rt2800pci.c 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365
  1. /*
  2. Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
  3. Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
  4. Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
  5. Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
  6. Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
  7. Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
  8. Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
  9. Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
  10. <http://rt2x00.serialmonkey.com>
  11. This program is free software; you can redistribute it and/or modify
  12. it under the terms of the GNU General Public License as published by
  13. the Free Software Foundation; either version 2 of the License, or
  14. (at your option) any later version.
  15. This program is distributed in the hope that it will be useful,
  16. but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. GNU General Public License for more details.
  19. You should have received a copy of the GNU General Public License
  20. along with this program; if not, write to the
  21. Free Software Foundation, Inc.,
  22. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  23. */
  24. /*
  25. Module: rt2800pci
  26. Abstract: rt2800pci device specific routines.
  27. Supported chipsets: RT2800E & RT2800ED.
  28. */
  29. #include <linux/delay.h>
  30. #include <linux/etherdevice.h>
  31. #include <linux/init.h>
  32. #include <linux/kernel.h>
  33. #include <linux/module.h>
  34. #include <linux/pci.h>
  35. #include <linux/platform_device.h>
  36. #include <linux/eeprom_93cx6.h>
  37. #include "rt2x00.h"
  38. #include "rt2x00mmio.h"
  39. #include "rt2x00pci.h"
  40. #include "rt2x00soc.h"
  41. #include "rt2800lib.h"
  42. #include "rt2800.h"
  43. #include "rt2800pci.h"
  44. /*
  45. * Allow hardware encryption to be disabled.
  46. */
  47. static bool modparam_nohwcrypt = false;
  48. module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  49. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  50. static bool rt2800pci_hwcrypt_disabled(struct rt2x00_dev *rt2x00dev)
  51. {
  52. return modparam_nohwcrypt;
  53. }
  54. static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
  55. {
  56. unsigned int i;
  57. u32 reg;
  58. /*
  59. * SOC devices don't support MCU requests.
  60. */
  61. if (rt2x00_is_soc(rt2x00dev))
  62. return;
  63. for (i = 0; i < 200; i++) {
  64. rt2x00mmio_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
  65. if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
  66. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
  67. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
  68. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
  69. break;
  70. udelay(REGISTER_BUSY_DELAY);
  71. }
  72. if (i == 200)
  73. ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
  74. rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
  75. rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
  76. }
  77. #if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
  78. static int rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  79. {
  80. void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE);
  81. if (!base_addr)
  82. return -ENOMEM;
  83. memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
  84. iounmap(base_addr);
  85. return 0;
  86. }
  87. #else
  88. static inline int rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  89. {
  90. return -ENOMEM;
  91. }
  92. #endif /* CONFIG_SOC_RT288X || CONFIG_SOC_RT305X */
  93. #ifdef CONFIG_PCI
  94. static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  95. {
  96. struct rt2x00_dev *rt2x00dev = eeprom->data;
  97. u32 reg;
  98. rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR, &reg);
  99. eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
  100. eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
  101. eeprom->reg_data_clock =
  102. !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
  103. eeprom->reg_chip_select =
  104. !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
  105. }
  106. static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  107. {
  108. struct rt2x00_dev *rt2x00dev = eeprom->data;
  109. u32 reg = 0;
  110. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
  111. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
  112. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
  113. !!eeprom->reg_data_clock);
  114. rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
  115. !!eeprom->reg_chip_select);
  116. rt2x00mmio_register_write(rt2x00dev, E2PROM_CSR, reg);
  117. }
  118. static int rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  119. {
  120. struct eeprom_93cx6 eeprom;
  121. u32 reg;
  122. rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR, &reg);
  123. eeprom.data = rt2x00dev;
  124. eeprom.register_read = rt2800pci_eepromregister_read;
  125. eeprom.register_write = rt2800pci_eepromregister_write;
  126. switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
  127. {
  128. case 0:
  129. eeprom.width = PCI_EEPROM_WIDTH_93C46;
  130. break;
  131. case 1:
  132. eeprom.width = PCI_EEPROM_WIDTH_93C66;
  133. break;
  134. default:
  135. eeprom.width = PCI_EEPROM_WIDTH_93C86;
  136. break;
  137. }
  138. eeprom.reg_data_in = 0;
  139. eeprom.reg_data_out = 0;
  140. eeprom.reg_data_clock = 0;
  141. eeprom.reg_chip_select = 0;
  142. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  143. EEPROM_SIZE / sizeof(u16));
  144. return 0;
  145. }
  146. static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
  147. {
  148. return rt2800_efuse_detect(rt2x00dev);
  149. }
  150. static inline int rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  151. {
  152. return rt2800_read_eeprom_efuse(rt2x00dev);
  153. }
  154. #else
  155. static inline int rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  156. {
  157. return -EOPNOTSUPP;
  158. }
  159. static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
  160. {
  161. return 0;
  162. }
  163. static inline int rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  164. {
  165. return -EOPNOTSUPP;
  166. }
  167. #endif /* CONFIG_PCI */
  168. /*
  169. * Queue handlers.
  170. */
  171. static void rt2800pci_start_queue(struct data_queue *queue)
  172. {
  173. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  174. u32 reg;
  175. switch (queue->qid) {
  176. case QID_RX:
  177. rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  178. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
  179. rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  180. break;
  181. case QID_BEACON:
  182. rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
  183. rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
  184. rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
  185. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
  186. rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  187. rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN, &reg);
  188. rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
  189. rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
  190. break;
  191. default:
  192. break;
  193. }
  194. }
  195. static void rt2800pci_kick_queue(struct data_queue *queue)
  196. {
  197. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  198. struct queue_entry *entry;
  199. switch (queue->qid) {
  200. case QID_AC_VO:
  201. case QID_AC_VI:
  202. case QID_AC_BE:
  203. case QID_AC_BK:
  204. entry = rt2x00queue_get_entry(queue, Q_INDEX);
  205. rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
  206. entry->entry_idx);
  207. break;
  208. case QID_MGMT:
  209. entry = rt2x00queue_get_entry(queue, Q_INDEX);
  210. rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(5),
  211. entry->entry_idx);
  212. break;
  213. default:
  214. break;
  215. }
  216. }
  217. static void rt2800pci_stop_queue(struct data_queue *queue)
  218. {
  219. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  220. u32 reg;
  221. switch (queue->qid) {
  222. case QID_RX:
  223. rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  224. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
  225. rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  226. break;
  227. case QID_BEACON:
  228. rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
  229. rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
  230. rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
  231. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
  232. rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  233. rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN, &reg);
  234. rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
  235. rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
  236. /*
  237. * Wait for current invocation to finish. The tasklet
  238. * won't be scheduled anymore afterwards since we disabled
  239. * the TBTT and PRE TBTT timer.
  240. */
  241. tasklet_kill(&rt2x00dev->tbtt_tasklet);
  242. tasklet_kill(&rt2x00dev->pretbtt_tasklet);
  243. break;
  244. default:
  245. break;
  246. }
  247. }
  248. /*
  249. * Firmware functions
  250. */
  251. static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
  252. {
  253. /*
  254. * Chip rt3290 use specific 4KB firmware named rt3290.bin.
  255. */
  256. if (rt2x00_rt(rt2x00dev, RT3290))
  257. return FIRMWARE_RT3290;
  258. else
  259. return FIRMWARE_RT2860;
  260. }
  261. static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
  262. const u8 *data, const size_t len)
  263. {
  264. u32 reg;
  265. /*
  266. * enable Host program ram write selection
  267. */
  268. reg = 0;
  269. rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
  270. rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
  271. /*
  272. * Write firmware to device.
  273. */
  274. rt2x00mmio_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
  275. data, len);
  276. rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
  277. rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
  278. rt2x00mmio_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
  279. rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
  280. return 0;
  281. }
  282. /*
  283. * Initialization functions.
  284. */
  285. static bool rt2800pci_get_entry_state(struct queue_entry *entry)
  286. {
  287. struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
  288. u32 word;
  289. if (entry->queue->qid == QID_RX) {
  290. rt2x00_desc_read(entry_priv->desc, 1, &word);
  291. return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
  292. } else {
  293. rt2x00_desc_read(entry_priv->desc, 1, &word);
  294. return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
  295. }
  296. }
  297. static void rt2800pci_clear_entry(struct queue_entry *entry)
  298. {
  299. struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
  300. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  301. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  302. u32 word;
  303. if (entry->queue->qid == QID_RX) {
  304. rt2x00_desc_read(entry_priv->desc, 0, &word);
  305. rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
  306. rt2x00_desc_write(entry_priv->desc, 0, word);
  307. rt2x00_desc_read(entry_priv->desc, 1, &word);
  308. rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
  309. rt2x00_desc_write(entry_priv->desc, 1, word);
  310. /*
  311. * Set RX IDX in register to inform hardware that we have
  312. * handled this entry and it is available for reuse again.
  313. */
  314. rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
  315. entry->entry_idx);
  316. } else {
  317. rt2x00_desc_read(entry_priv->desc, 1, &word);
  318. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
  319. rt2x00_desc_write(entry_priv->desc, 1, word);
  320. }
  321. }
  322. static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
  323. {
  324. struct queue_entry_priv_mmio *entry_priv;
  325. /*
  326. * Initialize registers.
  327. */
  328. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  329. rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR0,
  330. entry_priv->desc_dma);
  331. rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT0,
  332. rt2x00dev->tx[0].limit);
  333. rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX0, 0);
  334. rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX0, 0);
  335. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  336. rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR1,
  337. entry_priv->desc_dma);
  338. rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT1,
  339. rt2x00dev->tx[1].limit);
  340. rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX1, 0);
  341. rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX1, 0);
  342. entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
  343. rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR2,
  344. entry_priv->desc_dma);
  345. rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT2,
  346. rt2x00dev->tx[2].limit);
  347. rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX2, 0);
  348. rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX2, 0);
  349. entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
  350. rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR3,
  351. entry_priv->desc_dma);
  352. rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT3,
  353. rt2x00dev->tx[3].limit);
  354. rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX3, 0);
  355. rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX3, 0);
  356. rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR4, 0);
  357. rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT4, 0);
  358. rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX4, 0);
  359. rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX4, 0);
  360. rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR5, 0);
  361. rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT5, 0);
  362. rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX5, 0);
  363. rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX5, 0);
  364. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  365. rt2x00mmio_register_write(rt2x00dev, RX_BASE_PTR,
  366. entry_priv->desc_dma);
  367. rt2x00mmio_register_write(rt2x00dev, RX_MAX_CNT,
  368. rt2x00dev->rx[0].limit);
  369. rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
  370. rt2x00dev->rx[0].limit - 1);
  371. rt2x00mmio_register_write(rt2x00dev, RX_DRX_IDX, 0);
  372. rt2800_disable_wpdma(rt2x00dev);
  373. rt2x00mmio_register_write(rt2x00dev, DELAY_INT_CFG, 0);
  374. return 0;
  375. }
  376. /*
  377. * Device state switch handlers.
  378. */
  379. static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  380. enum dev_state state)
  381. {
  382. u32 reg;
  383. unsigned long flags;
  384. /*
  385. * When interrupts are being enabled, the interrupt registers
  386. * should clear the register to assure a clean state.
  387. */
  388. if (state == STATE_RADIO_IRQ_ON) {
  389. rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  390. rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  391. }
  392. spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
  393. reg = 0;
  394. if (state == STATE_RADIO_IRQ_ON) {
  395. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
  396. rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
  397. rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
  398. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
  399. rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
  400. }
  401. rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
  402. spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
  403. if (state == STATE_RADIO_IRQ_OFF) {
  404. /*
  405. * Wait for possibly running tasklets to finish.
  406. */
  407. tasklet_kill(&rt2x00dev->txstatus_tasklet);
  408. tasklet_kill(&rt2x00dev->rxdone_tasklet);
  409. tasklet_kill(&rt2x00dev->autowake_tasklet);
  410. tasklet_kill(&rt2x00dev->tbtt_tasklet);
  411. tasklet_kill(&rt2x00dev->pretbtt_tasklet);
  412. }
  413. }
  414. static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
  415. {
  416. u32 reg;
  417. /*
  418. * Reset DMA indexes
  419. */
  420. rt2x00mmio_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  421. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
  422. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
  423. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
  424. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
  425. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
  426. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
  427. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
  428. rt2x00mmio_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  429. rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
  430. rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
  431. if (rt2x00_is_pcie(rt2x00dev) &&
  432. (rt2x00_rt(rt2x00dev, RT3572) ||
  433. rt2x00_rt(rt2x00dev, RT5390) ||
  434. rt2x00_rt(rt2x00dev, RT5392))) {
  435. rt2x00mmio_register_read(rt2x00dev, AUX_CTRL, &reg);
  436. rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
  437. rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
  438. rt2x00mmio_register_write(rt2x00dev, AUX_CTRL, reg);
  439. }
  440. rt2x00mmio_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
  441. reg = 0;
  442. rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
  443. rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
  444. rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  445. rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
  446. return 0;
  447. }
  448. static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  449. {
  450. int retval;
  451. /* Wait for DMA, ignore error until we initialize queues. */
  452. rt2800_wait_wpdma_ready(rt2x00dev);
  453. if (unlikely(rt2800pci_init_queues(rt2x00dev)))
  454. return -EIO;
  455. retval = rt2800_enable_radio(rt2x00dev);
  456. if (retval)
  457. return retval;
  458. /* After resume MCU_BOOT_SIGNAL will trash these. */
  459. rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
  460. rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
  461. rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_RADIO_OFF, 0xff, 0x02);
  462. rt2800pci_mcu_status(rt2x00dev, TOKEN_RADIO_OFF);
  463. rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP, 0, 0);
  464. rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
  465. return retval;
  466. }
  467. static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  468. {
  469. if (rt2x00_is_soc(rt2x00dev)) {
  470. rt2800_disable_radio(rt2x00dev);
  471. rt2x00mmio_register_write(rt2x00dev, PWR_PIN_CFG, 0);
  472. rt2x00mmio_register_write(rt2x00dev, TX_PIN_CFG, 0);
  473. }
  474. }
  475. static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
  476. enum dev_state state)
  477. {
  478. if (state == STATE_AWAKE) {
  479. rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP,
  480. 0, 0x02);
  481. rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
  482. } else if (state == STATE_SLEEP) {
  483. rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_STATUS,
  484. 0xffffffff);
  485. rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CID,
  486. 0xffffffff);
  487. rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_SLEEP,
  488. 0xff, 0x01);
  489. }
  490. return 0;
  491. }
  492. static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  493. enum dev_state state)
  494. {
  495. int retval = 0;
  496. switch (state) {
  497. case STATE_RADIO_ON:
  498. retval = rt2800pci_enable_radio(rt2x00dev);
  499. break;
  500. case STATE_RADIO_OFF:
  501. /*
  502. * After the radio has been disabled, the device should
  503. * be put to sleep for powersaving.
  504. */
  505. rt2800pci_disable_radio(rt2x00dev);
  506. rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
  507. break;
  508. case STATE_RADIO_IRQ_ON:
  509. case STATE_RADIO_IRQ_OFF:
  510. rt2800pci_toggle_irq(rt2x00dev, state);
  511. break;
  512. case STATE_DEEP_SLEEP:
  513. case STATE_SLEEP:
  514. case STATE_STANDBY:
  515. case STATE_AWAKE:
  516. retval = rt2800pci_set_state(rt2x00dev, state);
  517. break;
  518. default:
  519. retval = -ENOTSUPP;
  520. break;
  521. }
  522. if (unlikely(retval))
  523. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  524. state, retval);
  525. return retval;
  526. }
  527. /*
  528. * TX descriptor initialization
  529. */
  530. static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
  531. {
  532. return (__le32 *) entry->skb->data;
  533. }
  534. static void rt2800pci_write_tx_desc(struct queue_entry *entry,
  535. struct txentry_desc *txdesc)
  536. {
  537. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  538. struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
  539. __le32 *txd = entry_priv->desc;
  540. u32 word;
  541. /*
  542. * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
  543. * must contains a TXWI structure + 802.11 header + padding + 802.11
  544. * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
  545. * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
  546. * data. It means that LAST_SEC0 is always 0.
  547. */
  548. /*
  549. * Initialize TX descriptor
  550. */
  551. word = 0;
  552. rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
  553. rt2x00_desc_write(txd, 0, word);
  554. word = 0;
  555. rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
  556. rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
  557. !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  558. rt2x00_set_field32(&word, TXD_W1_BURST,
  559. test_bit(ENTRY_TXD_BURST, &txdesc->flags));
  560. rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
  561. rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
  562. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
  563. rt2x00_desc_write(txd, 1, word);
  564. word = 0;
  565. rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
  566. skbdesc->skb_dma + TXWI_DESC_SIZE);
  567. rt2x00_desc_write(txd, 2, word);
  568. word = 0;
  569. rt2x00_set_field32(&word, TXD_W3_WIV,
  570. !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
  571. rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
  572. rt2x00_desc_write(txd, 3, word);
  573. /*
  574. * Register descriptor details in skb frame descriptor.
  575. */
  576. skbdesc->desc = txd;
  577. skbdesc->desc_len = TXD_DESC_SIZE;
  578. }
  579. /*
  580. * RX control handlers
  581. */
  582. static void rt2800pci_fill_rxdone(struct queue_entry *entry,
  583. struct rxdone_entry_desc *rxdesc)
  584. {
  585. struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
  586. __le32 *rxd = entry_priv->desc;
  587. u32 word;
  588. rt2x00_desc_read(rxd, 3, &word);
  589. if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
  590. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  591. /*
  592. * Unfortunately we don't know the cipher type used during
  593. * decryption. This prevents us from correct providing
  594. * correct statistics through debugfs.
  595. */
  596. rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
  597. if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
  598. /*
  599. * Hardware has stripped IV/EIV data from 802.11 frame during
  600. * decryption. Unfortunately the descriptor doesn't contain
  601. * any fields with the EIV/IV data either, so they can't
  602. * be restored by rt2x00lib.
  603. */
  604. rxdesc->flags |= RX_FLAG_IV_STRIPPED;
  605. /*
  606. * The hardware has already checked the Michael Mic and has
  607. * stripped it from the frame. Signal this to mac80211.
  608. */
  609. rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
  610. if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
  611. rxdesc->flags |= RX_FLAG_DECRYPTED;
  612. else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
  613. rxdesc->flags |= RX_FLAG_MMIC_ERROR;
  614. }
  615. if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
  616. rxdesc->dev_flags |= RXDONE_MY_BSS;
  617. if (rt2x00_get_field32(word, RXD_W3_L2PAD))
  618. rxdesc->dev_flags |= RXDONE_L2PAD;
  619. /*
  620. * Process the RXWI structure that is at the start of the buffer.
  621. */
  622. rt2800_process_rxwi(entry, rxdesc);
  623. /*
  624. * Remove RXWI descriptor from start of buffer.
  625. */
  626. skb_pull(entry->skb, RXWI_DESC_SIZE);
  627. }
  628. /*
  629. * Interrupt functions.
  630. */
  631. static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
  632. {
  633. struct ieee80211_conf conf = { .flags = 0 };
  634. struct rt2x00lib_conf libconf = { .conf = &conf };
  635. rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
  636. }
  637. static bool rt2800pci_txdone_entry_check(struct queue_entry *entry, u32 status)
  638. {
  639. __le32 *txwi;
  640. u32 word;
  641. int wcid, tx_wcid;
  642. wcid = rt2x00_get_field32(status, TX_STA_FIFO_WCID);
  643. txwi = rt2800_drv_get_txwi(entry);
  644. rt2x00_desc_read(txwi, 1, &word);
  645. tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);
  646. return (tx_wcid == wcid);
  647. }
  648. static bool rt2800pci_txdone_find_entry(struct queue_entry *entry, void *data)
  649. {
  650. u32 status = *(u32 *)data;
  651. /*
  652. * rt2800pci hardware might reorder frames when exchanging traffic
  653. * with multiple BA enabled STAs.
  654. *
  655. * For example, a tx queue
  656. * [ STA1 | STA2 | STA1 | STA2 ]
  657. * can result in tx status reports
  658. * [ STA1 | STA1 | STA2 | STA2 ]
  659. * when the hw decides to aggregate the frames for STA1 into one AMPDU.
  660. *
  661. * To mitigate this effect, associate the tx status to the first frame
  662. * in the tx queue with a matching wcid.
  663. */
  664. if (rt2800pci_txdone_entry_check(entry, status) &&
  665. !test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
  666. /*
  667. * Got a matching frame, associate the tx status with
  668. * the frame
  669. */
  670. entry->status = status;
  671. set_bit(ENTRY_DATA_STATUS_SET, &entry->flags);
  672. return true;
  673. }
  674. /* Check the next frame */
  675. return false;
  676. }
  677. static bool rt2800pci_txdone_match_first(struct queue_entry *entry, void *data)
  678. {
  679. u32 status = *(u32 *)data;
  680. /*
  681. * Find the first frame without tx status and assign this status to it
  682. * regardless if it matches or not.
  683. */
  684. if (!test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
  685. /*
  686. * Got a matching frame, associate the tx status with
  687. * the frame
  688. */
  689. entry->status = status;
  690. set_bit(ENTRY_DATA_STATUS_SET, &entry->flags);
  691. return true;
  692. }
  693. /* Check the next frame */
  694. return false;
  695. }
  696. static bool rt2800pci_txdone_release_entries(struct queue_entry *entry,
  697. void *data)
  698. {
  699. if (test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
  700. rt2800_txdone_entry(entry, entry->status,
  701. rt2800pci_get_txwi(entry));
  702. return false;
  703. }
  704. /* No more frames to release */
  705. return true;
  706. }
  707. static bool rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
  708. {
  709. struct data_queue *queue;
  710. u32 status;
  711. u8 qid;
  712. int max_tx_done = 16;
  713. while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
  714. qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
  715. if (unlikely(qid >= QID_RX)) {
  716. /*
  717. * Unknown queue, this shouldn't happen. Just drop
  718. * this tx status.
  719. */
  720. WARNING(rt2x00dev, "Got TX status report with "
  721. "unexpected pid %u, dropping\n", qid);
  722. break;
  723. }
  724. queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
  725. if (unlikely(queue == NULL)) {
  726. /*
  727. * The queue is NULL, this shouldn't happen. Stop
  728. * processing here and drop the tx status
  729. */
  730. WARNING(rt2x00dev, "Got TX status for an unavailable "
  731. "queue %u, dropping\n", qid);
  732. break;
  733. }
  734. if (unlikely(rt2x00queue_empty(queue))) {
  735. /*
  736. * The queue is empty. Stop processing here
  737. * and drop the tx status.
  738. */
  739. WARNING(rt2x00dev, "Got TX status for an empty "
  740. "queue %u, dropping\n", qid);
  741. break;
  742. }
  743. /*
  744. * Let's associate this tx status with the first
  745. * matching frame.
  746. */
  747. if (!rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
  748. Q_INDEX, &status,
  749. rt2800pci_txdone_find_entry)) {
  750. /*
  751. * We cannot match the tx status to any frame, so just
  752. * use the first one.
  753. */
  754. if (!rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
  755. Q_INDEX, &status,
  756. rt2800pci_txdone_match_first)) {
  757. WARNING(rt2x00dev, "No frame found for TX "
  758. "status on queue %u, dropping\n",
  759. qid);
  760. break;
  761. }
  762. }
  763. /*
  764. * Release all frames with a valid tx status.
  765. */
  766. rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
  767. Q_INDEX, NULL,
  768. rt2800pci_txdone_release_entries);
  769. if (--max_tx_done == 0)
  770. break;
  771. }
  772. return !max_tx_done;
  773. }
  774. static inline void rt2800pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
  775. struct rt2x00_field32 irq_field)
  776. {
  777. u32 reg;
  778. /*
  779. * Enable a single interrupt. The interrupt mask register
  780. * access needs locking.
  781. */
  782. spin_lock_irq(&rt2x00dev->irqmask_lock);
  783. rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
  784. rt2x00_set_field32(&reg, irq_field, 1);
  785. rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
  786. spin_unlock_irq(&rt2x00dev->irqmask_lock);
  787. }
  788. static void rt2800pci_txstatus_tasklet(unsigned long data)
  789. {
  790. struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
  791. if (rt2800pci_txdone(rt2x00dev))
  792. tasklet_schedule(&rt2x00dev->txstatus_tasklet);
  793. /*
  794. * No need to enable the tx status interrupt here as we always
  795. * leave it enabled to minimize the possibility of a tx status
  796. * register overflow. See comment in interrupt handler.
  797. */
  798. }
  799. static void rt2800pci_pretbtt_tasklet(unsigned long data)
  800. {
  801. struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
  802. rt2x00lib_pretbtt(rt2x00dev);
  803. if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  804. rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
  805. }
  806. static void rt2800pci_tbtt_tasklet(unsigned long data)
  807. {
  808. struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
  809. struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
  810. u32 reg;
  811. rt2x00lib_beacondone(rt2x00dev);
  812. if (rt2x00dev->intf_ap_count) {
  813. /*
  814. * The rt2800pci hardware tbtt timer is off by 1us per tbtt
  815. * causing beacon skew and as a result causing problems with
  816. * some powersaving clients over time. Shorten the beacon
  817. * interval every 64 beacons by 64us to mitigate this effect.
  818. */
  819. if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
  820. rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
  821. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
  822. (rt2x00dev->beacon_int * 16) - 1);
  823. rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  824. } else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
  825. rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
  826. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
  827. (rt2x00dev->beacon_int * 16));
  828. rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  829. }
  830. drv_data->tbtt_tick++;
  831. drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
  832. }
  833. if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  834. rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
  835. }
  836. static void rt2800pci_rxdone_tasklet(unsigned long data)
  837. {
  838. struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
  839. if (rt2x00mmio_rxdone(rt2x00dev))
  840. tasklet_schedule(&rt2x00dev->rxdone_tasklet);
  841. else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  842. rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
  843. }
  844. static void rt2800pci_autowake_tasklet(unsigned long data)
  845. {
  846. struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
  847. rt2800pci_wakeup(rt2x00dev);
  848. if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  849. rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_AUTO_WAKEUP);
  850. }
  851. static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
  852. {
  853. u32 status;
  854. int i;
  855. /*
  856. * The TX_FIFO_STATUS interrupt needs special care. We should
  857. * read TX_STA_FIFO but we should do it immediately as otherwise
  858. * the register can overflow and we would lose status reports.
  859. *
  860. * Hence, read the TX_STA_FIFO register and copy all tx status
  861. * reports into a kernel FIFO which is handled in the txstatus
  862. * tasklet. We use a tasklet to process the tx status reports
  863. * because we can schedule the tasklet multiple times (when the
  864. * interrupt fires again during tx status processing).
  865. *
  866. * Furthermore we don't disable the TX_FIFO_STATUS
  867. * interrupt here but leave it enabled so that the TX_STA_FIFO
  868. * can also be read while the tx status tasklet gets executed.
  869. *
  870. * Since we have only one producer and one consumer we don't
  871. * need to lock the kfifo.
  872. */
  873. for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
  874. rt2x00mmio_register_read(rt2x00dev, TX_STA_FIFO, &status);
  875. if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
  876. break;
  877. if (!kfifo_put(&rt2x00dev->txstatus_fifo, &status)) {
  878. WARNING(rt2x00dev, "TX status FIFO overrun,"
  879. "drop tx status report.\n");
  880. break;
  881. }
  882. }
  883. /* Schedule the tasklet for processing the tx status. */
  884. tasklet_schedule(&rt2x00dev->txstatus_tasklet);
  885. }
  886. static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
  887. {
  888. struct rt2x00_dev *rt2x00dev = dev_instance;
  889. u32 reg, mask;
  890. /* Read status and ACK all interrupts */
  891. rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  892. rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  893. if (!reg)
  894. return IRQ_NONE;
  895. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  896. return IRQ_HANDLED;
  897. /*
  898. * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
  899. * for interrupts and interrupt masks we can just use the value of
  900. * INT_SOURCE_CSR to create the interrupt mask.
  901. */
  902. mask = ~reg;
  903. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
  904. rt2800pci_txstatus_interrupt(rt2x00dev);
  905. /*
  906. * Never disable the TX_FIFO_STATUS interrupt.
  907. */
  908. rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
  909. }
  910. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
  911. tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
  912. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
  913. tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
  914. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
  915. tasklet_schedule(&rt2x00dev->rxdone_tasklet);
  916. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
  917. tasklet_schedule(&rt2x00dev->autowake_tasklet);
  918. /*
  919. * Disable all interrupts for which a tasklet was scheduled right now,
  920. * the tasklet will reenable the appropriate interrupts.
  921. */
  922. spin_lock(&rt2x00dev->irqmask_lock);
  923. rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
  924. reg &= mask;
  925. rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
  926. spin_unlock(&rt2x00dev->irqmask_lock);
  927. return IRQ_HANDLED;
  928. }
  929. /*
  930. * Device probe functions.
  931. */
  932. static int rt2800pci_read_eeprom(struct rt2x00_dev *rt2x00dev)
  933. {
  934. int retval;
  935. if (rt2x00_is_soc(rt2x00dev))
  936. retval = rt2800pci_read_eeprom_soc(rt2x00dev);
  937. else if (rt2800pci_efuse_detect(rt2x00dev))
  938. retval = rt2800pci_read_eeprom_efuse(rt2x00dev);
  939. else
  940. retval = rt2800pci_read_eeprom_pci(rt2x00dev);
  941. return retval;
  942. }
  943. static const struct ieee80211_ops rt2800pci_mac80211_ops = {
  944. .tx = rt2x00mac_tx,
  945. .start = rt2x00mac_start,
  946. .stop = rt2x00mac_stop,
  947. .add_interface = rt2x00mac_add_interface,
  948. .remove_interface = rt2x00mac_remove_interface,
  949. .config = rt2x00mac_config,
  950. .configure_filter = rt2x00mac_configure_filter,
  951. .set_key = rt2x00mac_set_key,
  952. .sw_scan_start = rt2x00mac_sw_scan_start,
  953. .sw_scan_complete = rt2x00mac_sw_scan_complete,
  954. .get_stats = rt2x00mac_get_stats,
  955. .get_tkip_seq = rt2800_get_tkip_seq,
  956. .set_rts_threshold = rt2800_set_rts_threshold,
  957. .sta_add = rt2x00mac_sta_add,
  958. .sta_remove = rt2x00mac_sta_remove,
  959. .bss_info_changed = rt2x00mac_bss_info_changed,
  960. .conf_tx = rt2800_conf_tx,
  961. .get_tsf = rt2800_get_tsf,
  962. .rfkill_poll = rt2x00mac_rfkill_poll,
  963. .ampdu_action = rt2800_ampdu_action,
  964. .flush = rt2x00mac_flush,
  965. .get_survey = rt2800_get_survey,
  966. .get_ringparam = rt2x00mac_get_ringparam,
  967. .tx_frames_pending = rt2x00mac_tx_frames_pending,
  968. };
  969. static const struct rt2800_ops rt2800pci_rt2800_ops = {
  970. .register_read = rt2x00mmio_register_read,
  971. .register_read_lock = rt2x00mmio_register_read, /* same for PCI */
  972. .register_write = rt2x00mmio_register_write,
  973. .register_write_lock = rt2x00mmio_register_write, /* same for PCI */
  974. .register_multiread = rt2x00mmio_register_multiread,
  975. .register_multiwrite = rt2x00mmio_register_multiwrite,
  976. .regbusy_read = rt2x00mmio_regbusy_read,
  977. .read_eeprom = rt2800pci_read_eeprom,
  978. .hwcrypt_disabled = rt2800pci_hwcrypt_disabled,
  979. .drv_write_firmware = rt2800pci_write_firmware,
  980. .drv_init_registers = rt2800pci_init_registers,
  981. .drv_get_txwi = rt2800pci_get_txwi,
  982. };
  983. static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
  984. .irq_handler = rt2800pci_interrupt,
  985. .txstatus_tasklet = rt2800pci_txstatus_tasklet,
  986. .pretbtt_tasklet = rt2800pci_pretbtt_tasklet,
  987. .tbtt_tasklet = rt2800pci_tbtt_tasklet,
  988. .rxdone_tasklet = rt2800pci_rxdone_tasklet,
  989. .autowake_tasklet = rt2800pci_autowake_tasklet,
  990. .probe_hw = rt2800_probe_hw,
  991. .get_firmware_name = rt2800pci_get_firmware_name,
  992. .check_firmware = rt2800_check_firmware,
  993. .load_firmware = rt2800_load_firmware,
  994. .initialize = rt2x00mmio_initialize,
  995. .uninitialize = rt2x00mmio_uninitialize,
  996. .get_entry_state = rt2800pci_get_entry_state,
  997. .clear_entry = rt2800pci_clear_entry,
  998. .set_device_state = rt2800pci_set_device_state,
  999. .rfkill_poll = rt2800_rfkill_poll,
  1000. .link_stats = rt2800_link_stats,
  1001. .reset_tuner = rt2800_reset_tuner,
  1002. .link_tuner = rt2800_link_tuner,
  1003. .gain_calibration = rt2800_gain_calibration,
  1004. .vco_calibration = rt2800_vco_calibration,
  1005. .start_queue = rt2800pci_start_queue,
  1006. .kick_queue = rt2800pci_kick_queue,
  1007. .stop_queue = rt2800pci_stop_queue,
  1008. .flush_queue = rt2x00mmio_flush_queue,
  1009. .write_tx_desc = rt2800pci_write_tx_desc,
  1010. .write_tx_data = rt2800_write_tx_data,
  1011. .write_beacon = rt2800_write_beacon,
  1012. .clear_beacon = rt2800_clear_beacon,
  1013. .fill_rxdone = rt2800pci_fill_rxdone,
  1014. .config_shared_key = rt2800_config_shared_key,
  1015. .config_pairwise_key = rt2800_config_pairwise_key,
  1016. .config_filter = rt2800_config_filter,
  1017. .config_intf = rt2800_config_intf,
  1018. .config_erp = rt2800_config_erp,
  1019. .config_ant = rt2800_config_ant,
  1020. .config = rt2800_config,
  1021. .sta_add = rt2800_sta_add,
  1022. .sta_remove = rt2800_sta_remove,
  1023. };
  1024. static const struct data_queue_desc rt2800pci_queue_rx = {
  1025. .entry_num = 128,
  1026. .data_size = AGGREGATION_SIZE,
  1027. .desc_size = RXD_DESC_SIZE,
  1028. .priv_size = sizeof(struct queue_entry_priv_mmio),
  1029. };
  1030. static const struct data_queue_desc rt2800pci_queue_tx = {
  1031. .entry_num = 64,
  1032. .data_size = AGGREGATION_SIZE,
  1033. .desc_size = TXD_DESC_SIZE,
  1034. .priv_size = sizeof(struct queue_entry_priv_mmio),
  1035. };
  1036. static const struct data_queue_desc rt2800pci_queue_bcn = {
  1037. .entry_num = 8,
  1038. .data_size = 0, /* No DMA required for beacons */
  1039. .desc_size = TXWI_DESC_SIZE,
  1040. .priv_size = sizeof(struct queue_entry_priv_mmio),
  1041. };
  1042. static const struct rt2x00_ops rt2800pci_ops = {
  1043. .name = KBUILD_MODNAME,
  1044. .drv_data_size = sizeof(struct rt2800_drv_data),
  1045. .max_ap_intf = 8,
  1046. .eeprom_size = EEPROM_SIZE,
  1047. .rf_size = RF_SIZE,
  1048. .tx_queues = NUM_TX_QUEUES,
  1049. .extra_tx_headroom = TXWI_DESC_SIZE,
  1050. .rx = &rt2800pci_queue_rx,
  1051. .tx = &rt2800pci_queue_tx,
  1052. .bcn = &rt2800pci_queue_bcn,
  1053. .lib = &rt2800pci_rt2x00_ops,
  1054. .drv = &rt2800pci_rt2800_ops,
  1055. .hw = &rt2800pci_mac80211_ops,
  1056. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1057. .debugfs = &rt2800_rt2x00debug,
  1058. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1059. };
  1060. /*
  1061. * RT2800pci module information.
  1062. */
  1063. #ifdef CONFIG_PCI
  1064. static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
  1065. { PCI_DEVICE(0x1814, 0x0601) },
  1066. { PCI_DEVICE(0x1814, 0x0681) },
  1067. { PCI_DEVICE(0x1814, 0x0701) },
  1068. { PCI_DEVICE(0x1814, 0x0781) },
  1069. { PCI_DEVICE(0x1814, 0x3090) },
  1070. { PCI_DEVICE(0x1814, 0x3091) },
  1071. { PCI_DEVICE(0x1814, 0x3092) },
  1072. { PCI_DEVICE(0x1432, 0x7708) },
  1073. { PCI_DEVICE(0x1432, 0x7727) },
  1074. { PCI_DEVICE(0x1432, 0x7728) },
  1075. { PCI_DEVICE(0x1432, 0x7738) },
  1076. { PCI_DEVICE(0x1432, 0x7748) },
  1077. { PCI_DEVICE(0x1432, 0x7758) },
  1078. { PCI_DEVICE(0x1432, 0x7768) },
  1079. { PCI_DEVICE(0x1462, 0x891a) },
  1080. { PCI_DEVICE(0x1a3b, 0x1059) },
  1081. #ifdef CONFIG_RT2800PCI_RT3290
  1082. { PCI_DEVICE(0x1814, 0x3290) },
  1083. #endif
  1084. #ifdef CONFIG_RT2800PCI_RT33XX
  1085. { PCI_DEVICE(0x1814, 0x3390) },
  1086. #endif
  1087. #ifdef CONFIG_RT2800PCI_RT35XX
  1088. { PCI_DEVICE(0x1432, 0x7711) },
  1089. { PCI_DEVICE(0x1432, 0x7722) },
  1090. { PCI_DEVICE(0x1814, 0x3060) },
  1091. { PCI_DEVICE(0x1814, 0x3062) },
  1092. { PCI_DEVICE(0x1814, 0x3562) },
  1093. { PCI_DEVICE(0x1814, 0x3592) },
  1094. { PCI_DEVICE(0x1814, 0x3593) },
  1095. { PCI_DEVICE(0x1814, 0x359f) },
  1096. #endif
  1097. #ifdef CONFIG_RT2800PCI_RT53XX
  1098. { PCI_DEVICE(0x1814, 0x5360) },
  1099. { PCI_DEVICE(0x1814, 0x5362) },
  1100. { PCI_DEVICE(0x1814, 0x5390) },
  1101. { PCI_DEVICE(0x1814, 0x5392) },
  1102. { PCI_DEVICE(0x1814, 0x539a) },
  1103. { PCI_DEVICE(0x1814, 0x539b) },
  1104. { PCI_DEVICE(0x1814, 0x539f) },
  1105. #endif
  1106. { 0, }
  1107. };
  1108. #endif /* CONFIG_PCI */
  1109. MODULE_AUTHOR(DRV_PROJECT);
  1110. MODULE_VERSION(DRV_VERSION);
  1111. MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
  1112. MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
  1113. #ifdef CONFIG_PCI
  1114. MODULE_FIRMWARE(FIRMWARE_RT2860);
  1115. MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
  1116. #endif /* CONFIG_PCI */
  1117. MODULE_LICENSE("GPL");
  1118. #if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
  1119. static int rt2800soc_probe(struct platform_device *pdev)
  1120. {
  1121. return rt2x00soc_probe(pdev, &rt2800pci_ops);
  1122. }
  1123. static struct platform_driver rt2800soc_driver = {
  1124. .driver = {
  1125. .name = "rt2800_wmac",
  1126. .owner = THIS_MODULE,
  1127. .mod_name = KBUILD_MODNAME,
  1128. },
  1129. .probe = rt2800soc_probe,
  1130. .remove = rt2x00soc_remove,
  1131. .suspend = rt2x00soc_suspend,
  1132. .resume = rt2x00soc_resume,
  1133. };
  1134. #endif /* CONFIG_SOC_RT288X || CONFIG_SOC_RT305X */
  1135. #ifdef CONFIG_PCI
  1136. static int rt2800pci_probe(struct pci_dev *pci_dev,
  1137. const struct pci_device_id *id)
  1138. {
  1139. return rt2x00pci_probe(pci_dev, &rt2800pci_ops);
  1140. }
  1141. static struct pci_driver rt2800pci_driver = {
  1142. .name = KBUILD_MODNAME,
  1143. .id_table = rt2800pci_device_table,
  1144. .probe = rt2800pci_probe,
  1145. .remove = rt2x00pci_remove,
  1146. .suspend = rt2x00pci_suspend,
  1147. .resume = rt2x00pci_resume,
  1148. };
  1149. #endif /* CONFIG_PCI */
  1150. static int __init rt2800pci_init(void)
  1151. {
  1152. int ret = 0;
  1153. #if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
  1154. ret = platform_driver_register(&rt2800soc_driver);
  1155. if (ret)
  1156. return ret;
  1157. #endif
  1158. #ifdef CONFIG_PCI
  1159. ret = pci_register_driver(&rt2800pci_driver);
  1160. if (ret) {
  1161. #if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
  1162. platform_driver_unregister(&rt2800soc_driver);
  1163. #endif
  1164. return ret;
  1165. }
  1166. #endif
  1167. return ret;
  1168. }
  1169. static void __exit rt2800pci_exit(void)
  1170. {
  1171. #ifdef CONFIG_PCI
  1172. pci_unregister_driver(&rt2800pci_driver);
  1173. #endif
  1174. #if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
  1175. platform_driver_unregister(&rt2800soc_driver);
  1176. #endif
  1177. }
  1178. module_init(rt2800pci_init);
  1179. module_exit(rt2800pci_exit);