->i_mutex);
  2138. return ret;
  2139. }
  2140. }
  2141. if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET)) {
  2142. offset = -EINVAL;
  2143. goto out;
  2144. }
  2145. if (offset > inode->i_sb->s_maxbytes) {
  2146. offset = -EINVAL;
  2147. goto out;
  2148. }
  2149. /* Special lock needed here? */
  2150. if (offset != file->f_pos) {
  2151. file->f_pos = offset;
  2152. file->f_version = 0;
  2153. }
  2154. out:
  2155. mutex_unlock(&inode->i_mutex);
  2156. return offset;
  2157. }
  2158. const struct file_operations btrfs_file_operations = {
  2159. .llseek = btrfs_file_llseek,
  2160. .read = do_sync_read,
  2161. .write = do_sync_write,
  2162. .aio_read = generic_file_aio_read,
  2163. .splice_read = generic_file_splice_read,
  2164. .aio_write = btrfs_file_aio_write,
  2165. .mmap = btrfs_file_mmap,
  2166. .open = generic_file_open,
  2167. .release = btrfs_release_file,
  2168. .fsync = btrfs_sync_file,
  2169. .fallocate = btrfs_fallocate,
  2170. .unlocked_ioctl = btrfs_ioctl,
  2171. #ifdef CONFIG_COMPAT
  2172. .compat_ioctl = btrfs_ioctl,
  2173. #endif
  2174. };
  2175. void btrfs_auto_defrag_exit(void)
  2176. {
  2177. if (btrfs_inode_defrag_cachep)
  2178. kmem_cache_destroy(btrfs_inode_defrag_cachep);
  2179. }
  2180. int btrfs_auto_defrag_init(void)
  2181. {
  2182. btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
  2183. sizeof(struct inode_defrag), 0,
  2184. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  2185. NULL);
  2186. if (!btrfs_inode_defrag_cachep)
  2187. return -ENOMEM;
  2188. return 0;
  2189. }