pch_udc.c 89 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258
  1. /*
  2. * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; version 2 of the License.
  7. */
  8. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  9. #include <linux/kernel.h>
  10. #include <linux/module.h>
  11. #include <linux/pci.h>
  12. #include <linux/delay.h>
  13. #include <linux/errno.h>
  14. #include <linux/list.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/usb/ch9.h>
  17. #include <linux/usb/gadget.h>
  18. #include <linux/gpio.h>
  19. #include <linux/irq.h>
  20. /* GPIO port for VBUS detecting */
  21. static int vbus_gpio_port = -1; /* GPIO port number (-1:Not used) */
  22. #define PCH_VBUS_PERIOD 3000 /* VBUS polling period (msec) */
  23. #define PCH_VBUS_INTERVAL 10 /* VBUS polling interval (msec) */
  24. /* Address offset of Registers */
  25. #define UDC_EP_REG_SHIFT 0x20 /* Offset to next EP */
  26. #define UDC_EPCTL_ADDR 0x00 /* Endpoint control */
  27. #define UDC_EPSTS_ADDR 0x04 /* Endpoint status */
  28. #define UDC_BUFIN_FRAMENUM_ADDR 0x08 /* buffer size in / frame number out */
  29. #define UDC_BUFOUT_MAXPKT_ADDR 0x0C /* buffer size out / maxpkt in */
  30. #define UDC_SUBPTR_ADDR 0x10 /* setup buffer pointer */
  31. #define UDC_DESPTR_ADDR 0x14 /* Data descriptor pointer */
  32. #define UDC_CONFIRM_ADDR 0x18 /* Write/Read confirmation */
  33. #define UDC_DEVCFG_ADDR 0x400 /* Device configuration */
  34. #define UDC_DEVCTL_ADDR 0x404 /* Device control */
  35. #define UDC_DEVSTS_ADDR 0x408 /* Device status */
  36. #define UDC_DEVIRQSTS_ADDR 0x40C /* Device irq status */
  37. #define UDC_DEVIRQMSK_ADDR 0x410 /* Device irq mask */
  38. #define UDC_EPIRQSTS_ADDR 0x414 /* Endpoint irq status */
  39. #define UDC_EPIRQMSK_ADDR 0x418 /* Endpoint irq mask */
  40. #define UDC_DEVLPM_ADDR 0x41C /* LPM control / status */
  41. #define UDC_CSR_BUSY_ADDR 0x4f0 /* UDC_CSR_BUSY Status register */
  42. #define UDC_SRST_ADDR 0x4fc /* SOFT RESET register */
  43. #define UDC_CSR_ADDR 0x500 /* USB_DEVICE endpoint register */
  44. /* Endpoint control register */
  45. /* Bit position */
  46. #define UDC_EPCTL_MRXFLUSH (1 << 12)
  47. #define UDC_EPCTL_RRDY (1 << 9)
  48. #define UDC_EPCTL_CNAK (1 << 8)
  49. #define UDC_EPCTL_SNAK (1 << 7)
  50. #define UDC_EPCTL_NAK (1 << 6)
  51. #define UDC_EPCTL_P (1 << 3)
  52. #define UDC_EPCTL_F (1 << 1)
  53. #define UDC_EPCTL_S (1 << 0)
  54. #define UDC_EPCTL_ET_SHIFT 4
  55. /* Mask patern */
  56. #define UDC_EPCTL_ET_MASK 0x00000030
  57. /* Value for ET field */
  58. #define UDC_EPCTL_ET_CONTROL 0
  59. #define UDC_EPCTL_ET_ISO 1
  60. #define UDC_EPCTL_ET_BULK 2
  61. #define UDC_EPCTL_ET_INTERRUPT 3
  62. /* Endpoint status register */
  63. /* Bit position */
  64. #define UDC_EPSTS_XFERDONE (1 << 27)
  65. #define UDC_EPSTS_RSS (1 << 26)
  66. #define UDC_EPSTS_RCS (1 << 25)
  67. #define UDC_EPSTS_TXEMPTY (1 << 24)
  68. #define UDC_EPSTS_TDC (1 << 10)
  69. #define UDC_EPSTS_HE (1 << 9)
  70. #define UDC_EPSTS_MRXFIFO_EMP (1 << 8)
  71. #define UDC_EPSTS_BNA (1 << 7)
  72. #define UDC_EPSTS_IN (1 << 6)
  73. #define UDC_EPSTS_OUT_SHIFT 4
  74. /* Mask patern */
  75. #define UDC_EPSTS_OUT_MASK 0x00000030
  76. #define UDC_EPSTS_ALL_CLR_MASK 0x1F0006F0
  77. /* Value for OUT field */
  78. #define UDC_EPSTS_OUT_SETUP 2
  79. #define UDC_EPSTS_OUT_DATA 1
  80. /* Device configuration register */
  81. /* Bit position */
  82. #define UDC_DEVCFG_CSR_PRG (1 << 17)
  83. #define UDC_DEVCFG_SP (1 << 3)
  84. /* SPD Valee */
  85. #define UDC_DEVCFG_SPD_HS 0x0
  86. #define UDC_DEVCFG_SPD_FS 0x1
  87. #define UDC_DEVCFG_SPD_LS 0x2
  88. /* Device control register */
  89. /* Bit position */
  90. #define UDC_DEVCTL_THLEN_SHIFT 24
  91. #define UDC_DEVCTL_BRLEN_SHIFT 16
  92. #define UDC_DEVCTL_CSR_DONE (1 << 13)
  93. #define UDC_DEVCTL_SD (1 << 10)
  94. #define UDC_DEVCTL_MODE (1 << 9)
  95. #define UDC_DEVCTL_BREN (1 << 8)
  96. #define UDC_DEVCTL_THE (1 << 7)
  97. #define UDC_DEVCTL_DU (1 << 4)
  98. #define UDC_DEVCTL_TDE (1 << 3)
  99. #define UDC_DEVCTL_RDE (1 << 2)
  100. #define UDC_DEVCTL_RES (1 << 0)
  101. /* Device status register */
  102. /* Bit position */
  103. #define UDC_DEVSTS_TS_SHIFT 18
  104. #define UDC_DEVSTS_ENUM_SPEED_SHIFT 13
  105. #define UDC_DEVSTS_ALT_SHIFT 8
  106. #define UDC_DEVSTS_INTF_SHIFT 4
  107. #define UDC_DEVSTS_CFG_SHIFT 0
  108. /* Mask patern */
  109. #define UDC_DEVSTS_TS_MASK 0xfffc0000
  110. #define UDC_DEVSTS_ENUM_SPEED_MASK 0x00006000
  111. #define UDC_DEVSTS_ALT_MASK 0x00000f00
  112. #define UDC_DEVSTS_INTF_MASK 0x000000f0
  113. #define UDC_DEVSTS_CFG_MASK 0x0000000f
  114. /* value for maximum speed for SPEED field */
  115. #define UDC_DEVSTS_ENUM_SPEED_FULL 1
  116. #define UDC_DEVSTS_ENUM_SPEED_HIGH 0
  117. #define UDC_DEVSTS_ENUM_SPEED_LOW 2
  118. #define UDC_DEVSTS_ENUM_SPEED_FULLX 3
  119. /* Device irq register */
  120. /* Bit position */
  121. #define UDC_DEVINT_RWKP (1 << 7)
  122. #define UDC_DEVINT_ENUM (1 << 6)
  123. #define UDC_DEVINT_SOF (1 << 5)
  124. #define UDC_DEVINT_US (1 << 4)
  125. #define UDC_DEVINT_UR (1 << 3)
  126. #define UDC_DEVINT_ES (1 << 2)
  127. #define UDC_DEVINT_SI (1 << 1)
  128. #define UDC_DEVINT_SC (1 << 0)
  129. /* Mask patern */
  130. #define UDC_DEVINT_MSK 0x7f
  131. /* Endpoint irq register */
  132. /* Bit position */
  133. #define UDC_EPINT_IN_SHIFT 0
  134. #define UDC_EPINT_OUT_SHIFT 16
  135. #define UDC_EPINT_IN_EP0 (1 << 0)
  136. #define UDC_EPINT_OUT_EP0 (1 << 16)
  137. /* Mask patern */
  138. #define UDC_EPINT_MSK_DISABLE_ALL 0xffffffff
  139. /* UDC_CSR_BUSY Status register */
  140. /* Bit position */
  141. #define UDC_CSR_BUSY (1 << 0)
  142. /* SOFT RESET register */
  143. /* Bit position */
  144. #define UDC_PSRST (1 << 1)
  145. #define UDC_SRST (1 << 0)
  146. /* USB_DEVICE endpoint register */
  147. /* Bit position */
  148. #define UDC_CSR_NE_NUM_SHIFT 0
  149. #define UDC_CSR_NE_DIR_SHIFT 4
  150. #define UDC_CSR_NE_TYPE_SHIFT 5
  151. #define UDC_CSR_NE_CFG_SHIFT 7
  152. #define UDC_CSR_NE_INTF_SHIFT 11
  153. #define UDC_CSR_NE_ALT_SHIFT 15
  154. #define UDC_CSR_NE_MAX_PKT_SHIFT 19
  155. /* Mask patern */
  156. #define UDC_CSR_NE_NUM_MASK 0x0000000f
  157. #define UDC_CSR_NE_DIR_MASK 0x00000010
  158. #define UDC_CSR_NE_TYPE_MASK 0x00000060
  159. #define UDC_CSR_NE_CFG_MASK 0x00000780
  160. #define UDC_CSR_NE_INTF_MASK 0x00007800
  161. #define UDC_CSR_NE_ALT_MASK 0x00078000
  162. #define UDC_CSR_NE_MAX_PKT_MASK 0x3ff80000
  163. #define PCH_UDC_CSR(ep) (UDC_CSR_ADDR + ep*4)
  164. #define PCH_UDC_EPINT(in, num)\
  165. (1 << (num + (in ? UDC_EPINT_IN_SHIFT : UDC_EPINT_OUT_SHIFT)))
  166. /* Index of endpoint */
  167. #define UDC_EP0IN_IDX 0
  168. #define UDC_EP0OUT_IDX 1
  169. #define UDC_EPIN_IDX(ep) (ep * 2)
  170. #define UDC_EPOUT_IDX(ep) (ep * 2 + 1)
  171. #define PCH_UDC_EP0 0
  172. #define PCH_UDC_EP1 1
  173. #define PCH_UDC_EP2 2
  174. #define PCH_UDC_EP3 3
  175. /* Number of endpoint */
  176. #define PCH_UDC_EP_NUM 32 /* Total number of EPs (16 IN,16 OUT) */
  177. #define PCH_UDC_USED_EP_NUM 4 /* EP number of EP's really used */
  178. /* Length Value */
  179. #define PCH_UDC_BRLEN 0x0F /* Burst length */
  180. #define PCH_UDC_THLEN 0x1F /* Threshold length */
  181. /* Value of EP Buffer Size */
  182. #define UDC_EP0IN_BUFF_SIZE 16
  183. #define UDC_EPIN_BUFF_SIZE 256
  184. #define UDC_EP0OUT_BUFF_SIZE 16
  185. #define UDC_EPOUT_BUFF_SIZE 256
  186. /* Value of EP maximum packet size */
  187. #define UDC_EP0IN_MAX_PKT_SIZE 64
  188. #define UDC_EP0OUT_MAX_PKT_SIZE 64
  189. #define UDC_BULK_MAX_PKT_SIZE 512
  190. /* DMA */
  191. #define DMA_DIR_RX 1 /* DMA for data receive */
  192. #define DMA_DIR_TX 2 /* DMA for data transmit */
  193. #define DMA_ADDR_INVALID (~(dma_addr_t)0)
  194. #define UDC_DMA_MAXPACKET 65536 /* maximum packet size for DMA */
  195. /**
  196. * struct pch_udc_data_dma_desc - Structure to hold DMA descriptor information
  197. * for data
  198. * @status: Status quadlet
  199. * @reserved: Reserved
  200. * @dataptr: Buffer descriptor
  201. * @next: Next descriptor
  202. */
  203. struct pch_udc_data_dma_desc {
  204. u32 status;
  205. u32 reserved;
  206. u32 dataptr;
  207. u32 next;
  208. };
  209. /**
  210. * struct pch_udc_stp_dma_desc - Structure to hold DMA descriptor information
  211. * for control data
  212. * @status: Status
  213. * @reserved: Reserved
  214. * @data12: First setup word
  215. * @data34: Second setup word
  216. */
  217. struct pch_udc_stp_dma_desc {
  218. u32 status;
  219. u32 reserved;
  220. struct usb_ctrlrequest request;
  221. } __attribute((packed));
  222. /* DMA status definitions */
  223. /* Buffer status */
  224. #define PCH_UDC_BUFF_STS 0xC0000000
  225. #define PCH_UDC_BS_HST_RDY 0x00000000
  226. #define PCH_UDC_BS_DMA_BSY 0x40000000
  227. #define PCH_UDC_BS_DMA_DONE 0x80000000
  228. #define PCH_UDC_BS_HST_BSY 0xC0000000
  229. /* Rx/Tx Status */
  230. #define PCH_UDC_RXTX_STS 0x30000000
  231. #define PCH_UDC_RTS_SUCC 0x00000000
  232. #define PCH_UDC_RTS_DESERR 0x10000000
  233. #define PCH_UDC_RTS_BUFERR 0x30000000
  234. /* Last Descriptor Indication */
  235. #define PCH_UDC_DMA_LAST 0x08000000
  236. /* Number of Rx/Tx Bytes Mask */
  237. #define PCH_UDC_RXTX_BYTES 0x0000ffff
  238. /**
  239. * struct pch_udc_cfg_data - Structure to hold current configuration
  240. * and interface information
  241. * @cur_cfg: current configuration in use
  242. * @cur_intf: current interface in use
  243. * @cur_alt: current alt interface in use
  244. */
  245. struct pch_udc_cfg_data {
  246. u16 cur_cfg;
  247. u16 cur_intf;
  248. u16 cur_alt;
  249. };
  250. /**
  251. * struct pch_udc_ep - Structure holding a PCH USB device Endpoint information
  252. * @ep: embedded ep request
  253. * @td_stp_phys: for setup request
  254. * @td_data_phys: for data request
  255. * @td_stp: for setup request
  256. * @td_data: for data request
  257. * @dev: reference to device struct
  258. * @offset_addr: offset address of ep register
  259. * @desc: for this ep
  260. * @queue: queue for requests
  261. * @num: endpoint number
  262. * @in: endpoint is IN
  263. * @halted: endpoint halted?
  264. * @epsts: Endpoint status
  265. */
  266. struct pch_udc_ep {
  267. struct usb_ep ep;
  268. dma_addr_t td_stp_phys;
  269. dma_addr_t td_data_phys;
  270. struct pch_udc_stp_dma_desc *td_stp;
  271. struct pch_udc_data_dma_desc *td_data;
  272. struct pch_udc_dev *dev;
  273. unsigned long offset_addr;
  274. struct list_head queue;
  275. unsigned num:5,
  276. in:1,
  277. halted:1;
  278. unsigned long epsts;
  279. };
  280. /**
  281. * struct pch_vbus_gpio_data - Structure holding GPIO informaton
  282. * for detecting VBUS
  283. * @port: gpio port number
  284. * @intr: gpio interrupt number
  285. * @irq_work_fall Structure for WorkQueue
  286. * @irq_work_rise Structure for WorkQueue
  287. */
  288. struct pch_vbus_gpio_data {
  289. int port;
  290. int intr;
  291. struct work_struct irq_work_fall;
  292. struct work_struct irq_work_rise;
  293. };
  294. /**
  295. * struct pch_udc_dev - Structure holding complete information
  296. * of the PCH USB device
  297. * @gadget: gadget driver data
  298. * @driver: reference to gadget driver bound
  299. * @pdev: reference to the PCI device
  300. * @ep: array of endpoints
  301. * @lock: protects all state
  302. * @active: enabled the PCI device
  303. * @stall: stall requested
  304. * @prot_stall: protcol stall requested
  305. * @irq_registered: irq registered with system
  306. * @mem_region: device memory mapped
  307. * @registered: driver regsitered with system
  308. * @suspended: driver in suspended state
  309. * @connected: gadget driver associated
  310. * @vbus_session: required vbus_session state
  311. * @set_cfg_not_acked: pending acknowledgement 4 setup
  312. * @waiting_zlp_ack: pending acknowledgement 4 ZLP
  313. * @data_requests: DMA pool for data requests
  314. * @stp_requests: DMA pool for setup requests
  315. * @dma_addr: DMA pool for received
  316. * @ep0out_buf: Buffer for DMA
  317. * @setup_data: Received setup data
  318. * @phys_addr: of device memory
  319. * @base_addr: for mapped device memory
  320. * @irq: IRQ line for the device
  321. * @cfg_data: current cfg, intf, and alt in use
  322. * @vbus_gpio: GPIO informaton for detecting VBUS
  323. */
  324. struct pch_udc_dev {
  325. struct usb_gadget gadget;
  326. struct usb_gadget_driver *driver;
  327. struct pci_dev *pdev;
  328. struct pch_udc_ep ep[PCH_UDC_EP_NUM];
  329. spinlock_t lock; /* protects all state */
  330. unsigned active:1,
  331. stall:1,
  332. prot_stall:1,
  333. irq_registered:1,
  334. mem_region:1,
  335. registered:1,
  336. suspended:1,
  337. connected:1,
  338. vbus_session:1,
  339. set_cfg_not_acked:1,
  340. waiting_zlp_ack:1;
  341. struct pci_pool *data_requests;
  342. struct pci_pool *stp_requests;
  343. dma_addr_t dma_addr;
  344. void *ep0out_buf;
  345. struct usb_ctrlrequest setup_data;
  346. unsigned long phys_addr;
  347. void __iomem *base_addr;
  348. unsigned irq;
  349. struct pch_udc_cfg_data cfg_data;
  350. struct pch_vbus_gpio_data vbus_gpio;
  351. };
  352. #define to_pch_udc(g) (container_of((g), struct pch_udc_dev, gadget))
  353. #define PCH_UDC_PCI_BAR 1
  354. #define PCI_DEVICE_ID_INTEL_EG20T_UDC 0x8808
  355. #define PCI_VENDOR_ID_ROHM 0x10DB
  356. #define PCI_DEVICE_ID_ML7213_IOH_UDC 0x801D
  357. #define PCI_DEVICE_ID_ML7831_IOH_UDC 0x8808
  358. static const char ep0_string[] = "ep0in";
  359. static DEFINE_SPINLOCK(udc_stall_spinlock); /* stall spin lock */
  360. static bool speed_fs;
  361. module_param_named(speed_fs, speed_fs, bool, S_IRUGO);
  362. MODULE_PARM_DESC(speed_fs, "true for Full speed operation");
  363. /**
  364. * struct pch_udc_request - Structure holding a PCH USB device request packet
  365. * @req: embedded ep request
  366. * @td_data_phys: phys. address
  367. * @td_data: first dma desc. of chain
  368. * @td_data_last: last dma desc. of chain
  369. * @queue: associated queue
  370. * @dma_going: DMA in progress for request
  371. * @dma_mapped: DMA memory mapped for request
  372. * @dma_done: DMA completed for request
  373. * @chain_len: chain length
  374. * @buf: Buffer memory for align adjustment
  375. * @dma: DMA memory for align adjustment
  376. */
  377. struct pch_udc_request {
  378. struct usb_request req;
  379. dma_addr_t td_data_phys;
  380. struct pch_udc_data_dma_desc *td_data;
  381. struct pch_udc_data_dma_desc *td_data_last;
  382. struct list_head queue;
  383. unsigned dma_going:1,
  384. dma_mapped:1,
  385. dma_done:1;
  386. unsigned chain_len;
  387. void *buf;
  388. dma_addr_t dma;
  389. };
  390. static inline u32 pch_udc_readl(struct pch_udc_dev *dev, unsigned long reg)
  391. {
  392. return ioread32(dev->base_addr + reg);
  393. }
  394. static inline void pch_udc_writel(struct pch_udc_dev *dev,
  395. unsigned long val, unsigned long reg)
  396. {
  397. iowrite32(val, dev->base_addr + reg);
  398. }
  399. static inline void pch_udc_bit_set(struct pch_udc_dev *dev,
  400. unsigned long reg,
  401. unsigned long bitmask)
  402. {
  403. pch_udc_writel(dev, pch_udc_readl(dev, reg) | bitmask, reg);
  404. }
  405. static inline void pch_udc_bit_clr(struct pch_udc_dev *dev,
  406. unsigned long reg,
  407. unsigned long bitmask)
  408. {
  409. pch_udc_writel(dev, pch_udc_readl(dev, reg) & ~(bitmask), reg);
  410. }
  411. static inline u32 pch_udc_ep_readl(struct pch_udc_ep *ep, unsigned long reg)
  412. {
  413. return ioread32(ep->dev->base_addr + ep->offset_addr + reg);
  414. }
  415. static inline void pch_udc_ep_writel(struct pch_udc_ep *ep,
  416. unsigned long val, unsigned long reg)
  417. {
  418. iowrite32(val, ep->dev->base_addr + ep->offset_addr + reg);
  419. }
  420. static inline void pch_udc_ep_bit_set(struct pch_udc_ep *ep,
  421. unsigned long reg,
  422. unsigned long bitmask)
  423. {
  424. pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) | bitmask, reg);
  425. }
  426. static inline void pch_udc_ep_bit_clr(struct pch_udc_ep *ep,
  427. unsigned long reg,
  428. unsigned long bitmask)
  429. {
  430. pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) & ~(bitmask), reg);
  431. }
  432. /**
  433. * pch_udc_csr_busy() - Wait till idle.
  434. * @dev: Reference to pch_udc_dev structure
  435. */
  436. static void pch_udc_csr_busy(struct pch_udc_dev *dev)
  437. {
  438. unsigned int count = 200;
  439. /* Wait till idle */
  440. while ((pch_udc_readl(dev, UDC_CSR_BUSY_ADDR) & UDC_CSR_BUSY)
  441. && --count)
  442. cpu_relax();
  443. if (!count)
  444. dev_err(&dev->pdev->dev, "%s: wait error\n", __func__);
  445. }
  446. /**
  447. * pch_udc_write_csr() - Write the command and status registers.
  448. * @dev: Reference to pch_udc_dev structure
  449. * @val: value to be written to CSR register
  450. * @addr: address of CSR register
  451. */
  452. static void pch_udc_write_csr(struct pch_udc_dev *dev, unsigned long val,
  453. unsigned int ep)
  454. {
  455. unsigned long reg = PCH_UDC_CSR(ep);
  456. pch_udc_csr_busy(dev); /* Wait till idle */
  457. pch_udc_writel(dev, val, reg);
  458. pch_udc_csr_busy(dev); /* Wait till idle */
  459. }
  460. /**
  461. * pch_udc_read_csr() - Read the command and status registers.
  462. * @dev: Reference to pch_udc_dev structure
  463. * @addr: address of CSR register
  464. *
  465. * Return codes: content of CSR register
  466. */
  467. static u32 pch_udc_read_csr(struct pch_udc_dev *dev, unsigned int ep)
  468. {
  469. unsigned long reg = PCH_UDC_CSR(ep);
  470. pch_udc_csr_busy(dev); /* Wait till idle */
  471. pch_udc_readl(dev, reg); /* Dummy read */
  472. pch_udc_csr_busy(dev); /* Wait till idle */
  473. return pch_udc_readl(dev, reg);
  474. }
  475. /**
  476. * pch_udc_rmt_wakeup() - Initiate for remote wakeup
  477. * @dev: Reference to pch_udc_dev structure
  478. */
  479. static inline void pch_udc_rmt_wakeup(struct pch_udc_dev *dev)
  480. {
  481. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  482. mdelay(1);
  483. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  484. }
  485. /**
  486. * pch_udc_get_frame() - Get the current frame from device status register
  487. * @dev: Reference to pch_udc_dev structure
  488. * Retern current frame
  489. */
  490. static inline int pch_udc_get_frame(struct pch_udc_dev *dev)
  491. {
  492. u32 frame = pch_udc_readl(dev, UDC_DEVSTS_ADDR);
  493. return (frame & UDC_DEVSTS_TS_MASK) >> UDC_DEVSTS_TS_SHIFT;
  494. }
  495. /**
  496. * pch_udc_clear_selfpowered() - Clear the self power control
  497. * @dev: Reference to pch_udc_regs structure
  498. */
  499. static inline void pch_udc_clear_selfpowered(struct pch_udc_dev *dev)
  500. {
  501. pch_udc_bit_clr(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
  502. }
  503. /**
  504. * pch_udc_set_selfpowered() - Set the self power control
  505. * @dev: Reference to pch_udc_regs structure
  506. */
  507. static inline void pch_udc_set_selfpowered(struct pch_udc_dev *dev)
  508. {
  509. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
  510. }
  511. /**
  512. * pch_udc_set_disconnect() - Set the disconnect status.
  513. * @dev: Reference to pch_udc_regs structure
  514. */
  515. static inline void pch_udc_set_disconnect(struct pch_udc_dev *dev)
  516. {
  517. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
  518. }
  519. /**
  520. * pch_udc_clear_disconnect() - Clear the disconnect status.
  521. * @dev: Reference to pch_udc_regs structure
  522. */
  523. static void pch_udc_clear_disconnect(struct pch_udc_dev *dev)
  524. {
  525. /* Clear the disconnect */
  526. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  527. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
  528. mdelay(1);
  529. /* Resume USB signalling */
  530. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  531. }
  532. /**
  533. * pch_udc_reconnect() - This API initializes usb device controller,
  534. * and clear the disconnect status.
  535. * @dev: Reference to pch_udc_regs structure
  536. */
  537. static void pch_udc_init(struct pch_udc_dev *dev);
  538. static void pch_udc_reconnect(struct pch_udc_dev *dev)
  539. {
  540. pch_udc_init(dev);
  541. /* enable device interrupts */
  542. /* pch_udc_enable_interrupts() */
  543. pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR,
  544. UDC_DEVINT_UR | UDC_DEVINT_ENUM);
  545. /* Clear the disconnect */
  546. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  547. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
  548. mdelay(1);
  549. /* Resume USB signalling */
  550. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  551. }
  552. /**
  553. * pch_udc_vbus_session() - set or clearr the disconnect status.
  554. * @dev: Reference to pch_udc_regs structure
  555. * @is_active: Parameter specifying the action
  556. * 0: indicating VBUS power is ending
  557. * !0: indicating VBUS power is starting
  558. */
  559. static inline void pch_udc_vbus_session(struct pch_udc_dev *dev,
  560. int is_active)
  561. {
  562. if (is_active) {
  563. pch_udc_reconnect(dev);
  564. dev->vbus_session = 1;
  565. } else {
  566. if (dev->driver && dev->driver->disconnect) {
  567. spin_unlock(&dev->lock);
  568. dev->driver->disconnect(&dev->gadget);
  569. spin_lock(&dev->lock);
  570. }
  571. pch_udc_set_disconnect(dev);
  572. dev->vbus_session = 0;
  573. }
  574. }
  575. /**
  576. * pch_udc_ep_set_stall() - Set the stall of endpoint
  577. * @ep: Reference to structure of type pch_udc_ep_regs
  578. */
  579. static void pch_udc_ep_set_stall(struct pch_udc_ep *ep)
  580. {
  581. if (ep->in) {
  582. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
  583. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  584. } else {
  585. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  586. }
  587. }
  588. /**
  589. * pch_udc_ep_clear_stall() - Clear the stall of endpoint
  590. * @ep: Reference to structure of type pch_udc_ep_regs
  591. */
  592. static inline void pch_udc_ep_clear_stall(struct pch_udc_ep *ep)
  593. {
  594. /* Clear the stall */
  595. pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  596. /* Clear NAK by writing CNAK */
  597. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
  598. }
  599. /**
  600. * pch_udc_ep_set_trfr_type() - Set the transfer type of endpoint
  601. * @ep: Reference to structure of type pch_udc_ep_regs
  602. * @type: Type of endpoint
  603. */
  604. static inline void pch_udc_ep_set_trfr_type(struct pch_udc_ep *ep,
  605. u8 type)
  606. {
  607. pch_udc_ep_writel(ep, ((type << UDC_EPCTL_ET_SHIFT) &
  608. UDC_EPCTL_ET_MASK), UDC_EPCTL_ADDR);
  609. }
  610. /**
  611. * pch_udc_ep_set_bufsz() - Set the maximum packet size for the endpoint
  612. * @ep: Reference to structure of type pch_udc_ep_regs
  613. * @buf_size: The buffer word size
  614. */
  615. static void pch_udc_ep_set_bufsz(struct pch_udc_ep *ep,
  616. u32 buf_size, u32 ep_in)
  617. {
  618. u32 data;
  619. if (ep_in) {
  620. data = pch_udc_ep_readl(ep, UDC_BUFIN_FRAMENUM_ADDR);
  621. data = (data & 0xffff0000) | (buf_size & 0xffff);
  622. pch_udc_ep_writel(ep, data, UDC_BUFIN_FRAMENUM_ADDR);
  623. } else {
  624. data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
  625. data = (buf_size << 16) | (data & 0xffff);
  626. pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
  627. }
  628. }
  629. /**
  630. * pch_udc_ep_set_maxpkt() - Set the Max packet size for the endpoint
  631. * @ep: Reference to structure of type pch_udc_ep_regs
  632. * @pkt_size: The packet byte size
  633. */
  634. static void pch_udc_ep_set_maxpkt(struct pch_udc_ep *ep, u32 pkt_size)
  635. {
  636. u32 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
  637. data = (data & 0xffff0000) | (pkt_size & 0xffff);
  638. pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
  639. }
  640. /**
  641. * pch_udc_ep_set_subptr() - Set the Setup buffer pointer for the endpoint
  642. * @ep: Reference to structure of type pch_udc_ep_regs
  643. * @addr: Address of the register
  644. */
  645. static inline void pch_udc_ep_set_subptr(struct pch_udc_ep *ep, u32 addr)
  646. {
  647. pch_udc_ep_writel(ep, addr, UDC_SUBPTR_ADDR);
  648. }
  649. /**
  650. * pch_udc_ep_set_ddptr() - Set the Data descriptor pointer for the endpoint
  651. * @ep: Reference to structure of type pch_udc_ep_regs
  652. * @addr: Address of the register
  653. */
  654. static inline void pch_udc_ep_set_ddptr(struct pch_udc_ep *ep, u32 addr)
  655. {
  656. pch_udc_ep_writel(ep, addr, UDC_DESPTR_ADDR);
  657. }
  658. /**
  659. * pch_udc_ep_set_pd() - Set the poll demand bit for the endpoint
  660. * @ep: Reference to structure of type pch_udc_ep_regs
  661. */
  662. static inline void pch_udc_ep_set_pd(struct pch_udc_ep *ep)
  663. {
  664. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_P);
  665. }
  666. /**
  667. * pch_udc_ep_set_rrdy() - Set the receive ready bit for the endpoint
  668. * @ep: Reference to structure of type pch_udc_ep_regs
  669. */
  670. static inline void pch_udc_ep_set_rrdy(struct pch_udc_ep *ep)
  671. {
  672. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
  673. }
  674. /**
  675. * pch_udc_ep_clear_rrdy() - Clear the receive ready bit for the endpoint
  676. * @ep: Reference to structure of type pch_udc_ep_regs
  677. */
  678. static inline void pch_udc_ep_clear_rrdy(struct pch_udc_ep *ep)
  679. {
  680. pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
  681. }
  682. /**
  683. * pch_udc_set_dma() - Set the 'TDE' or RDE bit of device control
  684. * register depending on the direction specified
  685. * @dev: Reference to structure of type pch_udc_regs
  686. * @dir: whether Tx or Rx
  687. * DMA_DIR_RX: Receive
  688. * DMA_DIR_TX: Transmit
  689. */
  690. static inline void pch_udc_set_dma(struct pch_udc_dev *dev, int dir)
  691. {
  692. if (dir == DMA_DIR_RX)
  693. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
  694. else if (dir == DMA_DIR_TX)
  695. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
  696. }
  697. /**
  698. * pch_udc_clear_dma() - Clear the 'TDE' or RDE bit of device control
  699. * register depending on the direction specified
  700. * @dev: Reference to structure of type pch_udc_regs
  701. * @dir: Whether Tx or Rx
  702. * DMA_DIR_RX: Receive
  703. * DMA_DIR_TX: Transmit
  704. */
  705. static inline void pch_udc_clear_dma(struct pch_udc_dev *dev, int dir)
  706. {
  707. if (dir == DMA_DIR_RX)
  708. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
  709. else if (dir == DMA_DIR_TX)
  710. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
  711. }
  712. /**
  713. * pch_udc_set_csr_done() - Set the device control register
  714. * CSR done field (bit 13)
  715. * @dev: reference to structure of type pch_udc_regs
  716. */
  717. static inline void pch_udc_set_csr_done(struct pch_udc_dev *dev)
  718. {
  719. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_CSR_DONE);
  720. }
  721. /**
  722. * pch_udc_disable_interrupts() - Disables the specified interrupts
  723. * @dev: Reference to structure of type pch_udc_regs
  724. * @mask: Mask to disable interrupts
  725. */
  726. static inline void pch_udc_disable_interrupts(struct pch_udc_dev *dev,
  727. u32 mask)
  728. {
  729. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, mask);
  730. }
  731. /**
  732. * pch_udc_enable_interrupts() - Enable the specified interrupts
  733. * @dev: Reference to structure of type pch_udc_regs
  734. * @mask: Mask to enable interrupts
  735. */
  736. static inline void pch_udc_enable_interrupts(struct pch_udc_dev *dev,
  737. u32 mask)
  738. {
  739. pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR, mask);
  740. }
  741. /**
  742. * pch_udc_disable_ep_interrupts() - Disable endpoint interrupts
  743. * @dev: Reference to structure of type pch_udc_regs
  744. * @mask: Mask to disable interrupts
  745. */
  746. static inline void pch_udc_disable_ep_interrupts(struct pch_udc_dev *dev,
  747. u32 mask)
  748. {
  749. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, mask);
  750. }
  751. /**
  752. * pch_udc_enable_ep_interrupts() - Enable endpoint interrupts
  753. * @dev: Reference to structure of type pch_udc_regs
  754. * @mask: Mask to enable interrupts
  755. */
  756. static inline void pch_udc_enable_ep_interrupts(struct pch_udc_dev *dev,
  757. u32 mask)
  758. {
  759. pch_udc_bit_clr(dev, UDC_EPIRQMSK_ADDR, mask);
  760. }
  761. /**
  762. * pch_udc_read_device_interrupts() - Read the device interrupts
  763. * @dev: Reference to structure of type pch_udc_regs
  764. * Retern The device interrupts
  765. */
  766. static inline u32 pch_udc_read_device_interrupts(struct pch_udc_dev *dev)
  767. {
  768. return pch_udc_readl(dev, UDC_DEVIRQSTS_ADDR);
  769. }
  770. /**
  771. * pch_udc_write_device_interrupts() - Write device interrupts
  772. * @dev: Reference to structure of type pch_udc_regs
  773. * @val: The value to be written to interrupt register
  774. */
  775. static inline void pch_udc_write_device_interrupts(struct pch_udc_dev *dev,
  776. u32 val)
  777. {
  778. pch_udc_writel(dev, val, UDC_DEVIRQSTS_ADDR);
  779. }
  780. /**
  781. * pch_udc_read_ep_interrupts() - Read the endpoint interrupts
  782. * @dev: Reference to structure of type pch_udc_regs
  783. * Retern The endpoint interrupt
  784. */
  785. static inline u32 pch_udc_read_ep_interrupts(struct pch_udc_dev *dev)
  786. {
  787. return pch_udc_readl(dev, UDC_EPIRQSTS_ADDR);
  788. }
  789. /**
  790. * pch_udc_write_ep_interrupts() - Clear endpoint interupts
  791. * @dev: Reference to structure of type pch_udc_regs
  792. * @val: The value to be written to interrupt register
  793. */
  794. static inline void pch_udc_write_ep_interrupts(struct pch_udc_dev *dev,
  795. u32 val)
  796. {
  797. pch_udc_writel(dev, val, UDC_EPIRQSTS_ADDR);
  798. }
  799. /**
  800. * pch_udc_read_device_status() - Read the device status
  801. * @dev: Reference to structure of type pch_udc_regs
  802. * Retern The device status
  803. */
  804. static inline u32 pch_udc_read_device_status(struct pch_udc_dev *dev)
  805. {
  806. return pch_udc_readl(dev, UDC_DEVSTS_ADDR);
  807. }
  808. /**
  809. * pch_udc_read_ep_control() - Read the endpoint control
  810. * @ep: Reference to structure of type pch_udc_ep_regs
  811. * Retern The endpoint control register value
  812. */
  813. static inline u32 pch_udc_read_ep_control(struct pch_udc_ep *ep)
  814. {
  815. return pch_udc_ep_readl(ep, UDC_EPCTL_ADDR);
  816. }
  817. /**
  818. * pch_udc_clear_ep_control() - Clear the endpoint control register
  819. * @ep: Reference to structure of type pch_udc_ep_regs
  820. * Retern The endpoint control register value
  821. */
  822. static inline void pch_udc_clear_ep_control(struct pch_udc_ep *ep)
  823. {
  824. return pch_udc_ep_writel(ep, 0, UDC_EPCTL_ADDR);
  825. }
  826. /**
  827. * pch_udc_read_ep_status() - Read the endpoint status
  828. * @ep: Reference to structure of type pch_udc_ep_regs
  829. * Retern The endpoint status
  830. */
  831. static inline u32 pch_udc_read_ep_status(struct pch_udc_ep *ep)
  832. {
  833. return pch_udc_ep_readl(ep, UDC_EPSTS_ADDR);
  834. }
  835. /**
  836. * pch_udc_clear_ep_status() - Clear the endpoint status
  837. * @ep: Reference to structure of type pch_udc_ep_regs
  838. * @stat: Endpoint status
  839. */
  840. static inline void pch_udc_clear_ep_status(struct pch_udc_ep *ep,
  841. u32 stat)
  842. {
  843. return pch_udc_ep_writel(ep, stat, UDC_EPSTS_ADDR);
  844. }
  845. /**
  846. * pch_udc_ep_set_nak() - Set the bit 7 (SNAK field)
  847. * of the endpoint control register
  848. * @ep: Reference to structure of type pch_udc_ep_regs
  849. */
  850. static inline void pch_udc_ep_set_nak(struct pch_udc_ep *ep)
  851. {
  852. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_SNAK);
  853. }
  854. /**
  855. * pch_udc_ep_clear_nak() - Set the bit 8 (CNAK field)
  856. * of the endpoint control register
  857. * @ep: reference to structure of type pch_udc_ep_regs
  858. */
  859. static void pch_udc_ep_clear_nak(struct pch_udc_ep *ep)
  860. {
  861. unsigned int loopcnt = 0;
  862. struct pch_udc_dev *dev = ep->dev;
  863. if (!(pch_udc_ep_readl(ep, UDC_EPCTL_ADDR) & UDC_EPCTL_NAK))
  864. return;
  865. if (!ep->in) {
  866. loopcnt = 10000;
  867. while (!(pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP) &&
  868. --loopcnt)
  869. udelay(5);
  870. if (!loopcnt)
  871. dev_err(&dev->pdev->dev, "%s: RxFIFO not Empty\n",
  872. __func__);
  873. }
  874. loopcnt = 10000;
  875. while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_NAK) && --loopcnt) {
  876. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
  877. udelay(5);
  878. }
  879. if (!loopcnt)
  880. dev_err(&dev->pdev->dev, "%s: Clear NAK not set for ep%d%s\n",
  881. __func__, ep->num, (ep->in ? "in" : "out"));
  882. }
  883. /**
  884. * pch_udc_ep_fifo_flush() - Flush the endpoint fifo
  885. * @ep: reference to structure of type pch_udc_ep_regs
  886. * @dir: direction of endpoint
  887. * 0: endpoint is OUT
  888. * !0: endpoint is IN
  889. */
  890. static void pch_udc_ep_fifo_flush(struct pch_udc_ep *ep, int dir)
  891. {
  892. if (dir) { /* IN ep */
  893. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
  894. return;
  895. }
  896. }
  897. /**
  898. * pch_udc_ep_enable() - This api enables endpoint
  899. * @regs: Reference to structure pch_udc_ep_regs
  900. * @desc: endpoint descriptor
  901. */
  902. static void pch_udc_ep_enable(struct pch_udc_ep *ep,
  903. struct pch_udc_cfg_data *cfg,
  904. const struct usb_endpoint_descriptor *desc)
  905. {
  906. u32 val = 0;
  907. u32 buff_size = 0;
  908. pch_udc_ep_set_trfr_type(ep, desc->bmAttributes);
  909. if (ep->in)
  910. buff_size = UDC_EPIN_BUFF_SIZE;
  911. else
  912. buff_size = UDC_EPOUT_BUFF_SIZE;
  913. pch_udc_ep_set_bufsz(ep, buff_size, ep->in);
  914. pch_udc_ep_set_maxpkt(ep, usb_endpoint_maxp(desc));
  915. pch_udc_ep_set_nak(ep);
  916. pch_udc_ep_fifo_flush(ep, ep->in);
  917. /* Configure the endpoint */
  918. val = ep->num << UDC_CSR_NE_NUM_SHIFT | ep->in << UDC_CSR_NE_DIR_SHIFT |
  919. ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) <<
  920. UDC_CSR_NE_TYPE_SHIFT) |
  921. (cfg->cur_cfg << UDC_CSR_NE_CFG_SHIFT) |
  922. (cfg->cur_intf << UDC_CSR_NE_INTF_SHIFT) |
  923. (cfg->cur_alt << UDC_CSR_NE_ALT_SHIFT) |
  924. usb_endpoint_maxp(desc) << UDC_CSR_NE_MAX_PKT_SHIFT;
  925. if (ep->in)
  926. pch_udc_write_csr(ep->dev, val, UDC_EPIN_IDX(ep->num));
  927. else
  928. pch_udc_write_csr(ep->dev, val, UDC_EPOUT_IDX(ep->num));
  929. }
  930. /**
  931. * pch_udc_ep_disable() - This api disables endpoint
  932. * @regs: Reference to structure pch_udc_ep_regs
  933. */
  934. static void pch_udc_ep_disable(struct pch_udc_ep *ep)
  935. {
  936. if (ep->in) {
  937. /* flush the fifo */
  938. pch_udc_ep_writel(ep, UDC_EPCTL_F, UDC_EPCTL_ADDR);
  939. /* set NAK */
  940. pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
  941. pch_udc_ep_bit_set(ep, UDC_EPSTS_ADDR, UDC_EPSTS_IN);
  942. } else {
  943. /* set NAK */
  944. pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
  945. }
  946. /* reset desc pointer */
  947. pch_udc_ep_writel(ep, 0, UDC_DESPTR_ADDR);
  948. }
  949. /**
  950. * pch_udc_wait_ep_stall() - Wait EP stall.
  951. * @dev: Reference to pch_udc_dev structure
  952. */
  953. static void pch_udc_wait_ep_stall(struct pch_udc_ep *ep)
  954. {
  955. unsigned int count = 10000;
  956. /* Wait till idle */
  957. while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_S) && --count)
  958. udelay(5);
  959. if (!count)
  960. dev_err(&ep->dev->pdev->dev, "%s: wait error\n", __func__);
  961. }
  962. /**
  963. * pch_udc_init() - This API initializes usb device controller
  964. * @dev: Rreference to pch_udc_regs structure
  965. */
  966. static void pch_udc_init(struct pch_udc_dev *dev)
  967. {
  968. if (NULL == dev) {
  969. pr_err("%s: Invalid address\n", __func__);
  970. return;
  971. }
  972. /* Soft Reset and Reset PHY */
  973. pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
  974. pch_udc_writel(dev, UDC_SRST | UDC_PSRST, UDC_SRST_ADDR);
  975. mdelay(1);
  976. pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
  977. pch_udc_writel(dev, 0x00, UDC_SRST_ADDR);
  978. mdelay(1);
  979. /* mask and clear all device interrupts */
  980. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
  981. pch_udc_bit_set(dev, UDC_DEVIRQSTS_ADDR, UDC_DEVINT_MSK);
  982. /* mask and clear all ep interrupts */
  983. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  984. pch_udc_bit_set(dev, UDC_EPIRQSTS_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  985. /* enable dynamic CSR programmingi, self powered and device speed */
  986. if (speed_fs)
  987. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
  988. UDC_DEVCFG_SP | UDC_DEVCFG_SPD_FS);
  989. else /* defaul high speed */
  990. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
  991. UDC_DEVCFG_SP | UDC_DEVCFG_SPD_HS);
  992. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR,
  993. (PCH_UDC_THLEN << UDC_DEVCTL_THLEN_SHIFT) |
  994. (PCH_UDC_BRLEN << UDC_DEVCTL_BRLEN_SHIFT) |
  995. UDC_DEVCTL_MODE | UDC_DEVCTL_BREN |
  996. UDC_DEVCTL_THE);
  997. }
  998. /**
  999. * pch_udc_exit() - This API exit usb device controller
  1000. * @dev: Reference to pch_udc_regs structure
  1001. */
  1002. static void pch_udc_exit(struct pch_udc_dev *dev)
  1003. {
  1004. /* mask all device interrupts */
  1005. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
  1006. /* mask all ep interrupts */
  1007. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  1008. /* put device in disconnected state */
  1009. pch_udc_set_disconnect(dev);
  1010. }
  1011. /**
  1012. * pch_udc_pcd_get_frame() - This API is invoked to get the current frame number
  1013. * @gadget: Reference to the gadget driver
  1014. *
  1015. * Return codes:
  1016. * 0: Success
  1017. * -EINVAL: If the gadget passed is NULL
  1018. */
  1019. static int pch_udc_pcd_get_frame(struct usb_gadget *gadget)
  1020. {
  1021. struct pch_udc_dev *dev;
  1022. if (!gadget)
  1023. return -EINVAL;
  1024. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1025. return pch_udc_get_frame(dev);
  1026. }
  1027. /**
  1028. * pch_udc_pcd_wakeup() - This API is invoked to initiate a remote wakeup
  1029. * @gadget: Reference to the gadget driver
  1030. *
  1031. * Return codes:
  1032. * 0: Success
  1033. * -EINVAL: If the gadget passed is NULL
  1034. */
  1035. static int pch_udc_pcd_wakeup(struct usb_gadget *gadget)
  1036. {
  1037. struct pch_udc_dev *dev;
  1038. unsigned long flags;
  1039. if (!gadget)
  1040. return -EINVAL;
  1041. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1042. spin_lock_irqsave(&dev->lock, flags);
  1043. pch_udc_rmt_wakeup(dev);
  1044. spin_unlock_irqrestore(&dev->lock, flags);
  1045. return 0;
  1046. }
  1047. /**
  1048. * pch_udc_pcd_selfpowered() - This API is invoked to specify whether the device
  1049. * is self powered or not
  1050. * @gadget: Reference to the gadget driver
  1051. * @value: Specifies self powered or not
  1052. *
  1053. * Return codes:
  1054. * 0: Success
  1055. * -EINVAL: If the gadget passed is NULL
  1056. */
  1057. static int pch_udc_pcd_selfpowered(struct usb_gadget *gadget, int value)
  1058. {
  1059. struct pch_udc_dev *dev;
  1060. if (!gadget)
  1061. return -EINVAL;
  1062. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1063. if (value)
  1064. pch_udc_set_selfpowered(dev);
  1065. else
  1066. pch_udc_clear_selfpowered(dev);
  1067. return 0;
  1068. }
  1069. /**
  1070. * pch_udc_pcd_pullup() - This API is invoked to make the device
  1071. * visible/invisible to the host
  1072. * @gadget: Reference to the gadget driver
  1073. * @is_on: Specifies whether the pull up is made active or inactive
  1074. *
  1075. * Return codes:
  1076. * 0: Success
  1077. * -EINVAL: If the gadget passed is NULL
  1078. */
  1079. static int pch_udc_pcd_pullup(struct usb_gadget *gadget, int is_on)
  1080. {
  1081. struct pch_udc_dev *dev;
  1082. if (!gadget)
  1083. return -EINVAL;
  1084. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1085. if (is_on) {
  1086. pch_udc_reconnect(dev);
  1087. } else {
  1088. if (dev->driver && dev->driver->disconnect) {
  1089. spin_unlock(&dev->lock);
  1090. dev->driver->disconnect(&dev->gadget);
  1091. spin_lock(&dev->lock);
  1092. }
  1093. pch_udc_set_disconnect(dev);
  1094. }
  1095. return 0;
  1096. }
  1097. /**
  1098. * pch_udc_pcd_vbus_session() - This API is used by a driver for an external
  1099. * transceiver (or GPIO) that
  1100. * detects a VBUS power session starting/ending
  1101. * @gadget: Reference to the gadget driver
  1102. * @is_active: specifies whether the session is starting or ending
  1103. *
  1104. * Return codes:
  1105. * 0: Success
  1106. * -EINVAL: If the gadget passed is NULL
  1107. */
  1108. static int pch_udc_pcd_vbus_session(struct usb_gadget *gadget, int is_active)
  1109. {
  1110. struct pch_udc_dev *dev;
  1111. if (!gadget)
  1112. return -EINVAL;
  1113. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1114. pch_udc_vbus_session(dev, is_active);
  1115. return 0;
  1116. }
  1117. /**
  1118. * pch_udc_pcd_vbus_draw() - This API is used by gadget drivers during
  1119. * SET_CONFIGURATION calls to
  1120. * specify how much power the device can consume
  1121. * @gadget: Reference to the gadget driver
  1122. * @mA: specifies the current limit in 2mA unit
  1123. *
  1124. * Return codes:
  1125. * -EINVAL: If the gadget passed is NULL
  1126. * -EOPNOTSUPP:
  1127. */
  1128. static int pch_udc_pcd_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
  1129. {
  1130. return -EOPNOTSUPP;
  1131. }
  1132. static int pch_udc_start(struct usb_gadget *g,
  1133. struct usb_gadget_driver *driver);
  1134. static int pch_udc_stop(struct usb_gadget *g,
  1135. struct usb_gadget_driver *driver);
  1136. static const struct usb_gadget_ops pch_udc_ops = {
  1137. .get_frame = pch_udc_pcd_get_frame,
  1138. .wakeup = pch_udc_pcd_wakeup,
  1139. .set_selfpowered = pch_udc_pcd_selfpowered,
  1140. .pullup = pch_udc_pcd_pullup,
  1141. .vbus_session = pch_udc_pcd_vbus_session,
  1142. .vbus_draw = pch_udc_pcd_vbus_draw,
  1143. .udc_start = pch_udc_start,
  1144. .udc_stop = pch_udc_stop,
  1145. };
  1146. /**
  1147. * pch_vbus_gpio_get_value() - This API gets value of GPIO port as VBUS status.
  1148. * @dev: Reference to the driver structure
  1149. *
  1150. * Return value:
  1151. * 1: VBUS is high
  1152. * 0: VBUS is low
  1153. * -1: It is not enable to detect VBUS using GPIO
  1154. */
  1155. static int pch_vbus_gpio_get_value(struct pch_udc_dev *dev)
  1156. {
  1157. int vbus = 0;
  1158. if (dev->vbus_gpio.port)
  1159. vbus = gpio_get_value(dev->vbus_gpio.port) ? 1 : 0;
  1160. else
  1161. vbus = -1;
  1162. return vbus;
  1163. }
  1164. /**
  1165. * pch_vbus_gpio_work_fall() - This API keeps watch on VBUS becoming Low.
  1166. * If VBUS is Low, disconnect is processed
  1167. * @irq_work: Structure for WorkQueue
  1168. *
  1169. */
  1170. static void pch_vbus_gpio_work_fall(struct work_struct *irq_work)
  1171. {
  1172. struct pch_vbus_gpio_data *vbus_gpio = container_of(irq_work,
  1173. struct pch_vbus_gpio_data, irq_work_fall);
  1174. struct pch_udc_dev *dev =
  1175. container_of(vbus_gpio, struct pch_udc_dev, vbus_gpio);
  1176. int vbus_saved = -1;
  1177. int vbus;
  1178. int count;
  1179. if (!dev->vbus_gpio.port)
  1180. return;
  1181. for (count = 0; count < (PCH_VBUS_PERIOD / PCH_VBUS_INTERVAL);
  1182. count++) {
  1183. vbus = pch_vbus_gpio_get_value(dev);
  1184. if ((vbus_saved == vbus) && (vbus == 0)) {
  1185. dev_dbg(&dev->pdev->dev, "VBUS fell");
  1186. if (dev->driver
  1187. && dev->driver->disconnect) {
  1188. dev->driver->disconnect(
  1189. &dev->gadget);
  1190. }
  1191. if (dev->vbus_gpio.intr)
  1192. pch_udc_init(dev);
  1193. else
  1194. pch_udc_reconnect(dev);
  1195. return;
  1196. }
  1197. vbus_saved = vbus;
  1198. mdelay(PCH_VBUS_INTERVAL);
  1199. }
  1200. }
  1201. /**
  1202. * pch_vbus_gpio_work_rise() - This API checks VBUS is High.
  1203. * If VBUS is High, connect is processed
  1204. * @irq_work: Structure for WorkQueue
  1205. *
  1206. */
  1207. static void pch_vbus_gpio_work_rise(struct work_struct *irq_work)
  1208. {
  1209. struct pch_vbus_gpio_data *vbus_gpio = container_of(irq_work,
  1210. struct pch_vbus_gpio_data, irq_work_rise);
  1211. struct pch_udc_dev *dev =
  1212. container_of(vbus_gpio, struct pch_udc_dev, vbus_gpio);
  1213. int vbus;
  1214. if (!dev->vbus_gpio.port)
  1215. return;
  1216. mdelay(PCH_VBUS_INTERVAL);
  1217. vbus = pch_vbus_gpio_get_value(dev);
  1218. if (vbus == 1) {
  1219. dev_dbg(&dev->pdev->dev, "VBUS rose");
  1220. pch_udc_reconnect(dev);
  1221. return;
  1222. }
  1223. }
  1224. /**
  1225. * pch_vbus_gpio_irq() - IRQ handler for GPIO intrerrupt for changing VBUS
  1226. * @irq: Interrupt request number
  1227. * @dev: Reference to the device structure
  1228. *
  1229. * Return codes:
  1230. * 0: Success
  1231. * -EINVAL: GPIO port is invalid or can't be initialized.
  1232. */
  1233. static irqreturn_t pch_vbus_gpio_irq(int irq, void *data)
  1234. {
  1235. struct pch_udc_dev *dev = (struct pch_udc_dev *)data;
  1236. if (!dev->vbus_gpio.port || !dev->vbus_gpio.intr)
  1237. return IRQ_NONE;
  1238. if (pch_vbus_gpio_get_value(dev))
  1239. schedule_work(&dev->vbus_gpio.irq_work_rise);
  1240. else
  1241. schedule_work(&dev->vbus_gpio.irq_work_fall);
  1242. return IRQ_HANDLED;
  1243. }
  1244. /**
  1245. * pch_vbus_gpio_init() - This API initializes GPIO port detecting VBUS.
  1246. * @dev: Reference to the driver structure
  1247. * @vbus_gpio Number of GPIO port to detect gpio
  1248. *
  1249. * Return codes:
  1250. * 0: Success
  1251. * -EINVAL: GPIO port is invalid or can't be initialized.
  1252. */
  1253. static int pch_vbus_gpio_init(struct pch_udc_dev *dev, int vbus_gpio_port)
  1254. {
  1255. int err;
  1256. int irq_num = 0;
  1257. dev->vbus_gpio.port = 0;
  1258. dev->vbus_gpio.intr = 0;
  1259. if (vbus_gpio_port <= -1)
  1260. return -EINVAL;
  1261. err = gpio_is_valid(vbus_gpio_port);
  1262. if (!err) {
  1263. pr_err("%s: gpio port %d is invalid\n",
  1264. __func__, vbus_gpio_port);
  1265. return -EINVAL;
  1266. }
  1267. err = gpio_request(vbus_gpio_port, "pch_vbus");
  1268. if (err) {
  1269. pr_err("%s: can't request gpio port %d, err: %d\n",
  1270. __func__, vbus_gpio_port, err);
  1271. return -EINVAL;
  1272. }
  1273. dev->vbus_gpio.port = vbus_gpio_port;
  1274. gpio_direction_input(vbus_gpio_port);
  1275. INIT_WORK(&dev->vbus_gpio.irq_work_fall, pch_vbus_gpio_work_fall);
  1276. irq_num = gpio_to_irq(vbus_gpio_port);
  1277. if (irq_num > 0) {
  1278. irq_set_irq_type(irq_num, IRQ_TYPE_EDGE_BOTH);
  1279. err = request_irq(irq_num, pch_vbus_gpio_irq, 0,
  1280. "vbus_detect", dev);
  1281. if (!err) {
  1282. dev->vbus_gpio.intr = irq_num;
  1283. INIT_WORK(&dev->vbus_gpio.irq_work_rise,
  1284. pch_vbus_gpio_work_rise);
  1285. } else {
  1286. pr_err("%s: can't request irq %d, err: %d\n",
  1287. __func__, irq_num, err);
  1288. }
  1289. }
  1290. return 0;
  1291. }
  1292. /**
  1293. * pch_vbus_gpio_free() - This API frees resources of GPIO port
  1294. * @dev: Reference to the driver structure
  1295. */
  1296. static void pch_vbus_gpio_free(struct pch_udc_dev *dev)
  1297. {
  1298. if (dev->vbus_gpio.intr)
  1299. free_irq(dev->vbus_gpio.intr, dev);
  1300. if (dev->vbus_gpio.port)
  1301. gpio_free(dev->vbus_gpio.port);
  1302. }
  1303. /**
  1304. * complete_req() - This API is invoked from the driver when processing
  1305. * of a request is complete
  1306. * @ep: Reference to the endpoint structure
  1307. * @req: Reference to the request structure
  1308. * @status: Indicates the success/failure of completion
  1309. */
  1310. static void complete_req(struct pch_udc_ep *ep, struct pch_udc_request *req,
  1311. int status)
  1312. {
  1313. struct pch_udc_dev *dev;
  1314. unsigned halted = ep->halted;
  1315. list_del_init(&req->queue);
  1316. /* set new status if pending */
  1317. if (req->req.status == -EINPROGRESS)
  1318. req->req.status = status;
  1319. else
  1320. status = req->req.status;
  1321. dev = ep->dev;
  1322. if (req->dma_mapped) {
  1323. if (req->dma == DMA_ADDR_INVALID) {
  1324. if (ep->in)
  1325. dma_unmap_single(&dev->pdev->dev, req->req.dma,
  1326. req->req.length,
  1327. DMA_TO_DEVICE);
  1328. else
  1329. dma_unmap_single(&dev->pdev->dev, req->req.dma,
  1330. req->req.length,
  1331. DMA_FROM_DEVICE);
  1332. req->req.dma = DMA_ADDR_INVALID;
  1333. } else {
  1334. if (ep->in)
  1335. dma_unmap_single(&dev->pdev->dev, req->dma,
  1336. req->req.length,
  1337. DMA_TO_DEVICE);
  1338. else {
  1339. dma_unmap_single(&dev->pdev->dev, req->dma,
  1340. req->req.length,
  1341. DMA_FROM_DEVICE);
  1342. memcpy(req->req.buf, req->buf, req->req.length);
  1343. }
  1344. kfree(req->buf);
  1345. req->dma = DMA_ADDR_INVALID;
  1346. }
  1347. req->dma_mapped = 0;
  1348. }
  1349. ep->halted = 1;
  1350. spin_unlock(&dev->lock);
  1351. if (!ep->in)
  1352. pch_udc_ep_clear_rrdy(ep);
  1353. req->req.complete(&ep->ep, &req->req);
  1354. spin_lock(&dev->lock);
  1355. ep->halted = halted;
  1356. }
  1357. /**
  1358. * empty_req_queue() - This API empties the request queue of an endpoint
  1359. * @ep: Reference to the endpoint structure
  1360. */
  1361. static void empty_req_queue(struct pch_udc_ep *ep)
  1362. {
  1363. struct pch_udc_request *req;
  1364. ep->halted = 1;
  1365. while (!list_empty(&ep->queue)) {
  1366. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1367. complete_req(ep, req, -ESHUTDOWN); /* Remove from list */
  1368. }
  1369. }
  1370. /**
  1371. * pch_udc_free_dma_chain() - This function frees the DMA chain created
  1372. * for the request
  1373. * @dev Reference to the driver structure
  1374. * @req Reference to the request to be freed
  1375. *
  1376. * Return codes:
  1377. * 0: Success
  1378. */
  1379. static void pch_udc_free_dma_chain(struct pch_udc_dev *dev,
  1380. struct pch_udc_request *req)
  1381. {
  1382. struct pch_udc_data_dma_desc *td = req->td_data;
  1383. unsigned i = req->chain_len;
  1384. dma_addr_t addr2;
  1385. dma_addr_t addr = (dma_addr_t)td->next;
  1386. td->next = 0x00;
  1387. for (; i > 1; --i) {
  1388. /* do not free first desc., will be done by free for request */
  1389. td = phys_to_virt(addr);
  1390. addr2 = (dma_addr_t)td->next;
  1391. pci_pool_free(dev->data_requests, td, addr);
  1392. td->next = 0x00;
  1393. addr = addr2;
  1394. }
  1395. req->chain_len = 1;
  1396. }
  1397. /**
  1398. * pch_udc_create_dma_chain() - This function creates or reinitializes
  1399. * a DMA chain
  1400. * @ep: Reference to the endpoint structure
  1401. * @req: Reference to the request
  1402. * @buf_len: The buffer length
  1403. * @gfp_flags: Flags to be used while mapping the data buffer
  1404. *
  1405. * Return codes:
  1406. * 0: success,
  1407. * -ENOMEM: pci_pool_alloc invocation fails
  1408. */
  1409. static int pch_udc_create_dma_chain(struct pch_udc_ep *ep,
  1410. struct pch_udc_request *req,
  1411. unsigned long buf_len,
  1412. gfp_t gfp_flags)
  1413. {
  1414. struct pch_udc_data_dma_desc *td = req->td_data, *last;
  1415. unsigned long bytes = req->req.length, i = 0;
  1416. dma_addr_t dma_addr;
  1417. unsigned len = 1;
  1418. if (req->chain_len > 1)
  1419. pch_udc_free_dma_chain(ep->dev, req);
  1420. if (req->dma == DMA_ADDR_INVALID)
  1421. td->dataptr = req->req.dma;
  1422. else
  1423. td->dataptr = req->dma;
  1424. td->status = PCH_UDC_BS_HST_BSY;
  1425. for (; ; bytes -= buf_len, ++len) {
  1426. td->status = PCH_UDC_BS_HST_BSY | min(buf_len, bytes);
  1427. if (bytes <= buf_len)
  1428. break;
  1429. last = td;
  1430. td = pci_pool_alloc(ep->dev->data_requests, gfp_flags,
  1431. &dma_addr);
  1432. if (!td)
  1433. goto nomem;
  1434. i += buf_len;
  1435. td->dataptr = req->td_data->dataptr + i;
  1436. last->next = dma_addr;
  1437. }
  1438. req->td_data_last = td;
  1439. td->status |= PCH_UDC_DMA_LAST;
  1440. td->next = req->td_data_phys;
  1441. req->chain_len = len;
  1442. return 0;
  1443. nomem:
  1444. if (len > 1) {
  1445. req->chain_len = len;
  1446. pch_udc_free_dma_chain(ep->dev, req);
  1447. }
  1448. req->chain_len = 1;
  1449. return -ENOMEM;
  1450. }
  1451. /**
  1452. * prepare_dma() - This function creates and initializes the DMA chain
  1453. * for the request
  1454. * @ep: Reference to the endpoint structure
  1455. * @req: Reference to the request
  1456. * @gfp: Flag to be used while mapping the data buffer
  1457. *
  1458. * Return codes:
  1459. * 0: Success
  1460. * Other 0: linux error number on failure
  1461. */
  1462. static int prepare_dma(struct pch_udc_ep *ep, struct pch_udc_request *req,
  1463. gfp_t gfp)
  1464. {
  1465. int retval;
  1466. /* Allocate and create a DMA chain */
  1467. retval = pch_udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
  1468. if (retval) {
  1469. pr_err("%s: could not create DMA chain:%d\n", __func__, retval);
  1470. return retval;
  1471. }
  1472. if (ep->in)
  1473. req->td_data->status = (req->td_data->status &
  1474. ~PCH_UDC_BUFF_STS) | PCH_UDC_BS_HST_RDY;
  1475. return 0;
  1476. }
  1477. /**
  1478. * process_zlp() - This function process zero length packets
  1479. * from the gadget driver
  1480. * @ep: Reference to the endpoint structure
  1481. * @req: Reference to the request
  1482. */
  1483. static void process_zlp(struct pch_udc_ep *ep, struct pch_udc_request *req)
  1484. {
  1485. struct pch_udc_dev *dev = ep->dev;
  1486. /* IN zlp's are handled by hardware */
  1487. complete_req(ep, req, 0);
  1488. /* if set_config or set_intf is waiting for ack by zlp
  1489. * then set CSR_DONE
  1490. */
  1491. if (dev->set_cfg_not_acked) {
  1492. pch_udc_set_csr_done(dev);
  1493. dev->set_cfg_not_acked = 0;
  1494. }
  1495. /* setup command is ACK'ed now by zlp */
  1496. if (!dev->stall && dev->waiting_zlp_ack) {
  1497. pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
  1498. dev->waiting_zlp_ack = 0;
  1499. }
  1500. }
  1501. /**
  1502. * pch_udc_start_rxrequest() - This function starts the receive requirement.
  1503. * @ep: Reference to the endpoint structure
  1504. * @req: Reference to the request structure
  1505. */
  1506. static void pch_udc_start_rxrequest(struct pch_udc_ep *ep,
  1507. struct pch_udc_request *req)
  1508. {
  1509. struct pch_udc_data_dma_desc *td_data;
  1510. pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
  1511. td_data = req->td_data;
  1512. /* Set the status bits for all descriptors */
  1513. while (1) {
  1514. td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
  1515. PCH_UDC_BS_HST_RDY;
  1516. if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
  1517. break;
  1518. td_data = phys_to_virt(td_data->next);
  1519. }
  1520. /* Write the descriptor pointer */
  1521. pch_udc_ep_set_ddptr(ep, req->td_data_phys);
  1522. req->dma_going = 1;
  1523. pch_udc_enable_ep_interrupts(ep->dev, UDC_EPINT_OUT_EP0 << ep->num);
  1524. pch_udc_set_dma(ep->dev, DMA_DIR_RX);
  1525. pch_udc_ep_clear_nak(ep);
  1526. pch_udc_ep_set_rrdy(ep);
  1527. }
  1528. /**
  1529. * pch_udc_pcd_ep_enable() - This API enables the endpoint. It is called
  1530. * from gadget driver
  1531. * @usbep: Reference to the USB endpoint structure
  1532. * @desc: Reference to the USB endpoint descriptor structure
  1533. *
  1534. * Return codes:
  1535. * 0: Success
  1536. * -EINVAL:
  1537. * -ESHUTDOWN:
  1538. */
  1539. static int pch_udc_pcd_ep_enable(struct usb_ep *usbep,
  1540. const struct usb_endpoint_descriptor *desc)
  1541. {
  1542. struct pch_udc_ep *ep;
  1543. struct pch_udc_dev *dev;
  1544. unsigned long iflags;
  1545. if (!usbep || (usbep->name == ep0_string) || !desc ||
  1546. (desc->bDescriptorType != USB_DT_ENDPOINT) || !desc->wMaxPacketSize)
  1547. return -EINVAL;
  1548. ep = container_of(usbep, struct pch_udc_ep, ep);
  1549. dev = ep->dev;
  1550. if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
  1551. return -ESHUTDOWN;
  1552. spin_lock_irqsave(&dev->lock, iflags);
  1553. ep->ep.desc = desc;
  1554. ep->halted = 0;
  1555. pch_udc_ep_enable(ep, &ep->dev->cfg_data, desc);
  1556. ep->ep.maxpacket = usb_endpoint_maxp(desc);
  1557. pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1558. spin_unlock_irqrestore(&dev->lock, iflags);
  1559. return 0;
  1560. }
  1561. /**
  1562. * pch_udc_pcd_ep_disable() - This API disables endpoint and is called
  1563. * from gadget driver
  1564. * @usbep Reference to the USB endpoint structure
  1565. *
  1566. * Return codes:
  1567. * 0: Success
  1568. * -EINVAL:
  1569. */
  1570. static int pch_udc_pcd_ep_disable(struct usb_ep *usbep)
  1571. {
  1572. struct pch_udc_ep *ep;
  1573. struct pch_udc_dev *dev;
  1574. unsigned long iflags;
  1575. if (!usbep)
  1576. return -EINVAL;
  1577. ep = container_of(usbep, struct pch_udc_ep, ep);
  1578. dev = ep->dev;
  1579. if ((usbep->name == ep0_string) || !ep->ep.desc)
  1580. return -EINVAL;
  1581. spin_lock_irqsave(&ep->dev->lock, iflags);
  1582. empty_req_queue(ep);
  1583. ep->halted = 1;
  1584. pch_udc_ep_disable(ep);
  1585. pch_udc_disable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1586. ep->ep.desc = NULL;
  1587. INIT_LIST_HEAD(&ep->queue);
  1588. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  1589. return 0;
  1590. }
  1591. /**
  1592. * pch_udc_alloc_request() - This function allocates request structure.
  1593. * It is called by gadget driver
  1594. * @usbep: Reference to the USB endpoint structure
  1595. * @gfp: Flag to be used while allocating memory
  1596. *
  1597. * Return codes:
  1598. * NULL: Failure
  1599. * Allocated address: Success
  1600. */
  1601. static struct usb_request *pch_udc_alloc_request(struct usb_ep *usbep,
  1602. gfp_t gfp)
  1603. {
  1604. struct pch_udc_request *req;
  1605. struct pch_udc_ep *ep;
  1606. struct pch_udc_data_dma_desc *dma_desc;
  1607. struct pch_udc_dev *dev;
  1608. if (!usbep)
  1609. return NULL;
  1610. ep = container_of(usbep, struct pch_udc_ep, ep);
  1611. dev = ep->dev;
  1612. req = kzalloc(sizeof *req, gfp);
  1613. if (!req)
  1614. return NULL;
  1615. req->req.dma = DMA_ADDR_INVALID;
  1616. req->dma = DMA_ADDR_INVALID;
  1617. INIT_LIST_HEAD(&req->queue);
  1618. if (!ep->dev->dma_addr)
  1619. return &req->req;
  1620. /* ep0 in requests are allocated from data pool here */
  1621. dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
  1622. &req->td_data_phys);
  1623. if (NULL == dma_desc) {
  1624. kfree(req);
  1625. return NULL;
  1626. }
  1627. /* prevent from using desc. - set HOST BUSY */
  1628. dma_desc->status |= PCH_UDC_BS_HST_BSY;
  1629. dma_desc->dataptr = __constant_cpu_to_le32(DMA_ADDR_INVALID);
  1630. req->td_data = dma_desc;
  1631. req->td_data_last = dma_desc;
  1632. req->chain_len = 1;
  1633. return &req->req;
  1634. }
  1635. /**
  1636. * pch_udc_free_request() - This function frees request structure.
  1637. * It is called by gadget driver
  1638. * @usbep: Reference to the USB endpoint structure
  1639. * @usbreq: Reference to the USB request
  1640. */
  1641. static void pch_udc_free_request(struct usb_ep *usbep,
  1642. struct usb_request *usbreq)
  1643. {
  1644. struct pch_udc_ep *ep;
  1645. struct pch_udc_request *req;
  1646. struct pch_udc_dev *dev;
  1647. if (!usbep || !usbreq)
  1648. return;
  1649. ep = container_of(usbep, struct pch_udc_ep, ep);
  1650. req = container_of(usbreq, struct pch_udc_request, req);
  1651. dev = ep->dev;
  1652. if (!list_empty(&req->queue))
  1653. dev_err(&dev->pdev->dev, "%s: %s req=0x%p queue not empty\n",
  1654. __func__, usbep->name, req);
  1655. if (req->td_data != NULL) {
  1656. if (req->chain_len > 1)
  1657. pch_udc_free_dma_chain(ep->dev, req);
  1658. pci_pool_free(ep->dev->data_requests, req->td_data,
  1659. req->td_data_phys);
  1660. }
  1661. kfree(req);
  1662. }
  1663. /**
  1664. * pch_udc_pcd_queue() - This function queues a request packet. It is called
  1665. * by gadget driver
  1666. * @usbep: Reference to the USB endpoint structure
  1667. * @usbreq: Reference to the USB request
  1668. * @gfp: Flag to be used while mapping the data buffer
  1669. *
  1670. * Return codes:
  1671. * 0: Success
  1672. * linux error number: Failure
  1673. */
  1674. static int pch_udc_pcd_queue(struct usb_ep *usbep, struct usb_request *usbreq,
  1675. gfp_t gfp)
  1676. {
  1677. int retval = 0;
  1678. struct pch_udc_ep *ep;
  1679. struct pch_udc_dev *dev;
  1680. struct pch_udc_request *req;
  1681. unsigned long iflags;
  1682. if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf)
  1683. return -EINVAL;
  1684. ep = container_of(usbep, struct pch_udc_ep, ep);
  1685. dev = ep->dev;
  1686. if (!ep->ep.desc && ep->num)
  1687. return -EINVAL;
  1688. req = container_of(usbreq, struct pch_udc_request, req);
  1689. if (!list_empty(&req->queue))
  1690. return -EINVAL;
  1691. if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
  1692. return -ESHUTDOWN;
  1693. spin_lock_irqsave(&dev->lock, iflags);
  1694. /* map the buffer for dma */
  1695. if (usbreq->length &&
  1696. ((usbreq->dma == DMA_ADDR_INVALID) || !usbreq->dma)) {
  1697. if (!((unsigned long)(usbreq->buf) & 0x03)) {
  1698. if (ep->in)
  1699. usbreq->dma = dma_map_single(&dev->pdev->dev,
  1700. usbreq->buf,
  1701. usbreq->length,
  1702. DMA_TO_DEVICE);
  1703. else
  1704. usbreq->dma = dma_map_single(&dev->pdev->dev,
  1705. usbreq->buf,
  1706. usbreq->length,
  1707. DMA_FROM_DEVICE);
  1708. } else {
  1709. req->buf = kzalloc(usbreq->length, GFP_ATOMIC);
  1710. if (!req->buf) {
  1711. retval = -ENOMEM;
  1712. goto probe_end;
  1713. }
  1714. if (ep->in) {
  1715. memcpy(req->buf, usbreq->buf, usbreq->length);
  1716. req->dma = dma_map_single(&dev->pdev->dev,
  1717. req->buf,
  1718. usbreq->length,
  1719. DMA_TO_DEVICE);
  1720. } else
  1721. req->dma = dma_map_single(&dev->pdev->dev,
  1722. req->buf,
  1723. usbreq->length,
  1724. DMA_FROM_DEVICE);
  1725. }
  1726. req->dma_mapped = 1;
  1727. }
  1728. if (usbreq->length > 0) {
  1729. retval = prepare_dma(ep, req, GFP_ATOMIC);
  1730. if (retval)
  1731. goto probe_end;
  1732. }
  1733. usbreq->actual = 0;
  1734. usbreq->status = -EINPROGRESS;
  1735. req->dma_done = 0;
  1736. if (list_empty(&ep->queue) && !ep->halted) {
  1737. /* no pending transfer, so start this req */
  1738. if (!usbreq->length) {
  1739. process_zlp(ep, req);
  1740. retval = 0;
  1741. goto probe_end;
  1742. }
  1743. if (!ep->in) {
  1744. pch_udc_start_rxrequest(ep, req);
  1745. } else {
  1746. /*
  1747. * For IN trfr the descriptors will be programmed and
  1748. * P bit will be set when
  1749. * we get an IN token
  1750. */
  1751. pch_udc_wait_ep_stall(ep);
  1752. pch_udc_ep_clear_nak(ep);
  1753. pch_udc_enable_ep_interrupts(ep->dev, (1 << ep->num));
  1754. }
  1755. }
  1756. /* Now add this request to the ep's pending requests */
  1757. if (req != NULL)
  1758. list_add_tail(&req->queue, &ep->queue);
  1759. probe_end:
  1760. spin_unlock_irqrestore(&dev->lock, iflags);
  1761. return retval;
  1762. }
  1763. /**
  1764. * pch_udc_pcd_dequeue() - This function de-queues a request packet.
  1765. * It is called by gadget driver
  1766. * @usbep: Reference to the USB endpoint structure
  1767. * @usbreq: Reference to the USB request
  1768. *
  1769. * Return codes:
  1770. * 0: Success
  1771. * linux error number: Failure
  1772. */
  1773. static int pch_udc_pcd_dequeue(struct usb_ep *usbep,
  1774. struct usb_request *usbreq)
  1775. {
  1776. struct pch_udc_ep *ep;
  1777. struct pch_udc_request *req;
  1778. struct pch_udc_dev *dev;
  1779. unsigned long flags;
  1780. int ret = -EINVAL;
  1781. ep = container_of(usbep, struct pch_udc_ep, ep);
  1782. dev = ep->dev;
  1783. if (!usbep || !usbreq || (!ep->ep.desc && ep->num))
  1784. return ret;
  1785. req = container_of(usbreq, struct pch_udc_request, req);
  1786. spin_lock_irqsave(&ep->dev->lock, flags);
  1787. /* make sure it's still queued on this endpoint */
  1788. list_for_each_entry(req, &ep->queue, queue) {
  1789. if (&req->req == usbreq) {
  1790. pch_udc_ep_set_nak(ep);
  1791. if (!list_empty(&req->queue))
  1792. complete_req(ep, req, -ECONNRESET);
  1793. ret = 0;
  1794. break;
  1795. }
  1796. }
  1797. spin_unlock_irqrestore(&ep->dev->lock, flags);
  1798. return ret;
  1799. }
  1800. /**
  1801. * pch_udc_pcd_set_halt() - This function Sets or clear the endpoint halt
  1802. * feature
  1803. * @usbep: Reference to the USB endpoint structure
  1804. * @halt: Specifies whether to set or clear the feature
  1805. *
  1806. * Return codes:
  1807. * 0: Success
  1808. * linux error number: Failure
  1809. */
  1810. static int pch_udc_pcd_set_halt(struct usb_ep *usbep, int halt)
  1811. {
  1812. struct pch_udc_ep *ep;
  1813. struct pch_udc_dev *dev;
  1814. unsigned long iflags;
  1815. int ret;
  1816. if (!usbep)
  1817. return -EINVAL;
  1818. ep = container_of(usbep, struct pch_udc_ep, ep);
  1819. dev = ep->dev;
  1820. if (!ep->ep.desc && !ep->num)
  1821. return -EINVAL;
  1822. if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
  1823. return -ESHUTDOWN;
  1824. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1825. if (list_empty(&ep->queue)) {
  1826. if (halt) {
  1827. if (ep->num == PCH_UDC_EP0)
  1828. ep->dev->stall = 1;
  1829. pch_udc_ep_set_stall(ep);
  1830. pch_udc_enable_ep_interrupts(ep->dev,
  1831. PCH_UDC_EPINT(ep->in,
  1832. ep->num));
  1833. } else {
  1834. pch_udc_ep_clear_stall(ep);
  1835. }
  1836. ret = 0;
  1837. } else {
  1838. ret = -EAGAIN;
  1839. }
  1840. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1841. return ret;
  1842. }
  1843. /**
  1844. * pch_udc_pcd_set_wedge() - This function Sets or clear the endpoint
  1845. * halt feature
  1846. * @usbep: Reference to the USB endpoint structure
  1847. * @halt: Specifies whether to set or clear the feature
  1848. *
  1849. * Return codes:
  1850. * 0: Success
  1851. * linux error number: Failure
  1852. */
  1853. static int pch_udc_pcd_set_wedge(struct usb_ep *usbep)
  1854. {
  1855. struct pch_udc_ep *ep;
  1856. struct pch_udc_dev *dev;
  1857. unsigned long iflags;
  1858. int ret;
  1859. if (!usbep)
  1860. return -EINVAL;
  1861. ep = container_of(usbep, struct pch_udc_ep, ep);
  1862. dev = ep->dev;
  1863. if (!ep->ep.desc && !ep->num)
  1864. return -EINVAL;
  1865. if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
  1866. return -ESHUTDOWN;
  1867. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1868. if (!list_empty(&ep->queue)) {
  1869. ret = -EAGAIN;
  1870. } else {
  1871. if (ep->num == PCH_UDC_EP0)
  1872. ep->dev->stall = 1;
  1873. pch_udc_ep_set_stall(ep);
  1874. pch_udc_enable_ep_interrupts(ep->dev,
  1875. PCH_UDC_EPINT(ep->in, ep->num));
  1876. ep->dev->prot_stall = 1;
  1877. ret = 0;
  1878. }
  1879. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1880. return ret;
  1881. }
  1882. /**
  1883. * pch_udc_pcd_fifo_flush() - This function Flush the FIFO of specified endpoint
  1884. * @usbep: Reference to the USB endpoint structure
  1885. */
  1886. static void pch_udc_pcd_fifo_flush(struct usb_ep *usbep)
  1887. {
  1888. struct pch_udc_ep *ep;
  1889. if (!usbep)
  1890. return;
  1891. ep = container_of(usbep, struct pch_udc_ep, ep);
  1892. if (ep->ep.desc || !ep->num)
  1893. pch_udc_ep_fifo_flush(ep, ep->in);
  1894. }
  1895. static const struct usb_ep_ops pch_udc_ep_ops = {
  1896. .enable = pch_udc_pcd_ep_enable,
  1897. .disable = pch_udc_pcd_ep_disable,
  1898. .alloc_request = pch_udc_alloc_request,
  1899. .free_request = pch_udc_free_request,
  1900. .queue = pch_udc_pcd_queue,
  1901. .dequeue = pch_udc_pcd_dequeue,
  1902. .set_halt = pch_udc_pcd_set_halt,
  1903. .set_wedge = pch_udc_pcd_set_wedge,
  1904. .fifo_status = NULL,
  1905. .fifo_flush = pch_udc_pcd_fifo_flush,
  1906. };
  1907. /**
  1908. * pch_udc_init_setup_buff() - This function initializes the SETUP buffer
  1909. * @td_stp: Reference to the SETP buffer structure
  1910. */
  1911. static void pch_udc_init_setup_buff(struct pch_udc_stp_dma_desc *td_stp)
  1912. {
  1913. static u32 pky_marker;
  1914. if (!td_stp)
  1915. return;
  1916. td_stp->reserved = ++pky_marker;
  1917. memset(&td_stp->request, 0xFF, sizeof td_stp->request);
  1918. td_stp->status = PCH_UDC_BS_HST_RDY;
  1919. }
  1920. /**
  1921. * pch_udc_start_next_txrequest() - This function starts
  1922. * the next transmission requirement
  1923. * @ep: Reference to the endpoint structure
  1924. */
  1925. static void pch_udc_start_next_txrequest(struct pch_udc_ep *ep)
  1926. {
  1927. struct pch_udc_request *req;
  1928. struct pch_udc_data_dma_desc *td_data;
  1929. if (pch_udc_read_ep_control(ep) & UDC_EPCTL_P)
  1930. return;
  1931. if (list_empty(&ep->queue))
  1932. return;
  1933. /* next request */
  1934. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1935. if (req->dma_going)
  1936. return;
  1937. if (!req->td_data)
  1938. return;
  1939. pch_udc_wait_ep_stall(ep);
  1940. req->dma_going = 1;
  1941. pch_udc_ep_set_ddptr(ep, 0);
  1942. td_data = req->td_data;
  1943. while (1) {
  1944. td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
  1945. PCH_UDC_BS_HST_RDY;
  1946. if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
  1947. break;
  1948. td_data = phys_to_virt(td_data->next);
  1949. }
  1950. pch_udc_ep_set_ddptr(ep, req->td_data_phys);
  1951. pch_udc_set_dma(ep->dev, DMA_DIR_TX);
  1952. pch_udc_ep_set_pd(ep);
  1953. pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1954. pch_udc_ep_clear_nak(ep);
  1955. }
  1956. /**
  1957. * pch_udc_complete_transfer() - This function completes a transfer
  1958. * @ep: Reference to the endpoint structure
  1959. */
  1960. static void pch_udc_complete_transfer(struct pch_udc_ep *ep)
  1961. {
  1962. struct pch_udc_request *req;
  1963. struct pch_udc_dev *dev = ep->dev;
  1964. if (list_empty(&ep->queue))
  1965. return;
  1966. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1967. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
  1968. PCH_UDC_BS_DMA_DONE)
  1969. return;
  1970. if ((req->td_data_last->status & PCH_UDC_RXTX_STS) !=
  1971. PCH_UDC_RTS_SUCC) {
  1972. dev_err(&dev->pdev->dev, "Invalid RXTX status (0x%08x) "
  1973. "epstatus=0x%08x\n",
  1974. (req->td_data_last->status & PCH_UDC_RXTX_STS),
  1975. (int)(ep->epsts));
  1976. return;
  1977. }
  1978. req->req.actual = req->req.length;
  1979. req->td_data_last->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
  1980. req->td_data->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
  1981. complete_req(ep, req, 0);
  1982. req->dma_going = 0;
  1983. if (!list_empty(&ep->queue)) {
  1984. pch_udc_wait_ep_stall(ep);
  1985. pch_udc_ep_clear_nak(ep);
  1986. pch_udc_enable_ep_interrupts(ep->dev,
  1987. PCH_UDC_EPINT(ep->in, ep->num));
  1988. } else {
  1989. pch_udc_disable_ep_interrupts(ep->dev,
  1990. PCH_UDC_EPINT(ep->in, ep->num));
  1991. }
  1992. }
  1993. /**
  1994. * pch_udc_complete_receiver() - This function completes a receiver
  1995. * @ep: Reference to the endpoint structure
  1996. */
  1997. static void pch_udc_complete_receiver(struct pch_udc_ep *ep)
  1998. {
  1999. struct pch_udc_request *req;
  2000. struct pch_udc_dev *dev = ep->dev;
  2001. unsigned int count;
  2002. struct pch_udc_data_dma_desc *td;
  2003. dma_addr_t addr;
  2004. if (list_empty(&ep->queue))
  2005. return;
  2006. /* next request */
  2007. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  2008. pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
  2009. pch_udc_ep_set_ddptr(ep, 0);
  2010. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) ==
  2011. PCH_UDC_BS_DMA_DONE)
  2012. td = req->td_data_last;
  2013. else
  2014. td = req->td_data;
  2015. while (1) {
  2016. if ((td->status & PCH_UDC_RXTX_STS) != PCH_UDC_RTS_SUCC) {
  2017. dev_err(&dev->pdev->dev, "Invalid RXTX status=0x%08x "
  2018. "epstatus=0x%08x\n",
  2019. (req->td_data->status & PCH_UDC_RXTX_STS),
  2020. (int)(ep->epsts));
  2021. return;
  2022. }
  2023. if ((td->status & PCH_UDC_BUFF_STS) == PCH_UDC_BS_DMA_DONE)
  2024. if (td->status & PCH_UDC_DMA_LAST) {
  2025. count = td->status & PCH_UDC_RXTX_BYTES;
  2026. break;
  2027. }
  2028. if (td == req->td_data_last) {
  2029. dev_err(&dev->pdev->dev, "Not complete RX descriptor");
  2030. return;
  2031. }
  2032. addr = (dma_addr_t)td->next;
  2033. td = phys_to_virt(addr);
  2034. }
  2035. /* on 64k packets the RXBYTES field is zero */
  2036. if (!count && (req->req.length == UDC_DMA_MAXPACKET))
  2037. count = UDC_DMA_MAXPACKET;
  2038. req->td_data->status |= PCH_UDC_DMA_LAST;
  2039. td->status |= PCH_UDC_BS_HST_BSY;
  2040. req->dma_going = 0;
  2041. req->req.actual = count;
  2042. complete_req(ep, req, 0);
  2043. /* If there is a new/failed requests try that now */
  2044. if (!list_empty(&ep->queue)) {
  2045. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  2046. pch_udc_start_rxrequest(ep, req);
  2047. }
  2048. }
  2049. /**
  2050. * pch_udc_svc_data_in() - This function process endpoint interrupts
  2051. * for IN endpoints
  2052. * @dev: Reference to the device structure
  2053. * @ep_num: Endpoint that generated the interrupt
  2054. */
  2055. static void pch_udc_svc_data_in(struct pch_udc_dev *dev, int ep_num)
  2056. {
  2057. u32 epsts;
  2058. struct pch_udc_ep *ep;
  2059. ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
  2060. epsts = ep->epsts;
  2061. ep->epsts = 0;
  2062. if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
  2063. UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
  2064. UDC_EPSTS_RSS | UDC_EPSTS_XFERDONE)))
  2065. return;
  2066. if ((epsts & UDC_EPSTS_BNA))
  2067. return;
  2068. if (epsts & UDC_EPSTS_HE)
  2069. return;
  2070. if (epsts & UDC_EPSTS_RSS) {
  2071. pch_udc_ep_set_stall(ep);
  2072. pch_udc_enable_ep_interrupts(ep->dev,
  2073. PCH_UDC_EPINT(ep->in, ep->num));
  2074. }
  2075. if (epsts & UDC_EPSTS_RCS) {
  2076. if (!dev->prot_stall) {
  2077. pch_udc_ep_clear_stall(ep);
  2078. } else {
  2079. pch_udc_ep_set_stall(ep);
  2080. pch_udc_enable_ep_interrupts(ep->dev,
  2081. PCH_UDC_EPINT(ep->in, ep->num));
  2082. }
  2083. }
  2084. if (epsts & UDC_EPSTS_TDC)
  2085. pch_udc_complete_transfer(ep);
  2086. /* On IN interrupt, provide data if we have any */
  2087. if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_RSS) &&
  2088. !(epsts & UDC_EPSTS_TDC) && !(epsts & UDC_EPSTS_TXEMPTY))
  2089. pch_udc_start_next_txrequest(ep);
  2090. }
  2091. /**
  2092. * pch_udc_svc_data_out() - Handles interrupts from OUT endpoint
  2093. * @dev: Reference to the device structure
  2094. * @ep_num: Endpoint that generated the interrupt
  2095. */
  2096. static void pch_udc_svc_data_out(struct pch_udc_dev *dev, int ep_num)
  2097. {
  2098. u32 epsts;
  2099. struct pch_udc_ep *ep;
  2100. struct pch_udc_request *req = NULL;
  2101. ep = &dev->ep[UDC_EPOUT_IDX(ep_num)];
  2102. epsts = ep->epsts;
  2103. ep->epsts = 0;
  2104. if ((epsts & UDC_EPSTS_BNA) && (!list_empty(&ep->queue))) {
  2105. /* next request */
  2106. req = list_entry(ep->queue.next, struct pch_udc_request,
  2107. queue);
  2108. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
  2109. PCH_UDC_BS_DMA_DONE) {
  2110. if (!req->dma_going)
  2111. pch_udc_start_rxrequest(ep, req);
  2112. return;
  2113. }
  2114. }
  2115. if (epsts & UDC_EPSTS_HE)
  2116. return;
  2117. if (epsts & UDC_EPSTS_RSS) {
  2118. pch_udc_ep_set_stall(ep);
  2119. pch_udc_enable_ep_interrupts(ep->dev,
  2120. PCH_UDC_EPINT(ep->in, ep->num));
  2121. }
  2122. if (epsts & UDC_EPSTS_RCS) {
  2123. if (!dev->prot_stall) {
  2124. pch_udc_ep_clear_stall(ep);
  2125. } else {
  2126. pch_udc_ep_set_stall(ep);
  2127. pch_udc_enable_ep_interrupts(ep->dev,
  2128. PCH_UDC_EPINT(ep->in, ep->num));
  2129. }
  2130. }
  2131. if (((epsts & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  2132. UDC_EPSTS_OUT_DATA) {
  2133. if (ep->dev->prot_stall == 1) {
  2134. pch_udc_ep_set_stall(ep);
  2135. pch_udc_enable_ep_interrupts(ep->dev,
  2136. PCH_UDC_EPINT(ep->in, ep->num));
  2137. } else {
  2138. pch_udc_complete_receiver(ep);
  2139. }
  2140. }
  2141. if (list_empty(&ep->queue))
  2142. pch_udc_set_dma(dev, DMA_DIR_RX);
  2143. }
  2144. /**
  2145. * pch_udc_svc_control_in() - Handle Control IN endpoint interrupts
  2146. * @dev: Reference to the device structure
  2147. */
  2148. static void pch_udc_svc_control_in(struct pch_udc_dev *dev)
  2149. {
  2150. u32 epsts;
  2151. struct pch_udc_ep *ep;
  2152. struct pch_udc_ep *ep_out;
  2153. ep = &dev->ep[UDC_EP0IN_IDX];
  2154. ep_out = &dev->ep[UDC_EP0OUT_IDX];
  2155. epsts = ep->epsts;
  2156. ep->epsts = 0;
  2157. if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
  2158. UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
  2159. UDC_EPSTS_XFERDONE)))
  2160. return;
  2161. if ((epsts & UDC_EPSTS_BNA))
  2162. return;
  2163. if (epsts & UDC_EPSTS_HE)
  2164. return;
  2165. if ((epsts & UDC_EPSTS_TDC) && (!dev->stall)) {
  2166. pch_udc_complete_transfer(ep);
  2167. pch_udc_clear_dma(dev, DMA_DIR_RX);
  2168. ep_out->td_data->status = (ep_out->td_data->status &
  2169. ~PCH_UDC_BUFF_STS) |
  2170. PCH_UDC_BS_HST_RDY;
  2171. pch_udc_ep_clear_nak(ep_out);
  2172. pch_udc_set_dma(dev, DMA_DIR_RX);
  2173. pch_udc_ep_set_rrdy(ep_out);
  2174. }
  2175. /* On IN interrupt, provide data if we have any */
  2176. if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_TDC) &&
  2177. !(epsts & UDC_EPSTS_TXEMPTY))
  2178. pch_udc_start_next_txrequest(ep);
  2179. }
  2180. /**
  2181. * pch_udc_svc_control_out() - Routine that handle Control
  2182. * OUT endpoint interrupts
  2183. * @dev: Reference to the device structure
  2184. */
  2185. static void pch_udc_svc_control_out(struct pch_udc_dev *dev)
  2186. {
  2187. u32 stat;
  2188. int setup_supported;
  2189. struct pch_udc_ep *ep;
  2190. ep = &dev->ep[UDC_EP0OUT_IDX];
  2191. stat = ep->epsts;
  2192. ep->epsts = 0;
  2193. /* If setup data */
  2194. if (((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  2195. UDC_EPSTS_OUT_SETUP) {
  2196. dev->stall = 0;
  2197. dev->ep[UDC_EP0IN_IDX].halted = 0;
  2198. dev->ep[UDC_EP0OUT_IDX].halted = 0;
  2199. dev->setup_data = ep->td_stp->request;
  2200. pch_udc_init_setup_buff(ep->td_stp);
  2201. pch_udc_clear_dma(dev, DMA_DIR_RX);
  2202. pch_udc_ep_fifo_flush(&(dev->ep[UDC_EP0IN_IDX]),
  2203. dev->ep[UDC_EP0IN_IDX].in);
  2204. if ((dev->setup_data.bRequestType & USB_DIR_IN))
  2205. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
  2206. else /* OUT */
  2207. dev->gadget.ep0 = &ep->ep;
  2208. spin_unlock(&dev->lock);
  2209. /* If Mass storage Reset */
  2210. if ((dev->setup_data.bRequestType == 0x21) &&
  2211. (dev->setup_data.bRequest == 0xFF))
  2212. dev->prot_stall = 0;
  2213. /* call gadget with setup data received */
  2214. setup_supported = dev->driver->setup(&dev->gadget,
  2215. &dev->setup_data);
  2216. spin_lock(&dev->lock);
  2217. if (dev->setup_data.bRequestType & USB_DIR_IN) {
  2218. ep->td_data->status = (ep->td_data->status &
  2219. ~PCH_UDC_BUFF_STS) |
  2220. PCH_UDC_BS_HST_RDY;
  2221. pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
  2222. }
  2223. /* ep0 in returns data on IN phase */
  2224. if (setup_supported >= 0 && setup_supported <
  2225. UDC_EP0IN_MAX_PKT_SIZE) {
  2226. pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
  2227. /* Gadget would have queued a request when
  2228. * we called the setup */
  2229. if (!(dev->setup_data.bRequestType & USB_DIR_IN)) {
  2230. pch_udc_set_dma(dev, DMA_DIR_RX);
  2231. pch_udc_ep_clear_nak(ep);
  2232. }
  2233. } else if (setup_supported < 0) {
  2234. /* if unsupported request, then stall */
  2235. pch_udc_ep_set_stall(&(dev->ep[UDC_EP0IN_IDX]));
  2236. pch_udc_enable_ep_interrupts(ep->dev,
  2237. PCH_UDC_EPINT(ep->in, ep->num));
  2238. dev->stall = 0;
  2239. pch_udc_set_dma(dev, DMA_DIR_RX);
  2240. } else {
  2241. dev->waiting_zlp_ack = 1;
  2242. }
  2243. } else if ((((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  2244. UDC_EPSTS_OUT_DATA) && !dev->stall) {
  2245. pch_udc_clear_dma(dev, DMA_DIR_RX);
  2246. pch_udc_ep_set_ddptr(ep, 0);
  2247. if (!list_empty(&ep->queue)) {
  2248. ep->epsts = stat;
  2249. pch_udc_svc_data_out(dev, PCH_UDC_EP0);
  2250. }
  2251. pch_udc_set_dma(dev, DMA_DIR_RX);
  2252. }
  2253. pch_udc_ep_set_rrdy(ep);
  2254. }
  2255. /**
  2256. * pch_udc_postsvc_epinters() - This function enables end point interrupts
  2257. * and clears NAK status
  2258. * @dev: Reference to the device structure
  2259. * @ep_num: End point number
  2260. */
  2261. static void pch_udc_postsvc_epinters(struct pch_udc_dev *dev, int ep_num)
  2262. {
  2263. struct pch_udc_ep *ep;
  2264. struct pch_udc_request *req;
  2265. ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
  2266. if (!list_empty(&ep->queue)) {
  2267. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  2268. pch_udc_enable_ep_interrupts(ep->dev,
  2269. PCH_UDC_EPINT(ep->in, ep->num));
  2270. pch_udc_ep_clear_nak(ep);
  2271. }
  2272. }
  2273. /**
  2274. * pch_udc_read_all_epstatus() - This function read all endpoint status
  2275. * @dev: Reference to the device structure
  2276. * @ep_intr: Status of endpoint interrupt
  2277. */
  2278. static void pch_udc_read_all_epstatus(struct pch_udc_dev *dev, u32 ep_intr)
  2279. {
  2280. int i;
  2281. struct pch_udc_ep *ep;
  2282. for (i = 0; i < PCH_UDC_USED_EP_NUM; i++) {
  2283. /* IN */
  2284. if (ep_intr & (0x1 << i)) {
  2285. ep = &dev->ep[UDC_EPIN_IDX(i)];
  2286. ep->epsts = pch_udc_read_ep_status(ep);
  2287. pch_udc_clear_ep_status(ep, ep->epsts);
  2288. }
  2289. /* OUT */
  2290. if (ep_intr & (0x10000 << i)) {
  2291. ep = &dev->ep[UDC_EPOUT_IDX(i)];
  2292. ep->epsts = pch_udc_read_ep_status(ep);
  2293. pch_udc_clear_ep_status(ep, ep->epsts);
  2294. }
  2295. }
  2296. }
  2297. /**
  2298. * pch_udc_activate_control_ep() - This function enables the control endpoints
  2299. * for traffic after a reset
  2300. * @dev: Reference to the device structure
  2301. */
  2302. static void pch_udc_activate_control_ep(struct pch_udc_dev *dev)
  2303. {
  2304. struct pch_udc_ep *ep;
  2305. u32 val;
  2306. /* Setup the IN endpoint */
  2307. ep = &dev->ep[UDC_EP0IN_IDX];
  2308. pch_udc_clear_ep_control(ep);
  2309. pch_udc_ep_fifo_flush(ep, ep->in);
  2310. pch_udc_ep_set_bufsz(ep, UDC_EP0IN_BUFF_SIZE, ep->in);
  2311. pch_udc_ep_set_maxpkt(ep, UDC_EP0IN_MAX_PKT_SIZE);
  2312. /* Initialize the IN EP Descriptor */
  2313. ep->td_data = NULL;
  2314. ep->td_stp = NULL;
  2315. ep->td_data_phys = 0;
  2316. ep->td_stp_phys = 0;
  2317. /* Setup the OUT endpoint */
  2318. ep = &dev->ep[UDC_EP0OUT_IDX];
  2319. pch_udc_clear_ep_control(ep);
  2320. pch_udc_ep_fifo_flush(ep, ep->in);
  2321. pch_udc_ep_set_bufsz(ep, UDC_EP0OUT_BUFF_SIZE, ep->in);
  2322. pch_udc_ep_set_maxpkt(ep, UDC_EP0OUT_MAX_PKT_SIZE);
  2323. val = UDC_EP0OUT_MAX_PKT_SIZE << UDC_CSR_NE_MAX_PKT_SHIFT;
  2324. pch_udc_write_csr(ep->dev, val, UDC_EP0OUT_IDX);
  2325. /* Initialize the SETUP buffer */
  2326. pch_udc_init_setup_buff(ep->td_stp);
  2327. /* Write the pointer address of dma descriptor */
  2328. pch_udc_ep_set_subptr(ep, ep->td_stp_phys);
  2329. /* Write the pointer address of Setup descriptor */
  2330. pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
  2331. /* Initialize the dma descriptor */
  2332. ep->td_data->status = PCH_UDC_DMA_LAST;
  2333. ep->td_data->dataptr = dev->dma_addr;
  2334. ep->td_data->next = ep->td_data_phys;
  2335. pch_udc_ep_clear_nak(ep);
  2336. }
  2337. /**
  2338. * pch_udc_svc_ur_interrupt() - This function handles a USB reset interrupt
  2339. * @dev: Reference to driver structure
  2340. */
  2341. static void pch_udc_svc_ur_interrupt(struct pch_udc_dev *dev)
  2342. {
  2343. struct pch_udc_ep *ep;
  2344. int i;
  2345. pch_udc_clear_dma(dev, DMA_DIR_TX);
  2346. pch_udc_clear_dma(dev, DMA_DIR_RX);
  2347. /* Mask all endpoint interrupts */
  2348. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2349. /* clear all endpoint interrupts */
  2350. pch_udc_write_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2351. for (i = 0; i < PCH_UDC_EP_NUM; i++) {
  2352. ep = &dev->ep[i];
  2353. pch_udc_clear_ep_status(ep, UDC_EPSTS_ALL_CLR_MASK);
  2354. pch_udc_clear_ep_control(ep);
  2355. pch_udc_ep_set_ddptr(ep, 0);
  2356. pch_udc_write_csr(ep->dev, 0x00, i);
  2357. }
  2358. dev->stall = 0;
  2359. dev->prot_stall = 0;
  2360. dev->waiting_zlp_ack = 0;
  2361. dev->set_cfg_not_acked = 0;
  2362. /* disable ep to empty req queue. Skip the control EP's */
  2363. for (i = 0; i < (PCH_UDC_USED_EP_NUM*2); i++) {
  2364. ep = &dev->ep[i];
  2365. pch_udc_ep_set_nak(ep);
  2366. pch_udc_ep_fifo_flush(ep, ep->in);
  2367. /* Complete request queue */
  2368. empty_req_queue(ep);
  2369. }
  2370. if (dev->driver && dev->driver->disconnect) {
  2371. spin_unlock(&dev->lock);
  2372. dev->driver->disconnect(&dev->gadget);
  2373. spin_lock(&dev->lock);
  2374. }
  2375. }
  2376. /**
  2377. * pch_udc_svc_enum_interrupt() - This function handles a USB speed enumeration
  2378. * done interrupt
  2379. * @dev: Reference to driver structure
  2380. */
  2381. static void pch_udc_svc_enum_interrupt(struct pch_udc_dev *dev)
  2382. {
  2383. u32 dev_stat, dev_speed;
  2384. u32 speed = USB_SPEED_FULL;
  2385. dev_stat = pch_udc_read_device_status(dev);
  2386. dev_speed = (dev_stat & UDC_DEVSTS_ENUM_SPEED_MASK) >>
  2387. UDC_DEVSTS_ENUM_SPEED_SHIFT;
  2388. switch (dev_speed) {
  2389. case UDC_DEVSTS_ENUM_SPEED_HIGH:
  2390. speed = USB_SPEED_HIGH;
  2391. break;
  2392. case UDC_DEVSTS_ENUM_SPEED_FULL:
  2393. speed = USB_SPEED_FULL;
  2394. break;
  2395. case UDC_DEVSTS_ENUM_SPEED_LOW:
  2396. speed = USB_SPEED_LOW;
  2397. break;
  2398. default:
  2399. BUG();
  2400. }
  2401. dev->gadget.speed = speed;
  2402. pch_udc_activate_control_ep(dev);
  2403. pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 | UDC_EPINT_OUT_EP0);
  2404. pch_udc_set_dma(dev, DMA_DIR_TX);
  2405. pch_udc_set_dma(dev, DMA_DIR_RX);
  2406. pch_udc_ep_set_rrdy(&(dev->ep[UDC_EP0OUT_IDX]));
  2407. /* enable device interrupts */
  2408. pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
  2409. UDC_DEVINT_ES | UDC_DEVINT_ENUM |
  2410. UDC_DEVINT_SI | UDC_DEVINT_SC);
  2411. }
  2412. /**
  2413. * pch_udc_svc_intf_interrupt() - This function handles a set interface
  2414. * interrupt
  2415. * @dev: Reference to driver structure
  2416. */
  2417. static void pch_udc_svc_intf_interrupt(struct pch_udc_dev *dev)
  2418. {
  2419. u32 reg, dev_stat = 0;
  2420. int i, ret;
  2421. dev_stat = pch_udc_read_device_status(dev);
  2422. dev->cfg_data.cur_intf = (dev_stat & UDC_DEVSTS_INTF_MASK) >>
  2423. UDC_DEVSTS_INTF_SHIFT;
  2424. dev->cfg_data.cur_alt = (dev_stat & UDC_DEVSTS_ALT_MASK) >>
  2425. UDC_DEVSTS_ALT_SHIFT;
  2426. dev->set_cfg_not_acked = 1;
  2427. /* Construct the usb request for gadget driver and inform it */
  2428. memset(&dev->setup_data, 0 , sizeof dev->setup_data);
  2429. dev->setup_data.bRequest = USB_REQ_SET_INTERFACE;
  2430. dev->setup_data.bRequestType = USB_RECIP_INTERFACE;
  2431. dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_alt);
  2432. dev->setup_data.wIndex = cpu_to_le16(dev->cfg_data.cur_intf);
  2433. /* programm the Endpoint Cfg registers */
  2434. /* Only one end point cfg register */
  2435. reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
  2436. reg = (reg & ~UDC_CSR_NE_INTF_MASK) |
  2437. (dev->cfg_data.cur_intf << UDC_CSR_NE_INTF_SHIFT);
  2438. reg = (reg & ~UDC_CSR_NE_ALT_MASK) |
  2439. (dev->cfg_data.cur_alt << UDC_CSR_NE_ALT_SHIFT);
  2440. pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
  2441. for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
  2442. /* clear stall bits */
  2443. pch_udc_ep_clear_stall(&(dev->ep[i]));
  2444. dev->ep[i].halted = 0;
  2445. }
  2446. dev->stall = 0;
  2447. spin_unlock(&dev->lock);
  2448. ret = dev->driver->setup(&dev->gadget, &dev->setup_data);
  2449. spin_lock(&dev->lock);
  2450. }
  2451. /**
  2452. * pch_udc_svc_cfg_interrupt() - This function handles a set configuration
  2453. * interrupt
  2454. * @dev: Reference to driver structure
  2455. */
  2456. static void pch_udc_svc_cfg_interrupt(struct pch_udc_dev *dev)
  2457. {
  2458. int i, ret;
  2459. u32 reg, dev_stat = 0;
  2460. dev_stat = pch_udc_read_device_status(dev);
  2461. dev->set_cfg_not_acked = 1;
  2462. dev->cfg_data.cur_cfg = (dev_stat & UDC_DEVSTS_CFG_MASK) >>
  2463. UDC_DEVSTS_CFG_SHIFT;
  2464. /* make usb request for gadget driver */
  2465. memset(&dev->setup_data, 0 , sizeof dev->setup_data);
  2466. dev->setup_data.bRequest = USB_REQ_SET_CONFIGURATION;
  2467. dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_cfg);
  2468. /* program the NE registers */
  2469. /* Only one end point cfg register */
  2470. reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
  2471. reg = (reg & ~UDC_CSR_NE_CFG_MASK) |
  2472. (dev->cfg_data.cur_cfg << UDC_CSR_NE_CFG_SHIFT);
  2473. pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
  2474. for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
  2475. /* clear stall bits */
  2476. pch_udc_ep_clear_stall(&(dev->ep[i]));
  2477. dev->ep[i].halted = 0;
  2478. }
  2479. dev->stall = 0;
  2480. /* call gadget zero with setup data received */
  2481. spin_unlock(&dev->lock);
  2482. ret = dev->driver->setup(&dev->gadget, &dev->setup_data);
  2483. spin_lock(&dev->lock);
  2484. }
  2485. /**
  2486. * pch_udc_dev_isr() - This function services device interrupts
  2487. * by invoking appropriate routines.
  2488. * @dev: Reference to the device structure
  2489. * @dev_intr: The Device interrupt status.
  2490. */
  2491. static void pch_udc_dev_isr(struct pch_udc_dev *dev, u32 dev_intr)
  2492. {
  2493. int vbus;
  2494. /* USB Reset Interrupt */
  2495. if (dev_intr & UDC_DEVINT_UR) {
  2496. pch_udc_svc_ur_interrupt(dev);
  2497. dev_dbg(&dev->pdev->dev, "USB_RESET\n");
  2498. }
  2499. /* Enumeration Done Interrupt */
  2500. if (dev_intr & UDC_DEVINT_ENUM) {
  2501. pch_udc_svc_enum_interrupt(dev);
  2502. dev_dbg(&dev->pdev->dev, "USB_ENUM\n");
  2503. }
  2504. /* Set Interface Interrupt */
  2505. if (dev_intr & UDC_DEVINT_SI)
  2506. pch_udc_svc_intf_interrupt(dev);
  2507. /* Set Config Interrupt */
  2508. if (dev_intr & UDC_DEVINT_SC)
  2509. pch_udc_svc_cfg_interrupt(dev);
  2510. /* USB Suspend interrupt */
  2511. if (dev_intr & UDC_DEVINT_US) {
  2512. if (dev->driver
  2513. && dev->driver->suspend) {
  2514. spin_unlock(&dev->lock);
  2515. dev->driver->suspend(&dev->gadget);
  2516. spin_lock(&dev->lock);
  2517. }
  2518. vbus = pch_vbus_gpio_get_value(dev);
  2519. if ((dev->vbus_session == 0)
  2520. && (vbus != 1)) {
  2521. if (dev->driver && dev->driver->disconnect) {
  2522. spin_unlock(&dev->lock);
  2523. dev->driver->disconnect(&dev->gadget);
  2524. spin_lock(&dev->lock);
  2525. }
  2526. pch_udc_reconnect(dev);
  2527. } else if ((dev->vbus_session == 0)
  2528. && (vbus == 1)
  2529. && !dev->vbus_gpio.intr)
  2530. schedule_work(&dev->vbus_gpio.irq_work_fall);
  2531. dev_dbg(&dev->pdev->dev, "USB_SUSPEND\n");
  2532. }
  2533. /* Clear the SOF interrupt, if enabled */
  2534. if (dev_intr & UDC_DEVINT_SOF)
  2535. dev_dbg(&dev->pdev->dev, "SOF\n");
  2536. /* ES interrupt, IDLE > 3ms on the USB */
  2537. if (dev_intr & UDC_DEVINT_ES)
  2538. dev_dbg(&dev->pdev->dev, "ES\n");
  2539. /* RWKP interrupt */
  2540. if (dev_intr & UDC_DEVINT_RWKP)
  2541. dev_dbg(&dev->pdev->dev, "RWKP\n");
  2542. }
  2543. /**
  2544. * pch_udc_isr() - This function handles interrupts from the PCH USB Device
  2545. * @irq: Interrupt request number
  2546. * @dev: Reference to the device structure
  2547. */
  2548. static irqreturn_t pch_udc_isr(int irq, void *pdev)
  2549. {
  2550. struct pch_udc_dev *dev = (struct pch_udc_dev *) pdev;
  2551. u32 dev_intr, ep_intr;
  2552. int i;
  2553. dev_intr = pch_udc_read_device_interrupts(dev);
  2554. ep_intr = pch_udc_read_ep_interrupts(dev);
  2555. /* For a hot plug, this find that the controller is hung up. */
  2556. if (dev_intr == ep_intr)
  2557. if (dev_intr == pch_udc_readl(dev, UDC_DEVCFG_ADDR)) {
  2558. dev_dbg(&dev->pdev->dev, "UDC: Hung up\n");
  2559. /* The controller is reset */
  2560. pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
  2561. return IRQ_HANDLED;
  2562. }
  2563. if (dev_intr)
  2564. /* Clear device interrupts */
  2565. pch_udc_write_device_interrupts(dev, dev_intr);
  2566. if (ep_intr)
  2567. /* Clear ep interrupts */
  2568. pch_udc_write_ep_interrupts(dev, ep_intr);
  2569. if (!dev_intr && !ep_intr)
  2570. return IRQ_NONE;
  2571. spin_lock(&dev->lock);
  2572. if (dev_intr)
  2573. pch_udc_dev_isr(dev, dev_intr);
  2574. if (ep_intr) {
  2575. pch_udc_read_all_epstatus(dev, ep_intr);
  2576. /* Process Control In interrupts, if present */
  2577. if (ep_intr & UDC_EPINT_IN_EP0) {
  2578. pch_udc_svc_control_in(dev);
  2579. pch_udc_postsvc_epinters(dev, 0);
  2580. }
  2581. /* Process Control Out interrupts, if present */
  2582. if (ep_intr & UDC_EPINT_OUT_EP0)
  2583. pch_udc_svc_control_out(dev);
  2584. /* Process data in end point interrupts */
  2585. for (i = 1; i < PCH_UDC_USED_EP_NUM; i++) {
  2586. if (ep_intr & (1 << i)) {
  2587. pch_udc_svc_data_in(dev, i);
  2588. pch_udc_postsvc_epinters(dev, i);
  2589. }
  2590. }
  2591. /* Process data out end point interrupts */
  2592. for (i = UDC_EPINT_OUT_SHIFT + 1; i < (UDC_EPINT_OUT_SHIFT +
  2593. PCH_UDC_USED_EP_NUM); i++)
  2594. if (ep_intr & (1 << i))
  2595. pch_udc_svc_data_out(dev, i -
  2596. UDC_EPINT_OUT_SHIFT);
  2597. }
  2598. spin_unlock(&dev->lock);
  2599. return IRQ_HANDLED;
  2600. }
  2601. /**
  2602. * pch_udc_setup_ep0() - This function enables control endpoint for traffic
  2603. * @dev: Reference to the device structure
  2604. */
  2605. static void pch_udc_setup_ep0(struct pch_udc_dev *dev)
  2606. {
  2607. /* enable ep0 interrupts */
  2608. pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 |
  2609. UDC_EPINT_OUT_EP0);
  2610. /* enable device interrupts */
  2611. pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
  2612. UDC_DEVINT_ES | UDC_DEVINT_ENUM |
  2613. UDC_DEVINT_SI | UDC_DEVINT_SC);
  2614. }
  2615. /**
  2616. * gadget_release() - Free the gadget driver private data
  2617. * @pdev reference to struct pci_dev
  2618. */
  2619. static void gadget_release(struct device *pdev)
  2620. {
  2621. struct pch_udc_dev *dev = dev_get_drvdata(pdev);
  2622. kfree(dev);
  2623. }
  2624. /**
  2625. * pch_udc_pcd_reinit() - This API initializes the endpoint structures
  2626. * @dev: Reference to the driver structure
  2627. */
  2628. static void pch_udc_pcd_reinit(struct pch_udc_dev *dev)
  2629. {
  2630. const char *const ep_string[] = {
  2631. ep0_string, "ep0out", "ep1in", "ep1out", "ep2in", "ep2out",
  2632. "ep3in", "ep3out", "ep4in", "ep4out", "ep5in", "ep5out",
  2633. "ep6in", "ep6out", "ep7in", "ep7out", "ep8in", "ep8out",
  2634. "ep9in", "ep9out", "ep10in", "ep10out", "ep11in", "ep11out",
  2635. "ep12in", "ep12out", "ep13in", "ep13out", "ep14in", "ep14out",
  2636. "ep15in", "ep15out",
  2637. };
  2638. int i;
  2639. dev->gadget.speed = USB_SPEED_UNKNOWN;
  2640. INIT_LIST_HEAD(&dev->gadget.ep_list);
  2641. /* Initialize the endpoints structures */
  2642. memset(dev->ep, 0, sizeof dev->ep);
  2643. for (i = 0; i < PCH_UDC_EP_NUM; i++) {
  2644. struct pch_udc_ep *ep = &dev->ep[i];
  2645. ep->dev = dev;
  2646. ep->halted = 1;
  2647. ep->num = i / 2;
  2648. ep->in = ~i & 1;
  2649. ep->ep.name = ep_string[i];
  2650. ep->ep.ops = &pch_udc_ep_ops;
  2651. if (ep->in)
  2652. ep->offset_addr = ep->num * UDC_EP_REG_SHIFT;
  2653. else
  2654. ep->offset_addr = (UDC_EPINT_OUT_SHIFT + ep->num) *
  2655. UDC_EP_REG_SHIFT;
  2656. /* need to set ep->ep.maxpacket and set Default Configuration?*/
  2657. ep->ep.maxpacket = UDC_BULK_MAX_PKT_SIZE;
  2658. list_add_tail(&ep->ep.ep_list, &dev->gadget.ep_list);
  2659. INIT_LIST_HEAD(&ep->queue);
  2660. }
  2661. dev->ep[UDC_EP0IN_IDX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE;
  2662. dev->ep[UDC_EP0OUT_IDX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE;
  2663. /* remove ep0 in and out from the list. They have own pointer */
  2664. list_del_init(&dev->ep[UDC_EP0IN_IDX].ep.ep_list);
  2665. list_del_init(&dev->ep[UDC_EP0OUT_IDX].ep.ep_list);
  2666. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
  2667. INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
  2668. }
  2669. /**
  2670. * pch_udc_pcd_init() - This API initializes the driver structure
  2671. * @dev: Reference to the driver structure
  2672. *
  2673. * Return codes:
  2674. * 0: Success
  2675. */
  2676. static int pch_udc_pcd_init(struct pch_udc_dev *dev)
  2677. {
  2678. pch_udc_init(dev);
  2679. pch_udc_pcd_reinit(dev);
  2680. pch_vbus_gpio_init(dev, vbus_gpio_port);
  2681. return 0;
  2682. }
  2683. /**
  2684. * init_dma_pools() - create dma pools during initialization
  2685. * @pdev: reference to struct pci_dev
  2686. */
  2687. static int init_dma_pools(struct pch_udc_dev *dev)
  2688. {
  2689. struct pch_udc_stp_dma_desc *td_stp;
  2690. struct pch_udc_data_dma_desc *td_data;
  2691. /* DMA setup */
  2692. dev->data_requests = pci_pool_create("data_requests", dev->pdev,
  2693. sizeof(struct pch_udc_data_dma_desc), 0, 0);
  2694. if (!dev->data_requests) {
  2695. dev_err(&dev->pdev->dev, "%s: can't get request data pool\n",
  2696. __func__);
  2697. return -ENOMEM;
  2698. }
  2699. /* dma desc for setup data */
  2700. dev->stp_requests = pci_pool_create("setup requests", dev->pdev,
  2701. sizeof(struct pch_udc_stp_dma_desc), 0, 0);
  2702. if (!dev->stp_requests) {
  2703. dev_err(&dev->pdev->dev, "%s: can't get setup request pool\n",
  2704. __func__);
  2705. return -ENOMEM;
  2706. }
  2707. /* setup */
  2708. td_stp = pci_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2709. &dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
  2710. if (!td_stp) {
  2711. dev_err(&dev->pdev->dev,
  2712. "%s: can't allocate setup dma descriptor\n", __func__);
  2713. return -ENOMEM;
  2714. }
  2715. dev->ep[UDC_EP0OUT_IDX].td_stp = td_stp;
  2716. /* data: 0 packets !? */
  2717. td_data = pci_pool_alloc(dev->data_requests, GFP_KERNEL,
  2718. &dev->ep[UDC_EP0OUT_IDX].td_data_phys);
  2719. if (!td_data) {
  2720. dev_err(&dev->pdev->dev,
  2721. "%s: can't allocate data dma descriptor\n", __func__);
  2722. return -ENOMEM;
  2723. }
  2724. dev->ep[UDC_EP0OUT_IDX].td_data = td_data;
  2725. dev->ep[UDC_EP0IN_IDX].td_stp = NULL;
  2726. dev->ep[UDC_EP0IN_IDX].td_stp_phys = 0;
  2727. dev->ep[UDC_EP0IN_IDX].td_data = NULL;
  2728. dev->ep[UDC_EP0IN_IDX].td_data_phys = 0;
  2729. dev->ep0out_buf = kzalloc(UDC_EP0OUT_BUFF_SIZE * 4, GFP_KERNEL);
  2730. if (!dev->ep0out_buf)
  2731. return -ENOMEM;
  2732. dev->dma_addr = dma_map_single(&dev->pdev->dev, dev->ep0out_buf,
  2733. UDC_EP0OUT_BUFF_SIZE * 4,
  2734. DMA_FROM_DEVICE);
  2735. return 0;
  2736. }
  2737. static int pch_udc_start(struct usb_gadget *g,
  2738. struct usb_gadget_driver *driver)
  2739. {
  2740. struct pch_udc_dev *dev = to_pch_udc(g);
  2741. driver->driver.bus = NULL;
  2742. dev->driver = driver;
  2743. dev->gadget.dev.driver = &driver->driver;
  2744. /* get ready for ep0 traffic */
  2745. pch_udc_setup_ep0(dev);
  2746. /* clear SD */
  2747. if ((pch_vbus_gpio_get_value(dev) != 0) || !dev->vbus_gpio.intr)
  2748. pch_udc_clear_disconnect(dev);
  2749. dev->connected = 1;
  2750. return 0;
  2751. }
  2752. static int pch_udc_stop(struct usb_gadget *g,
  2753. struct usb_gadget_driver *driver)
  2754. {
  2755. struct pch_udc_dev *dev = to_pch_udc(g);
  2756. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2757. /* Assures that there are no pending requests with this driver */
  2758. dev->gadget.dev.driver = NULL;
  2759. dev->driver = NULL;
  2760. dev->connected = 0;
  2761. /* set SD */
  2762. pch_udc_set_disconnect(dev);
  2763. return 0;
  2764. }
  2765. static void pch_udc_shutdown(struct pci_dev *pdev)
  2766. {
  2767. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2768. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2769. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2770. /* disable the pullup so the host will think we're gone */
  2771. pch_udc_set_disconnect(dev);
  2772. }
  2773. static void pch_udc_remove(struct pci_dev *pdev)
  2774. {
  2775. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2776. usb_del_gadget_udc(&dev->gadget);
  2777. /* gadget driver must not be registered */
  2778. if (dev->driver)
  2779. dev_err(&pdev->dev,
  2780. "%s: gadget driver still bound!!!\n", __func__);
  2781. /* dma pool cleanup */
  2782. if (dev->data_requests)
  2783. pci_pool_destroy(dev->data_requests);
  2784. if (dev->stp_requests) {
  2785. /* cleanup DMA desc's for ep0in */
  2786. if (dev->ep[UDC_EP0OUT_IDX].td_stp) {
  2787. pci_pool_free(dev->stp_requests,
  2788. dev->ep[UDC_EP0OUT_IDX].td_stp,
  2789. dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
  2790. }
  2791. if (dev->ep[UDC_EP0OUT_IDX].td_data) {
  2792. pci_pool_free(dev->stp_requests,
  2793. dev->ep[UDC_EP0OUT_IDX].td_data,
  2794. dev->ep[UDC_EP0OUT_IDX].td_data_phys);
  2795. }
  2796. pci_pool_destroy(dev->stp_requests);
  2797. }
  2798. if (dev->dma_addr)
  2799. dma_unmap_single(&dev->pdev->dev, dev->dma_addr,
  2800. UDC_EP0OUT_BUFF_SIZE * 4, DMA_FROM_DEVICE);
  2801. kfree(dev->ep0out_buf);
  2802. pch_vbus_gpio_free(dev);
  2803. pch_udc_exit(dev);
  2804. if (dev->irq_registered)
  2805. free_irq(pdev->irq, dev);
  2806. if (dev->base_addr)
  2807. iounmap(dev->base_addr);
  2808. if (dev->mem_region)
  2809. release_mem_region(dev->phys_addr,
  2810. pci_resource_len(pdev, PCH_UDC_PCI_BAR));
  2811. if (dev->active)
  2812. pci_disable_device(pdev);
  2813. if (dev->registered)
  2814. device_unregister(&dev->gadget.dev);
  2815. kfree(dev);
  2816. pci_set_drvdata(pdev, NULL);
  2817. }
  2818. #ifdef CONFIG_PM
  2819. static int pch_udc_suspend(struct pci_dev *pdev, pm_message_t state)
  2820. {
  2821. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2822. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2823. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2824. pci_disable_device(pdev);
  2825. pci_enable_wake(pdev, PCI_D3hot, 0);
  2826. if (pci_save_state(pdev)) {
  2827. dev_err(&pdev->dev,
  2828. "%s: could not save PCI config state\n", __func__);
  2829. return -ENOMEM;
  2830. }
  2831. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  2832. return 0;
  2833. }
  2834. static int pch_udc_resume(struct pci_dev *pdev)
  2835. {
  2836. int ret;
  2837. pci_set_power_state(pdev, PCI_D0);
  2838. pci_restore_state(pdev);
  2839. ret = pci_enable_device(pdev);
  2840. if (ret) {
  2841. dev_err(&pdev->dev, "%s: pci_enable_device failed\n", __func__);
  2842. return ret;
  2843. }
  2844. pci_enable_wake(pdev, PCI_D3hot, 0);
  2845. return 0;
  2846. }
  2847. #else
  2848. #define pch_udc_suspend NULL
  2849. #define pch_udc_resume NULL
  2850. #endif /* CONFIG_PM */
  2851. static int pch_udc_probe(struct pci_dev *pdev,
  2852. const struct pci_device_id *id)
  2853. {
  2854. unsigned long resource;
  2855. unsigned long len;
  2856. int retval;
  2857. struct pch_udc_dev *dev;
  2858. /* init */
  2859. dev = kzalloc(sizeof *dev, GFP_KERNEL);
  2860. if (!dev) {
  2861. pr_err("%s: no memory for device structure\n", __func__);
  2862. return -ENOMEM;
  2863. }
  2864. /* pci setup */
  2865. if (pci_enable_device(pdev) < 0) {
  2866. kfree(dev);
  2867. pr_err("%s: pci_enable_device failed\n", __func__);
  2868. return -ENODEV;
  2869. }
  2870. dev->active = 1;
  2871. pci_set_drvdata(pdev, dev);
  2872. /* PCI resource allocation */
  2873. resource = pci_resource_start(pdev, 1);
  2874. len = pci_resource_len(pdev, 1);
  2875. if (!request_mem_region(resource, len, KBUILD_MODNAME)) {
  2876. dev_err(&pdev->dev, "%s: pci device used already\n", __func__);
  2877. retval = -EBUSY;
  2878. goto finished;
  2879. }
  2880. dev->phys_addr = resource;
  2881. dev->mem_region = 1;
  2882. dev->base_addr = ioremap_nocache(resource, len);
  2883. if (!dev->base_addr) {
  2884. pr_err("%s: device memory cannot be mapped\n", __func__);
  2885. retval = -ENOMEM;
  2886. goto finished;
  2887. }
  2888. if (!pdev->irq) {
  2889. dev_err(&pdev->dev, "%s: irq not set\n", __func__);
  2890. retval = -ENODEV;
  2891. goto finished;
  2892. }
  2893. /* initialize the hardware */
  2894. if (pch_udc_pcd_init(dev)) {
  2895. retval = -ENODEV;
  2896. goto finished;
  2897. }
  2898. if (request_irq(pdev->irq, pch_udc_isr, IRQF_SHARED, KBUILD_MODNAME,
  2899. dev)) {
  2900. dev_err(&pdev->dev, "%s: request_irq(%d) fail\n", __func__,
  2901. pdev->irq);
  2902. retval = -ENODEV;
  2903. goto finished;
  2904. }
  2905. dev->irq = pdev->irq;
  2906. dev->irq_registered = 1;
  2907. pci_set_master(pdev);
  2908. pci_try_set_mwi(pdev);
  2909. /* device struct setup */
  2910. spin_lock_init(&dev->lock);
  2911. dev->pdev = pdev;
  2912. dev->gadget.ops = &pch_udc_ops;
  2913. retval = init_dma_pools(dev);
  2914. if (retval)
  2915. goto finished;
  2916. dev_set_name(&dev->gadget.dev, "gadget");
  2917. dev->gadget.dev.parent = &pdev->dev;
  2918. dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
  2919. dev->gadget.dev.release = gadget_release;
  2920. dev->gadget.name = KBUILD_MODNAME;
  2921. dev->gadget.max_speed = USB_SPEED_HIGH;
  2922. retval = device_register(&dev->gadget.dev);
  2923. if (retval)
  2924. goto finished;
  2925. dev->registered = 1;
  2926. /* Put the device in disconnected state till a driver is bound */
  2927. pch_udc_set_disconnect(dev);
  2928. retval = usb_add_gadget_udc(&pdev->dev, &dev->gadget);
  2929. if (retval)
  2930. goto finished;
  2931. return 0;
  2932. finished:
  2933. pch_udc_remove(pdev);
  2934. return retval;
  2935. }
  2936. static DEFINE_PCI_DEVICE_TABLE(pch_udc_pcidev_id) = {
  2937. {
  2938. PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_EG20T_UDC),
  2939. .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
  2940. .class_mask = 0xffffffff,
  2941. },
  2942. {
  2943. PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7213_IOH_UDC),
  2944. .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
  2945. .class_mask = 0xffffffff,
  2946. },
  2947. {
  2948. PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7831_IOH_UDC),
  2949. .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
  2950. .class_mask = 0xffffffff,
  2951. },
  2952. { 0 },
  2953. };
  2954. MODULE_DEVICE_TABLE(pci, pch_udc_pcidev_id);
  2955. static struct pci_driver pch_udc_driver = {
  2956. .name = KBUILD_MODNAME,
  2957. .id_table = pch_udc_pcidev_id,
  2958. .probe = pch_udc_probe,
  2959. .remove = pch_udc_remove,
  2960. .suspend = pch_udc_suspend,
  2961. .resume = pch_udc_resume,
  2962. .shutdown = pch_udc_shutdown,
  2963. };
  2964. module_pci_driver(pch_udc_driver);
  2965. MODULE_DESCRIPTION("Intel EG20T USB Device Controller");
  2966. MODULE_AUTHOR("LAPIS Semiconductor, <tomoya-linux@dsn.lapis-semi.com>");
  2967. MODULE_LICENSE("GPL");