wmi.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088
  1. /*
  2. * Copyright (c) 2012 Qualcomm Atheros, Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/etherdevice.h>
  17. #include <linux/if_arp.h>
  18. #include "wil6210.h"
  19. #include "txrx.h"
  20. #include "wmi.h"
  21. /**
  22. * WMI event receiving - theory of operations
  23. *
  24. * When firmware about to report WMI event, it fills memory area
  25. * in the mailbox and raises misc. IRQ. Thread interrupt handler invoked for
  26. * the misc IRQ, function @wmi_recv_cmd called by thread IRQ handler.
  27. *
  28. * @wmi_recv_cmd reads event, allocates memory chunk and attaches it to the
  29. * event list @wil->pending_wmi_ev. Then, work queue @wil->wmi_wq wakes up
  30. * and handles events within the @wmi_event_worker. Every event get detached
  31. * from list, processed and deleted.
  32. *
  33. * Purpose for this mechanism is to release IRQ thread; otherwise,
  34. * if WMI event handling involves another WMI command flow, this 2-nd flow
  35. * won't be completed because of blocked IRQ thread.
  36. */
  37. /**
  38. * Addressing - theory of operations
  39. *
  40. * There are several buses present on the WIL6210 card.
  41. * Same memory areas are visible at different address on
  42. * the different busses. There are 3 main bus masters:
  43. * - MAC CPU (ucode)
  44. * - User CPU (firmware)
  45. * - AHB (host)
  46. *
  47. * On the PCI bus, there is one BAR (BAR0) of 2Mb size, exposing
  48. * AHB addresses starting from 0x880000
  49. *
  50. * Internally, firmware uses addresses that allows faster access but
  51. * are invisible from the host. To read from these addresses, alternative
  52. * AHB address must be used.
  53. *
  54. * Memory mapping
  55. * Linker address PCI/Host address
  56. * 0x880000 .. 0xa80000 2Mb BAR0
  57. * 0x800000 .. 0x807000 0x900000 .. 0x907000 28k DCCM
  58. * 0x840000 .. 0x857000 0x908000 .. 0x91f000 92k PERIPH
  59. */
  60. /**
  61. * @fw_mapping provides memory remapping table
  62. */
  63. static const struct {
  64. u32 from; /* linker address - from, inclusive */
  65. u32 to; /* linker address - to, exclusive */
  66. u32 host; /* PCI/Host address - BAR0 + 0x880000 */
  67. } fw_mapping[] = {
  68. {0x000000, 0x040000, 0x8c0000}, /* FW code RAM 256k */
  69. {0x800000, 0x808000, 0x900000}, /* FW data RAM 32k */
  70. {0x840000, 0x860000, 0x908000}, /* peripheral data RAM 128k/96k used */
  71. {0x880000, 0x88a000, 0x880000}, /* various RGF */
  72. {0x8c0000, 0x932000, 0x8c0000}, /* trivial mapping for upper area */
  73. /*
  74. * 920000..930000 ucode code RAM
  75. * 930000..932000 ucode data RAM
  76. */
  77. };
  78. /**
  79. * return AHB address for given firmware/ucode internal (linker) address
  80. * @x - internal address
  81. * If address have no valid AHB mapping, return 0
  82. */
  83. static u32 wmi_addr_remap(u32 x)
  84. {
  85. uint i;
  86. for (i = 0; i < ARRAY_SIZE(fw_mapping); i++) {
  87. if ((x >= fw_mapping[i].from) && (x < fw_mapping[i].to))
  88. return x + fw_mapping[i].host - fw_mapping[i].from;
  89. }
  90. return 0;
  91. }
  92. /**
  93. * Check address validity for WMI buffer; remap if needed
  94. * @ptr - internal (linker) fw/ucode address
  95. *
  96. * Valid buffer should be DWORD aligned
  97. *
  98. * return address for accessing buffer from the host;
  99. * if buffer is not valid, return NULL.
  100. */
  101. void __iomem *wmi_buffer(struct wil6210_priv *wil, __le32 ptr_)
  102. {
  103. u32 off;
  104. u32 ptr = le32_to_cpu(ptr_);
  105. if (ptr % 4)
  106. return NULL;
  107. ptr = wmi_addr_remap(ptr);
  108. if (ptr < WIL6210_FW_HOST_OFF)
  109. return NULL;
  110. off = HOSTADDR(ptr);
  111. if (off > WIL6210_MEM_SIZE - 4)
  112. return NULL;
  113. return wil->csr + off;
  114. }
  115. /**
  116. * Check address validity
  117. */
  118. void __iomem *wmi_addr(struct wil6210_priv *wil, u32 ptr)
  119. {
  120. u32 off;
  121. if (ptr % 4)
  122. return NULL;
  123. if (ptr < WIL6210_FW_HOST_OFF)
  124. return NULL;
  125. off = HOSTADDR(ptr);
  126. if (off > WIL6210_MEM_SIZE - 4)
  127. return NULL;
  128. return wil->csr + off;
  129. }
  130. int wmi_read_hdr(struct wil6210_priv *wil, __le32 ptr,
  131. struct wil6210_mbox_hdr *hdr)
  132. {
  133. void __iomem *src = wmi_buffer(wil, ptr);
  134. if (!src)
  135. return -EINVAL;
  136. wil_memcpy_fromio_32(hdr, src, sizeof(*hdr));
  137. return 0;
  138. }
  139. static int __wmi_send(struct wil6210_priv *wil, u16 cmdid, void *buf, u16 len)
  140. {
  141. struct {
  142. struct wil6210_mbox_hdr hdr;
  143. struct wil6210_mbox_hdr_wmi wmi;
  144. } __packed cmd = {
  145. .hdr = {
  146. .type = WIL_MBOX_HDR_TYPE_WMI,
  147. .flags = 0,
  148. .len = cpu_to_le16(sizeof(cmd.wmi) + len),
  149. },
  150. .wmi = {
  151. .id = cpu_to_le16(cmdid),
  152. .info1 = 0,
  153. },
  154. };
  155. struct wil6210_mbox_ring *r = &wil->mbox_ctl.tx;
  156. struct wil6210_mbox_ring_desc d_head;
  157. u32 next_head;
  158. void __iomem *dst;
  159. void __iomem *head = wmi_addr(wil, r->head);
  160. uint retry;
  161. if (sizeof(cmd) + len > r->entry_size) {
  162. wil_err(wil, "WMI size too large: %d bytes, max is %d\n",
  163. (int)(sizeof(cmd) + len), r->entry_size);
  164. return -ERANGE;
  165. }
  166. might_sleep();
  167. if (!test_bit(wil_status_fwready, &wil->status)) {
  168. wil_err(wil, "FW not ready\n");
  169. return -EAGAIN;
  170. }
  171. if (!head) {
  172. wil_err(wil, "WMI head is garbage: 0x%08x\n", r->head);
  173. return -EINVAL;
  174. }
  175. /* read Tx head till it is not busy */
  176. for (retry = 5; retry > 0; retry--) {
  177. wil_memcpy_fromio_32(&d_head, head, sizeof(d_head));
  178. if (d_head.sync == 0)
  179. break;
  180. msleep(20);
  181. }
  182. if (d_head.sync != 0) {
  183. wil_err(wil, "WMI head busy\n");
  184. return -EBUSY;
  185. }
  186. /* next head */
  187. next_head = r->base + ((r->head - r->base + sizeof(d_head)) % r->size);
  188. wil_dbg_wmi(wil, "Head 0x%08x -> 0x%08x\n", r->head, next_head);
  189. /* wait till FW finish with previous command */
  190. for (retry = 5; retry > 0; retry--) {
  191. r->tail = ioread32(wil->csr + HOST_MBOX +
  192. offsetof(struct wil6210_mbox_ctl, tx.tail));
  193. if (next_head != r->tail)
  194. break;
  195. msleep(20);
  196. }
  197. if (next_head == r->tail) {
  198. wil_err(wil, "WMI ring full\n");
  199. return -EBUSY;
  200. }
  201. dst = wmi_buffer(wil, d_head.addr);
  202. if (!dst) {
  203. wil_err(wil, "invalid WMI buffer: 0x%08x\n",
  204. le32_to_cpu(d_head.addr));
  205. return -EINVAL;
  206. }
  207. cmd.hdr.seq = cpu_to_le16(++wil->wmi_seq);
  208. /* set command */
  209. wil_dbg_wmi(wil, "WMI command 0x%04x [%d]\n", cmdid, len);
  210. wil_hex_dump_wmi("Cmd ", DUMP_PREFIX_OFFSET, 16, 1, &cmd,
  211. sizeof(cmd), true);
  212. wil_hex_dump_wmi("cmd ", DUMP_PREFIX_OFFSET, 16, 1, buf,
  213. len, true);
  214. wil_memcpy_toio_32(dst, &cmd, sizeof(cmd));
  215. wil_memcpy_toio_32(dst + sizeof(cmd), buf, len);
  216. /* mark entry as full */
  217. iowrite32(1, wil->csr + HOSTADDR(r->head) +
  218. offsetof(struct wil6210_mbox_ring_desc, sync));
  219. /* advance next ptr */
  220. iowrite32(r->head = next_head, wil->csr + HOST_MBOX +
  221. offsetof(struct wil6210_mbox_ctl, tx.head));
  222. /* interrupt to FW */
  223. iowrite32(SW_INT_MBOX, wil->csr + HOST_SW_INT);
  224. return 0;
  225. }
  226. int wmi_send(struct wil6210_priv *wil, u16 cmdid, void *buf, u16 len)
  227. {
  228. int rc;
  229. mutex_lock(&wil->wmi_mutex);
  230. rc = __wmi_send(wil, cmdid, buf, len);
  231. mutex_unlock(&wil->wmi_mutex);
  232. return rc;
  233. }
  234. /*=== Event handlers ===*/
  235. static void wmi_evt_ready(struct wil6210_priv *wil, int id, void *d, int len)
  236. {
  237. struct net_device *ndev = wil_to_ndev(wil);
  238. struct wireless_dev *wdev = wil->wdev;
  239. struct wmi_ready_event *evt = d;
  240. wil->fw_version = le32_to_cpu(evt->sw_version);
  241. wil->n_mids = evt->numof_additional_mids;
  242. wil_dbg_wmi(wil, "FW ver. %d; MAC %pM; %d MID's\n", wil->fw_version,
  243. evt->mac, wil->n_mids);
  244. if (!is_valid_ether_addr(ndev->dev_addr)) {
  245. memcpy(ndev->dev_addr, evt->mac, ETH_ALEN);
  246. memcpy(ndev->perm_addr, evt->mac, ETH_ALEN);
  247. }
  248. snprintf(wdev->wiphy->fw_version, sizeof(wdev->wiphy->fw_version),
  249. "%d", wil->fw_version);
  250. }
  251. static void wmi_evt_fw_ready(struct wil6210_priv *wil, int id, void *d,
  252. int len)
  253. {
  254. wil_dbg_wmi(wil, "WMI: FW ready\n");
  255. set_bit(wil_status_fwready, &wil->status);
  256. /* reuse wmi_ready for the firmware ready indication */
  257. complete(&wil->wmi_ready);
  258. }
  259. static void wmi_evt_rx_mgmt(struct wil6210_priv *wil, int id, void *d, int len)
  260. {
  261. struct wmi_rx_mgmt_packet_event *data = d;
  262. struct wiphy *wiphy = wil_to_wiphy(wil);
  263. struct ieee80211_mgmt *rx_mgmt_frame =
  264. (struct ieee80211_mgmt *)data->payload;
  265. int ch_no = data->info.channel+1;
  266. u32 freq = ieee80211_channel_to_frequency(ch_no,
  267. IEEE80211_BAND_60GHZ);
  268. struct ieee80211_channel *channel = ieee80211_get_channel(wiphy, freq);
  269. /* TODO convert LE to CPU */
  270. s32 signal = 0; /* TODO */
  271. __le16 fc = rx_mgmt_frame->frame_control;
  272. u32 d_len = le32_to_cpu(data->info.len);
  273. u16 d_status = le16_to_cpu(data->info.status);
  274. wil_dbg_wmi(wil, "MGMT: channel %d MCS %d SNR %d\n",
  275. data->info.channel, data->info.mcs, data->info.snr);
  276. wil_dbg_wmi(wil, "status 0x%04x len %d stype %04x\n", d_status, d_len,
  277. le16_to_cpu(data->info.stype));
  278. wil_dbg_wmi(wil, "qid %d mid %d cid %d\n",
  279. data->info.qid, data->info.mid, data->info.cid);
  280. if (!channel) {
  281. wil_err(wil, "Frame on unsupported channel\n");
  282. return;
  283. }
  284. if (ieee80211_is_beacon(fc) || ieee80211_is_probe_resp(fc)) {
  285. struct cfg80211_bss *bss;
  286. bss = cfg80211_inform_bss_frame(wiphy, channel, rx_mgmt_frame,
  287. d_len, signal, GFP_KERNEL);
  288. if (bss) {
  289. wil_dbg_wmi(wil, "Added BSS %pM\n",
  290. rx_mgmt_frame->bssid);
  291. cfg80211_put_bss(wiphy, bss);
  292. } else {
  293. wil_err(wil, "cfg80211_inform_bss() failed\n");
  294. }
  295. } else {
  296. cfg80211_rx_mgmt(wil->wdev, freq, signal,
  297. (void *)rx_mgmt_frame, d_len, GFP_KERNEL);
  298. }
  299. }
  300. static void wmi_evt_scan_complete(struct wil6210_priv *wil, int id,
  301. void *d, int len)
  302. {
  303. if (wil->scan_request) {
  304. struct wmi_scan_complete_event *data = d;
  305. bool aborted = (data->status != 0);
  306. wil_dbg_wmi(wil, "SCAN_COMPLETE(0x%08x)\n", data->status);
  307. cfg80211_scan_done(wil->scan_request, aborted);
  308. wil->scan_request = NULL;
  309. } else {
  310. wil_err(wil, "SCAN_COMPLETE while not scanning\n");
  311. }
  312. }
  313. static void wmi_evt_connect(struct wil6210_priv *wil, int id, void *d, int len)
  314. {
  315. struct net_device *ndev = wil_to_ndev(wil);
  316. struct wireless_dev *wdev = wil->wdev;
  317. struct wmi_connect_event *evt = d;
  318. int ch; /* channel number */
  319. struct station_info sinfo;
  320. u8 *assoc_req_ie, *assoc_resp_ie;
  321. size_t assoc_req_ielen, assoc_resp_ielen;
  322. /* capinfo(u16) + listen_interval(u16) + IEs */
  323. const size_t assoc_req_ie_offset = sizeof(u16) * 2;
  324. /* capinfo(u16) + status_code(u16) + associd(u16) + IEs */
  325. const size_t assoc_resp_ie_offset = sizeof(u16) * 3;
  326. if (len < sizeof(*evt)) {
  327. wil_err(wil, "Connect event too short : %d bytes\n", len);
  328. return;
  329. }
  330. if (len != sizeof(*evt) + evt->beacon_ie_len + evt->assoc_req_len +
  331. evt->assoc_resp_len) {
  332. wil_err(wil,
  333. "Connect event corrupted : %d != %d + %d + %d + %d\n",
  334. len, (int)sizeof(*evt), evt->beacon_ie_len,
  335. evt->assoc_req_len, evt->assoc_resp_len);
  336. return;
  337. }
  338. ch = evt->channel + 1;
  339. wil_dbg_wmi(wil, "Connect %pM channel [%d] cid %d\n",
  340. evt->bssid, ch, evt->cid);
  341. wil_hex_dump_wmi("connect AI : ", DUMP_PREFIX_OFFSET, 16, 1,
  342. evt->assoc_info, len - sizeof(*evt), true);
  343. /* figure out IE's */
  344. assoc_req_ie = &evt->assoc_info[evt->beacon_ie_len +
  345. assoc_req_ie_offset];
  346. assoc_req_ielen = evt->assoc_req_len - assoc_req_ie_offset;
  347. if (evt->assoc_req_len <= assoc_req_ie_offset) {
  348. assoc_req_ie = NULL;
  349. assoc_req_ielen = 0;
  350. }
  351. assoc_resp_ie = &evt->assoc_info[evt->beacon_ie_len +
  352. evt->assoc_req_len +
  353. assoc_resp_ie_offset];
  354. assoc_resp_ielen = evt->assoc_resp_len - assoc_resp_ie_offset;
  355. if (evt->assoc_resp_len <= assoc_resp_ie_offset) {
  356. assoc_resp_ie = NULL;
  357. assoc_resp_ielen = 0;
  358. }
  359. if ((wdev->iftype == NL80211_IFTYPE_STATION) ||
  360. (wdev->iftype == NL80211_IFTYPE_P2P_CLIENT)) {
  361. if (wdev->sme_state != CFG80211_SME_CONNECTING) {
  362. wil_err(wil, "Not in connecting state\n");
  363. return;
  364. }
  365. del_timer_sync(&wil->connect_timer);
  366. cfg80211_connect_result(ndev, evt->bssid,
  367. assoc_req_ie, assoc_req_ielen,
  368. assoc_resp_ie, assoc_resp_ielen,
  369. WLAN_STATUS_SUCCESS, GFP_KERNEL);
  370. } else if ((wdev->iftype == NL80211_IFTYPE_AP) ||
  371. (wdev->iftype == NL80211_IFTYPE_P2P_GO)) {
  372. memset(&sinfo, 0, sizeof(sinfo));
  373. sinfo.generation = wil->sinfo_gen++;
  374. if (assoc_req_ie) {
  375. sinfo.assoc_req_ies = assoc_req_ie;
  376. sinfo.assoc_req_ies_len = assoc_req_ielen;
  377. sinfo.filled |= STATION_INFO_ASSOC_REQ_IES;
  378. }
  379. cfg80211_new_sta(ndev, evt->bssid, &sinfo, GFP_KERNEL);
  380. }
  381. set_bit(wil_status_fwconnected, &wil->status);
  382. /* FIXME FW can transmit only ucast frames to peer */
  383. /* FIXME real ring_id instead of hard coded 0 */
  384. memcpy(wil->dst_addr[0], evt->bssid, ETH_ALEN);
  385. wil->pending_connect_cid = evt->cid;
  386. queue_work(wil->wmi_wq_conn, &wil->connect_worker);
  387. }
  388. static void wmi_evt_disconnect(struct wil6210_priv *wil, int id,
  389. void *d, int len)
  390. {
  391. struct wmi_disconnect_event *evt = d;
  392. wil_dbg_wmi(wil, "Disconnect %pM reason %d proto %d wmi\n",
  393. evt->bssid,
  394. evt->protocol_reason_status, evt->disconnect_reason);
  395. wil->sinfo_gen++;
  396. wil6210_disconnect(wil, evt->bssid);
  397. }
  398. static void wmi_evt_notify(struct wil6210_priv *wil, int id, void *d, int len)
  399. {
  400. struct wmi_notify_req_done_event *evt = d;
  401. if (len < sizeof(*evt)) {
  402. wil_err(wil, "Short NOTIFY event\n");
  403. return;
  404. }
  405. wil->stats.tsf = le64_to_cpu(evt->tsf);
  406. wil->stats.snr = le32_to_cpu(evt->snr_val);
  407. wil->stats.bf_mcs = le16_to_cpu(evt->bf_mcs);
  408. wil->stats.my_rx_sector = le16_to_cpu(evt->my_rx_sector);
  409. wil->stats.my_tx_sector = le16_to_cpu(evt->my_tx_sector);
  410. wil->stats.peer_rx_sector = le16_to_cpu(evt->other_rx_sector);
  411. wil->stats.peer_tx_sector = le16_to_cpu(evt->other_tx_sector);
  412. wil_dbg_wmi(wil, "Link status, MCS %d TSF 0x%016llx\n"
  413. "BF status 0x%08x SNR 0x%08x\n"
  414. "Tx Tpt %d goodput %d Rx goodput %d\n"
  415. "Sectors(rx:tx) my %d:%d peer %d:%d\n",
  416. wil->stats.bf_mcs, wil->stats.tsf, evt->status,
  417. wil->stats.snr, le32_to_cpu(evt->tx_tpt),
  418. le32_to_cpu(evt->tx_goodput), le32_to_cpu(evt->rx_goodput),
  419. wil->stats.my_rx_sector, wil->stats.my_tx_sector,
  420. wil->stats.peer_rx_sector, wil->stats.peer_tx_sector);
  421. }
  422. /*
  423. * Firmware reports EAPOL frame using WME event.
  424. * Reconstruct Ethernet frame and deliver it via normal Rx
  425. */
  426. static void wmi_evt_eapol_rx(struct wil6210_priv *wil, int id,
  427. void *d, int len)
  428. {
  429. struct net_device *ndev = wil_to_ndev(wil);
  430. struct wmi_eapol_rx_event *evt = d;
  431. u16 eapol_len = le16_to_cpu(evt->eapol_len);
  432. int sz = eapol_len + ETH_HLEN;
  433. struct sk_buff *skb;
  434. struct ethhdr *eth;
  435. wil_dbg_wmi(wil, "EAPOL len %d from %pM\n", eapol_len,
  436. evt->src_mac);
  437. if (eapol_len > 196) { /* TODO: revisit size limit */
  438. wil_err(wil, "EAPOL too large\n");
  439. return;
  440. }
  441. skb = alloc_skb(sz, GFP_KERNEL);
  442. if (!skb) {
  443. wil_err(wil, "Failed to allocate skb\n");
  444. return;
  445. }
  446. eth = (struct ethhdr *)skb_put(skb, ETH_HLEN);
  447. memcpy(eth->h_dest, ndev->dev_addr, ETH_ALEN);
  448. memcpy(eth->h_source, evt->src_mac, ETH_ALEN);
  449. eth->h_proto = cpu_to_be16(ETH_P_PAE);
  450. memcpy(skb_put(skb, eapol_len), evt->eapol, eapol_len);
  451. skb->protocol = eth_type_trans(skb, ndev);
  452. if (likely(netif_rx_ni(skb) == NET_RX_SUCCESS)) {
  453. ndev->stats.rx_packets++;
  454. ndev->stats.rx_bytes += skb->len;
  455. } else {
  456. ndev->stats.rx_dropped++;
  457. }
  458. }
  459. static void wmi_evt_linkup(struct wil6210_priv *wil, int id, void *d, int len)
  460. {
  461. struct net_device *ndev = wil_to_ndev(wil);
  462. struct wmi_data_port_open_event *evt = d;
  463. wil_dbg_wmi(wil, "Link UP for CID %d\n", evt->cid);
  464. netif_carrier_on(ndev);
  465. }
  466. static void wmi_evt_linkdown(struct wil6210_priv *wil, int id, void *d, int len)
  467. {
  468. struct net_device *ndev = wil_to_ndev(wil);
  469. struct wmi_wbe_link_down_event *evt = d;
  470. wil_dbg_wmi(wil, "Link DOWN for CID %d, reason %d\n",
  471. evt->cid, le32_to_cpu(evt->reason));
  472. netif_carrier_off(ndev);
  473. }
  474. static void wmi_evt_ba_status(struct wil6210_priv *wil, int id, void *d,
  475. int len)
  476. {
  477. struct wmi_vring_ba_status_event *evt = d;
  478. wil_dbg_wmi(wil, "BACK[%d] %s {%d} timeout %d\n",
  479. evt->ringid, evt->status ? "N/A" : "OK", evt->agg_wsize,
  480. __le16_to_cpu(evt->ba_timeout));
  481. }
  482. static const struct {
  483. int eventid;
  484. void (*handler)(struct wil6210_priv *wil, int eventid,
  485. void *data, int data_len);
  486. } wmi_evt_handlers[] = {
  487. {WMI_READY_EVENTID, wmi_evt_ready},
  488. {WMI_FW_READY_EVENTID, wmi_evt_fw_ready},
  489. {WMI_RX_MGMT_PACKET_EVENTID, wmi_evt_rx_mgmt},
  490. {WMI_SCAN_COMPLETE_EVENTID, wmi_evt_scan_complete},
  491. {WMI_CONNECT_EVENTID, wmi_evt_connect},
  492. {WMI_DISCONNECT_EVENTID, wmi_evt_disconnect},
  493. {WMI_NOTIFY_REQ_DONE_EVENTID, wmi_evt_notify},
  494. {WMI_EAPOL_RX_EVENTID, wmi_evt_eapol_rx},
  495. {WMI_DATA_PORT_OPEN_EVENTID, wmi_evt_linkup},
  496. {WMI_WBE_LINKDOWN_EVENTID, wmi_evt_linkdown},
  497. {WMI_BA_STATUS_EVENTID, wmi_evt_ba_status},
  498. };
  499. /*
  500. * Run in IRQ context
  501. * Extract WMI command from mailbox. Queue it to the @wil->pending_wmi_ev
  502. * that will be eventually handled by the @wmi_event_worker in the thread
  503. * context of thread "wil6210_wmi"
  504. */
  505. void wmi_recv_cmd(struct wil6210_priv *wil)
  506. {
  507. struct wil6210_mbox_ring_desc d_tail;
  508. struct wil6210_mbox_hdr hdr;
  509. struct wil6210_mbox_ring *r = &wil->mbox_ctl.rx;
  510. struct pending_wmi_event *evt;
  511. u8 *cmd;
  512. void __iomem *src;
  513. ulong flags;
  514. if (!test_bit(wil_status_reset_done, &wil->status)) {
  515. wil_err(wil, "Reset not completed\n");
  516. return;
  517. }
  518. for (;;) {
  519. u16 len;
  520. r->head = ioread32(wil->csr + HOST_MBOX +
  521. offsetof(struct wil6210_mbox_ctl, rx.head));
  522. if (r->tail == r->head)
  523. return;
  524. /* read cmd from tail */
  525. wil_memcpy_fromio_32(&d_tail, wil->csr + HOSTADDR(r->tail),
  526. sizeof(struct wil6210_mbox_ring_desc));
  527. if (d_tail.sync == 0) {
  528. wil_err(wil, "Mbox evt not owned by FW?\n");
  529. return;
  530. }
  531. if (0 != wmi_read_hdr(wil, d_tail.addr, &hdr)) {
  532. wil_err(wil, "Mbox evt at 0x%08x?\n",
  533. le32_to_cpu(d_tail.addr));
  534. return;
  535. }
  536. len = le16_to_cpu(hdr.len);
  537. src = wmi_buffer(wil, d_tail.addr) +
  538. sizeof(struct wil6210_mbox_hdr);
  539. evt = kmalloc(ALIGN(offsetof(struct pending_wmi_event,
  540. event.wmi) + len, 4),
  541. GFP_KERNEL);
  542. if (!evt)
  543. return;
  544. evt->event.hdr = hdr;
  545. cmd = (void *)&evt->event.wmi;
  546. wil_memcpy_fromio_32(cmd, src, len);
  547. /* mark entry as empty */
  548. iowrite32(0, wil->csr + HOSTADDR(r->tail) +
  549. offsetof(struct wil6210_mbox_ring_desc, sync));
  550. /* indicate */
  551. wil_dbg_wmi(wil, "Mbox evt %04x %04x %04x %02x\n",
  552. le16_to_cpu(hdr.seq), len, le16_to_cpu(hdr.type),
  553. hdr.flags);
  554. if ((hdr.type == WIL_MBOX_HDR_TYPE_WMI) &&
  555. (len >= sizeof(struct wil6210_mbox_hdr_wmi))) {
  556. wil_dbg_wmi(wil, "WMI event 0x%04x\n",
  557. evt->event.wmi.id);
  558. }
  559. wil_hex_dump_wmi("evt ", DUMP_PREFIX_OFFSET, 16, 1,
  560. &evt->event.hdr, sizeof(hdr) + len, true);
  561. /* advance tail */
  562. r->tail = r->base + ((r->tail - r->base +
  563. sizeof(struct wil6210_mbox_ring_desc)) % r->size);
  564. iowrite32(r->tail, wil->csr + HOST_MBOX +
  565. offsetof(struct wil6210_mbox_ctl, rx.tail));
  566. /* add to the pending list */
  567. spin_lock_irqsave(&wil->wmi_ev_lock, flags);
  568. list_add_tail(&evt->list, &wil->pending_wmi_ev);
  569. spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
  570. {
  571. int q = queue_work(wil->wmi_wq,
  572. &wil->wmi_event_worker);
  573. wil_dbg_wmi(wil, "queue_work -> %d\n", q);
  574. }
  575. }
  576. }
  577. int wmi_call(struct wil6210_priv *wil, u16 cmdid, void *buf, u16 len,
  578. u16 reply_id, void *reply, u8 reply_size, int to_msec)
  579. {
  580. int rc;
  581. int remain;
  582. mutex_lock(&wil->wmi_mutex);
  583. rc = __wmi_send(wil, cmdid, buf, len);
  584. if (rc)
  585. goto out;
  586. wil->reply_id = reply_id;
  587. wil->reply_buf = reply;
  588. wil->reply_size = reply_size;
  589. remain = wait_for_completion_timeout(&wil->wmi_ready,
  590. msecs_to_jiffies(to_msec));
  591. if (0 == remain) {
  592. wil_err(wil, "wmi_call(0x%04x->0x%04x) timeout %d msec\n",
  593. cmdid, reply_id, to_msec);
  594. rc = -ETIME;
  595. } else {
  596. wil_dbg_wmi(wil,
  597. "wmi_call(0x%04x->0x%04x) completed in %d msec\n",
  598. cmdid, reply_id,
  599. to_msec - jiffies_to_msecs(remain));
  600. }
  601. wil->reply_id = 0;
  602. wil->reply_buf = NULL;
  603. wil->reply_size = 0;
  604. out:
  605. mutex_unlock(&wil->wmi_mutex);
  606. return rc;
  607. }
  608. int wmi_echo(struct wil6210_priv *wil)
  609. {
  610. struct wmi_echo_cmd cmd = {
  611. .value = cpu_to_le32(0x12345678),
  612. };
  613. return wmi_call(wil, WMI_ECHO_CMDID, &cmd, sizeof(cmd),
  614. WMI_ECHO_RSP_EVENTID, NULL, 0, 20);
  615. }
  616. int wmi_set_mac_address(struct wil6210_priv *wil, void *addr)
  617. {
  618. struct wmi_set_mac_address_cmd cmd;
  619. memcpy(cmd.mac, addr, ETH_ALEN);
  620. wil_dbg_wmi(wil, "Set MAC %pM\n", addr);
  621. return wmi_send(wil, WMI_SET_MAC_ADDRESS_CMDID, &cmd, sizeof(cmd));
  622. }
  623. int wmi_pcp_start(struct wil6210_priv *wil, int bi, u8 wmi_nettype, u8 chan)
  624. {
  625. int rc;
  626. struct wmi_pcp_start_cmd cmd = {
  627. .bcon_interval = cpu_to_le16(bi),
  628. .network_type = wmi_nettype,
  629. .disable_sec_offload = 1,
  630. .channel = chan,
  631. };
  632. struct {
  633. struct wil6210_mbox_hdr_wmi wmi;
  634. struct wmi_pcp_started_event evt;
  635. } __packed reply;
  636. if (!wil->secure_pcp)
  637. cmd.disable_sec = 1;
  638. rc = wmi_call(wil, WMI_PCP_START_CMDID, &cmd, sizeof(cmd),
  639. WMI_PCP_STARTED_EVENTID, &reply, sizeof(reply), 100);
  640. if (rc)
  641. return rc;
  642. if (reply.evt.status != WMI_FW_STATUS_SUCCESS)
  643. rc = -EINVAL;
  644. return rc;
  645. }
  646. int wmi_pcp_stop(struct wil6210_priv *wil)
  647. {
  648. return wmi_call(wil, WMI_PCP_STOP_CMDID, NULL, 0,
  649. WMI_PCP_STOPPED_EVENTID, NULL, 0, 20);
  650. }
  651. int wmi_set_ssid(struct wil6210_priv *wil, u8 ssid_len, const void *ssid)
  652. {
  653. struct wmi_set_ssid_cmd cmd = {
  654. .ssid_len = cpu_to_le32(ssid_len),
  655. };
  656. if (ssid_len > sizeof(cmd.ssid))
  657. return -EINVAL;
  658. memcpy(cmd.ssid, ssid, ssid_len);
  659. return wmi_send(wil, WMI_SET_SSID_CMDID, &cmd, sizeof(cmd));
  660. }
  661. int wmi_get_ssid(struct wil6210_priv *wil, u8 *ssid_len, void *ssid)
  662. {
  663. int rc;
  664. struct {
  665. struct wil6210_mbox_hdr_wmi wmi;
  666. struct wmi_set_ssid_cmd cmd;
  667. } __packed reply;
  668. int len; /* reply.cmd.ssid_len in CPU order */
  669. rc = wmi_call(wil, WMI_GET_SSID_CMDID, NULL, 0, WMI_GET_SSID_EVENTID,
  670. &reply, sizeof(reply), 20);
  671. if (rc)
  672. return rc;
  673. len = le32_to_cpu(reply.cmd.ssid_len);
  674. if (len > sizeof(reply.cmd.ssid))
  675. return -EINVAL;
  676. *ssid_len = len;
  677. memcpy(ssid, reply.cmd.ssid, len);
  678. return 0;
  679. }
  680. int wmi_set_channel(struct wil6210_priv *wil, int channel)
  681. {
  682. struct wmi_set_pcp_channel_cmd cmd = {
  683. .channel = channel - 1,
  684. };
  685. return wmi_send(wil, WMI_SET_PCP_CHANNEL_CMDID, &cmd, sizeof(cmd));
  686. }
  687. int wmi_get_channel(struct wil6210_priv *wil, int *channel)
  688. {
  689. int rc;
  690. struct {
  691. struct wil6210_mbox_hdr_wmi wmi;
  692. struct wmi_set_pcp_channel_cmd cmd;
  693. } __packed reply;
  694. rc = wmi_call(wil, WMI_GET_PCP_CHANNEL_CMDID, NULL, 0,
  695. WMI_GET_PCP_CHANNEL_EVENTID, &reply, sizeof(reply), 20);
  696. if (rc)
  697. return rc;
  698. if (reply.cmd.channel > 3)
  699. return -EINVAL;
  700. *channel = reply.cmd.channel + 1;
  701. return 0;
  702. }
  703. int wmi_p2p_cfg(struct wil6210_priv *wil, int channel)
  704. {
  705. struct wmi_p2p_cfg_cmd cmd = {
  706. .discovery_mode = WMI_DISCOVERY_MODE_NON_OFFLOAD,
  707. .channel = channel - 1,
  708. };
  709. return wmi_send(wil, WMI_P2P_CFG_CMDID, &cmd, sizeof(cmd));
  710. }
  711. int wmi_tx_eapol(struct wil6210_priv *wil, struct sk_buff *skb)
  712. {
  713. struct wmi_eapol_tx_cmd *cmd;
  714. struct ethhdr *eth;
  715. u16 eapol_len = skb->len - ETH_HLEN;
  716. void *eapol = skb->data + ETH_HLEN;
  717. uint i;
  718. int rc;
  719. skb_set_mac_header(skb, 0);
  720. eth = eth_hdr(skb);
  721. wil_dbg_wmi(wil, "EAPOL %d bytes to %pM\n", eapol_len, eth->h_dest);
  722. for (i = 0; i < ARRAY_SIZE(wil->vring_tx); i++) {
  723. if (memcmp(wil->dst_addr[i], eth->h_dest, ETH_ALEN) == 0)
  724. goto found_dest;
  725. }
  726. return -EINVAL;
  727. found_dest:
  728. /* find out eapol data & len */
  729. cmd = kzalloc(sizeof(*cmd) + eapol_len, GFP_KERNEL);
  730. if (!cmd)
  731. return -EINVAL;
  732. memcpy(cmd->dst_mac, eth->h_dest, ETH_ALEN);
  733. cmd->eapol_len = cpu_to_le16(eapol_len);
  734. memcpy(cmd->eapol, eapol, eapol_len);
  735. rc = wmi_send(wil, WMI_EAPOL_TX_CMDID, cmd, sizeof(*cmd) + eapol_len);
  736. kfree(cmd);
  737. return rc;
  738. }
  739. int wmi_del_cipher_key(struct wil6210_priv *wil, u8 key_index,
  740. const void *mac_addr)
  741. {
  742. struct wmi_delete_cipher_key_cmd cmd = {
  743. .key_index = key_index,
  744. };
  745. if (mac_addr)
  746. memcpy(cmd.mac, mac_addr, WMI_MAC_LEN);
  747. return wmi_send(wil, WMI_DELETE_CIPHER_KEY_CMDID, &cmd, sizeof(cmd));
  748. }
  749. int wmi_add_cipher_key(struct wil6210_priv *wil, u8 key_index,
  750. const void *mac_addr, int key_len, const void *key)
  751. {
  752. struct wmi_add_cipher_key_cmd cmd = {
  753. .key_index = key_index,
  754. .key_usage = WMI_KEY_USE_PAIRWISE,
  755. .key_len = key_len,
  756. };
  757. if (!key || (key_len > sizeof(cmd.key)))
  758. return -EINVAL;
  759. memcpy(cmd.key, key, key_len);
  760. if (mac_addr)
  761. memcpy(cmd.mac, mac_addr, WMI_MAC_LEN);
  762. return wmi_send(wil, WMI_ADD_CIPHER_KEY_CMDID, &cmd, sizeof(cmd));
  763. }
  764. int wmi_set_ie(struct wil6210_priv *wil, u8 type, u16 ie_len, const void *ie)
  765. {
  766. int rc;
  767. u16 len = sizeof(struct wmi_set_appie_cmd) + ie_len;
  768. struct wmi_set_appie_cmd *cmd = kzalloc(len, GFP_KERNEL);
  769. if (!cmd)
  770. return -ENOMEM;
  771. cmd->mgmt_frm_type = type;
  772. /* BUG: FW API define ieLen as u8. Will fix FW */
  773. cmd->ie_len = cpu_to_le16(ie_len);
  774. memcpy(cmd->ie_info, ie, ie_len);
  775. rc = wmi_send(wil, WMI_SET_APPIE_CMDID, cmd, len);
  776. kfree(cmd);
  777. return rc;
  778. }
  779. int wmi_rx_chain_add(struct wil6210_priv *wil, struct vring *vring)
  780. {
  781. struct wireless_dev *wdev = wil->wdev;
  782. struct net_device *ndev = wil_to_ndev(wil);
  783. struct wmi_cfg_rx_chain_cmd cmd = {
  784. .action = WMI_RX_CHAIN_ADD,
  785. .rx_sw_ring = {
  786. .max_mpdu_size = cpu_to_le16(RX_BUF_LEN),
  787. .ring_mem_base = cpu_to_le64(vring->pa),
  788. .ring_size = cpu_to_le16(vring->size),
  789. },
  790. .mid = 0, /* TODO - what is it? */
  791. .decap_trans_type = WMI_DECAP_TYPE_802_3,
  792. };
  793. struct {
  794. struct wil6210_mbox_hdr_wmi wmi;
  795. struct wmi_cfg_rx_chain_done_event evt;
  796. } __packed evt;
  797. int rc;
  798. if (wdev->iftype == NL80211_IFTYPE_MONITOR) {
  799. struct ieee80211_channel *ch = wdev->preset_chandef.chan;
  800. cmd.sniffer_cfg.mode = cpu_to_le32(WMI_SNIFFER_ON);
  801. if (ch)
  802. cmd.sniffer_cfg.channel = ch->hw_value - 1;
  803. cmd.sniffer_cfg.phy_info_mode =
  804. cpu_to_le32(ndev->type == ARPHRD_IEEE80211_RADIOTAP);
  805. cmd.sniffer_cfg.phy_support =
  806. cpu_to_le32((wil->monitor_flags & MONITOR_FLAG_CONTROL)
  807. ? WMI_SNIFFER_CP : WMI_SNIFFER_DP);
  808. }
  809. /* typical time for secure PCP is 840ms */
  810. rc = wmi_call(wil, WMI_CFG_RX_CHAIN_CMDID, &cmd, sizeof(cmd),
  811. WMI_CFG_RX_CHAIN_DONE_EVENTID, &evt, sizeof(evt), 2000);
  812. if (rc)
  813. return rc;
  814. vring->hwtail = le32_to_cpu(evt.evt.rx_ring_tail_ptr);
  815. wil_dbg_misc(wil, "Rx init: status %d tail 0x%08x\n",
  816. le32_to_cpu(evt.evt.status), vring->hwtail);
  817. if (le32_to_cpu(evt.evt.status) != WMI_CFG_RX_CHAIN_SUCCESS)
  818. rc = -EINVAL;
  819. return rc;
  820. }
  821. int wmi_get_temperature(struct wil6210_priv *wil, u32 *t_m, u32 *t_r)
  822. {
  823. int rc;
  824. struct wmi_temp_sense_cmd cmd = {
  825. .measure_marlon_m_en = cpu_to_le32(!!t_m),
  826. .measure_marlon_r_en = cpu_to_le32(!!t_r),
  827. };
  828. struct {
  829. struct wil6210_mbox_hdr_wmi wmi;
  830. struct wmi_temp_sense_done_event evt;
  831. } __packed reply;
  832. rc = wmi_call(wil, WMI_TEMP_SENSE_CMDID, &cmd, sizeof(cmd),
  833. WMI_TEMP_SENSE_DONE_EVENTID, &reply, sizeof(reply), 100);
  834. if (rc)
  835. return rc;
  836. if (t_m)
  837. *t_m = le32_to_cpu(reply.evt.marlon_m_t1000);
  838. if (t_r)
  839. *t_r = le32_to_cpu(reply.evt.marlon_r_t1000);
  840. return 0;
  841. }
  842. void wmi_event_flush(struct wil6210_priv *wil)
  843. {
  844. struct pending_wmi_event *evt, *t;
  845. wil_dbg_wmi(wil, "%s()\n", __func__);
  846. list_for_each_entry_safe(evt, t, &wil->pending_wmi_ev, list) {
  847. list_del(&evt->list);
  848. kfree(evt);
  849. }
  850. }
  851. static bool wmi_evt_call_handler(struct wil6210_priv *wil, int id,
  852. void *d, int len)
  853. {
  854. uint i;
  855. for (i = 0; i < ARRAY_SIZE(wmi_evt_handlers); i++) {
  856. if (wmi_evt_handlers[i].eventid == id) {
  857. wmi_evt_handlers[i].handler(wil, id, d, len);
  858. return true;
  859. }
  860. }
  861. return false;
  862. }
  863. static void wmi_event_handle(struct wil6210_priv *wil,
  864. struct wil6210_mbox_hdr *hdr)
  865. {
  866. u16 len = le16_to_cpu(hdr->len);
  867. if ((hdr->type == WIL_MBOX_HDR_TYPE_WMI) &&
  868. (len >= sizeof(struct wil6210_mbox_hdr_wmi))) {
  869. struct wil6210_mbox_hdr_wmi *wmi = (void *)(&hdr[1]);
  870. void *evt_data = (void *)(&wmi[1]);
  871. u16 id = le16_to_cpu(wmi->id);
  872. /* check if someone waits for this event */
  873. if (wil->reply_id && wil->reply_id == id) {
  874. if (wil->reply_buf) {
  875. memcpy(wil->reply_buf, wmi,
  876. min(len, wil->reply_size));
  877. } else {
  878. wmi_evt_call_handler(wil, id, evt_data,
  879. len - sizeof(*wmi));
  880. }
  881. wil_dbg_wmi(wil, "Complete WMI 0x%04x\n", id);
  882. complete(&wil->wmi_ready);
  883. return;
  884. }
  885. /* unsolicited event */
  886. /* search for handler */
  887. if (!wmi_evt_call_handler(wil, id, evt_data,
  888. len - sizeof(*wmi))) {
  889. wil_err(wil, "Unhandled event 0x%04x\n", id);
  890. }
  891. } else {
  892. wil_err(wil, "Unknown event type\n");
  893. print_hex_dump(KERN_ERR, "evt?? ", DUMP_PREFIX_OFFSET, 16, 1,
  894. hdr, sizeof(*hdr) + len, true);
  895. }
  896. }
  897. /*
  898. * Retrieve next WMI event from the pending list
  899. */
  900. static struct list_head *next_wmi_ev(struct wil6210_priv *wil)
  901. {
  902. ulong flags;
  903. struct list_head *ret = NULL;
  904. spin_lock_irqsave(&wil->wmi_ev_lock, flags);
  905. if (!list_empty(&wil->pending_wmi_ev)) {
  906. ret = wil->pending_wmi_ev.next;
  907. list_del(ret);
  908. }
  909. spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
  910. return ret;
  911. }
  912. /*
  913. * Handler for the WMI events
  914. */
  915. void wmi_event_worker(struct work_struct *work)
  916. {
  917. struct wil6210_priv *wil = container_of(work, struct wil6210_priv,
  918. wmi_event_worker);
  919. struct pending_wmi_event *evt;
  920. struct list_head *lh;
  921. while ((lh = next_wmi_ev(wil)) != NULL) {
  922. evt = list_entry(lh, struct pending_wmi_event, list);
  923. wmi_event_handle(wil, &evt->event.hdr);
  924. kfree(evt);
  925. }
  926. }