vfio_pci_config.c 41 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574
  1. /*
  2. * VFIO PCI config space virtualization
  3. *
  4. * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
  5. * Author: Alex Williamson <alex.williamson@redhat.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. *
  11. * Derived from original vfio:
  12. * Copyright 2010 Cisco Systems, Inc. All rights reserved.
  13. * Author: Tom Lyon, pugs@cisco.com
  14. */
  15. /*
  16. * This code handles reading and writing of PCI configuration registers.
  17. * This is hairy because we want to allow a lot of flexibility to the
  18. * user driver, but cannot trust it with all of the config fields.
  19. * Tables determine which fields can be read and written, as well as
  20. * which fields are 'virtualized' - special actions and translations to
  21. * make it appear to the user that he has control, when in fact things
  22. * must be negotiated with the underlying OS.
  23. */
  24. #include <linux/fs.h>
  25. #include <linux/pci.h>
  26. #include <linux/uaccess.h>
  27. #include <linux/vfio.h>
  28. #include "vfio_pci_private.h"
  29. #define PCI_CFG_SPACE_SIZE 256
  30. /* Useful "pseudo" capabilities */
  31. #define PCI_CAP_ID_BASIC 0
  32. #define PCI_CAP_ID_INVALID 0xFF
  33. #define is_bar(offset) \
  34. ((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \
  35. (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4))
  36. /*
  37. * Lengths of PCI Config Capabilities
  38. * 0: Removed from the user visible capability list
  39. * FF: Variable length
  40. */
  41. static u8 pci_cap_length[] = {
  42. [PCI_CAP_ID_BASIC] = PCI_STD_HEADER_SIZEOF, /* pci config header */
  43. [PCI_CAP_ID_PM] = PCI_PM_SIZEOF,
  44. [PCI_CAP_ID_AGP] = PCI_AGP_SIZEOF,
  45. [PCI_CAP_ID_VPD] = PCI_CAP_VPD_SIZEOF,
  46. [PCI_CAP_ID_SLOTID] = 0, /* bridge - don't care */
  47. [PCI_CAP_ID_MSI] = 0xFF, /* 10, 14, 20, or 24 */
  48. [PCI_CAP_ID_CHSWP] = 0, /* cpci - not yet */
  49. [PCI_CAP_ID_PCIX] = 0xFF, /* 8 or 24 */
  50. [PCI_CAP_ID_HT] = 0xFF, /* hypertransport */
  51. [PCI_CAP_ID_VNDR] = 0xFF, /* variable */
  52. [PCI_CAP_ID_DBG] = 0, /* debug - don't care */
  53. [PCI_CAP_ID_CCRC] = 0, /* cpci - not yet */
  54. [PCI_CAP_ID_SHPC] = 0, /* hotswap - not yet */
  55. [PCI_CAP_ID_SSVID] = 0, /* bridge - don't care */
  56. [PCI_CAP_ID_AGP3] = 0, /* AGP8x - not yet */
  57. [PCI_CAP_ID_SECDEV] = 0, /* secure device not yet */
  58. [PCI_CAP_ID_EXP] = 0xFF, /* 20 or 44 */
  59. [PCI_CAP_ID_MSIX] = PCI_CAP_MSIX_SIZEOF,
  60. [PCI_CAP_ID_SATA] = 0xFF,
  61. [PCI_CAP_ID_AF] = PCI_CAP_AF_SIZEOF,
  62. };
  63. /*
  64. * Lengths of PCIe/PCI-X Extended Config Capabilities
  65. * 0: Removed or masked from the user visible capabilty list
  66. * FF: Variable length
  67. */
  68. static u16 pci_ext_cap_length[] = {
  69. [PCI_EXT_CAP_ID_ERR] = PCI_ERR_ROOT_COMMAND,
  70. [PCI_EXT_CAP_ID_VC] = 0xFF,
  71. [PCI_EXT_CAP_ID_DSN] = PCI_EXT_CAP_DSN_SIZEOF,
  72. [PCI_EXT_CAP_ID_PWR] = PCI_EXT_CAP_PWR_SIZEOF,
  73. [PCI_EXT_CAP_ID_RCLD] = 0, /* root only - don't care */
  74. [PCI_EXT_CAP_ID_RCILC] = 0, /* root only - don't care */
  75. [PCI_EXT_CAP_ID_RCEC] = 0, /* root only - don't care */
  76. [PCI_EXT_CAP_ID_MFVC] = 0xFF,
  77. [PCI_EXT_CAP_ID_VC9] = 0xFF, /* same as CAP_ID_VC */
  78. [PCI_EXT_CAP_ID_RCRB] = 0, /* root only - don't care */
  79. [PCI_EXT_CAP_ID_VNDR] = 0xFF,
  80. [PCI_EXT_CAP_ID_CAC] = 0, /* obsolete */
  81. [PCI_EXT_CAP_ID_ACS] = 0xFF,
  82. [PCI_EXT_CAP_ID_ARI] = PCI_EXT_CAP_ARI_SIZEOF,
  83. [PCI_EXT_CAP_ID_ATS] = PCI_EXT_CAP_ATS_SIZEOF,
  84. [PCI_EXT_CAP_ID_SRIOV] = PCI_EXT_CAP_SRIOV_SIZEOF,
  85. [PCI_EXT_CAP_ID_MRIOV] = 0, /* not yet */
  86. [PCI_EXT_CAP_ID_MCAST] = PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF,
  87. [PCI_EXT_CAP_ID_PRI] = PCI_EXT_CAP_PRI_SIZEOF,
  88. [PCI_EXT_CAP_ID_AMD_XXX] = 0, /* not yet */
  89. [PCI_EXT_CAP_ID_REBAR] = 0xFF,
  90. [PCI_EXT_CAP_ID_DPA] = 0xFF,
  91. [PCI_EXT_CAP_ID_TPH] = 0xFF,
  92. [PCI_EXT_CAP_ID_LTR] = PCI_EXT_CAP_LTR_SIZEOF,
  93. [PCI_EXT_CAP_ID_SECPCI] = 0, /* not yet */
  94. [PCI_EXT_CAP_ID_PMUX] = 0, /* not yet */
  95. [PCI_EXT_CAP_ID_PASID] = 0, /* not yet */
  96. };
  97. /*
  98. * Read/Write Permission Bits - one bit for each bit in capability
  99. * Any field can be read if it exists, but what is read depends on
  100. * whether the field is 'virtualized', or just pass thru to the
  101. * hardware. Any virtualized field is also virtualized for writes.
  102. * Writes are only permitted if they have a 1 bit here.
  103. */
  104. struct perm_bits {
  105. u8 *virt; /* read/write virtual data, not hw */
  106. u8 *write; /* writeable bits */
  107. int (*readfn)(struct vfio_pci_device *vdev, int pos, int count,
  108. struct perm_bits *perm, int offset, __le32 *val);
  109. int (*writefn)(struct vfio_pci_device *vdev, int pos, int count,
  110. struct perm_bits *perm, int offset, __le32 val);
  111. };
  112. #define NO_VIRT 0
  113. #define ALL_VIRT 0xFFFFFFFFU
  114. #define NO_WRITE 0
  115. #define ALL_WRITE 0xFFFFFFFFU
  116. static int vfio_user_config_read(struct pci_dev *pdev, int offset,
  117. __le32 *val, int count)
  118. {
  119. int ret = -EINVAL;
  120. u32 tmp_val = 0;
  121. switch (count) {
  122. case 1:
  123. {
  124. u8 tmp;
  125. ret = pci_user_read_config_byte(pdev, offset, &tmp);
  126. tmp_val = tmp;
  127. break;
  128. }
  129. case 2:
  130. {
  131. u16 tmp;
  132. ret = pci_user_read_config_word(pdev, offset, &tmp);
  133. tmp_val = tmp;
  134. break;
  135. }
  136. case 4:
  137. ret = pci_user_read_config_dword(pdev, offset, &tmp_val);
  138. break;
  139. }
  140. *val = cpu_to_le32(tmp_val);
  141. return pcibios_err_to_errno(ret);
  142. }
  143. static int vfio_user_config_write(struct pci_dev *pdev, int offset,
  144. __le32 val, int count)
  145. {
  146. int ret = -EINVAL;
  147. u32 tmp_val = le32_to_cpu(val);
  148. switch (count) {
  149. case 1:
  150. ret = pci_user_write_config_byte(pdev, offset, tmp_val);
  151. break;
  152. case 2:
  153. ret = pci_user_write_config_word(pdev, offset, tmp_val);
  154. break;
  155. case 4:
  156. ret = pci_user_write_config_dword(pdev, offset, tmp_val);
  157. break;
  158. }
  159. return pcibios_err_to_errno(ret);
  160. }
  161. static int vfio_default_config_read(struct vfio_pci_device *vdev, int pos,
  162. int count, struct perm_bits *perm,
  163. int offset, __le32 *val)
  164. {
  165. __le32 virt = 0;
  166. memcpy(val, vdev->vconfig + pos, count);
  167. memcpy(&virt, perm->virt + offset, count);
  168. /* Any non-virtualized bits? */
  169. if (cpu_to_le32(~0U >> (32 - (count * 8))) != virt) {
  170. struct pci_dev *pdev = vdev->pdev;
  171. __le32 phys_val = 0;
  172. int ret;
  173. ret = vfio_user_config_read(pdev, pos, &phys_val, count);
  174. if (ret)
  175. return ret;
  176. *val = (phys_val & ~virt) | (*val & virt);
  177. }
  178. return count;
  179. }
  180. static int vfio_default_config_write(struct vfio_pci_device *vdev, int pos,
  181. int count, struct perm_bits *perm,
  182. int offset, __le32 val)
  183. {
  184. __le32 virt = 0, write = 0;
  185. memcpy(&write, perm->write + offset, count);
  186. if (!write)
  187. return count; /* drop, no writable bits */
  188. memcpy(&virt, perm->virt + offset, count);
  189. /* Virtualized and writable bits go to vconfig */
  190. if (write & virt) {
  191. __le32 virt_val = 0;
  192. memcpy(&virt_val, vdev->vconfig + pos, count);
  193. virt_val &= ~(write & virt);
  194. virt_val |= (val & (write & virt));
  195. memcpy(vdev->vconfig + pos, &virt_val, count);
  196. }
  197. /* Non-virtualzed and writable bits go to hardware */
  198. if (write & ~virt) {
  199. struct pci_dev *pdev = vdev->pdev;
  200. __le32 phys_val = 0;
  201. int ret;
  202. ret = vfio_user_config_read(pdev, pos, &phys_val, count);
  203. if (ret)
  204. return ret;
  205. phys_val &= ~(write & ~virt);
  206. phys_val |= (val & (write & ~virt));
  207. ret = vfio_user_config_write(pdev, pos, phys_val, count);
  208. if (ret)
  209. return ret;
  210. }
  211. return count;
  212. }
  213. /* Allow direct read from hardware, except for capability next pointer */
  214. static int vfio_direct_config_read(struct vfio_pci_device *vdev, int pos,
  215. int count, struct perm_bits *perm,
  216. int offset, __le32 *val)
  217. {
  218. int ret;
  219. ret = vfio_user_config_read(vdev->pdev, pos, val, count);
  220. if (ret)
  221. return pcibios_err_to_errno(ret);
  222. if (pos >= PCI_CFG_SPACE_SIZE) { /* Extended cap header mangling */
  223. if (offset < 4)
  224. memcpy(val, vdev->vconfig + pos, count);
  225. } else if (pos >= PCI_STD_HEADER_SIZEOF) { /* Std cap mangling */
  226. if (offset == PCI_CAP_LIST_ID && count > 1)
  227. memcpy(val, vdev->vconfig + pos,
  228. min(PCI_CAP_FLAGS, count));
  229. else if (offset == PCI_CAP_LIST_NEXT)
  230. memcpy(val, vdev->vconfig + pos, 1);
  231. }
  232. return count;
  233. }
  234. static int vfio_direct_config_write(struct vfio_pci_device *vdev, int pos,
  235. int count, struct perm_bits *perm,
  236. int offset, __le32 val)
  237. {
  238. int ret;
  239. ret = vfio_user_config_write(vdev->pdev, pos, val, count);
  240. if (ret)
  241. return ret;
  242. return count;
  243. }
  244. /* Default all regions to read-only, no-virtualization */
  245. static struct perm_bits cap_perms[PCI_CAP_ID_MAX + 1] = {
  246. [0 ... PCI_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
  247. };
  248. static struct perm_bits ecap_perms[PCI_EXT_CAP_ID_MAX + 1] = {
  249. [0 ... PCI_EXT_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
  250. };
  251. static void free_perm_bits(struct perm_bits *perm)
  252. {
  253. kfree(perm->virt);
  254. kfree(perm->write);
  255. perm->virt = NULL;
  256. perm->write = NULL;
  257. }
  258. static int alloc_perm_bits(struct perm_bits *perm, int size)
  259. {
  260. /*
  261. * Round up all permission bits to the next dword, this lets us
  262. * ignore whether a read/write exceeds the defined capability
  263. * structure. We can do this because:
  264. * - Standard config space is already dword aligned
  265. * - Capabilities are all dword alinged (bits 0:1 of next reserved)
  266. * - Express capabilities defined as dword aligned
  267. */
  268. size = round_up(size, 4);
  269. /*
  270. * Zero state is
  271. * - All Readable, None Writeable, None Virtualized
  272. */
  273. perm->virt = kzalloc(size, GFP_KERNEL);
  274. perm->write = kzalloc(size, GFP_KERNEL);
  275. if (!perm->virt || !perm->write) {
  276. free_perm_bits(perm);
  277. return -ENOMEM;
  278. }
  279. perm->readfn = vfio_default_config_read;
  280. perm->writefn = vfio_default_config_write;
  281. return 0;
  282. }
  283. /*
  284. * Helper functions for filling in permission tables
  285. */
  286. static inline void p_setb(struct perm_bits *p, int off, u8 virt, u8 write)
  287. {
  288. p->virt[off] = virt;
  289. p->write[off] = write;
  290. }
  291. /* Handle endian-ness - pci and tables are little-endian */
  292. static inline void p_setw(struct perm_bits *p, int off, u16 virt, u16 write)
  293. {
  294. *(__le16 *)(&p->virt[off]) = cpu_to_le16(virt);
  295. *(__le16 *)(&p->write[off]) = cpu_to_le16(write);
  296. }
  297. /* Handle endian-ness - pci and tables are little-endian */
  298. static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write)
  299. {
  300. *(__le32 *)(&p->virt[off]) = cpu_to_le32(virt);
  301. *(__le32 *)(&p->write[off]) = cpu_to_le32(write);
  302. }
  303. /*
  304. * Restore the *real* BARs after we detect a FLR or backdoor reset.
  305. * (backdoor = some device specific technique that we didn't catch)
  306. */
  307. static void vfio_bar_restore(struct vfio_pci_device *vdev)
  308. {
  309. struct pci_dev *pdev = vdev->pdev;
  310. u32 *rbar = vdev->rbar;
  311. int i;
  312. if (pdev->is_virtfn)
  313. return;
  314. pr_info("%s: %s reset recovery - restoring bars\n",
  315. __func__, dev_name(&pdev->dev));
  316. for (i = PCI_BASE_ADDRESS_0; i <= PCI_BASE_ADDRESS_5; i += 4, rbar++)
  317. pci_user_write_config_dword(pdev, i, *rbar);
  318. pci_user_write_config_dword(pdev, PCI_ROM_ADDRESS, *rbar);
  319. }
  320. static __le32 vfio_generate_bar_flags(struct pci_dev *pdev, int bar)
  321. {
  322. unsigned long flags = pci_resource_flags(pdev, bar);
  323. u32 val;
  324. if (flags & IORESOURCE_IO)
  325. return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO);
  326. val = PCI_BASE_ADDRESS_SPACE_MEMORY;
  327. if (flags & IORESOURCE_PREFETCH)
  328. val |= PCI_BASE_ADDRESS_MEM_PREFETCH;
  329. if (flags & IORESOURCE_MEM_64)
  330. val |= PCI_BASE_ADDRESS_MEM_TYPE_64;
  331. return cpu_to_le32(val);
  332. }
  333. /*
  334. * Pretend we're hardware and tweak the values of the *virtual* PCI BARs
  335. * to reflect the hardware capabilities. This implements BAR sizing.
  336. */
  337. static void vfio_bar_fixup(struct vfio_pci_device *vdev)
  338. {
  339. struct pci_dev *pdev = vdev->pdev;
  340. int i;
  341. __le32 *bar;
  342. u64 mask;
  343. bar = (__le32 *)&vdev->vconfig[PCI_BASE_ADDRESS_0];
  344. for (i = PCI_STD_RESOURCES; i <= PCI_STD_RESOURCE_END; i++, bar++) {
  345. if (!pci_resource_start(pdev, i)) {
  346. *bar = 0; /* Unmapped by host = unimplemented to user */
  347. continue;
  348. }
  349. mask = ~(pci_resource_len(pdev, i) - 1);
  350. *bar &= cpu_to_le32((u32)mask);
  351. *bar |= vfio_generate_bar_flags(pdev, i);
  352. if (*bar & cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64)) {
  353. bar++;
  354. *bar &= cpu_to_le32((u32)(mask >> 32));
  355. i++;
  356. }
  357. }
  358. bar = (__le32 *)&vdev->vconfig[PCI_ROM_ADDRESS];
  359. /*
  360. * NB. we expose the actual BAR size here, regardless of whether
  361. * we can read it. When we report the REGION_INFO for the ROM
  362. * we report what PCI tells us is the actual ROM size.
  363. */
  364. if (pci_resource_start(pdev, PCI_ROM_RESOURCE)) {
  365. mask = ~(pci_resource_len(pdev, PCI_ROM_RESOURCE) - 1);
  366. mask |= PCI_ROM_ADDRESS_ENABLE;
  367. *bar &= cpu_to_le32((u32)mask);
  368. } else
  369. *bar = 0;
  370. vdev->bardirty = false;
  371. }
  372. static int vfio_basic_config_read(struct vfio_pci_device *vdev, int pos,
  373. int count, struct perm_bits *perm,
  374. int offset, __le32 *val)
  375. {
  376. if (is_bar(offset)) /* pos == offset for basic config */
  377. vfio_bar_fixup(vdev);
  378. count = vfio_default_config_read(vdev, pos, count, perm, offset, val);
  379. /* Mask in virtual memory enable for SR-IOV devices */
  380. if (offset == PCI_COMMAND && vdev->pdev->is_virtfn) {
  381. u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
  382. u32 tmp_val = le32_to_cpu(*val);
  383. tmp_val |= cmd & PCI_COMMAND_MEMORY;
  384. *val = cpu_to_le32(tmp_val);
  385. }
  386. return count;
  387. }
  388. static int vfio_basic_config_write(struct vfio_pci_device *vdev, int pos,
  389. int count, struct perm_bits *perm,
  390. int offset, __le32 val)
  391. {
  392. struct pci_dev *pdev = vdev->pdev;
  393. __le16 *virt_cmd;
  394. u16 new_cmd = 0;
  395. int ret;
  396. virt_cmd = (__le16 *)&vdev->vconfig[PCI_COMMAND];
  397. if (offset == PCI_COMMAND) {
  398. bool phys_mem, virt_mem, new_mem, phys_io, virt_io, new_io;
  399. u16 phys_cmd;
  400. ret = pci_user_read_config_word(pdev, PCI_COMMAND, &phys_cmd);
  401. if (ret)
  402. return ret;
  403. new_cmd = le32_to_cpu(val);
  404. phys_mem = !!(phys_cmd & PCI_COMMAND_MEMORY);
  405. virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY);
  406. new_mem = !!(new_cmd & PCI_COMMAND_MEMORY);
  407. phys_io = !!(phys_cmd & PCI_COMMAND_IO);
  408. virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO);
  409. new_io = !!(new_cmd & PCI_COMMAND_IO);
  410. /*
  411. * If the user is writing mem/io enable (new_mem/io) and we
  412. * think it's already enabled (virt_mem/io), but the hardware
  413. * shows it disabled (phys_mem/io, then the device has
  414. * undergone some kind of backdoor reset and needs to be
  415. * restored before we allow it to enable the bars.
  416. * SR-IOV devices will trigger this, but we catch them later
  417. */
  418. if ((new_mem && virt_mem && !phys_mem) ||
  419. (new_io && virt_io && !phys_io))
  420. vfio_bar_restore(vdev);
  421. }
  422. count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
  423. if (count < 0)
  424. return count;
  425. /*
  426. * Save current memory/io enable bits in vconfig to allow for
  427. * the test above next time.
  428. */
  429. if (offset == PCI_COMMAND) {
  430. u16 mask = PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
  431. *virt_cmd &= cpu_to_le16(~mask);
  432. *virt_cmd |= cpu_to_le16(new_cmd & mask);
  433. }
  434. /* Emulate INTx disable */
  435. if (offset >= PCI_COMMAND && offset <= PCI_COMMAND + 1) {
  436. bool virt_intx_disable;
  437. virt_intx_disable = !!(le16_to_cpu(*virt_cmd) &
  438. PCI_COMMAND_INTX_DISABLE);
  439. if (virt_intx_disable && !vdev->virq_disabled) {
  440. vdev->virq_disabled = true;
  441. vfio_pci_intx_mask(vdev);
  442. } else if (!virt_intx_disable && vdev->virq_disabled) {
  443. vdev->virq_disabled = false;
  444. vfio_pci_intx_unmask(vdev);
  445. }
  446. }
  447. if (is_bar(offset))
  448. vdev->bardirty = true;
  449. return count;
  450. }
  451. /* Permissions for the Basic PCI Header */
  452. static int __init init_pci_cap_basic_perm(struct perm_bits *perm)
  453. {
  454. if (alloc_perm_bits(perm, PCI_STD_HEADER_SIZEOF))
  455. return -ENOMEM;
  456. perm->readfn = vfio_basic_config_read;
  457. perm->writefn = vfio_basic_config_write;
  458. /* Virtualized for SR-IOV functions, which just have FFFF */
  459. p_setw(perm, PCI_VENDOR_ID, (u16)ALL_VIRT, NO_WRITE);
  460. p_setw(perm, PCI_DEVICE_ID, (u16)ALL_VIRT, NO_WRITE);
  461. /*
  462. * Virtualize INTx disable, we use it internally for interrupt
  463. * control and can emulate it for non-PCI 2.3 devices.
  464. */
  465. p_setw(perm, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE, (u16)ALL_WRITE);
  466. /* Virtualize capability list, we might want to skip/disable */
  467. p_setw(perm, PCI_STATUS, PCI_STATUS_CAP_LIST, NO_WRITE);
  468. /* No harm to write */
  469. p_setb(perm, PCI_CACHE_LINE_SIZE, NO_VIRT, (u8)ALL_WRITE);
  470. p_setb(perm, PCI_LATENCY_TIMER, NO_VIRT, (u8)ALL_WRITE);
  471. p_setb(perm, PCI_BIST, NO_VIRT, (u8)ALL_WRITE);
  472. /* Virtualize all bars, can't touch the real ones */
  473. p_setd(perm, PCI_BASE_ADDRESS_0, ALL_VIRT, ALL_WRITE);
  474. p_setd(perm, PCI_BASE_ADDRESS_1, ALL_VIRT, ALL_WRITE);
  475. p_setd(perm, PCI_BASE_ADDRESS_2, ALL_VIRT, ALL_WRITE);
  476. p_setd(perm, PCI_BASE_ADDRESS_3, ALL_VIRT, ALL_WRITE);
  477. p_setd(perm, PCI_BASE_ADDRESS_4, ALL_VIRT, ALL_WRITE);
  478. p_setd(perm, PCI_BASE_ADDRESS_5, ALL_VIRT, ALL_WRITE);
  479. p_setd(perm, PCI_ROM_ADDRESS, ALL_VIRT, ALL_WRITE);
  480. /* Allow us to adjust capability chain */
  481. p_setb(perm, PCI_CAPABILITY_LIST, (u8)ALL_VIRT, NO_WRITE);
  482. /* Sometimes used by sw, just virtualize */
  483. p_setb(perm, PCI_INTERRUPT_LINE, (u8)ALL_VIRT, (u8)ALL_WRITE);
  484. return 0;
  485. }
  486. static int vfio_pm_config_write(struct vfio_pci_device *vdev, int pos,
  487. int count, struct perm_bits *perm,
  488. int offset, __le32 val)
  489. {
  490. count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
  491. if (count < 0)
  492. return count;
  493. if (offset == PCI_PM_CTRL) {
  494. pci_power_t state;
  495. switch (le32_to_cpu(val) & PCI_PM_CTRL_STATE_MASK) {
  496. case 0:
  497. state = PCI_D0;
  498. break;
  499. case 1:
  500. state = PCI_D1;
  501. break;
  502. case 2:
  503. state = PCI_D2;
  504. break;
  505. case 3:
  506. state = PCI_D3hot;
  507. break;
  508. }
  509. pci_set_power_state(vdev->pdev, state);
  510. }
  511. return count;
  512. }
  513. /* Permissions for the Power Management capability */
  514. static int __init init_pci_cap_pm_perm(struct perm_bits *perm)
  515. {
  516. if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_PM]))
  517. return -ENOMEM;
  518. perm->writefn = vfio_pm_config_write;
  519. /*
  520. * We always virtualize the next field so we can remove
  521. * capabilities from the chain if we want to.
  522. */
  523. p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
  524. /*
  525. * Power management is defined *per function*, so we can let
  526. * the user change power state, but we trap and initiate the
  527. * change ourselves, so the state bits are read-only.
  528. */
  529. p_setd(perm, PCI_PM_CTRL, NO_VIRT, ~PCI_PM_CTRL_STATE_MASK);
  530. return 0;
  531. }
  532. /* Permissions for PCI-X capability */
  533. static int __init init_pci_cap_pcix_perm(struct perm_bits *perm)
  534. {
  535. /* Alloc 24, but only 8 are used in v0 */
  536. if (alloc_perm_bits(perm, PCI_CAP_PCIX_SIZEOF_V2))
  537. return -ENOMEM;
  538. p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
  539. p_setw(perm, PCI_X_CMD, NO_VIRT, (u16)ALL_WRITE);
  540. p_setd(perm, PCI_X_ECC_CSR, NO_VIRT, ALL_WRITE);
  541. return 0;
  542. }
  543. /* Permissions for PCI Express capability */
  544. static int __init init_pci_cap_exp_perm(struct perm_bits *perm)
  545. {
  546. /* Alloc larger of two possible sizes */
  547. if (alloc_perm_bits(perm, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2))
  548. return -ENOMEM;
  549. p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
  550. /*
  551. * Allow writes to device control fields (includes FLR!)
  552. * but not to devctl_phantom which could confuse IOMMU
  553. * or to the ARI bit in devctl2 which is set at probe time
  554. */
  555. p_setw(perm, PCI_EXP_DEVCTL, NO_VIRT, ~PCI_EXP_DEVCTL_PHANTOM);
  556. p_setw(perm, PCI_EXP_DEVCTL2, NO_VIRT, ~PCI_EXP_DEVCTL2_ARI);
  557. return 0;
  558. }
  559. /* Permissions for Advanced Function capability */
  560. static int __init init_pci_cap_af_perm(struct perm_bits *perm)
  561. {
  562. if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_AF]))
  563. return -ENOMEM;
  564. p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
  565. p_setb(perm, PCI_AF_CTRL, NO_VIRT, PCI_AF_CTRL_FLR);
  566. return 0;
  567. }
  568. /* Permissions for Advanced Error Reporting extended capability */
  569. static int __init init_pci_ext_cap_err_perm(struct perm_bits *perm)
  570. {
  571. u32 mask;
  572. if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_ERR]))
  573. return -ENOMEM;
  574. /*
  575. * Virtualize the first dword of all express capabilities
  576. * because it includes the next pointer. This lets us later
  577. * remove capabilities from the chain if we need to.
  578. */
  579. p_setd(perm, 0, ALL_VIRT, NO_WRITE);
  580. /* Writable bits mask */
  581. mask = PCI_ERR_UNC_TRAIN | /* Training */
  582. PCI_ERR_UNC_DLP | /* Data Link Protocol */
  583. PCI_ERR_UNC_SURPDN | /* Surprise Down */
  584. PCI_ERR_UNC_POISON_TLP | /* Poisoned TLP */
  585. PCI_ERR_UNC_FCP | /* Flow Control Protocol */
  586. PCI_ERR_UNC_COMP_TIME | /* Completion Timeout */
  587. PCI_ERR_UNC_COMP_ABORT | /* Completer Abort */
  588. PCI_ERR_UNC_UNX_COMP | /* Unexpected Completion */
  589. PCI_ERR_UNC_RX_OVER | /* Receiver Overflow */
  590. PCI_ERR_UNC_MALF_TLP | /* Malformed TLP */
  591. PCI_ERR_UNC_ECRC | /* ECRC Error Status */
  592. PCI_ERR_UNC_UNSUP | /* Unsupported Request */
  593. PCI_ERR_UNC_ACSV | /* ACS Violation */
  594. PCI_ERR_UNC_INTN | /* internal error */
  595. PCI_ERR_UNC_MCBTLP | /* MC blocked TLP */
  596. PCI_ERR_UNC_ATOMEG | /* Atomic egress blocked */
  597. PCI_ERR_UNC_TLPPRE; /* TLP prefix blocked */
  598. p_setd(perm, PCI_ERR_UNCOR_STATUS, NO_VIRT, mask);
  599. p_setd(perm, PCI_ERR_UNCOR_MASK, NO_VIRT, mask);
  600. p_setd(perm, PCI_ERR_UNCOR_SEVER, NO_VIRT, mask);
  601. mask = PCI_ERR_COR_RCVR | /* Receiver Error Status */
  602. PCI_ERR_COR_BAD_TLP | /* Bad TLP Status */
  603. PCI_ERR_COR_BAD_DLLP | /* Bad DLLP Status */
  604. PCI_ERR_COR_REP_ROLL | /* REPLAY_NUM Rollover */
  605. PCI_ERR_COR_REP_TIMER | /* Replay Timer Timeout */
  606. PCI_ERR_COR_ADV_NFAT | /* Advisory Non-Fatal */
  607. PCI_ERR_COR_INTERNAL | /* Corrected Internal */
  608. PCI_ERR_COR_LOG_OVER; /* Header Log Overflow */
  609. p_setd(perm, PCI_ERR_COR_STATUS, NO_VIRT, mask);
  610. p_setd(perm, PCI_ERR_COR_MASK, NO_VIRT, mask);
  611. mask = PCI_ERR_CAP_ECRC_GENE | /* ECRC Generation Enable */
  612. PCI_ERR_CAP_ECRC_CHKE; /* ECRC Check Enable */
  613. p_setd(perm, PCI_ERR_CAP, NO_VIRT, mask);
  614. return 0;
  615. }
  616. /* Permissions for Power Budgeting extended capability */
  617. static int __init init_pci_ext_cap_pwr_perm(struct perm_bits *perm)
  618. {
  619. if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_PWR]))
  620. return -ENOMEM;
  621. p_setd(perm, 0, ALL_VIRT, NO_WRITE);
  622. /* Writing the data selector is OK, the info is still read-only */
  623. p_setb(perm, PCI_PWR_DATA, NO_VIRT, (u8)ALL_WRITE);
  624. return 0;
  625. }
  626. /*
  627. * Initialize the shared permission tables
  628. */
  629. void vfio_pci_uninit_perm_bits(void)
  630. {
  631. free_perm_bits(&cap_perms[PCI_CAP_ID_BASIC]);
  632. free_perm_bits(&cap_perms[PCI_CAP_ID_PM]);
  633. free_perm_bits(&cap_perms[PCI_CAP_ID_PCIX]);
  634. free_perm_bits(&cap_perms[PCI_CAP_ID_EXP]);
  635. free_perm_bits(&cap_perms[PCI_CAP_ID_AF]);
  636. free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
  637. free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
  638. }
  639. int __init vfio_pci_init_perm_bits(void)
  640. {
  641. int ret;
  642. /* Basic config space */
  643. ret = init_pci_cap_basic_perm(&cap_perms[PCI_CAP_ID_BASIC]);
  644. /* Capabilities */
  645. ret |= init_pci_cap_pm_perm(&cap_perms[PCI_CAP_ID_PM]);
  646. cap_perms[PCI_CAP_ID_VPD].writefn = vfio_direct_config_write;
  647. ret |= init_pci_cap_pcix_perm(&cap_perms[PCI_CAP_ID_PCIX]);
  648. cap_perms[PCI_CAP_ID_VNDR].writefn = vfio_direct_config_write;
  649. ret |= init_pci_cap_exp_perm(&cap_perms[PCI_CAP_ID_EXP]);
  650. ret |= init_pci_cap_af_perm(&cap_perms[PCI_CAP_ID_AF]);
  651. /* Extended capabilities */
  652. ret |= init_pci_ext_cap_err_perm(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
  653. ret |= init_pci_ext_cap_pwr_perm(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
  654. ecap_perms[PCI_EXT_CAP_ID_VNDR].writefn = vfio_direct_config_write;
  655. if (ret)
  656. vfio_pci_uninit_perm_bits();
  657. return ret;
  658. }
  659. static int vfio_find_cap_start(struct vfio_pci_device *vdev, int pos)
  660. {
  661. u8 cap;
  662. int base = (pos >= PCI_CFG_SPACE_SIZE) ? PCI_CFG_SPACE_SIZE :
  663. PCI_STD_HEADER_SIZEOF;
  664. base /= 4;
  665. pos /= 4;
  666. cap = vdev->pci_config_map[pos];
  667. if (cap == PCI_CAP_ID_BASIC)
  668. return 0;
  669. /* XXX Can we have to abutting capabilities of the same type? */
  670. while (pos - 1 >= base && vdev->pci_config_map[pos - 1] == cap)
  671. pos--;
  672. return pos * 4;
  673. }
  674. static int vfio_msi_config_read(struct vfio_pci_device *vdev, int pos,
  675. int count, struct perm_bits *perm,
  676. int offset, __le32 *val)
  677. {
  678. /* Update max available queue size from msi_qmax */
  679. if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
  680. __le16 *flags;
  681. int start;
  682. start = vfio_find_cap_start(vdev, pos);
  683. flags = (__le16 *)&vdev->vconfig[start];
  684. *flags &= cpu_to_le16(~PCI_MSI_FLAGS_QMASK);
  685. *flags |= cpu_to_le16(vdev->msi_qmax << 1);
  686. }
  687. return vfio_default_config_read(vdev, pos, count, perm, offset, val);
  688. }
  689. static int vfio_msi_config_write(struct vfio_pci_device *vdev, int pos,
  690. int count, struct perm_bits *perm,
  691. int offset, __le32 val)
  692. {
  693. count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
  694. if (count < 0)
  695. return count;
  696. /* Fixup and write configured queue size and enable to hardware */
  697. if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
  698. __le16 *pflags;
  699. u16 flags;
  700. int start, ret;
  701. start = vfio_find_cap_start(vdev, pos);
  702. pflags = (__le16 *)&vdev->vconfig[start + PCI_MSI_FLAGS];
  703. flags = le16_to_cpu(*pflags);
  704. /* MSI is enabled via ioctl */
  705. if (!is_msi(vdev))
  706. flags &= ~PCI_MSI_FLAGS_ENABLE;
  707. /* Check queue size */
  708. if ((flags & PCI_MSI_FLAGS_QSIZE) >> 4 > vdev->msi_qmax) {
  709. flags &= ~PCI_MSI_FLAGS_QSIZE;
  710. flags |= vdev->msi_qmax << 4;
  711. }
  712. /* Write back to virt and to hardware */
  713. *pflags = cpu_to_le16(flags);
  714. ret = pci_user_write_config_word(vdev->pdev,
  715. start + PCI_MSI_FLAGS,
  716. flags);
  717. if (ret)
  718. return pcibios_err_to_errno(ret);
  719. }
  720. return count;
  721. }
  722. /*
  723. * MSI determination is per-device, so this routine gets used beyond
  724. * initialization time. Don't add __init
  725. */
  726. static int init_pci_cap_msi_perm(struct perm_bits *perm, int len, u16 flags)
  727. {
  728. if (alloc_perm_bits(perm, len))
  729. return -ENOMEM;
  730. perm->readfn = vfio_msi_config_read;
  731. perm->writefn = vfio_msi_config_write;
  732. p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
  733. /*
  734. * The upper byte of the control register is reserved,
  735. * just setup the lower byte.
  736. */
  737. p_setb(perm, PCI_MSI_FLAGS, (u8)ALL_VIRT, (u8)ALL_WRITE);
  738. p_setd(perm, PCI_MSI_ADDRESS_LO, ALL_VIRT, ALL_WRITE);
  739. if (flags & PCI_MSI_FLAGS_64BIT) {
  740. p_setd(perm, PCI_MSI_ADDRESS_HI, ALL_VIRT, ALL_WRITE);
  741. p_setw(perm, PCI_MSI_DATA_64, (u16)ALL_VIRT, (u16)ALL_WRITE);
  742. if (flags & PCI_MSI_FLAGS_MASKBIT) {
  743. p_setd(perm, PCI_MSI_MASK_64, NO_VIRT, ALL_WRITE);
  744. p_setd(perm, PCI_MSI_PENDING_64, NO_VIRT, ALL_WRITE);
  745. }
  746. } else {
  747. p_setw(perm, PCI_MSI_DATA_32, (u16)ALL_VIRT, (u16)ALL_WRITE);
  748. if (flags & PCI_MSI_FLAGS_MASKBIT) {
  749. p_setd(perm, PCI_MSI_MASK_32, NO_VIRT, ALL_WRITE);
  750. p_setd(perm, PCI_MSI_PENDING_32, NO_VIRT, ALL_WRITE);
  751. }
  752. }
  753. return 0;
  754. }
  755. /* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */
  756. static int vfio_msi_cap_len(struct vfio_pci_device *vdev, u8 pos)
  757. {
  758. struct pci_dev *pdev = vdev->pdev;
  759. int len, ret;
  760. u16 flags;
  761. ret = pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &flags);
  762. if (ret)
  763. return pcibios_err_to_errno(ret);
  764. len = 10; /* Minimum size */
  765. if (flags & PCI_MSI_FLAGS_64BIT)
  766. len += 4;
  767. if (flags & PCI_MSI_FLAGS_MASKBIT)
  768. len += 10;
  769. if (vdev->msi_perm)
  770. return len;
  771. vdev->msi_perm = kmalloc(sizeof(struct perm_bits), GFP_KERNEL);
  772. if (!vdev->msi_perm)
  773. return -ENOMEM;
  774. ret = init_pci_cap_msi_perm(vdev->msi_perm, len, flags);
  775. if (ret)
  776. return ret;
  777. return len;
  778. }
  779. /* Determine extended capability length for VC (2 & 9) and MFVC */
  780. static int vfio_vc_cap_len(struct vfio_pci_device *vdev, u16 pos)
  781. {
  782. struct pci_dev *pdev = vdev->pdev;
  783. u32 tmp;
  784. int ret, evcc, phases, vc_arb;
  785. int len = PCI_CAP_VC_BASE_SIZEOF;
  786. ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_REG1, &tmp);
  787. if (ret)
  788. return pcibios_err_to_errno(ret);
  789. evcc = tmp & PCI_VC_REG1_EVCC; /* extended vc count */
  790. ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_REG2, &tmp);
  791. if (ret)
  792. return pcibios_err_to_errno(ret);
  793. if (tmp & PCI_VC_REG2_128_PHASE)
  794. phases = 128;
  795. else if (tmp & PCI_VC_REG2_64_PHASE)
  796. phases = 64;
  797. else if (tmp & PCI_VC_REG2_32_PHASE)
  798. phases = 32;
  799. else
  800. phases = 0;
  801. vc_arb = phases * 4;
  802. /*
  803. * Port arbitration tables are root & switch only;
  804. * function arbitration tables are function 0 only.
  805. * In either case, we'll never let user write them so
  806. * we don't care how big they are
  807. */
  808. len += (1 + evcc) * PCI_CAP_VC_PER_VC_SIZEOF;
  809. if (vc_arb) {
  810. len = round_up(len, 16);
  811. len += vc_arb / 8;
  812. }
  813. return len;
  814. }
  815. static int vfio_cap_len(struct vfio_pci_device *vdev, u8 cap, u8 pos)
  816. {
  817. struct pci_dev *pdev = vdev->pdev;
  818. u16 word;
  819. u8 byte;
  820. int ret;
  821. switch (cap) {
  822. case PCI_CAP_ID_MSI:
  823. return vfio_msi_cap_len(vdev, pos);
  824. case PCI_CAP_ID_PCIX:
  825. ret = pci_read_config_word(pdev, pos + PCI_X_CMD, &word);
  826. if (ret)
  827. return pcibios_err_to_errno(ret);
  828. if (PCI_X_CMD_VERSION(word)) {
  829. vdev->extended_caps = true;
  830. return PCI_CAP_PCIX_SIZEOF_V2;
  831. } else
  832. return PCI_CAP_PCIX_SIZEOF_V0;
  833. case PCI_CAP_ID_VNDR:
  834. /* length follows next field */
  835. ret = pci_read_config_byte(pdev, pos + PCI_CAP_FLAGS, &byte);
  836. if (ret)
  837. return pcibios_err_to_errno(ret);
  838. return byte;
  839. case PCI_CAP_ID_EXP:
  840. /* length based on version */
  841. ret = pci_read_config_word(pdev, pos + PCI_EXP_FLAGS, &word);
  842. if (ret)
  843. return pcibios_err_to_errno(ret);
  844. vdev->extended_caps = true;
  845. if ((word & PCI_EXP_FLAGS_VERS) == 1)
  846. return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1;
  847. else
  848. return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2;
  849. case PCI_CAP_ID_HT:
  850. ret = pci_read_config_byte(pdev, pos + 3, &byte);
  851. if (ret)
  852. return pcibios_err_to_errno(ret);
  853. return (byte & HT_3BIT_CAP_MASK) ?
  854. HT_CAP_SIZEOF_SHORT : HT_CAP_SIZEOF_LONG;
  855. case PCI_CAP_ID_SATA:
  856. ret = pci_read_config_byte(pdev, pos + PCI_SATA_REGS, &byte);
  857. if (ret)
  858. return pcibios_err_to_errno(ret);
  859. byte &= PCI_SATA_REGS_MASK;
  860. if (byte == PCI_SATA_REGS_INLINE)
  861. return PCI_SATA_SIZEOF_LONG;
  862. else
  863. return PCI_SATA_SIZEOF_SHORT;
  864. default:
  865. pr_warn("%s: %s unknown length for pci cap 0x%x@0x%x\n",
  866. dev_name(&pdev->dev), __func__, cap, pos);
  867. }
  868. return 0;
  869. }
  870. static int vfio_ext_cap_len(struct vfio_pci_device *vdev, u16 ecap, u16 epos)
  871. {
  872. struct pci_dev *pdev = vdev->pdev;
  873. u8 byte;
  874. u32 dword;
  875. int ret;
  876. switch (ecap) {
  877. case PCI_EXT_CAP_ID_VNDR:
  878. ret = pci_read_config_dword(pdev, epos + PCI_VSEC_HDR, &dword);
  879. if (ret)
  880. return pcibios_err_to_errno(ret);
  881. return dword >> PCI_VSEC_HDR_LEN_SHIFT;
  882. case PCI_EXT_CAP_ID_VC:
  883. case PCI_EXT_CAP_ID_VC9:
  884. case PCI_EXT_CAP_ID_MFVC:
  885. return vfio_vc_cap_len(vdev, epos);
  886. case PCI_EXT_CAP_ID_ACS:
  887. ret = pci_read_config_byte(pdev, epos + PCI_ACS_CAP, &byte);
  888. if (ret)
  889. return pcibios_err_to_errno(ret);
  890. if (byte & PCI_ACS_EC) {
  891. int bits;
  892. ret = pci_read_config_byte(pdev,
  893. epos + PCI_ACS_EGRESS_BITS,
  894. &byte);
  895. if (ret)
  896. return pcibios_err_to_errno(ret);
  897. bits = byte ? round_up(byte, 32) : 256;
  898. return 8 + (bits / 8);
  899. }
  900. return 8;
  901. case PCI_EXT_CAP_ID_REBAR:
  902. ret = pci_read_config_byte(pdev, epos + PCI_REBAR_CTRL, &byte);
  903. if (ret)
  904. return pcibios_err_to_errno(ret);
  905. byte &= PCI_REBAR_CTRL_NBAR_MASK;
  906. byte >>= PCI_REBAR_CTRL_NBAR_SHIFT;
  907. return 4 + (byte * 8);
  908. case PCI_EXT_CAP_ID_DPA:
  909. ret = pci_read_config_byte(pdev, epos + PCI_DPA_CAP, &byte);
  910. if (ret)
  911. return pcibios_err_to_errno(ret);
  912. byte &= PCI_DPA_CAP_SUBSTATE_MASK;
  913. byte = round_up(byte + 1, 4);
  914. return PCI_DPA_BASE_SIZEOF + byte;
  915. case PCI_EXT_CAP_ID_TPH:
  916. ret = pci_read_config_dword(pdev, epos + PCI_TPH_CAP, &dword);
  917. if (ret)
  918. return pcibios_err_to_errno(ret);
  919. if ((dword & PCI_TPH_CAP_LOC_MASK) == PCI_TPH_LOC_CAP) {
  920. int sts;
  921. sts = byte & PCI_TPH_CAP_ST_MASK;
  922. sts >>= PCI_TPH_CAP_ST_SHIFT;
  923. return PCI_TPH_BASE_SIZEOF + round_up(sts * 2, 4);
  924. }
  925. return PCI_TPH_BASE_SIZEOF;
  926. default:
  927. pr_warn("%s: %s unknown length for pci ecap 0x%x@0x%x\n",
  928. dev_name(&pdev->dev), __func__, ecap, epos);
  929. }
  930. return 0;
  931. }
  932. static int vfio_fill_vconfig_bytes(struct vfio_pci_device *vdev,
  933. int offset, int size)
  934. {
  935. struct pci_dev *pdev = vdev->pdev;
  936. int ret = 0;
  937. /*
  938. * We try to read physical config space in the largest chunks
  939. * we can, assuming that all of the fields support dword access.
  940. * pci_save_state() makes this same assumption and seems to do ok.
  941. */
  942. while (size) {
  943. int filled;
  944. if (size >= 4 && !(offset % 4)) {
  945. __le32 *dwordp = (__le32 *)&vdev->vconfig[offset];
  946. u32 dword;
  947. ret = pci_read_config_dword(pdev, offset, &dword);
  948. if (ret)
  949. return ret;
  950. *dwordp = cpu_to_le32(dword);
  951. filled = 4;
  952. } else if (size >= 2 && !(offset % 2)) {
  953. __le16 *wordp = (__le16 *)&vdev->vconfig[offset];
  954. u16 word;
  955. ret = pci_read_config_word(pdev, offset, &word);
  956. if (ret)
  957. return ret;
  958. *wordp = cpu_to_le16(word);
  959. filled = 2;
  960. } else {
  961. u8 *byte = &vdev->vconfig[offset];
  962. ret = pci_read_config_byte(pdev, offset, byte);
  963. if (ret)
  964. return ret;
  965. filled = 1;
  966. }
  967. offset += filled;
  968. size -= filled;
  969. }
  970. return ret;
  971. }
  972. static int vfio_cap_init(struct vfio_pci_device *vdev)
  973. {
  974. struct pci_dev *pdev = vdev->pdev;
  975. u8 *map = vdev->pci_config_map;
  976. u16 status;
  977. u8 pos, *prev, cap;
  978. int loops, ret, caps = 0;
  979. /* Any capabilities? */
  980. ret = pci_read_config_word(pdev, PCI_STATUS, &status);
  981. if (ret)
  982. return ret;
  983. if (!(status & PCI_STATUS_CAP_LIST))
  984. return 0; /* Done */
  985. ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos);
  986. if (ret)
  987. return ret;
  988. /* Mark the previous position in case we want to skip a capability */
  989. prev = &vdev->vconfig[PCI_CAPABILITY_LIST];
  990. /* We can bound our loop, capabilities are dword aligned */
  991. loops = (PCI_CFG_SPACE_SIZE - PCI_STD_HEADER_SIZEOF) / PCI_CAP_SIZEOF;
  992. while (pos && loops--) {
  993. u8 next;
  994. int i, len = 0;
  995. ret = pci_read_config_byte(pdev, pos, &cap);
  996. if (ret)
  997. return ret;
  998. ret = pci_read_config_byte(pdev,
  999. pos + PCI_CAP_LIST_NEXT, &next);
  1000. if (ret)
  1001. return ret;
  1002. if (cap <= PCI_CAP_ID_MAX) {
  1003. len = pci_cap_length[cap];
  1004. if (len == 0xFF) { /* Variable length */
  1005. len = vfio_cap_len(vdev, cap, pos);
  1006. if (len < 0)
  1007. return len;
  1008. }
  1009. }
  1010. if (!len) {
  1011. pr_info("%s: %s hiding cap 0x%x\n",
  1012. __func__, dev_name(&pdev->dev), cap);
  1013. *prev = next;
  1014. pos = next;
  1015. continue;
  1016. }
  1017. /* Sanity check, do we overlap other capabilities? */
  1018. for (i = 0; i < len; i += 4) {
  1019. if (likely(map[(pos + i) / 4] == PCI_CAP_ID_INVALID))
  1020. continue;
  1021. pr_warn("%s: %s pci config conflict @0x%x, was cap 0x%x now cap 0x%x\n",
  1022. __func__, dev_name(&pdev->dev),
  1023. pos + i, map[pos + i], cap);
  1024. }
  1025. memset(map + (pos / 4), cap, len / 4);
  1026. ret = vfio_fill_vconfig_bytes(vdev, pos, len);
  1027. if (ret)
  1028. return ret;
  1029. prev = &vdev->vconfig[pos + PCI_CAP_LIST_NEXT];
  1030. pos = next;
  1031. caps++;
  1032. }
  1033. /* If we didn't fill any capabilities, clear the status flag */
  1034. if (!caps) {
  1035. __le16 *vstatus = (__le16 *)&vdev->vconfig[PCI_STATUS];
  1036. *vstatus &= ~cpu_to_le16(PCI_STATUS_CAP_LIST);
  1037. }
  1038. return 0;
  1039. }
  1040. static int vfio_ecap_init(struct vfio_pci_device *vdev)
  1041. {
  1042. struct pci_dev *pdev = vdev->pdev;
  1043. u8 *map = vdev->pci_config_map;
  1044. u16 epos;
  1045. __le32 *prev = NULL;
  1046. int loops, ret, ecaps = 0;
  1047. if (!vdev->extended_caps)
  1048. return 0;
  1049. epos = PCI_CFG_SPACE_SIZE;
  1050. loops = (pdev->cfg_size - PCI_CFG_SPACE_SIZE) / PCI_CAP_SIZEOF;
  1051. while (loops-- && epos >= PCI_CFG_SPACE_SIZE) {
  1052. u32 header;
  1053. u16 ecap;
  1054. int i, len = 0;
  1055. bool hidden = false;
  1056. ret = pci_read_config_dword(pdev, epos, &header);
  1057. if (ret)
  1058. return ret;
  1059. ecap = PCI_EXT_CAP_ID(header);
  1060. if (ecap <= PCI_EXT_CAP_ID_MAX) {
  1061. len = pci_ext_cap_length[ecap];
  1062. if (len == 0xFF) {
  1063. len = vfio_ext_cap_len(vdev, ecap, epos);
  1064. if (len < 0)
  1065. return ret;
  1066. }
  1067. }
  1068. if (!len) {
  1069. pr_info("%s: %s hiding ecap 0x%x@0x%x\n",
  1070. __func__, dev_name(&pdev->dev), ecap, epos);
  1071. /* If not the first in the chain, we can skip over it */
  1072. if (prev) {
  1073. u32 val = epos = PCI_EXT_CAP_NEXT(header);
  1074. *prev &= cpu_to_le32(~(0xffcU << 20));
  1075. *prev |= cpu_to_le32(val << 20);
  1076. continue;
  1077. }
  1078. /*
  1079. * Otherwise, fill in a placeholder, the direct
  1080. * readfn will virtualize this automatically
  1081. */
  1082. len = PCI_CAP_SIZEOF;
  1083. hidden = true;
  1084. }
  1085. for (i = 0; i < len; i += 4) {
  1086. if (likely(map[(epos + i) / 4] == PCI_CAP_ID_INVALID))
  1087. continue;
  1088. pr_warn("%s: %s pci config conflict @0x%x, was ecap 0x%x now ecap 0x%x\n",
  1089. __func__, dev_name(&pdev->dev),
  1090. epos + i, map[epos + i], ecap);
  1091. }
  1092. /*
  1093. * Even though ecap is 2 bytes, we're currently a long way
  1094. * from exceeding 1 byte capabilities. If we ever make it
  1095. * up to 0xFF we'll need to up this to a two-byte, byte map.
  1096. */
  1097. BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX >= PCI_CAP_ID_INVALID);
  1098. memset(map + (epos / 4), ecap, len / 4);
  1099. ret = vfio_fill_vconfig_bytes(vdev, epos, len);
  1100. if (ret)
  1101. return ret;
  1102. /*
  1103. * If we're just using this capability to anchor the list,
  1104. * hide the real ID. Only count real ecaps. XXX PCI spec
  1105. * indicates to use cap id = 0, version = 0, next = 0 if
  1106. * ecaps are absent, hope users check all the way to next.
  1107. */
  1108. if (hidden)
  1109. *(__le32 *)&vdev->vconfig[epos] &=
  1110. cpu_to_le32((0xffcU << 20));
  1111. else
  1112. ecaps++;
  1113. prev = (__le32 *)&vdev->vconfig[epos];
  1114. epos = PCI_EXT_CAP_NEXT(header);
  1115. }
  1116. if (!ecaps)
  1117. *(u32 *)&vdev->vconfig[PCI_CFG_SPACE_SIZE] = 0;
  1118. return 0;
  1119. }
  1120. /*
  1121. * For each device we allocate a pci_config_map that indicates the
  1122. * capability occupying each dword and thus the struct perm_bits we
  1123. * use for read and write. We also allocate a virtualized config
  1124. * space which tracks reads and writes to bits that we emulate for
  1125. * the user. Initial values filled from device.
  1126. *
  1127. * Using shared stuct perm_bits between all vfio-pci devices saves
  1128. * us from allocating cfg_size buffers for virt and write for every
  1129. * device. We could remove vconfig and allocate individual buffers
  1130. * for each area requring emulated bits, but the array of pointers
  1131. * would be comparable in size (at least for standard config space).
  1132. */
  1133. int vfio_config_init(struct vfio_pci_device *vdev)
  1134. {
  1135. struct pci_dev *pdev = vdev->pdev;
  1136. u8 *map, *vconfig;
  1137. int ret;
  1138. /*
  1139. * Config space, caps and ecaps are all dword aligned, so we can
  1140. * use one byte per dword to record the type.
  1141. */
  1142. map = kmalloc(pdev->cfg_size / 4, GFP_KERNEL);
  1143. if (!map)
  1144. return -ENOMEM;
  1145. vconfig = kmalloc(pdev->cfg_size, GFP_KERNEL);
  1146. if (!vconfig) {
  1147. kfree(map);
  1148. return -ENOMEM;
  1149. }
  1150. vdev->pci_config_map = map;
  1151. vdev->vconfig = vconfig;
  1152. memset(map, PCI_CAP_ID_BASIC, PCI_STD_HEADER_SIZEOF / 4);
  1153. memset(map + (PCI_STD_HEADER_SIZEOF / 4), PCI_CAP_ID_INVALID,
  1154. (pdev->cfg_size - PCI_STD_HEADER_SIZEOF) / 4);
  1155. ret = vfio_fill_vconfig_bytes(vdev, 0, PCI_STD_HEADER_SIZEOF);
  1156. if (ret)
  1157. goto out;
  1158. vdev->bardirty = true;
  1159. /*
  1160. * XXX can we just pci_load_saved_state/pci_restore_state?
  1161. * may need to rebuild vconfig after that
  1162. */
  1163. /* For restore after reset */
  1164. vdev->rbar[0] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_0]);
  1165. vdev->rbar[1] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_1]);
  1166. vdev->rbar[2] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_2]);
  1167. vdev->rbar[3] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_3]);
  1168. vdev->rbar[4] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_4]);
  1169. vdev->rbar[5] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_5]);
  1170. vdev->rbar[6] = le32_to_cpu(*(__le32 *)&vconfig[PCI_ROM_ADDRESS]);
  1171. if (pdev->is_virtfn) {
  1172. *(__le16 *)&vconfig[PCI_VENDOR_ID] = cpu_to_le16(pdev->vendor);
  1173. *(__le16 *)&vconfig[PCI_DEVICE_ID] = cpu_to_le16(pdev->device);
  1174. }
  1175. ret = vfio_cap_init(vdev);
  1176. if (ret)
  1177. goto out;
  1178. ret = vfio_ecap_init(vdev);
  1179. if (ret)
  1180. goto out;
  1181. return 0;
  1182. out:
  1183. kfree(map);
  1184. vdev->pci_config_map = NULL;
  1185. kfree(vconfig);
  1186. vdev->vconfig = NULL;
  1187. return pcibios_err_to_errno(ret);
  1188. }
  1189. void vfio_config_free(struct vfio_pci_device *vdev)
  1190. {
  1191. kfree(vdev->vconfig);
  1192. vdev->vconfig = NULL;
  1193. kfree(vdev->pci_config_map);
  1194. vdev->pci_config_map = NULL;
  1195. kfree(vdev->msi_perm);
  1196. vdev->msi_perm = NULL;
  1197. }
  1198. static ssize_t vfio_config_do_rw(struct vfio_pci_device *vdev, char __user *buf,
  1199. size_t count, loff_t *ppos, bool iswrite)
  1200. {
  1201. struct pci_dev *pdev = vdev->pdev;
  1202. struct perm_bits *perm;
  1203. __le32 val = 0;
  1204. int cap_start = 0, offset;
  1205. u8 cap_id;
  1206. ssize_t ret = count;
  1207. if (*ppos < 0 || *ppos + count > pdev->cfg_size)
  1208. return -EFAULT;
  1209. /*
  1210. * gcc can't seem to figure out we're a static function, only called
  1211. * with count of 1/2/4 and hits copy_from_user_overflow without this.
  1212. */
  1213. if (count > sizeof(val))
  1214. return -EINVAL;
  1215. cap_id = vdev->pci_config_map[*ppos / 4];
  1216. if (cap_id == PCI_CAP_ID_INVALID) {
  1217. if (iswrite)
  1218. return ret; /* drop */
  1219. /*
  1220. * Per PCI spec 3.0, section 6.1, reads from reserved and
  1221. * unimplemented registers return 0
  1222. */
  1223. if (copy_to_user(buf, &val, count))
  1224. return -EFAULT;
  1225. return ret;
  1226. }
  1227. /*
  1228. * All capabilities are minimum 4 bytes and aligned on dword
  1229. * boundaries. Since we don't support unaligned accesses, we're
  1230. * only ever accessing a single capability.
  1231. */
  1232. if (*ppos >= PCI_CFG_SPACE_SIZE) {
  1233. WARN_ON(cap_id > PCI_EXT_CAP_ID_MAX);
  1234. perm = &ecap_perms[cap_id];
  1235. cap_start = vfio_find_cap_start(vdev, *ppos);
  1236. } else {
  1237. WARN_ON(cap_id > PCI_CAP_ID_MAX);
  1238. perm = &cap_perms[cap_id];
  1239. if (cap_id == PCI_CAP_ID_MSI)
  1240. perm = vdev->msi_perm;
  1241. if (cap_id > PCI_CAP_ID_BASIC)
  1242. cap_start = vfio_find_cap_start(vdev, *ppos);
  1243. }
  1244. WARN_ON(!cap_start && cap_id != PCI_CAP_ID_BASIC);
  1245. WARN_ON(cap_start > *ppos);
  1246. offset = *ppos - cap_start;
  1247. if (iswrite) {
  1248. if (!perm->writefn)
  1249. return ret;
  1250. if (copy_from_user(&val, buf, count))
  1251. return -EFAULT;
  1252. ret = perm->writefn(vdev, *ppos, count, perm, offset, val);
  1253. } else {
  1254. if (perm->readfn) {
  1255. ret = perm->readfn(vdev, *ppos, count,
  1256. perm, offset, &val);
  1257. if (ret < 0)
  1258. return ret;
  1259. }
  1260. if (copy_to_user(buf, &val, count))
  1261. return -EFAULT;
  1262. }
  1263. return ret;
  1264. }
  1265. ssize_t vfio_pci_config_rw(struct vfio_pci_device *vdev, char __user *buf,
  1266. size_t count, loff_t *ppos, bool iswrite)
  1267. {
  1268. size_t done = 0;
  1269. int ret = 0;
  1270. loff_t pos = *ppos;
  1271. pos &= VFIO_PCI_OFFSET_MASK;
  1272. /*
  1273. * We want to both keep the access size the caller users as well as
  1274. * support reading large chunks of config space in a single call.
  1275. * PCI doesn't support unaligned accesses, so we can safely break
  1276. * those apart.
  1277. */
  1278. while (count) {
  1279. if (count >= 4 && !(pos % 4))
  1280. ret = vfio_config_do_rw(vdev, buf, 4, &pos, iswrite);
  1281. else if (count >= 2 && !(pos % 2))
  1282. ret = vfio_config_do_rw(vdev, buf, 2, &pos, iswrite);
  1283. else
  1284. ret = vfio_config_do_rw(vdev, buf, 1, &pos, iswrite);
  1285. if (ret < 0)
  1286. return ret;
  1287. count -= ret;
  1288. done += ret;
  1289. buf += ret;
  1290. pos += ret;
  1291. }
  1292. *ppos += done;
  1293. return done;
  1294. }