mddi.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821
  1. /*
  2. * MSM MDDI Transport
  3. *
  4. * Copyright (C) 2007 Google Incorporated
  5. * Copyright (C) 2007 QUALCOMM Incorporated
  6. *
  7. * This software is licensed under the terms of the GNU General Public
  8. * License version 2, as published by the Free Software Foundation, and
  9. * may be copied, distributed, and modified under those terms.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. */
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/dma-mapping.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/platform_device.h>
  22. #include <linux/delay.h>
  23. #include <linux/gfp.h>
  24. #include <linux/spinlock.h>
  25. #include <linux/clk.h>
  26. #include <linux/io.h>
  27. #include <linux/sched.h>
  28. #include <linux/platform_data/video-msm_fb.h>
  29. #include "mddi_hw.h"
  30. #define FLAG_DISABLE_HIBERNATION 0x0001
  31. #define FLAG_HAVE_CAPS 0x0002
  32. #define FLAG_HAS_VSYNC_IRQ 0x0004
  33. #define FLAG_HAVE_STATUS 0x0008
  34. #define CMD_GET_CLIENT_CAP 0x0601
  35. #define CMD_GET_CLIENT_STATUS 0x0602
  36. union mddi_rev {
  37. unsigned char raw[MDDI_REV_BUFFER_SIZE];
  38. struct mddi_rev_packet hdr;
  39. struct mddi_client_status status;
  40. struct mddi_client_caps caps;
  41. struct mddi_register_access reg;
  42. };
  43. struct reg_read_info {
  44. struct completion done;
  45. uint32_t reg;
  46. uint32_t status;
  47. uint32_t result;
  48. };
  49. struct mddi_info {
  50. uint16_t flags;
  51. uint16_t version;
  52. char __iomem *base;
  53. int irq;
  54. struct clk *clk;
  55. struct msm_mddi_client_data client_data;
  56. /* buffer for rev encap packets */
  57. void *rev_data;
  58. dma_addr_t rev_addr;
  59. struct mddi_llentry *reg_write_data;
  60. dma_addr_t reg_write_addr;
  61. struct mddi_llentry *reg_read_data;
  62. dma_addr_t reg_read_addr;
  63. size_t rev_data_curr;
  64. spinlock_t int_lock;
  65. uint32_t int_enable;
  66. uint32_t got_int;
  67. wait_queue_head_t int_wait;
  68. struct mutex reg_write_lock;
  69. struct mutex reg_read_lock;
  70. struct reg_read_info *reg_read;
  71. struct mddi_client_caps caps;
  72. struct mddi_client_status status;
  73. void (*power_client)(struct msm_mddi_client_data *, int);
  74. /* client device published to bind us to the
  75. * appropriate mddi_client driver
  76. */
  77. char client_name[20];
  78. struct platform_device client_pdev;
  79. };
  80. static void mddi_init_rev_encap(struct mddi_info *mddi);
  81. #define mddi_readl(r) readl(mddi->base + (MDDI_##r))
  82. #define mddi_writel(v, r) writel((v), mddi->base + (MDDI_##r))
  83. void mddi_activate_link(struct msm_mddi_client_data *cdata)
  84. {
  85. struct mddi_info *mddi = container_of(cdata, struct mddi_info,
  86. client_data);
  87. mddi_writel(MDDI_CMD_LINK_ACTIVE, CMD);
  88. }
  89. static void mddi_handle_link_list_done(struct mddi_info *mddi)
  90. {
  91. }
  92. static void mddi_reset_rev_encap_ptr(struct mddi_info *mddi)
  93. {
  94. printk(KERN_INFO "mddi: resetting rev ptr\n");
  95. mddi->rev_data_curr = 0;
  96. mddi_writel(mddi->rev_addr, REV_PTR);
  97. mddi_writel(mddi->rev_addr, REV_PTR);
  98. mddi_writel(MDDI_CMD_FORCE_NEW_REV_PTR, CMD);
  99. }
  100. static void mddi_handle_rev_data(struct mddi_info *mddi, union mddi_rev *rev)
  101. {
  102. int i;
  103. struct reg_read_info *ri;
  104. if ((rev->hdr.length <= MDDI_REV_BUFFER_SIZE - 2) &&
  105. (rev->hdr.length >= sizeof(struct mddi_rev_packet) - 2)) {
  106. switch (rev->hdr.type) {
  107. case TYPE_CLIENT_CAPS:
  108. memcpy(&mddi->caps, &rev->caps,
  109. sizeof(struct mddi_client_caps));
  110. mddi->flags |= FLAG_HAVE_CAPS;
  111. wake_up(&mddi->int_wait);
  112. break;
  113. case TYPE_CLIENT_STATUS:
  114. memcpy(&mddi->status, &rev->status,
  115. sizeof(struct mddi_client_status));
  116. mddi->flags |= FLAG_HAVE_STATUS;
  117. wake_up(&mddi->int_wait);
  118. break;
  119. case TYPE_REGISTER_ACCESS:
  120. ri = mddi->reg_read;
  121. if (ri == 0) {
  122. printk(KERN_INFO "rev: got reg %x = %x without "
  123. " pending read\n",
  124. rev->reg.register_address,
  125. rev->reg.register_data_list);
  126. break;
  127. }
  128. if (ri->reg != rev->reg.register_address) {
  129. printk(KERN_INFO "rev: got reg %x = %x for "
  130. "wrong register, expected "
  131. "%x\n",
  132. rev->reg.register_address,
  133. rev->reg.register_data_list, ri->reg);
  134. break;
  135. }
  136. mddi->reg_read = NULL;
  137. ri->status = 0;
  138. ri->result = rev->reg.register_data_list;
  139. complete(&ri->done);
  140. break;
  141. default:
  142. printk(KERN_INFO "rev: unknown reverse packet: "
  143. "len=%04x type=%04x CURR_REV_PTR=%x\n",
  144. rev->hdr.length, rev->hdr.type,
  145. mddi_readl(CURR_REV_PTR));
  146. for (i = 0; i < rev->hdr.length + 2; i++) {
  147. if ((i % 16) == 0)
  148. printk(KERN_INFO "\n");
  149. printk(KERN_INFO " %02x", rev->raw[i]);
  150. }
  151. printk(KERN_INFO "\n");
  152. mddi_reset_rev_encap_ptr(mddi);
  153. }
  154. } else {
  155. printk(KERN_INFO "bad rev length, %d, CURR_REV_PTR %x\n",
  156. rev->hdr.length, mddi_readl(CURR_REV_PTR));
  157. mddi_reset_rev_encap_ptr(mddi);
  158. }
  159. }
  160. static void mddi_wait_interrupt(struct mddi_info *mddi, uint32_t intmask);
  161. static void mddi_handle_rev_data_avail(struct mddi_info *mddi)
  162. {
  163. uint32_t rev_data_count;
  164. uint32_t rev_crc_err_count;
  165. struct reg_read_info *ri;
  166. size_t prev_offset;
  167. uint16_t length;
  168. union mddi_rev *crev = mddi->rev_data + mddi->rev_data_curr;
  169. /* clear the interrupt */
  170. mddi_writel(MDDI_INT_REV_DATA_AVAIL, INT);
  171. rev_data_count = mddi_readl(REV_PKT_CNT);
  172. rev_crc_err_count = mddi_readl(REV_CRC_ERR);
  173. if (rev_data_count > 1)
  174. printk(KERN_INFO "rev_data_count %d\n", rev_data_count);
  175. if (rev_crc_err_count) {
  176. printk(KERN_INFO "rev_crc_err_count %d, INT %x\n",
  177. rev_crc_err_count, mddi_readl(INT));
  178. ri = mddi->reg_read;
  179. if (ri == 0) {
  180. printk(KERN_INFO "rev: got crc error without pending "
  181. "read\n");
  182. } else {
  183. mddi->reg_read = NULL;
  184. ri->status = -EIO;
  185. ri->result = -1;
  186. complete(&ri->done);
  187. }
  188. }
  189. if (rev_data_count == 0)
  190. return;
  191. prev_offset = mddi->rev_data_curr;
  192. length = *((uint8_t *)mddi->rev_data + mddi->rev_data_curr);
  193. mddi->rev_data_curr++;
  194. if (mddi->rev_data_curr == MDDI_REV_BUFFER_SIZE)
  195. mddi->rev_data_curr = 0;
  196. length += *((uint8_t *)mddi->rev_data + mddi->rev_data_curr) << 8;
  197. mddi->rev_data_curr += 1 + length;
  198. if (mddi->rev_data_curr >= MDDI_REV_BUFFER_SIZE)
  199. mddi->rev_data_curr =
  200. mddi->rev_data_curr % MDDI_REV_BUFFER_SIZE;
  201. if (length > MDDI_REV_BUFFER_SIZE - 2) {
  202. printk(KERN_INFO "mddi: rev data length greater than buffer"
  203. "size\n");
  204. mddi_reset_rev_encap_ptr(mddi);
  205. return;
  206. }
  207. if (prev_offset + 2 + length >= MDDI_REV_BUFFER_SIZE) {
  208. union mddi_rev tmprev;
  209. size_t rem = MDDI_REV_BUFFER_SIZE - prev_offset;
  210. memcpy(&tmprev.raw[0], mddi->rev_data + prev_offset, rem);
  211. memcpy(&tmprev.raw[rem], mddi->rev_data, 2 + length - rem);
  212. mddi_handle_rev_data(mddi, &tmprev);
  213. } else {
  214. mddi_handle_rev_data(mddi, crev);
  215. }
  216. if (prev_offset < MDDI_REV_BUFFER_SIZE / 2 &&
  217. mddi->rev_data_curr >= MDDI_REV_BUFFER_SIZE / 2) {
  218. mddi_writel(mddi->rev_addr, REV_PTR);
  219. }
  220. }
  221. static irqreturn_t mddi_isr(int irq, void *data)
  222. {
  223. struct msm_mddi_client_data *cdata = data;
  224. struct mddi_info *mddi = container_of(cdata, struct mddi_info,
  225. client_data);
  226. uint32_t active, status;
  227. spin_lock(&mddi->int_lock);
  228. active = mddi_readl(INT);
  229. status = mddi_readl(STAT);
  230. mddi_writel(active, INT);
  231. /* ignore any interrupts we have disabled */
  232. active &= mddi->int_enable;
  233. mddi->got_int |= active;
  234. wake_up(&mddi->int_wait);
  235. if (active & MDDI_INT_PRI_LINK_LIST_DONE) {
  236. mddi->int_enable &= (~MDDI_INT_PRI_LINK_LIST_DONE);
  237. mddi_handle_link_list_done(mddi);
  238. }
  239. if (active & MDDI_INT_REV_DATA_AVAIL)
  240. mddi_handle_rev_data_avail(mddi);
  241. if (active & ~MDDI_INT_NEED_CLEAR)
  242. mddi->int_enable &= ~(active & ~MDDI_INT_NEED_CLEAR);
  243. if (active & MDDI_INT_LINK_ACTIVE) {
  244. mddi->int_enable &= (~MDDI_INT_LINK_ACTIVE);
  245. mddi->int_enable |= MDDI_INT_IN_HIBERNATION;
  246. }
  247. if (active & MDDI_INT_IN_HIBERNATION) {
  248. mddi->int_enable &= (~MDDI_INT_IN_HIBERNATION);
  249. mddi->int_enable |= MDDI_INT_LINK_ACTIVE;
  250. }
  251. mddi_writel(mddi->int_enable, INTEN);
  252. spin_unlock(&mddi->int_lock);
  253. return IRQ_HANDLED;
  254. }
  255. static long mddi_wait_interrupt_timeout(struct mddi_info *mddi,
  256. uint32_t intmask, int timeout)
  257. {
  258. unsigned long irq_flags;
  259. spin_lock_irqsave(&mddi->int_lock, irq_flags);
  260. mddi->got_int &= ~intmask;
  261. mddi->int_enable |= intmask;
  262. mddi_writel(mddi->int_enable, INTEN);
  263. spin_unlock_irqrestore(&mddi->int_lock, irq_flags);
  264. return wait_event_timeout(mddi->int_wait, mddi->got_int & intmask,
  265. timeout);
  266. }
  267. static void mddi_wait_interrupt(struct mddi_info *mddi, uint32_t intmask)
  268. {
  269. if (mddi_wait_interrupt_timeout(mddi, intmask, HZ/10) == 0)
  270. printk(KERN_INFO "mddi_wait_interrupt %d, timeout "
  271. "waiting for %x, INT = %x, STAT = %x gotint = %x\n",
  272. current->pid, intmask, mddi_readl(INT), mddi_readl(STAT),
  273. mddi->got_int);
  274. }
  275. static void mddi_init_rev_encap(struct mddi_info *mddi)
  276. {
  277. memset(mddi->rev_data, 0xee, MDDI_REV_BUFFER_SIZE);
  278. mddi_writel(mddi->rev_addr, REV_PTR);
  279. mddi_writel(MDDI_CMD_FORCE_NEW_REV_PTR, CMD);
  280. mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
  281. }
  282. void mddi_set_auto_hibernate(struct msm_mddi_client_data *cdata, int on)
  283. {
  284. struct mddi_info *mddi = container_of(cdata, struct mddi_info,
  285. client_data);
  286. mddi_writel(MDDI_CMD_POWERDOWN, CMD);
  287. mddi_wait_interrupt(mddi, MDDI_INT_IN_HIBERNATION);
  288. mddi_writel(MDDI_CMD_HIBERNATE | !!on, CMD);
  289. mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
  290. }
  291. static uint16_t mddi_init_registers(struct mddi_info *mddi)
  292. {
  293. mddi_writel(0x0001, VERSION);
  294. mddi_writel(MDDI_HOST_BYTES_PER_SUBFRAME, BPS);
  295. mddi_writel(0x0003, SPM); /* subframes per media */
  296. mddi_writel(0x0005, TA1_LEN);
  297. mddi_writel(MDDI_HOST_TA2_LEN, TA2_LEN);
  298. mddi_writel(0x0096, DRIVE_HI);
  299. /* 0x32 normal, 0x50 for Toshiba display */
  300. mddi_writel(0x0050, DRIVE_LO);
  301. mddi_writel(0x003C, DISP_WAKE); /* wakeup counter */
  302. mddi_writel(MDDI_HOST_REV_RATE_DIV, REV_RATE_DIV);
  303. mddi_writel(MDDI_REV_BUFFER_SIZE, REV_SIZE);
  304. mddi_writel(MDDI_MAX_REV_PKT_SIZE, REV_ENCAP_SZ);
  305. /* disable periodic rev encap */
  306. mddi_writel(MDDI_CMD_PERIODIC_REV_ENCAP, CMD);
  307. mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
  308. if (mddi_readl(PAD_CTL) == 0) {
  309. /* If we are turning on band gap, need to wait 5us before
  310. * turning on the rest of the PAD */
  311. mddi_writel(0x08000, PAD_CTL);
  312. udelay(5);
  313. }
  314. /* Recommendation from PAD hw team */
  315. mddi_writel(0xa850f, PAD_CTL);
  316. /* Need an even number for counts */
  317. mddi_writel(0x60006, DRIVER_START_CNT);
  318. mddi_set_auto_hibernate(&mddi->client_data, 0);
  319. mddi_writel(MDDI_CMD_DISP_IGNORE, CMD);
  320. mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
  321. mddi_init_rev_encap(mddi);
  322. return mddi_readl(CORE_VER) & 0xffff;
  323. }
  324. static void mddi_suspend(struct msm_mddi_client_data *cdata)
  325. {
  326. struct mddi_info *mddi = container_of(cdata, struct mddi_info,
  327. client_data);
  328. /* turn off the client */
  329. if (mddi->power_client)
  330. mddi->power_client(&mddi->client_data, 0);
  331. /* turn off the link */
  332. mddi_writel(MDDI_CMD_RESET, CMD);
  333. mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
  334. /* turn off the clock */
  335. clk_disable(mddi->clk);
  336. }
  337. static void mddi_resume(struct msm_mddi_client_data *cdata)
  338. {
  339. struct mddi_info *mddi = container_of(cdata, struct mddi_info,
  340. client_data);
  341. mddi_set_auto_hibernate(&mddi->client_data, 0);
  342. /* turn on the client */
  343. if (mddi->power_client)
  344. mddi->power_client(&mddi->client_data, 1);
  345. /* turn on the clock */
  346. clk_enable(mddi->clk);
  347. /* set up the local registers */
  348. mddi->rev_data_curr = 0;
  349. mddi_init_registers(mddi);
  350. mddi_writel(mddi->int_enable, INTEN);
  351. mddi_writel(MDDI_CMD_LINK_ACTIVE, CMD);
  352. mddi_writel(MDDI_CMD_SEND_RTD, CMD);
  353. mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
  354. mddi_set_auto_hibernate(&mddi->client_data, 1);
  355. }
  356. static int mddi_get_client_caps(struct mddi_info *mddi)
  357. {
  358. int i, j;
  359. /* clear any stale interrupts */
  360. mddi_writel(0xffffffff, INT);
  361. mddi->int_enable = MDDI_INT_LINK_ACTIVE |
  362. MDDI_INT_IN_HIBERNATION |
  363. MDDI_INT_PRI_LINK_LIST_DONE |
  364. MDDI_INT_REV_DATA_AVAIL |
  365. MDDI_INT_REV_OVERFLOW |
  366. MDDI_INT_REV_OVERWRITE |
  367. MDDI_INT_RTD_FAILURE;
  368. mddi_writel(mddi->int_enable, INTEN);
  369. mddi_writel(MDDI_CMD_LINK_ACTIVE, CMD);
  370. mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
  371. for (j = 0; j < 3; j++) {
  372. /* the toshiba vga panel does not respond to get
  373. * caps unless you SEND_RTD, but the first SEND_RTD
  374. * will fail...
  375. */
  376. for (i = 0; i < 4; i++) {
  377. uint32_t stat;
  378. mddi_writel(MDDI_CMD_SEND_RTD, CMD);
  379. mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
  380. stat = mddi_readl(STAT);
  381. printk(KERN_INFO "mddi cmd send rtd: int %x, stat %x, "
  382. "rtd val %x\n", mddi_readl(INT), stat,
  383. mddi_readl(RTD_VAL));
  384. if ((stat & MDDI_STAT_RTD_MEAS_FAIL) == 0)
  385. break;
  386. msleep(1);
  387. }
  388. mddi_writel(CMD_GET_CLIENT_CAP, CMD);
  389. mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
  390. wait_event_timeout(mddi->int_wait, mddi->flags & FLAG_HAVE_CAPS,
  391. HZ / 100);
  392. if (mddi->flags & FLAG_HAVE_CAPS)
  393. break;
  394. printk(KERN_INFO "mddi_init, timeout waiting for caps\n");
  395. }
  396. return mddi->flags & FLAG_HAVE_CAPS;
  397. }
  398. /* link must be active when this is called */
  399. int mddi_check_status(struct mddi_info *mddi)
  400. {
  401. int ret = -1, retry = 3;
  402. mutex_lock(&mddi->reg_read_lock);
  403. mddi_writel(MDDI_CMD_PERIODIC_REV_ENCAP | 1, CMD);
  404. mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
  405. do {
  406. mddi->flags &= ~FLAG_HAVE_STATUS;
  407. mddi_writel(CMD_GET_CLIENT_STATUS, CMD);
  408. mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
  409. wait_event_timeout(mddi->int_wait,
  410. mddi->flags & FLAG_HAVE_STATUS,
  411. HZ / 100);
  412. if (mddi->flags & FLAG_HAVE_STATUS) {
  413. if (mddi->status.crc_error_count)
  414. printk(KERN_INFO "mddi status: crc_error "
  415. "count: %d\n",
  416. mddi->status.crc_error_count);
  417. else
  418. ret = 0;
  419. break;
  420. } else
  421. printk(KERN_INFO "mddi status: failed to get client "
  422. "status\n");
  423. mddi_writel(MDDI_CMD_SEND_RTD, CMD);
  424. mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
  425. } while (--retry);
  426. mddi_writel(MDDI_CMD_PERIODIC_REV_ENCAP | 0, CMD);
  427. mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
  428. mutex_unlock(&mddi->reg_read_lock);
  429. return ret;
  430. }
  431. void mddi_remote_write(struct msm_mddi_client_data *cdata, uint32_t val,
  432. uint32_t reg)
  433. {
  434. struct mddi_info *mddi = container_of(cdata, struct mddi_info,
  435. client_data);
  436. struct mddi_llentry *ll;
  437. struct mddi_register_access *ra;
  438. mutex_lock(&mddi->reg_write_lock);
  439. ll = mddi->reg_write_data;
  440. ra = &(ll->u.r);
  441. ra->length = 14 + 4;
  442. ra->type = TYPE_REGISTER_ACCESS;
  443. ra->client_id = 0;
  444. ra->read_write_info = MDDI_WRITE | 1;
  445. ra->crc16 = 0;
  446. ra->register_address = reg;
  447. ra->register_data_list = val;
  448. ll->flags = 1;
  449. ll->header_count = 14;
  450. ll->data_count = 4;
  451. ll->data = mddi->reg_write_addr + offsetof(struct mddi_llentry,
  452. u.r.register_data_list);
  453. ll->next = 0;
  454. ll->reserved = 0;
  455. mddi_writel(mddi->reg_write_addr, PRI_PTR);
  456. mddi_wait_interrupt(mddi, MDDI_INT_PRI_LINK_LIST_DONE);
  457. mutex_unlock(&mddi->reg_write_lock);
  458. }
  459. uint32_t mddi_remote_read(struct msm_mddi_client_data *cdata, uint32_t reg)
  460. {
  461. struct mddi_info *mddi = container_of(cdata, struct mddi_info,
  462. client_data);
  463. struct mddi_llentry *ll;
  464. struct mddi_register_access *ra;
  465. struct reg_read_info ri;
  466. unsigned s;
  467. int retry_count = 2;
  468. unsigned long irq_flags;
  469. mutex_lock(&mddi->reg_read_lock);
  470. ll = mddi->reg_read_data;
  471. ra = &(ll->u.r);
  472. ra->length = 14;
  473. ra->type = TYPE_REGISTER_ACCESS;
  474. ra->client_id = 0;
  475. ra->read_write_info = MDDI_READ | 1;
  476. ra->crc16 = 0;
  477. ra->register_address = reg;
  478. ll->flags = 0x11;
  479. ll->header_count = 14;
  480. ll->data_count = 0;
  481. ll->data = 0;
  482. ll->next = 0;
  483. ll->reserved = 0;
  484. s = mddi_readl(STAT);
  485. ri.reg = reg;
  486. ri.status = -1;
  487. do {
  488. init_completion(&ri.done);
  489. mddi->reg_read = &ri;
  490. mddi_writel(mddi->reg_read_addr, PRI_PTR);
  491. mddi_wait_interrupt(mddi, MDDI_INT_PRI_LINK_LIST_DONE);
  492. /* Enable Periodic Reverse Encapsulation. */
  493. mddi_writel(MDDI_CMD_PERIODIC_REV_ENCAP | 1, CMD);
  494. mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
  495. if (wait_for_completion_timeout(&ri.done, HZ/10) == 0 &&
  496. !ri.done.done) {
  497. printk(KERN_INFO "mddi_remote_read(%x) timeout "
  498. "(%d %d %d)\n",
  499. reg, ri.status, ri.result, ri.done.done);
  500. spin_lock_irqsave(&mddi->int_lock, irq_flags);
  501. mddi->reg_read = NULL;
  502. spin_unlock_irqrestore(&mddi->int_lock, irq_flags);
  503. ri.status = -1;
  504. ri.result = -1;
  505. }
  506. if (ri.status == 0)
  507. break;
  508. mddi_writel(MDDI_CMD_SEND_RTD, CMD);
  509. mddi_writel(MDDI_CMD_LINK_ACTIVE, CMD);
  510. mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
  511. printk(KERN_INFO "mddi_remote_read: failed, sent "
  512. "MDDI_CMD_SEND_RTD: int %x, stat %x, rtd val %x "
  513. "curr_rev_ptr %x\n", mddi_readl(INT), mddi_readl(STAT),
  514. mddi_readl(RTD_VAL), mddi_readl(CURR_REV_PTR));
  515. } while (retry_count-- > 0);
  516. /* Disable Periodic Reverse Encapsulation. */
  517. mddi_writel(MDDI_CMD_PERIODIC_REV_ENCAP | 0, CMD);
  518. mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
  519. mddi->reg_read = NULL;
  520. mutex_unlock(&mddi->reg_read_lock);
  521. return ri.result;
  522. }
  523. static struct mddi_info mddi_info[2];
  524. static int mddi_clk_setup(struct platform_device *pdev, struct mddi_info *mddi,
  525. unsigned long clk_rate)
  526. {
  527. int ret;
  528. /* set up the clocks */
  529. mddi->clk = clk_get(&pdev->dev, "mddi_clk");
  530. if (IS_ERR(mddi->clk)) {
  531. printk(KERN_INFO "mddi: failed to get clock\n");
  532. return PTR_ERR(mddi->clk);
  533. }
  534. ret = clk_enable(mddi->clk);
  535. if (ret)
  536. goto fail;
  537. ret = clk_set_rate(mddi->clk, clk_rate);
  538. if (ret)
  539. goto fail;
  540. return 0;
  541. fail:
  542. clk_put(mddi->clk);
  543. return ret;
  544. }
  545. static int __init mddi_rev_data_setup(struct mddi_info *mddi)
  546. {
  547. void *dma;
  548. dma_addr_t dma_addr;
  549. /* set up dma buffer */
  550. dma = dma_alloc_coherent(NULL, 0x1000, &dma_addr, GFP_KERNEL);
  551. if (dma == 0)
  552. return -ENOMEM;
  553. mddi->rev_data = dma;
  554. mddi->rev_data_curr = 0;
  555. mddi->rev_addr = dma_addr;
  556. mddi->reg_write_data = dma + MDDI_REV_BUFFER_SIZE;
  557. mddi->reg_write_addr = dma_addr + MDDI_REV_BUFFER_SIZE;
  558. mddi->reg_read_data = mddi->reg_write_data + 1;
  559. mddi->reg_read_addr = mddi->reg_write_addr +
  560. sizeof(*mddi->reg_write_data);
  561. return 0;
  562. }
  563. static int mddi_probe(struct platform_device *pdev)
  564. {
  565. struct msm_mddi_platform_data *pdata = pdev->dev.platform_data;
  566. struct mddi_info *mddi = &mddi_info[pdev->id];
  567. struct resource *resource;
  568. int ret, i;
  569. resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  570. if (!resource) {
  571. printk(KERN_ERR "mddi: no associated mem resource!\n");
  572. return -ENOMEM;
  573. }
  574. mddi->base = ioremap(resource->start, resource_size(resource));
  575. if (!mddi->base) {
  576. printk(KERN_ERR "mddi: failed to remap base!\n");
  577. ret = -EINVAL;
  578. goto error_ioremap;
  579. }
  580. resource = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
  581. if (!resource) {
  582. printk(KERN_ERR "mddi: no associated irq resource!\n");
  583. ret = -EINVAL;
  584. goto error_get_irq_resource;
  585. }
  586. mddi->irq = resource->start;
  587. printk(KERN_INFO "mddi: init() base=0x%p irq=%d\n", mddi->base,
  588. mddi->irq);
  589. mddi->power_client = pdata->power_client;
  590. mutex_init(&mddi->reg_write_lock);
  591. mutex_init(&mddi->reg_read_lock);
  592. spin_lock_init(&mddi->int_lock);
  593. init_waitqueue_head(&mddi->int_wait);
  594. ret = mddi_clk_setup(pdev, mddi, pdata->clk_rate);
  595. if (ret) {
  596. printk(KERN_ERR "mddi: failed to setup clock!\n");
  597. goto error_clk_setup;
  598. }
  599. ret = mddi_rev_data_setup(mddi);
  600. if (ret) {
  601. printk(KERN_ERR "mddi: failed to setup rev data!\n");
  602. goto error_rev_data;
  603. }
  604. mddi->int_enable = 0;
  605. mddi_writel(mddi->int_enable, INTEN);
  606. ret = request_irq(mddi->irq, mddi_isr, 0, "mddi",
  607. &mddi->client_data);
  608. if (ret) {
  609. printk(KERN_ERR "mddi: failed to request enable irq!\n");
  610. goto error_request_irq;
  611. }
  612. /* turn on the mddi client bridge chip */
  613. if (mddi->power_client)
  614. mddi->power_client(&mddi->client_data, 1);
  615. /* initialize the mddi registers */
  616. mddi_set_auto_hibernate(&mddi->client_data, 0);
  617. mddi_writel(MDDI_CMD_RESET, CMD);
  618. mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
  619. mddi->version = mddi_init_registers(mddi);
  620. if (mddi->version < 0x20) {
  621. printk(KERN_ERR "mddi: unsupported version 0x%x\n",
  622. mddi->version);
  623. ret = -ENODEV;
  624. goto error_mddi_version;
  625. }
  626. /* read the capabilities off the client */
  627. if (!mddi_get_client_caps(mddi)) {
  628. printk(KERN_INFO "mddi: no client found\n");
  629. /* power down the panel */
  630. mddi_writel(MDDI_CMD_POWERDOWN, CMD);
  631. printk(KERN_INFO "mddi powerdown: stat %x\n", mddi_readl(STAT));
  632. msleep(100);
  633. printk(KERN_INFO "mddi powerdown: stat %x\n", mddi_readl(STAT));
  634. return 0;
  635. }
  636. mddi_set_auto_hibernate(&mddi->client_data, 1);
  637. if (mddi->caps.Mfr_Name == 0 && mddi->caps.Product_Code == 0)
  638. pdata->fixup(&mddi->caps.Mfr_Name, &mddi->caps.Product_Code);
  639. mddi->client_pdev.id = 0;
  640. for (i = 0; i < pdata->num_clients; i++) {
  641. if (pdata->client_platform_data[i].product_id ==
  642. (mddi->caps.Mfr_Name << 16 | mddi->caps.Product_Code)) {
  643. mddi->client_data.private_client_data =
  644. pdata->client_platform_data[i].client_data;
  645. mddi->client_pdev.name =
  646. pdata->client_platform_data[i].name;
  647. mddi->client_pdev.id =
  648. pdata->client_platform_data[i].id;
  649. /* XXX: possibly set clock */
  650. break;
  651. }
  652. }
  653. if (i >= pdata->num_clients)
  654. mddi->client_pdev.name = "mddi_c_dummy";
  655. printk(KERN_INFO "mddi: registering panel %s\n",
  656. mddi->client_pdev.name);
  657. mddi->client_data.suspend = mddi_suspend;
  658. mddi->client_data.resume = mddi_resume;
  659. mddi->client_data.activate_link = mddi_activate_link;
  660. mddi->client_data.remote_write = mddi_remote_write;
  661. mddi->client_data.remote_read = mddi_remote_read;
  662. mddi->client_data.auto_hibernate = mddi_set_auto_hibernate;
  663. mddi->client_data.fb_resource = pdata->fb_resource;
  664. if (pdev->id == 0)
  665. mddi->client_data.interface_type = MSM_MDDI_PMDH_INTERFACE;
  666. else if (pdev->id == 1)
  667. mddi->client_data.interface_type = MSM_MDDI_EMDH_INTERFACE;
  668. else {
  669. printk(KERN_ERR "mddi: can not determine interface %d!\n",
  670. pdev->id);
  671. ret = -EINVAL;
  672. goto error_mddi_interface;
  673. }
  674. mddi->client_pdev.dev.platform_data = &mddi->client_data;
  675. printk(KERN_INFO "mddi: publish: %s\n", mddi->client_name);
  676. platform_device_register(&mddi->client_pdev);
  677. return 0;
  678. error_mddi_interface:
  679. error_mddi_version:
  680. free_irq(mddi->irq, 0);
  681. error_request_irq:
  682. dma_free_coherent(NULL, 0x1000, mddi->rev_data, mddi->rev_addr);
  683. error_rev_data:
  684. error_clk_setup:
  685. error_get_irq_resource:
  686. iounmap(mddi->base);
  687. error_ioremap:
  688. printk(KERN_INFO "mddi: mddi_init() failed (%d)\n", ret);
  689. return ret;
  690. }
  691. static struct platform_driver mddi_driver = {
  692. .probe = mddi_probe,
  693. .driver = { .name = "msm_mddi" },
  694. };
  695. static int __init _mddi_init(void)
  696. {
  697. return platform_driver_register(&mddi_driver);
  698. }
  699. module_init(_mddi_init);