cpg.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454
  1. /*
  2. * Helper routines for SuperH Clock Pulse Generator blocks (CPG).
  3. *
  4. * Copyright (C) 2010 Magnus Damm
  5. * Copyright (C) 2010 - 2012 Paul Mundt
  6. *
  7. * This file is subject to the terms and conditions of the GNU General Public
  8. * License. See the file "COPYING" in the main directory of this archive
  9. * for more details.
  10. */
  11. #include <linux/clk.h>
  12. #include <linux/compiler.h>
  13. #include <linux/slab.h>
  14. #include <linux/io.h>
  15. #include <linux/sh_clk.h>
  16. #define CPG_CKSTP_BIT BIT(8)
  17. static unsigned int sh_clk_read(struct clk *clk)
  18. {
  19. if (clk->flags & CLK_ENABLE_REG_8BIT)
  20. return ioread8(clk->mapped_reg);
  21. else if (clk->flags & CLK_ENABLE_REG_16BIT)
  22. return ioread16(clk->mapped_reg);
  23. return ioread32(clk->mapped_reg);
  24. }
  25. static void sh_clk_write(int value, struct clk *clk)
  26. {
  27. if (clk->flags & CLK_ENABLE_REG_8BIT)
  28. iowrite8(value, clk->mapped_reg);
  29. else if (clk->flags & CLK_ENABLE_REG_16BIT)
  30. iowrite16(value, clk->mapped_reg);
  31. else
  32. iowrite32(value, clk->mapped_reg);
  33. }
  34. static int sh_clk_mstp_enable(struct clk *clk)
  35. {
  36. sh_clk_write(sh_clk_read(clk) & ~(1 << clk->enable_bit), clk);
  37. return 0;
  38. }
  39. static void sh_clk_mstp_disable(struct clk *clk)
  40. {
  41. sh_clk_write(sh_clk_read(clk) | (1 << clk->enable_bit), clk);
  42. }
  43. static struct sh_clk_ops sh_clk_mstp_clk_ops = {
  44. .enable = sh_clk_mstp_enable,
  45. .disable = sh_clk_mstp_disable,
  46. .recalc = followparent_recalc,
  47. };
  48. int __init sh_clk_mstp_register(struct clk *clks, int nr)
  49. {
  50. struct clk *clkp;
  51. int ret = 0;
  52. int k;
  53. for (k = 0; !ret && (k < nr); k++) {
  54. clkp = clks + k;
  55. clkp->ops = &sh_clk_mstp_clk_ops;
  56. ret |= clk_register(clkp);
  57. }
  58. return ret;
  59. }
  60. /*
  61. * Div/mult table lookup helpers
  62. */
  63. static inline struct clk_div_table *clk_to_div_table(struct clk *clk)
  64. {
  65. return clk->priv;
  66. }
  67. static inline struct clk_div_mult_table *clk_to_div_mult_table(struct clk *clk)
  68. {
  69. return clk_to_div_table(clk)->div_mult_table;
  70. }
  71. /*
  72. * Common div ops
  73. */
  74. static long sh_clk_div_round_rate(struct clk *clk, unsigned long rate)
  75. {
  76. return clk_rate_table_round(clk, clk->freq_table, rate);
  77. }
  78. static unsigned long sh_clk_div_recalc(struct clk *clk)
  79. {
  80. struct clk_div_mult_table *table = clk_to_div_mult_table(clk);
  81. unsigned int idx;
  82. clk_rate_table_build(clk, clk->freq_table, table->nr_divisors,
  83. table, clk->arch_flags ? &clk->arch_flags : NULL);
  84. idx = (sh_clk_read(clk) >> clk->enable_bit) & clk->div_mask;
  85. return clk->freq_table[idx].frequency;
  86. }
  87. static int sh_clk_div_set_rate(struct clk *clk, unsigned long rate)
  88. {
  89. struct clk_div_table *dt = clk_to_div_table(clk);
  90. unsigned long value;
  91. int idx;
  92. idx = clk_rate_table_find(clk, clk->freq_table, rate);
  93. if (idx < 0)
  94. return idx;
  95. value = sh_clk_read(clk);
  96. value &= ~(clk->div_mask << clk->enable_bit);
  97. value |= (idx << clk->enable_bit);
  98. sh_clk_write(value, clk);
  99. /* XXX: Should use a post-change notifier */
  100. if (dt->kick)
  101. dt->kick(clk);
  102. return 0;
  103. }
  104. static int sh_clk_div_enable(struct clk *clk)
  105. {
  106. if (clk->div_mask == SH_CLK_DIV6_MSK) {
  107. int ret = sh_clk_div_set_rate(clk, clk->rate);
  108. if (ret < 0)
  109. return ret;
  110. }
  111. sh_clk_write(sh_clk_read(clk) & ~CPG_CKSTP_BIT, clk);
  112. return 0;
  113. }
  114. static void sh_clk_div_disable(struct clk *clk)
  115. {
  116. unsigned int val;
  117. val = sh_clk_read(clk);
  118. val |= CPG_CKSTP_BIT;
  119. /*
  120. * div6 clocks require the divisor field to be non-zero or the
  121. * above CKSTP toggle silently fails. Ensure that the divisor
  122. * array is reset to its initial state on disable.
  123. */
  124. if (clk->flags & CLK_MASK_DIV_ON_DISABLE)
  125. val |= clk->div_mask;
  126. sh_clk_write(val, clk);
  127. }
  128. static struct sh_clk_ops sh_clk_div_clk_ops = {
  129. .recalc = sh_clk_div_recalc,
  130. .set_rate = sh_clk_div_set_rate,
  131. .round_rate = sh_clk_div_round_rate,
  132. };
  133. static struct sh_clk_ops sh_clk_div_enable_clk_ops = {
  134. .recalc = sh_clk_div_recalc,
  135. .set_rate = sh_clk_div_set_rate,
  136. .round_rate = sh_clk_div_round_rate,
  137. .enable = sh_clk_div_enable,
  138. .disable = sh_clk_div_disable,
  139. };
  140. static int __init sh_clk_init_parent(struct clk *clk)
  141. {
  142. u32 val;
  143. if (clk->parent)
  144. return 0;
  145. if (!clk->parent_table || !clk->parent_num)
  146. return 0;
  147. if (!clk->src_width) {
  148. pr_err("sh_clk_init_parent: cannot select parent clock\n");
  149. return -EINVAL;
  150. }
  151. val = (sh_clk_read(clk) >> clk->src_shift);
  152. val &= (1 << clk->src_width) - 1;
  153. if (val >= clk->parent_num) {
  154. pr_err("sh_clk_init_parent: parent table size failed\n");
  155. return -EINVAL;
  156. }
  157. clk_reparent(clk, clk->parent_table[val]);
  158. if (!clk->parent) {
  159. pr_err("sh_clk_init_parent: unable to set parent");
  160. return -EINVAL;
  161. }
  162. return 0;
  163. }
  164. static int __init sh_clk_div_register_ops(struct clk *clks, int nr,
  165. struct clk_div_table *table, struct sh_clk_ops *ops)
  166. {
  167. struct clk *clkp;
  168. void *freq_table;
  169. int nr_divs = table->div_mult_table->nr_divisors;
  170. int freq_table_size = sizeof(struct cpufreq_frequency_table);
  171. int ret = 0;
  172. int k;
  173. freq_table_size *= (nr_divs + 1);
  174. freq_table = kzalloc(freq_table_size * nr, GFP_KERNEL);
  175. if (!freq_table) {
  176. pr_err("%s: unable to alloc memory\n", __func__);
  177. return -ENOMEM;
  178. }
  179. for (k = 0; !ret && (k < nr); k++) {
  180. clkp = clks + k;
  181. clkp->ops = ops;
  182. clkp->priv = table;
  183. clkp->freq_table = freq_table + (k * freq_table_size);
  184. clkp->freq_table[nr_divs].frequency = CPUFREQ_TABLE_END;
  185. ret = clk_register(clkp);
  186. if (ret == 0)
  187. ret = sh_clk_init_parent(clkp);
  188. }
  189. return ret;
  190. }
  191. /*
  192. * div6 support
  193. */
  194. static int sh_clk_div6_divisors[64] = {
  195. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
  196. 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
  197. 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
  198. 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
  199. };
  200. static struct clk_div_mult_table div6_div_mult_table = {
  201. .divisors = sh_clk_div6_divisors,
  202. .nr_divisors = ARRAY_SIZE(sh_clk_div6_divisors),
  203. };
  204. static struct clk_div_table sh_clk_div6_table = {
  205. .div_mult_table = &div6_div_mult_table,
  206. };
  207. static int sh_clk_div6_set_parent(struct clk *clk, struct clk *parent)
  208. {
  209. struct clk_div_mult_table *table = clk_to_div_mult_table(clk);
  210. u32 value;
  211. int ret, i;
  212. if (!clk->parent_table || !clk->parent_num)
  213. return -EINVAL;
  214. /* Search the parent */
  215. for (i = 0; i < clk->parent_num; i++)
  216. if (clk->parent_table[i] == parent)
  217. break;
  218. if (i == clk->parent_num)
  219. return -ENODEV;
  220. ret = clk_reparent(clk, parent);
  221. if (ret < 0)
  222. return ret;
  223. value = sh_clk_read(clk) &
  224. ~(((1 << clk->src_width) - 1) << clk->src_shift);
  225. sh_clk_write(value | (i << clk->src_shift), clk);
  226. /* Rebuild the frequency table */
  227. clk_rate_table_build(clk, clk->freq_table, table->nr_divisors,
  228. table, NULL);
  229. return 0;
  230. }
  231. static struct sh_clk_ops sh_clk_div6_reparent_clk_ops = {
  232. .recalc = sh_clk_div_recalc,
  233. .round_rate = sh_clk_div_round_rate,
  234. .set_rate = sh_clk_div_set_rate,
  235. .enable = sh_clk_div_enable,
  236. .disable = sh_clk_div_disable,
  237. .set_parent = sh_clk_div6_set_parent,
  238. };
  239. int __init sh_clk_div6_register(struct clk *clks, int nr)
  240. {
  241. return sh_clk_div_register_ops(clks, nr, &sh_clk_div6_table,
  242. &sh_clk_div_enable_clk_ops);
  243. }
  244. int __init sh_clk_div6_reparent_register(struct clk *clks, int nr)
  245. {
  246. return sh_clk_div_register_ops(clks, nr, &sh_clk_div6_table,
  247. &sh_clk_div6_reparent_clk_ops);
  248. }
  249. /*
  250. * div4 support
  251. */
  252. static int sh_clk_div4_set_parent(struct clk *clk, struct clk *parent)
  253. {
  254. struct clk_div_mult_table *table = clk_to_div_mult_table(clk);
  255. u32 value;
  256. int ret;
  257. /* we really need a better way to determine parent index, but for
  258. * now assume internal parent comes with CLK_ENABLE_ON_INIT set,
  259. * no CLK_ENABLE_ON_INIT means external clock...
  260. */
  261. if (parent->flags & CLK_ENABLE_ON_INIT)
  262. value = sh_clk_read(clk) & ~(1 << 7);
  263. else
  264. value = sh_clk_read(clk) | (1 << 7);
  265. ret = clk_reparent(clk, parent);
  266. if (ret < 0)
  267. return ret;
  268. sh_clk_write(value, clk);
  269. /* Rebiuld the frequency table */
  270. clk_rate_table_build(clk, clk->freq_table, table->nr_divisors,
  271. table, &clk->arch_flags);
  272. return 0;
  273. }
  274. static struct sh_clk_ops sh_clk_div4_reparent_clk_ops = {
  275. .recalc = sh_clk_div_recalc,
  276. .set_rate = sh_clk_div_set_rate,
  277. .round_rate = sh_clk_div_round_rate,
  278. .enable = sh_clk_div_enable,
  279. .disable = sh_clk_div_disable,
  280. .set_parent = sh_clk_div4_set_parent,
  281. };
  282. int __init sh_clk_div4_register(struct clk *clks, int nr,
  283. struct clk_div4_table *table)
  284. {
  285. return sh_clk_div_register_ops(clks, nr, table, &sh_clk_div_clk_ops);
  286. }
  287. int __init sh_clk_div4_enable_register(struct clk *clks, int nr,
  288. struct clk_div4_table *table)
  289. {
  290. return sh_clk_div_register_ops(clks, nr, table,
  291. &sh_clk_div_enable_clk_ops);
  292. }
  293. int __init sh_clk_div4_reparent_register(struct clk *clks, int nr,
  294. struct clk_div4_table *table)
  295. {
  296. return sh_clk_div_register_ops(clks, nr, table,
  297. &sh_clk_div4_reparent_clk_ops);
  298. }
  299. /* FSI-DIV */
  300. static unsigned long fsidiv_recalc(struct clk *clk)
  301. {
  302. u32 value;
  303. value = __raw_readl(clk->mapping->base);
  304. value >>= 16;
  305. if (value < 2)
  306. return clk->parent->rate;
  307. return clk->parent->rate / value;
  308. }
  309. static long fsidiv_round_rate(struct clk *clk, unsigned long rate)
  310. {
  311. return clk_rate_div_range_round(clk, 1, 0xffff, rate);
  312. }
  313. static void fsidiv_disable(struct clk *clk)
  314. {
  315. __raw_writel(0, clk->mapping->base);
  316. }
  317. static int fsidiv_enable(struct clk *clk)
  318. {
  319. u32 value;
  320. value = __raw_readl(clk->mapping->base) >> 16;
  321. if (value < 2)
  322. return 0;
  323. __raw_writel((value << 16) | 0x3, clk->mapping->base);
  324. return 0;
  325. }
  326. static int fsidiv_set_rate(struct clk *clk, unsigned long rate)
  327. {
  328. int idx;
  329. idx = (clk->parent->rate / rate) & 0xffff;
  330. if (idx < 2)
  331. __raw_writel(0, clk->mapping->base);
  332. else
  333. __raw_writel(idx << 16, clk->mapping->base);
  334. return 0;
  335. }
  336. static struct sh_clk_ops fsidiv_clk_ops = {
  337. .recalc = fsidiv_recalc,
  338. .round_rate = fsidiv_round_rate,
  339. .set_rate = fsidiv_set_rate,
  340. .enable = fsidiv_enable,
  341. .disable = fsidiv_disable,
  342. };
  343. int __init sh_clk_fsidiv_register(struct clk *clks, int nr)
  344. {
  345. struct clk_mapping *map;
  346. int i;
  347. for (i = 0; i < nr; i++) {
  348. map = kzalloc(sizeof(struct clk_mapping), GFP_KERNEL);
  349. if (!map) {
  350. pr_err("%s: unable to alloc memory\n", __func__);
  351. return -ENOMEM;
  352. }
  353. /* clks[i].enable_reg came from SH_CLK_FSIDIV() */
  354. map->phys = (phys_addr_t)clks[i].enable_reg;
  355. map->len = 8;
  356. clks[i].enable_reg = 0; /* remove .enable_reg */
  357. clks[i].ops = &fsidiv_clk_ops;
  358. clks[i].mapping = map;
  359. clk_register(&clks[i]);
  360. }
  361. return 0;
  362. }