xmit.c 63 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/dma-mapping.h>
  17. #include "ath9k.h"
  18. #include "ar9003_mac.h"
  19. #define BITS_PER_BYTE 8
  20. #define OFDM_PLCP_BITS 22
  21. #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
  22. #define L_STF 8
  23. #define L_LTF 8
  24. #define L_SIG 4
  25. #define HT_SIG 8
  26. #define HT_STF 4
  27. #define HT_LTF(_ns) (4 * (_ns))
  28. #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
  29. #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
  30. #define TIME_SYMBOLS(t) ((t) >> 2)
  31. #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
  32. #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
  33. #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
  34. static u16 bits_per_symbol[][2] = {
  35. /* 20MHz 40MHz */
  36. { 26, 54 }, /* 0: BPSK */
  37. { 52, 108 }, /* 1: QPSK 1/2 */
  38. { 78, 162 }, /* 2: QPSK 3/4 */
  39. { 104, 216 }, /* 3: 16-QAM 1/2 */
  40. { 156, 324 }, /* 4: 16-QAM 3/4 */
  41. { 208, 432 }, /* 5: 64-QAM 2/3 */
  42. { 234, 486 }, /* 6: 64-QAM 3/4 */
  43. { 260, 540 }, /* 7: 64-QAM 5/6 */
  44. };
  45. #define IS_HT_RATE(_rate) ((_rate) & 0x80)
  46. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  47. struct ath_atx_tid *tid, struct sk_buff *skb);
  48. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  49. int tx_flags, struct ath_txq *txq);
  50. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  51. struct ath_txq *txq, struct list_head *bf_q,
  52. struct ath_tx_status *ts, int txok);
  53. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  54. struct list_head *head, bool internal);
  55. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  56. struct ath_tx_status *ts, int nframes, int nbad,
  57. int txok);
  58. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  59. int seqno);
  60. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  61. struct ath_txq *txq,
  62. struct ath_atx_tid *tid,
  63. struct sk_buff *skb);
  64. enum {
  65. MCS_HT20,
  66. MCS_HT20_SGI,
  67. MCS_HT40,
  68. MCS_HT40_SGI,
  69. };
  70. /*********************/
  71. /* Aggregation logic */
  72. /*********************/
  73. void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
  74. __acquires(&txq->axq_lock)
  75. {
  76. spin_lock_bh(&txq->axq_lock);
  77. }
  78. void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
  79. __releases(&txq->axq_lock)
  80. {
  81. spin_unlock_bh(&txq->axq_lock);
  82. }
  83. void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
  84. __releases(&txq->axq_lock)
  85. {
  86. struct sk_buff_head q;
  87. struct sk_buff *skb;
  88. __skb_queue_head_init(&q);
  89. skb_queue_splice_init(&txq->complete_q, &q);
  90. spin_unlock_bh(&txq->axq_lock);
  91. while ((skb = __skb_dequeue(&q)))
  92. ieee80211_tx_status(sc->hw, skb);
  93. }
  94. static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
  95. {
  96. struct ath_atx_ac *ac = tid->ac;
  97. if (tid->paused)
  98. return;
  99. if (tid->sched)
  100. return;
  101. tid->sched = true;
  102. list_add_tail(&tid->list, &ac->tid_q);
  103. if (ac->sched)
  104. return;
  105. ac->sched = true;
  106. list_add_tail(&ac->list, &txq->axq_acq);
  107. }
  108. static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  109. {
  110. struct ath_txq *txq = tid->ac->txq;
  111. WARN_ON(!tid->paused);
  112. ath_txq_lock(sc, txq);
  113. tid->paused = false;
  114. if (skb_queue_empty(&tid->buf_q))
  115. goto unlock;
  116. ath_tx_queue_tid(txq, tid);
  117. ath_txq_schedule(sc, txq);
  118. unlock:
  119. ath_txq_unlock_complete(sc, txq);
  120. }
  121. static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
  122. {
  123. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  124. BUILD_BUG_ON(sizeof(struct ath_frame_info) >
  125. sizeof(tx_info->rate_driver_data));
  126. return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
  127. }
  128. static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
  129. {
  130. ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
  131. seqno << IEEE80211_SEQ_SEQ_SHIFT);
  132. }
  133. static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  134. {
  135. struct ath_txq *txq = tid->ac->txq;
  136. struct sk_buff *skb;
  137. struct ath_buf *bf;
  138. struct list_head bf_head;
  139. struct ath_tx_status ts;
  140. struct ath_frame_info *fi;
  141. bool sendbar = false;
  142. INIT_LIST_HEAD(&bf_head);
  143. memset(&ts, 0, sizeof(ts));
  144. while ((skb = __skb_dequeue(&tid->buf_q))) {
  145. fi = get_frame_info(skb);
  146. bf = fi->bf;
  147. if (!bf) {
  148. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  149. if (!bf) {
  150. ieee80211_free_txskb(sc->hw, skb);
  151. continue;
  152. }
  153. }
  154. if (fi->retries) {
  155. list_add_tail(&bf->list, &bf_head);
  156. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  157. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  158. sendbar = true;
  159. } else {
  160. ath_tx_send_normal(sc, txq, NULL, skb);
  161. }
  162. }
  163. if (tid->baw_head == tid->baw_tail) {
  164. tid->state &= ~AGGR_ADDBA_COMPLETE;
  165. tid->state &= ~AGGR_CLEANUP;
  166. }
  167. if (sendbar) {
  168. ath_txq_unlock(sc, txq);
  169. ath_send_bar(tid, tid->seq_start);
  170. ath_txq_lock(sc, txq);
  171. }
  172. }
  173. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  174. int seqno)
  175. {
  176. int index, cindex;
  177. index = ATH_BA_INDEX(tid->seq_start, seqno);
  178. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  179. __clear_bit(cindex, tid->tx_buf);
  180. while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
  181. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  182. INCR(tid->baw_head, ATH_TID_MAX_BUFS);
  183. if (tid->bar_index >= 0)
  184. tid->bar_index--;
  185. }
  186. }
  187. static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  188. u16 seqno)
  189. {
  190. int index, cindex;
  191. index = ATH_BA_INDEX(tid->seq_start, seqno);
  192. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  193. __set_bit(cindex, tid->tx_buf);
  194. if (index >= ((tid->baw_tail - tid->baw_head) &
  195. (ATH_TID_MAX_BUFS - 1))) {
  196. tid->baw_tail = cindex;
  197. INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
  198. }
  199. }
  200. /*
  201. * TODO: For frame(s) that are in the retry state, we will reuse the
  202. * sequence number(s) without setting the retry bit. The
  203. * alternative is to give up on these and BAR the receiver's window
  204. * forward.
  205. */
  206. static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
  207. struct ath_atx_tid *tid)
  208. {
  209. struct sk_buff *skb;
  210. struct ath_buf *bf;
  211. struct list_head bf_head;
  212. struct ath_tx_status ts;
  213. struct ath_frame_info *fi;
  214. memset(&ts, 0, sizeof(ts));
  215. INIT_LIST_HEAD(&bf_head);
  216. while ((skb = __skb_dequeue(&tid->buf_q))) {
  217. fi = get_frame_info(skb);
  218. bf = fi->bf;
  219. if (!bf) {
  220. ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
  221. continue;
  222. }
  223. list_add_tail(&bf->list, &bf_head);
  224. if (fi->retries)
  225. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  226. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  227. }
  228. tid->seq_next = tid->seq_start;
  229. tid->baw_tail = tid->baw_head;
  230. tid->bar_index = -1;
  231. }
  232. static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
  233. struct sk_buff *skb, int count)
  234. {
  235. struct ath_frame_info *fi = get_frame_info(skb);
  236. struct ath_buf *bf = fi->bf;
  237. struct ieee80211_hdr *hdr;
  238. int prev = fi->retries;
  239. TX_STAT_INC(txq->axq_qnum, a_retries);
  240. fi->retries += count;
  241. if (prev > 0)
  242. return;
  243. hdr = (struct ieee80211_hdr *)skb->data;
  244. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
  245. dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
  246. sizeof(*hdr), DMA_TO_DEVICE);
  247. }
  248. static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
  249. {
  250. struct ath_buf *bf = NULL;
  251. spin_lock_bh(&sc->tx.txbuflock);
  252. if (unlikely(list_empty(&sc->tx.txbuf))) {
  253. spin_unlock_bh(&sc->tx.txbuflock);
  254. return NULL;
  255. }
  256. bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
  257. list_del(&bf->list);
  258. spin_unlock_bh(&sc->tx.txbuflock);
  259. return bf;
  260. }
  261. static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
  262. {
  263. spin_lock_bh(&sc->tx.txbuflock);
  264. list_add_tail(&bf->list, &sc->tx.txbuf);
  265. spin_unlock_bh(&sc->tx.txbuflock);
  266. }
  267. static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
  268. {
  269. struct ath_buf *tbf;
  270. tbf = ath_tx_get_buffer(sc);
  271. if (WARN_ON(!tbf))
  272. return NULL;
  273. ATH_TXBUF_RESET(tbf);
  274. tbf->bf_mpdu = bf->bf_mpdu;
  275. tbf->bf_buf_addr = bf->bf_buf_addr;
  276. memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
  277. tbf->bf_state = bf->bf_state;
  278. return tbf;
  279. }
  280. static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
  281. struct ath_tx_status *ts, int txok,
  282. int *nframes, int *nbad)
  283. {
  284. struct ath_frame_info *fi;
  285. u16 seq_st = 0;
  286. u32 ba[WME_BA_BMP_SIZE >> 5];
  287. int ba_index;
  288. int isaggr = 0;
  289. *nbad = 0;
  290. *nframes = 0;
  291. isaggr = bf_isaggr(bf);
  292. if (isaggr) {
  293. seq_st = ts->ts_seqnum;
  294. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  295. }
  296. while (bf) {
  297. fi = get_frame_info(bf->bf_mpdu);
  298. ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
  299. (*nframes)++;
  300. if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
  301. (*nbad)++;
  302. bf = bf->bf_next;
  303. }
  304. }
  305. static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
  306. struct ath_buf *bf, struct list_head *bf_q,
  307. struct ath_tx_status *ts, int txok)
  308. {
  309. struct ath_node *an = NULL;
  310. struct sk_buff *skb;
  311. struct ieee80211_sta *sta;
  312. struct ieee80211_hw *hw = sc->hw;
  313. struct ieee80211_hdr *hdr;
  314. struct ieee80211_tx_info *tx_info;
  315. struct ath_atx_tid *tid = NULL;
  316. struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
  317. struct list_head bf_head;
  318. struct sk_buff_head bf_pending;
  319. u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
  320. u32 ba[WME_BA_BMP_SIZE >> 5];
  321. int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
  322. bool rc_update = true, isba;
  323. struct ieee80211_tx_rate rates[4];
  324. struct ath_frame_info *fi;
  325. int nframes;
  326. u8 tidno;
  327. bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
  328. int i, retries;
  329. int bar_index = -1;
  330. skb = bf->bf_mpdu;
  331. hdr = (struct ieee80211_hdr *)skb->data;
  332. tx_info = IEEE80211_SKB_CB(skb);
  333. memcpy(rates, tx_info->control.rates, sizeof(rates));
  334. retries = ts->ts_longretry + 1;
  335. for (i = 0; i < ts->ts_rateindex; i++)
  336. retries += rates[i].count;
  337. rcu_read_lock();
  338. sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
  339. if (!sta) {
  340. rcu_read_unlock();
  341. INIT_LIST_HEAD(&bf_head);
  342. while (bf) {
  343. bf_next = bf->bf_next;
  344. if (!bf->bf_stale || bf_next != NULL)
  345. list_move_tail(&bf->list, &bf_head);
  346. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
  347. bf = bf_next;
  348. }
  349. return;
  350. }
  351. an = (struct ath_node *)sta->drv_priv;
  352. tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
  353. tid = ATH_AN_2_TID(an, tidno);
  354. seq_first = tid->seq_start;
  355. isba = ts->ts_flags & ATH9K_TX_BA;
  356. /*
  357. * The hardware occasionally sends a tx status for the wrong TID.
  358. * In this case, the BA status cannot be considered valid and all
  359. * subframes need to be retransmitted
  360. *
  361. * Only BlockAcks have a TID and therefore normal Acks cannot be
  362. * checked
  363. */
  364. if (isba && tidno != ts->tid)
  365. txok = false;
  366. isaggr = bf_isaggr(bf);
  367. memset(ba, 0, WME_BA_BMP_SIZE >> 3);
  368. if (isaggr && txok) {
  369. if (ts->ts_flags & ATH9K_TX_BA) {
  370. seq_st = ts->ts_seqnum;
  371. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  372. } else {
  373. /*
  374. * AR5416 can become deaf/mute when BA
  375. * issue happens. Chip needs to be reset.
  376. * But AP code may have sychronization issues
  377. * when perform internal reset in this routine.
  378. * Only enable reset in STA mode for now.
  379. */
  380. if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
  381. needreset = 1;
  382. }
  383. }
  384. __skb_queue_head_init(&bf_pending);
  385. ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
  386. while (bf) {
  387. u16 seqno = bf->bf_state.seqno;
  388. txfail = txpending = sendbar = 0;
  389. bf_next = bf->bf_next;
  390. skb = bf->bf_mpdu;
  391. tx_info = IEEE80211_SKB_CB(skb);
  392. fi = get_frame_info(skb);
  393. if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
  394. /* transmit completion, subframe is
  395. * acked by block ack */
  396. acked_cnt++;
  397. } else if (!isaggr && txok) {
  398. /* transmit completion */
  399. acked_cnt++;
  400. } else if (tid->state & AGGR_CLEANUP) {
  401. /*
  402. * cleanup in progress, just fail
  403. * the un-acked sub-frames
  404. */
  405. txfail = 1;
  406. } else if (flush) {
  407. txpending = 1;
  408. } else if (fi->retries < ATH_MAX_SW_RETRIES) {
  409. if (txok || !an->sleeping)
  410. ath_tx_set_retry(sc, txq, bf->bf_mpdu,
  411. retries);
  412. txpending = 1;
  413. } else {
  414. txfail = 1;
  415. txfail_cnt++;
  416. bar_index = max_t(int, bar_index,
  417. ATH_BA_INDEX(seq_first, seqno));
  418. }
  419. /*
  420. * Make sure the last desc is reclaimed if it
  421. * not a holding desc.
  422. */
  423. INIT_LIST_HEAD(&bf_head);
  424. if (bf_next != NULL || !bf_last->bf_stale)
  425. list_move_tail(&bf->list, &bf_head);
  426. if (!txpending || (tid->state & AGGR_CLEANUP)) {
  427. /*
  428. * complete the acked-ones/xretried ones; update
  429. * block-ack window
  430. */
  431. ath_tx_update_baw(sc, tid, seqno);
  432. if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
  433. memcpy(tx_info->control.rates, rates, sizeof(rates));
  434. ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
  435. rc_update = false;
  436. }
  437. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  438. !txfail);
  439. } else {
  440. /* retry the un-acked ones */
  441. if (bf->bf_next == NULL && bf_last->bf_stale) {
  442. struct ath_buf *tbf;
  443. tbf = ath_clone_txbuf(sc, bf_last);
  444. /*
  445. * Update tx baw and complete the
  446. * frame with failed status if we
  447. * run out of tx buf.
  448. */
  449. if (!tbf) {
  450. ath_tx_update_baw(sc, tid, seqno);
  451. ath_tx_complete_buf(sc, bf, txq,
  452. &bf_head, ts, 0);
  453. bar_index = max_t(int, bar_index,
  454. ATH_BA_INDEX(seq_first, seqno));
  455. break;
  456. }
  457. fi->bf = tbf;
  458. }
  459. /*
  460. * Put this buffer to the temporary pending
  461. * queue to retain ordering
  462. */
  463. __skb_queue_tail(&bf_pending, skb);
  464. }
  465. bf = bf_next;
  466. }
  467. /* prepend un-acked frames to the beginning of the pending frame queue */
  468. if (!skb_queue_empty(&bf_pending)) {
  469. if (an->sleeping)
  470. ieee80211_sta_set_buffered(sta, tid->tidno, true);
  471. skb_queue_splice(&bf_pending, &tid->buf_q);
  472. if (!an->sleeping) {
  473. ath_tx_queue_tid(txq, tid);
  474. if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
  475. tid->ac->clear_ps_filter = true;
  476. }
  477. }
  478. if (bar_index >= 0) {
  479. u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
  480. if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
  481. tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
  482. ath_txq_unlock(sc, txq);
  483. ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
  484. ath_txq_lock(sc, txq);
  485. }
  486. if (tid->state & AGGR_CLEANUP)
  487. ath_tx_flush_tid(sc, tid);
  488. rcu_read_unlock();
  489. if (needreset)
  490. ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
  491. }
  492. static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
  493. {
  494. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
  495. return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
  496. }
  497. static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
  498. struct ath_tx_status *ts, struct ath_buf *bf,
  499. struct list_head *bf_head)
  500. {
  501. bool txok, flush;
  502. txok = !(ts->ts_status & ATH9K_TXERR_MASK);
  503. flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
  504. txq->axq_tx_inprogress = false;
  505. txq->axq_depth--;
  506. if (bf_is_ampdu_not_probing(bf))
  507. txq->axq_ampdu_depth--;
  508. if (!bf_isampdu(bf)) {
  509. if (!flush)
  510. ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
  511. ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
  512. } else
  513. ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok);
  514. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && !flush)
  515. ath_txq_schedule(sc, txq);
  516. }
  517. static bool ath_lookup_legacy(struct ath_buf *bf)
  518. {
  519. struct sk_buff *skb;
  520. struct ieee80211_tx_info *tx_info;
  521. struct ieee80211_tx_rate *rates;
  522. int i;
  523. skb = bf->bf_mpdu;
  524. tx_info = IEEE80211_SKB_CB(skb);
  525. rates = tx_info->control.rates;
  526. for (i = 0; i < 4; i++) {
  527. if (!rates[i].count || rates[i].idx < 0)
  528. break;
  529. if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
  530. return true;
  531. }
  532. return false;
  533. }
  534. static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
  535. struct ath_atx_tid *tid)
  536. {
  537. struct sk_buff *skb;
  538. struct ieee80211_tx_info *tx_info;
  539. struct ieee80211_tx_rate *rates;
  540. u32 max_4ms_framelen, frmlen;
  541. u16 aggr_limit, bt_aggr_limit, legacy = 0;
  542. int q = tid->ac->txq->mac80211_qnum;
  543. int i;
  544. skb = bf->bf_mpdu;
  545. tx_info = IEEE80211_SKB_CB(skb);
  546. rates = tx_info->control.rates;
  547. /*
  548. * Find the lowest frame length among the rate series that will have a
  549. * 4ms (or TXOP limited) transmit duration.
  550. */
  551. max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
  552. for (i = 0; i < 4; i++) {
  553. int modeidx;
  554. if (!rates[i].count)
  555. continue;
  556. if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
  557. legacy = 1;
  558. break;
  559. }
  560. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  561. modeidx = MCS_HT40;
  562. else
  563. modeidx = MCS_HT20;
  564. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  565. modeidx++;
  566. frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
  567. max_4ms_framelen = min(max_4ms_framelen, frmlen);
  568. }
  569. /*
  570. * limit aggregate size by the minimum rate if rate selected is
  571. * not a probe rate, if rate selected is a probe rate then
  572. * avoid aggregation of this packet.
  573. */
  574. if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
  575. return 0;
  576. aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
  577. /*
  578. * Override the default aggregation limit for BTCOEX.
  579. */
  580. bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
  581. if (bt_aggr_limit)
  582. aggr_limit = bt_aggr_limit;
  583. /*
  584. * h/w can accept aggregates up to 16 bit lengths (65535).
  585. * The IE, however can hold up to 65536, which shows up here
  586. * as zero. Ignore 65536 since we are constrained by hw.
  587. */
  588. if (tid->an->maxampdu)
  589. aggr_limit = min(aggr_limit, tid->an->maxampdu);
  590. return aggr_limit;
  591. }
  592. /*
  593. * Returns the number of delimiters to be added to
  594. * meet the minimum required mpdudensity.
  595. */
  596. static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
  597. struct ath_buf *bf, u16 frmlen,
  598. bool first_subfrm)
  599. {
  600. #define FIRST_DESC_NDELIMS 60
  601. struct sk_buff *skb = bf->bf_mpdu;
  602. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  603. u32 nsymbits, nsymbols;
  604. u16 minlen;
  605. u8 flags, rix;
  606. int width, streams, half_gi, ndelim, mindelim;
  607. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  608. /* Select standard number of delimiters based on frame length alone */
  609. ndelim = ATH_AGGR_GET_NDELIM(frmlen);
  610. /*
  611. * If encryption enabled, hardware requires some more padding between
  612. * subframes.
  613. * TODO - this could be improved to be dependent on the rate.
  614. * The hardware can keep up at lower rates, but not higher rates
  615. */
  616. if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
  617. !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
  618. ndelim += ATH_AGGR_ENCRYPTDELIM;
  619. /*
  620. * Add delimiter when using RTS/CTS with aggregation
  621. * and non enterprise AR9003 card
  622. */
  623. if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
  624. (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
  625. ndelim = max(ndelim, FIRST_DESC_NDELIMS);
  626. /*
  627. * Convert desired mpdu density from microeconds to bytes based
  628. * on highest rate in rate series (i.e. first rate) to determine
  629. * required minimum length for subframe. Take into account
  630. * whether high rate is 20 or 40Mhz and half or full GI.
  631. *
  632. * If there is no mpdu density restriction, no further calculation
  633. * is needed.
  634. */
  635. if (tid->an->mpdudensity == 0)
  636. return ndelim;
  637. rix = tx_info->control.rates[0].idx;
  638. flags = tx_info->control.rates[0].flags;
  639. width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
  640. half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
  641. if (half_gi)
  642. nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
  643. else
  644. nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
  645. if (nsymbols == 0)
  646. nsymbols = 1;
  647. streams = HT_RC_2_STREAMS(rix);
  648. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  649. minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
  650. if (frmlen < minlen) {
  651. mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
  652. ndelim = max(mindelim, ndelim);
  653. }
  654. return ndelim;
  655. }
  656. static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
  657. struct ath_txq *txq,
  658. struct ath_atx_tid *tid,
  659. struct list_head *bf_q,
  660. int *aggr_len)
  661. {
  662. #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
  663. struct ath_buf *bf, *bf_first = NULL, *bf_prev = NULL;
  664. int rl = 0, nframes = 0, ndelim, prev_al = 0;
  665. u16 aggr_limit = 0, al = 0, bpad = 0,
  666. al_delta, h_baw = tid->baw_size / 2;
  667. enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
  668. struct ieee80211_tx_info *tx_info;
  669. struct ath_frame_info *fi;
  670. struct sk_buff *skb;
  671. u16 seqno;
  672. do {
  673. skb = skb_peek(&tid->buf_q);
  674. fi = get_frame_info(skb);
  675. bf = fi->bf;
  676. if (!fi->bf)
  677. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  678. if (!bf) {
  679. __skb_unlink(skb, &tid->buf_q);
  680. ieee80211_free_txskb(sc->hw, skb);
  681. continue;
  682. }
  683. bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
  684. seqno = bf->bf_state.seqno;
  685. /* do not step over block-ack window */
  686. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
  687. status = ATH_AGGR_BAW_CLOSED;
  688. break;
  689. }
  690. if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
  691. struct ath_tx_status ts = {};
  692. struct list_head bf_head;
  693. INIT_LIST_HEAD(&bf_head);
  694. list_add(&bf->list, &bf_head);
  695. __skb_unlink(skb, &tid->buf_q);
  696. ath_tx_update_baw(sc, tid, seqno);
  697. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  698. continue;
  699. }
  700. if (!bf_first)
  701. bf_first = bf;
  702. if (!rl) {
  703. aggr_limit = ath_lookup_rate(sc, bf, tid);
  704. rl = 1;
  705. }
  706. /* do not exceed aggregation limit */
  707. al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
  708. if (nframes &&
  709. ((aggr_limit < (al + bpad + al_delta + prev_al)) ||
  710. ath_lookup_legacy(bf))) {
  711. status = ATH_AGGR_LIMITED;
  712. break;
  713. }
  714. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  715. if (nframes && (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
  716. break;
  717. /* do not exceed subframe limit */
  718. if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
  719. status = ATH_AGGR_LIMITED;
  720. break;
  721. }
  722. /* add padding for previous frame to aggregation length */
  723. al += bpad + al_delta;
  724. /*
  725. * Get the delimiters needed to meet the MPDU
  726. * density for this node.
  727. */
  728. ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
  729. !nframes);
  730. bpad = PADBYTES(al_delta) + (ndelim << 2);
  731. nframes++;
  732. bf->bf_next = NULL;
  733. /* link buffers of this frame to the aggregate */
  734. if (!fi->retries)
  735. ath_tx_addto_baw(sc, tid, seqno);
  736. bf->bf_state.ndelim = ndelim;
  737. __skb_unlink(skb, &tid->buf_q);
  738. list_add_tail(&bf->list, bf_q);
  739. if (bf_prev)
  740. bf_prev->bf_next = bf;
  741. bf_prev = bf;
  742. } while (!skb_queue_empty(&tid->buf_q));
  743. *aggr_len = al;
  744. return status;
  745. #undef PADBYTES
  746. }
  747. /*
  748. * rix - rate index
  749. * pktlen - total bytes (delims + data + fcs + pads + pad delims)
  750. * width - 0 for 20 MHz, 1 for 40 MHz
  751. * half_gi - to use 4us v/s 3.6 us for symbol time
  752. */
  753. static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
  754. int width, int half_gi, bool shortPreamble)
  755. {
  756. u32 nbits, nsymbits, duration, nsymbols;
  757. int streams;
  758. /* find number of symbols: PLCP + data */
  759. streams = HT_RC_2_STREAMS(rix);
  760. nbits = (pktlen << 3) + OFDM_PLCP_BITS;
  761. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  762. nsymbols = (nbits + nsymbits - 1) / nsymbits;
  763. if (!half_gi)
  764. duration = SYMBOL_TIME(nsymbols);
  765. else
  766. duration = SYMBOL_TIME_HALFGI(nsymbols);
  767. /* addup duration for legacy/ht training and signal fields */
  768. duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  769. return duration;
  770. }
  771. static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
  772. {
  773. int streams = HT_RC_2_STREAMS(mcs);
  774. int symbols, bits;
  775. int bytes = 0;
  776. symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
  777. bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
  778. bits -= OFDM_PLCP_BITS;
  779. bytes = bits / 8;
  780. bytes -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  781. if (bytes > 65532)
  782. bytes = 65532;
  783. return bytes;
  784. }
  785. void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
  786. {
  787. u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
  788. int mcs;
  789. /* 4ms is the default (and maximum) duration */
  790. if (!txop || txop > 4096)
  791. txop = 4096;
  792. cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
  793. cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
  794. cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
  795. cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
  796. for (mcs = 0; mcs < 32; mcs++) {
  797. cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
  798. cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
  799. cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
  800. cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
  801. }
  802. }
  803. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
  804. struct ath_tx_info *info, int len)
  805. {
  806. struct ath_hw *ah = sc->sc_ah;
  807. struct sk_buff *skb;
  808. struct ieee80211_tx_info *tx_info;
  809. struct ieee80211_tx_rate *rates;
  810. const struct ieee80211_rate *rate;
  811. struct ieee80211_hdr *hdr;
  812. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  813. int i;
  814. u8 rix = 0;
  815. skb = bf->bf_mpdu;
  816. tx_info = IEEE80211_SKB_CB(skb);
  817. rates = tx_info->control.rates;
  818. hdr = (struct ieee80211_hdr *)skb->data;
  819. /* set dur_update_en for l-sig computation except for PS-Poll frames */
  820. info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
  821. info->rtscts_rate = fi->rtscts_rate;
  822. for (i = 0; i < 4; i++) {
  823. bool is_40, is_sgi, is_sp;
  824. int phy;
  825. if (!rates[i].count || (rates[i].idx < 0))
  826. continue;
  827. rix = rates[i].idx;
  828. info->rates[i].Tries = rates[i].count;
  829. if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
  830. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  831. info->flags |= ATH9K_TXDESC_RTSENA;
  832. } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
  833. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  834. info->flags |= ATH9K_TXDESC_CTSENA;
  835. }
  836. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  837. info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
  838. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  839. info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
  840. is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
  841. is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
  842. is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
  843. if (rates[i].flags & IEEE80211_TX_RC_MCS) {
  844. /* MCS rates */
  845. info->rates[i].Rate = rix | 0x80;
  846. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  847. ah->txchainmask, info->rates[i].Rate);
  848. info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
  849. is_40, is_sgi, is_sp);
  850. if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
  851. info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
  852. continue;
  853. }
  854. /* legacy rates */
  855. rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
  856. if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
  857. !(rate->flags & IEEE80211_RATE_ERP_G))
  858. phy = WLAN_RC_PHY_CCK;
  859. else
  860. phy = WLAN_RC_PHY_OFDM;
  861. info->rates[i].Rate = rate->hw_value;
  862. if (rate->hw_value_short) {
  863. if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  864. info->rates[i].Rate |= rate->hw_value_short;
  865. } else {
  866. is_sp = false;
  867. }
  868. if (bf->bf_state.bfs_paprd)
  869. info->rates[i].ChSel = ah->txchainmask;
  870. else
  871. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  872. ah->txchainmask, info->rates[i].Rate);
  873. info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
  874. phy, rate->bitrate * 100, len, rix, is_sp);
  875. }
  876. /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
  877. if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
  878. info->flags &= ~ATH9K_TXDESC_RTSENA;
  879. /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
  880. if (info->flags & ATH9K_TXDESC_RTSENA)
  881. info->flags &= ~ATH9K_TXDESC_CTSENA;
  882. }
  883. static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
  884. {
  885. struct ieee80211_hdr *hdr;
  886. enum ath9k_pkt_type htype;
  887. __le16 fc;
  888. hdr = (struct ieee80211_hdr *)skb->data;
  889. fc = hdr->frame_control;
  890. if (ieee80211_is_beacon(fc))
  891. htype = ATH9K_PKT_TYPE_BEACON;
  892. else if (ieee80211_is_probe_resp(fc))
  893. htype = ATH9K_PKT_TYPE_PROBE_RESP;
  894. else if (ieee80211_is_atim(fc))
  895. htype = ATH9K_PKT_TYPE_ATIM;
  896. else if (ieee80211_is_pspoll(fc))
  897. htype = ATH9K_PKT_TYPE_PSPOLL;
  898. else
  899. htype = ATH9K_PKT_TYPE_NORMAL;
  900. return htype;
  901. }
  902. static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
  903. struct ath_txq *txq, int len)
  904. {
  905. struct ath_hw *ah = sc->sc_ah;
  906. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  907. struct ath_buf *bf_first = bf;
  908. struct ath_tx_info info;
  909. bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
  910. memset(&info, 0, sizeof(info));
  911. info.is_first = true;
  912. info.is_last = true;
  913. info.txpower = MAX_RATE_POWER;
  914. info.qcu = txq->axq_qnum;
  915. info.flags = ATH9K_TXDESC_INTREQ;
  916. if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
  917. info.flags |= ATH9K_TXDESC_NOACK;
  918. if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
  919. info.flags |= ATH9K_TXDESC_LDPC;
  920. ath_buf_set_rate(sc, bf, &info, len);
  921. if (tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
  922. info.flags |= ATH9K_TXDESC_CLRDMASK;
  923. if (bf->bf_state.bfs_paprd)
  924. info.flags |= (u32) bf->bf_state.bfs_paprd << ATH9K_TXDESC_PAPRD_S;
  925. while (bf) {
  926. struct sk_buff *skb = bf->bf_mpdu;
  927. struct ath_frame_info *fi = get_frame_info(skb);
  928. info.type = get_hw_packet_type(skb);
  929. if (bf->bf_next)
  930. info.link = bf->bf_next->bf_daddr;
  931. else
  932. info.link = 0;
  933. info.buf_addr[0] = bf->bf_buf_addr;
  934. info.buf_len[0] = skb->len;
  935. info.pkt_len = fi->framelen;
  936. info.keyix = fi->keyix;
  937. info.keytype = fi->keytype;
  938. if (aggr) {
  939. if (bf == bf_first)
  940. info.aggr = AGGR_BUF_FIRST;
  941. else if (!bf->bf_next)
  942. info.aggr = AGGR_BUF_LAST;
  943. else
  944. info.aggr = AGGR_BUF_MIDDLE;
  945. info.ndelim = bf->bf_state.ndelim;
  946. info.aggr_len = len;
  947. }
  948. ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
  949. bf = bf->bf_next;
  950. }
  951. }
  952. static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
  953. struct ath_atx_tid *tid)
  954. {
  955. struct ath_buf *bf;
  956. enum ATH_AGGR_STATUS status;
  957. struct ieee80211_tx_info *tx_info;
  958. struct list_head bf_q;
  959. int aggr_len;
  960. do {
  961. if (skb_queue_empty(&tid->buf_q))
  962. return;
  963. INIT_LIST_HEAD(&bf_q);
  964. status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len);
  965. /*
  966. * no frames picked up to be aggregated;
  967. * block-ack window is not open.
  968. */
  969. if (list_empty(&bf_q))
  970. break;
  971. bf = list_first_entry(&bf_q, struct ath_buf, list);
  972. bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
  973. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  974. if (tid->ac->clear_ps_filter) {
  975. tid->ac->clear_ps_filter = false;
  976. tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  977. } else {
  978. tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
  979. }
  980. /* if only one frame, send as non-aggregate */
  981. if (bf == bf->bf_lastbf) {
  982. aggr_len = get_frame_info(bf->bf_mpdu)->framelen;
  983. bf->bf_state.bf_type = BUF_AMPDU;
  984. } else {
  985. TX_STAT_INC(txq->axq_qnum, a_aggr);
  986. }
  987. ath_tx_fill_desc(sc, bf, txq, aggr_len);
  988. ath_tx_txqaddbuf(sc, txq, &bf_q, false);
  989. } while (txq->axq_ampdu_depth < ATH_AGGR_MIN_QDEPTH &&
  990. status != ATH_AGGR_BAW_CLOSED);
  991. }
  992. int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
  993. u16 tid, u16 *ssn)
  994. {
  995. struct ath_atx_tid *txtid;
  996. struct ath_node *an;
  997. u8 density;
  998. an = (struct ath_node *)sta->drv_priv;
  999. txtid = ATH_AN_2_TID(an, tid);
  1000. if (txtid->state & (AGGR_CLEANUP | AGGR_ADDBA_COMPLETE))
  1001. return -EAGAIN;
  1002. /* update ampdu factor/density, they may have changed. This may happen
  1003. * in HT IBSS when a beacon with HT-info is received after the station
  1004. * has already been added.
  1005. */
  1006. if (sta->ht_cap.ht_supported) {
  1007. an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
  1008. sta->ht_cap.ampdu_factor);
  1009. density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
  1010. an->mpdudensity = density;
  1011. }
  1012. txtid->state |= AGGR_ADDBA_PROGRESS;
  1013. txtid->paused = true;
  1014. *ssn = txtid->seq_start = txtid->seq_next;
  1015. txtid->bar_index = -1;
  1016. memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
  1017. txtid->baw_head = txtid->baw_tail = 0;
  1018. return 0;
  1019. }
  1020. void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  1021. {
  1022. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  1023. struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
  1024. struct ath_txq *txq = txtid->ac->txq;
  1025. if (txtid->state & AGGR_CLEANUP)
  1026. return;
  1027. if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
  1028. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  1029. return;
  1030. }
  1031. ath_txq_lock(sc, txq);
  1032. txtid->paused = true;
  1033. /*
  1034. * If frames are still being transmitted for this TID, they will be
  1035. * cleaned up during tx completion. To prevent race conditions, this
  1036. * TID can only be reused after all in-progress subframes have been
  1037. * completed.
  1038. */
  1039. if (txtid->baw_head != txtid->baw_tail)
  1040. txtid->state |= AGGR_CLEANUP;
  1041. else
  1042. txtid->state &= ~AGGR_ADDBA_COMPLETE;
  1043. ath_tx_flush_tid(sc, txtid);
  1044. ath_txq_unlock_complete(sc, txq);
  1045. }
  1046. void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
  1047. struct ath_node *an)
  1048. {
  1049. struct ath_atx_tid *tid;
  1050. struct ath_atx_ac *ac;
  1051. struct ath_txq *txq;
  1052. bool buffered;
  1053. int tidno;
  1054. for (tidno = 0, tid = &an->tid[tidno];
  1055. tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
  1056. if (!tid->sched)
  1057. continue;
  1058. ac = tid->ac;
  1059. txq = ac->txq;
  1060. ath_txq_lock(sc, txq);
  1061. buffered = !skb_queue_empty(&tid->buf_q);
  1062. tid->sched = false;
  1063. list_del(&tid->list);
  1064. if (ac->sched) {
  1065. ac->sched = false;
  1066. list_del(&ac->list);
  1067. }
  1068. ath_txq_unlock(sc, txq);
  1069. ieee80211_sta_set_buffered(sta, tidno, buffered);
  1070. }
  1071. }
  1072. void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
  1073. {
  1074. struct ath_atx_tid *tid;
  1075. struct ath_atx_ac *ac;
  1076. struct ath_txq *txq;
  1077. int tidno;
  1078. for (tidno = 0, tid = &an->tid[tidno];
  1079. tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
  1080. ac = tid->ac;
  1081. txq = ac->txq;
  1082. ath_txq_lock(sc, txq);
  1083. ac->clear_ps_filter = true;
  1084. if (!skb_queue_empty(&tid->buf_q) && !tid->paused) {
  1085. ath_tx_queue_tid(txq, tid);
  1086. ath_txq_schedule(sc, txq);
  1087. }
  1088. ath_txq_unlock_complete(sc, txq);
  1089. }
  1090. }
  1091. void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  1092. {
  1093. struct ath_atx_tid *txtid;
  1094. struct ath_node *an;
  1095. an = (struct ath_node *)sta->drv_priv;
  1096. txtid = ATH_AN_2_TID(an, tid);
  1097. txtid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
  1098. txtid->state |= AGGR_ADDBA_COMPLETE;
  1099. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  1100. ath_tx_resume_tid(sc, txtid);
  1101. }
  1102. /********************/
  1103. /* Queue Management */
  1104. /********************/
  1105. struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
  1106. {
  1107. struct ath_hw *ah = sc->sc_ah;
  1108. struct ath9k_tx_queue_info qi;
  1109. static const int subtype_txq_to_hwq[] = {
  1110. [IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
  1111. [IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
  1112. [IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
  1113. [IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
  1114. };
  1115. int axq_qnum, i;
  1116. memset(&qi, 0, sizeof(qi));
  1117. qi.tqi_subtype = subtype_txq_to_hwq[subtype];
  1118. qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
  1119. qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
  1120. qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
  1121. qi.tqi_physCompBuf = 0;
  1122. /*
  1123. * Enable interrupts only for EOL and DESC conditions.
  1124. * We mark tx descriptors to receive a DESC interrupt
  1125. * when a tx queue gets deep; otherwise waiting for the
  1126. * EOL to reap descriptors. Note that this is done to
  1127. * reduce interrupt load and this only defers reaping
  1128. * descriptors, never transmitting frames. Aside from
  1129. * reducing interrupts this also permits more concurrency.
  1130. * The only potential downside is if the tx queue backs
  1131. * up in which case the top half of the kernel may backup
  1132. * due to a lack of tx descriptors.
  1133. *
  1134. * The UAPSD queue is an exception, since we take a desc-
  1135. * based intr on the EOSP frames.
  1136. */
  1137. if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1138. qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
  1139. } else {
  1140. if (qtype == ATH9K_TX_QUEUE_UAPSD)
  1141. qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
  1142. else
  1143. qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
  1144. TXQ_FLAG_TXDESCINT_ENABLE;
  1145. }
  1146. axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
  1147. if (axq_qnum == -1) {
  1148. /*
  1149. * NB: don't print a message, this happens
  1150. * normally on parts with too few tx queues
  1151. */
  1152. return NULL;
  1153. }
  1154. if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
  1155. struct ath_txq *txq = &sc->tx.txq[axq_qnum];
  1156. txq->axq_qnum = axq_qnum;
  1157. txq->mac80211_qnum = -1;
  1158. txq->axq_link = NULL;
  1159. __skb_queue_head_init(&txq->complete_q);
  1160. INIT_LIST_HEAD(&txq->axq_q);
  1161. INIT_LIST_HEAD(&txq->axq_acq);
  1162. spin_lock_init(&txq->axq_lock);
  1163. txq->axq_depth = 0;
  1164. txq->axq_ampdu_depth = 0;
  1165. txq->axq_tx_inprogress = false;
  1166. sc->tx.txqsetup |= 1<<axq_qnum;
  1167. txq->txq_headidx = txq->txq_tailidx = 0;
  1168. for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
  1169. INIT_LIST_HEAD(&txq->txq_fifo[i]);
  1170. }
  1171. return &sc->tx.txq[axq_qnum];
  1172. }
  1173. int ath_txq_update(struct ath_softc *sc, int qnum,
  1174. struct ath9k_tx_queue_info *qinfo)
  1175. {
  1176. struct ath_hw *ah = sc->sc_ah;
  1177. int error = 0;
  1178. struct ath9k_tx_queue_info qi;
  1179. BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
  1180. ath9k_hw_get_txq_props(ah, qnum, &qi);
  1181. qi.tqi_aifs = qinfo->tqi_aifs;
  1182. qi.tqi_cwmin = qinfo->tqi_cwmin;
  1183. qi.tqi_cwmax = qinfo->tqi_cwmax;
  1184. qi.tqi_burstTime = qinfo->tqi_burstTime;
  1185. qi.tqi_readyTime = qinfo->tqi_readyTime;
  1186. if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
  1187. ath_err(ath9k_hw_common(sc->sc_ah),
  1188. "Unable to update hardware queue %u!\n", qnum);
  1189. error = -EIO;
  1190. } else {
  1191. ath9k_hw_resettxqueue(ah, qnum);
  1192. }
  1193. return error;
  1194. }
  1195. int ath_cabq_update(struct ath_softc *sc)
  1196. {
  1197. struct ath9k_tx_queue_info qi;
  1198. struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
  1199. int qnum = sc->beacon.cabq->axq_qnum;
  1200. ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
  1201. /*
  1202. * Ensure the readytime % is within the bounds.
  1203. */
  1204. if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
  1205. sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
  1206. else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
  1207. sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
  1208. qi.tqi_readyTime = (cur_conf->beacon_interval *
  1209. sc->config.cabqReadytime) / 100;
  1210. ath_txq_update(sc, qnum, &qi);
  1211. return 0;
  1212. }
  1213. static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
  1214. struct list_head *list)
  1215. {
  1216. struct ath_buf *bf, *lastbf;
  1217. struct list_head bf_head;
  1218. struct ath_tx_status ts;
  1219. memset(&ts, 0, sizeof(ts));
  1220. ts.ts_status = ATH9K_TX_FLUSH;
  1221. INIT_LIST_HEAD(&bf_head);
  1222. while (!list_empty(list)) {
  1223. bf = list_first_entry(list, struct ath_buf, list);
  1224. if (bf->bf_stale) {
  1225. list_del(&bf->list);
  1226. ath_tx_return_buffer(sc, bf);
  1227. continue;
  1228. }
  1229. lastbf = bf->bf_lastbf;
  1230. list_cut_position(&bf_head, list, &lastbf->list);
  1231. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1232. }
  1233. }
  1234. /*
  1235. * Drain a given TX queue (could be Beacon or Data)
  1236. *
  1237. * This assumes output has been stopped and
  1238. * we do not need to block ath_tx_tasklet.
  1239. */
  1240. void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
  1241. {
  1242. ath_txq_lock(sc, txq);
  1243. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1244. int idx = txq->txq_tailidx;
  1245. while (!list_empty(&txq->txq_fifo[idx])) {
  1246. ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
  1247. INCR(idx, ATH_TXFIFO_DEPTH);
  1248. }
  1249. txq->txq_tailidx = idx;
  1250. }
  1251. txq->axq_link = NULL;
  1252. txq->axq_tx_inprogress = false;
  1253. ath_drain_txq_list(sc, txq, &txq->axq_q);
  1254. ath_txq_unlock_complete(sc, txq);
  1255. }
  1256. bool ath_drain_all_txq(struct ath_softc *sc)
  1257. {
  1258. struct ath_hw *ah = sc->sc_ah;
  1259. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1260. struct ath_txq *txq;
  1261. int i;
  1262. u32 npend = 0;
  1263. if (test_bit(SC_OP_INVALID, &sc->sc_flags))
  1264. return true;
  1265. ath9k_hw_abort_tx_dma(ah);
  1266. /* Check if any queue remains active */
  1267. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1268. if (!ATH_TXQ_SETUP(sc, i))
  1269. continue;
  1270. if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
  1271. npend |= BIT(i);
  1272. }
  1273. if (npend)
  1274. ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
  1275. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1276. if (!ATH_TXQ_SETUP(sc, i))
  1277. continue;
  1278. /*
  1279. * The caller will resume queues with ieee80211_wake_queues.
  1280. * Mark the queue as not stopped to prevent ath_tx_complete
  1281. * from waking the queue too early.
  1282. */
  1283. txq = &sc->tx.txq[i];
  1284. txq->stopped = false;
  1285. ath_draintxq(sc, txq);
  1286. }
  1287. return !npend;
  1288. }
  1289. void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
  1290. {
  1291. ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
  1292. sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
  1293. }
  1294. /* For each axq_acq entry, for each tid, try to schedule packets
  1295. * for transmit until ampdu_depth has reached min Q depth.
  1296. */
  1297. void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
  1298. {
  1299. struct ath_atx_ac *ac, *ac_tmp, *last_ac;
  1300. struct ath_atx_tid *tid, *last_tid;
  1301. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags) ||
  1302. list_empty(&txq->axq_acq) ||
  1303. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1304. return;
  1305. ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
  1306. last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
  1307. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  1308. last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
  1309. list_del(&ac->list);
  1310. ac->sched = false;
  1311. while (!list_empty(&ac->tid_q)) {
  1312. tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
  1313. list);
  1314. list_del(&tid->list);
  1315. tid->sched = false;
  1316. if (tid->paused)
  1317. continue;
  1318. ath_tx_sched_aggr(sc, txq, tid);
  1319. /*
  1320. * add tid to round-robin queue if more frames
  1321. * are pending for the tid
  1322. */
  1323. if (!skb_queue_empty(&tid->buf_q))
  1324. ath_tx_queue_tid(txq, tid);
  1325. if (tid == last_tid ||
  1326. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1327. break;
  1328. }
  1329. if (!list_empty(&ac->tid_q) && !ac->sched) {
  1330. ac->sched = true;
  1331. list_add_tail(&ac->list, &txq->axq_acq);
  1332. }
  1333. if (ac == last_ac ||
  1334. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1335. return;
  1336. }
  1337. }
  1338. /***********/
  1339. /* TX, DMA */
  1340. /***********/
  1341. /*
  1342. * Insert a chain of ath_buf (descriptors) on a txq and
  1343. * assume the descriptors are already chained together by caller.
  1344. */
  1345. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  1346. struct list_head *head, bool internal)
  1347. {
  1348. struct ath_hw *ah = sc->sc_ah;
  1349. struct ath_common *common = ath9k_hw_common(ah);
  1350. struct ath_buf *bf, *bf_last;
  1351. bool puttxbuf = false;
  1352. bool edma;
  1353. /*
  1354. * Insert the frame on the outbound list and
  1355. * pass it on to the hardware.
  1356. */
  1357. if (list_empty(head))
  1358. return;
  1359. edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
  1360. bf = list_first_entry(head, struct ath_buf, list);
  1361. bf_last = list_entry(head->prev, struct ath_buf, list);
  1362. ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
  1363. txq->axq_qnum, txq->axq_depth);
  1364. if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
  1365. list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
  1366. INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
  1367. puttxbuf = true;
  1368. } else {
  1369. list_splice_tail_init(head, &txq->axq_q);
  1370. if (txq->axq_link) {
  1371. ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
  1372. ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
  1373. txq->axq_qnum, txq->axq_link,
  1374. ito64(bf->bf_daddr), bf->bf_desc);
  1375. } else if (!edma)
  1376. puttxbuf = true;
  1377. txq->axq_link = bf_last->bf_desc;
  1378. }
  1379. if (puttxbuf) {
  1380. TX_STAT_INC(txq->axq_qnum, puttxbuf);
  1381. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1382. ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
  1383. txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
  1384. }
  1385. if (!edma) {
  1386. TX_STAT_INC(txq->axq_qnum, txstart);
  1387. ath9k_hw_txstart(ah, txq->axq_qnum);
  1388. }
  1389. if (!internal) {
  1390. txq->axq_depth++;
  1391. if (bf_is_ampdu_not_probing(bf))
  1392. txq->axq_ampdu_depth++;
  1393. }
  1394. }
  1395. static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
  1396. struct sk_buff *skb, struct ath_tx_control *txctl)
  1397. {
  1398. struct ath_frame_info *fi = get_frame_info(skb);
  1399. struct list_head bf_head;
  1400. struct ath_buf *bf;
  1401. /*
  1402. * Do not queue to h/w when any of the following conditions is true:
  1403. * - there are pending frames in software queue
  1404. * - the TID is currently paused for ADDBA/BAR request
  1405. * - seqno is not within block-ack window
  1406. * - h/w queue depth exceeds low water mark
  1407. */
  1408. if (!skb_queue_empty(&tid->buf_q) || tid->paused ||
  1409. !BAW_WITHIN(tid->seq_start, tid->baw_size, tid->seq_next) ||
  1410. txctl->txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) {
  1411. /*
  1412. * Add this frame to software queue for scheduling later
  1413. * for aggregation.
  1414. */
  1415. TX_STAT_INC(txctl->txq->axq_qnum, a_queued_sw);
  1416. __skb_queue_tail(&tid->buf_q, skb);
  1417. if (!txctl->an || !txctl->an->sleeping)
  1418. ath_tx_queue_tid(txctl->txq, tid);
  1419. return;
  1420. }
  1421. bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb);
  1422. if (!bf) {
  1423. ieee80211_free_txskb(sc->hw, skb);
  1424. return;
  1425. }
  1426. bf->bf_state.bf_type = BUF_AMPDU;
  1427. INIT_LIST_HEAD(&bf_head);
  1428. list_add(&bf->list, &bf_head);
  1429. /* Add sub-frame to BAW */
  1430. ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
  1431. /* Queue to h/w without aggregation */
  1432. TX_STAT_INC(txctl->txq->axq_qnum, a_queued_hw);
  1433. bf->bf_lastbf = bf;
  1434. ath_tx_fill_desc(sc, bf, txctl->txq, fi->framelen);
  1435. ath_tx_txqaddbuf(sc, txctl->txq, &bf_head, false);
  1436. }
  1437. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  1438. struct ath_atx_tid *tid, struct sk_buff *skb)
  1439. {
  1440. struct ath_frame_info *fi = get_frame_info(skb);
  1441. struct list_head bf_head;
  1442. struct ath_buf *bf;
  1443. bf = fi->bf;
  1444. INIT_LIST_HEAD(&bf_head);
  1445. list_add_tail(&bf->list, &bf_head);
  1446. bf->bf_state.bf_type = 0;
  1447. bf->bf_next = NULL;
  1448. bf->bf_lastbf = bf;
  1449. ath_tx_fill_desc(sc, bf, txq, fi->framelen);
  1450. ath_tx_txqaddbuf(sc, txq, &bf_head, false);
  1451. TX_STAT_INC(txq->axq_qnum, queued);
  1452. }
  1453. static void setup_frame_info(struct ieee80211_hw *hw,
  1454. struct ieee80211_sta *sta,
  1455. struct sk_buff *skb,
  1456. int framelen)
  1457. {
  1458. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1459. struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
  1460. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1461. const struct ieee80211_rate *rate;
  1462. struct ath_frame_info *fi = get_frame_info(skb);
  1463. struct ath_node *an = NULL;
  1464. enum ath9k_key_type keytype;
  1465. bool short_preamble = false;
  1466. /*
  1467. * We check if Short Preamble is needed for the CTS rate by
  1468. * checking the BSS's global flag.
  1469. * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
  1470. */
  1471. if (tx_info->control.vif &&
  1472. tx_info->control.vif->bss_conf.use_short_preamble)
  1473. short_preamble = true;
  1474. rate = ieee80211_get_rts_cts_rate(hw, tx_info);
  1475. keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
  1476. if (sta)
  1477. an = (struct ath_node *) sta->drv_priv;
  1478. memset(fi, 0, sizeof(*fi));
  1479. if (hw_key)
  1480. fi->keyix = hw_key->hw_key_idx;
  1481. else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
  1482. fi->keyix = an->ps_key;
  1483. else
  1484. fi->keyix = ATH9K_TXKEYIX_INVALID;
  1485. fi->keytype = keytype;
  1486. fi->framelen = framelen;
  1487. fi->rtscts_rate = rate->hw_value;
  1488. if (short_preamble)
  1489. fi->rtscts_rate |= rate->hw_value_short;
  1490. }
  1491. u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
  1492. {
  1493. struct ath_hw *ah = sc->sc_ah;
  1494. struct ath9k_channel *curchan = ah->curchan;
  1495. if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) &&
  1496. (curchan->channelFlags & CHANNEL_5GHZ) &&
  1497. (chainmask == 0x7) && (rate < 0x90))
  1498. return 0x3;
  1499. else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
  1500. IS_CCK_RATE(rate))
  1501. return 0x2;
  1502. else
  1503. return chainmask;
  1504. }
  1505. /*
  1506. * Assign a descriptor (and sequence number if necessary,
  1507. * and map buffer for DMA. Frees skb on error
  1508. */
  1509. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  1510. struct ath_txq *txq,
  1511. struct ath_atx_tid *tid,
  1512. struct sk_buff *skb)
  1513. {
  1514. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1515. struct ath_frame_info *fi = get_frame_info(skb);
  1516. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1517. struct ath_buf *bf;
  1518. int fragno;
  1519. u16 seqno;
  1520. bf = ath_tx_get_buffer(sc);
  1521. if (!bf) {
  1522. ath_dbg(common, XMIT, "TX buffers are full\n");
  1523. return NULL;
  1524. }
  1525. ATH_TXBUF_RESET(bf);
  1526. if (tid) {
  1527. fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
  1528. seqno = tid->seq_next;
  1529. hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
  1530. if (fragno)
  1531. hdr->seq_ctrl |= cpu_to_le16(fragno);
  1532. if (!ieee80211_has_morefrags(hdr->frame_control))
  1533. INCR(tid->seq_next, IEEE80211_SEQ_MAX);
  1534. bf->bf_state.seqno = seqno;
  1535. }
  1536. bf->bf_mpdu = skb;
  1537. bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
  1538. skb->len, DMA_TO_DEVICE);
  1539. if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
  1540. bf->bf_mpdu = NULL;
  1541. bf->bf_buf_addr = 0;
  1542. ath_err(ath9k_hw_common(sc->sc_ah),
  1543. "dma_mapping_error() on TX\n");
  1544. ath_tx_return_buffer(sc, bf);
  1545. return NULL;
  1546. }
  1547. fi->bf = bf;
  1548. return bf;
  1549. }
  1550. /* FIXME: tx power */
  1551. static void ath_tx_start_dma(struct ath_softc *sc, struct sk_buff *skb,
  1552. struct ath_tx_control *txctl)
  1553. {
  1554. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1555. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1556. struct ath_atx_tid *tid = NULL;
  1557. struct ath_buf *bf;
  1558. u8 tidno;
  1559. if (txctl->an && ieee80211_is_data_qos(hdr->frame_control)) {
  1560. tidno = ieee80211_get_qos_ctl(hdr)[0] &
  1561. IEEE80211_QOS_CTL_TID_MASK;
  1562. tid = ATH_AN_2_TID(txctl->an, tidno);
  1563. WARN_ON(tid->ac->txq != txctl->txq);
  1564. }
  1565. if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && tid) {
  1566. /*
  1567. * Try aggregation if it's a unicast data frame
  1568. * and the destination is HT capable.
  1569. */
  1570. ath_tx_send_ampdu(sc, tid, skb, txctl);
  1571. } else {
  1572. bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb);
  1573. if (!bf) {
  1574. if (txctl->paprd)
  1575. dev_kfree_skb_any(skb);
  1576. else
  1577. ieee80211_free_txskb(sc->hw, skb);
  1578. return;
  1579. }
  1580. bf->bf_state.bfs_paprd = txctl->paprd;
  1581. if (txctl->paprd)
  1582. bf->bf_state.bfs_paprd_timestamp = jiffies;
  1583. ath_tx_send_normal(sc, txctl->txq, tid, skb);
  1584. }
  1585. }
  1586. /* Upon failure caller should free skb */
  1587. int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
  1588. struct ath_tx_control *txctl)
  1589. {
  1590. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1591. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1592. struct ieee80211_sta *sta = txctl->sta;
  1593. struct ieee80211_vif *vif = info->control.vif;
  1594. struct ath_softc *sc = hw->priv;
  1595. struct ath_txq *txq = txctl->txq;
  1596. int padpos, padsize;
  1597. int frmlen = skb->len + FCS_LEN;
  1598. int q;
  1599. /* NOTE: sta can be NULL according to net/mac80211.h */
  1600. if (sta)
  1601. txctl->an = (struct ath_node *)sta->drv_priv;
  1602. if (info->control.hw_key)
  1603. frmlen += info->control.hw_key->icv_len;
  1604. /*
  1605. * As a temporary workaround, assign seq# here; this will likely need
  1606. * to be cleaned up to work better with Beacon transmission and virtual
  1607. * BSSes.
  1608. */
  1609. if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
  1610. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  1611. sc->tx.seq_no += 0x10;
  1612. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  1613. hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
  1614. }
  1615. /* Add the padding after the header if this is not already done */
  1616. padpos = ieee80211_hdrlen(hdr->frame_control);
  1617. padsize = padpos & 3;
  1618. if (padsize && skb->len > padpos) {
  1619. if (skb_headroom(skb) < padsize)
  1620. return -ENOMEM;
  1621. skb_push(skb, padsize);
  1622. memmove(skb->data, skb->data + padsize, padpos);
  1623. hdr = (struct ieee80211_hdr *) skb->data;
  1624. }
  1625. if ((vif && vif->type != NL80211_IFTYPE_AP &&
  1626. vif->type != NL80211_IFTYPE_AP_VLAN) ||
  1627. !ieee80211_is_data(hdr->frame_control))
  1628. info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  1629. setup_frame_info(hw, sta, skb, frmlen);
  1630. /*
  1631. * At this point, the vif, hw_key and sta pointers in the tx control
  1632. * info are no longer valid (overwritten by the ath_frame_info data.
  1633. */
  1634. q = skb_get_queue_mapping(skb);
  1635. ath_txq_lock(sc, txq);
  1636. if (txq == sc->tx.txq_map[q] &&
  1637. ++txq->pending_frames > sc->tx.txq_max_pending[q] &&
  1638. !txq->stopped) {
  1639. ieee80211_stop_queue(sc->hw, q);
  1640. txq->stopped = true;
  1641. }
  1642. ath_tx_start_dma(sc, skb, txctl);
  1643. ath_txq_unlock(sc, txq);
  1644. return 0;
  1645. }
  1646. /*****************/
  1647. /* TX Completion */
  1648. /*****************/
  1649. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  1650. int tx_flags, struct ath_txq *txq)
  1651. {
  1652. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1653. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1654. struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
  1655. int q, padpos, padsize;
  1656. unsigned long flags;
  1657. ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
  1658. if (sc->sc_ah->caldata)
  1659. sc->sc_ah->caldata->paprd_packet_sent = true;
  1660. if (!(tx_flags & ATH_TX_ERROR))
  1661. /* Frame was ACKed */
  1662. tx_info->flags |= IEEE80211_TX_STAT_ACK;
  1663. padpos = ieee80211_hdrlen(hdr->frame_control);
  1664. padsize = padpos & 3;
  1665. if (padsize && skb->len>padpos+padsize) {
  1666. /*
  1667. * Remove MAC header padding before giving the frame back to
  1668. * mac80211.
  1669. */
  1670. memmove(skb->data + padsize, skb->data, padpos);
  1671. skb_pull(skb, padsize);
  1672. }
  1673. spin_lock_irqsave(&sc->sc_pm_lock, flags);
  1674. if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
  1675. sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
  1676. ath_dbg(common, PS,
  1677. "Going back to sleep after having received TX status (0x%lx)\n",
  1678. sc->ps_flags & (PS_WAIT_FOR_BEACON |
  1679. PS_WAIT_FOR_CAB |
  1680. PS_WAIT_FOR_PSPOLL_DATA |
  1681. PS_WAIT_FOR_TX_ACK));
  1682. }
  1683. spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
  1684. q = skb_get_queue_mapping(skb);
  1685. if (txq == sc->tx.txq_map[q]) {
  1686. if (WARN_ON(--txq->pending_frames < 0))
  1687. txq->pending_frames = 0;
  1688. if (txq->stopped &&
  1689. txq->pending_frames < sc->tx.txq_max_pending[q]) {
  1690. ieee80211_wake_queue(sc->hw, q);
  1691. txq->stopped = false;
  1692. }
  1693. }
  1694. __skb_queue_tail(&txq->complete_q, skb);
  1695. }
  1696. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  1697. struct ath_txq *txq, struct list_head *bf_q,
  1698. struct ath_tx_status *ts, int txok)
  1699. {
  1700. struct sk_buff *skb = bf->bf_mpdu;
  1701. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1702. unsigned long flags;
  1703. int tx_flags = 0;
  1704. if (!txok)
  1705. tx_flags |= ATH_TX_ERROR;
  1706. if (ts->ts_status & ATH9K_TXERR_FILT)
  1707. tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
  1708. dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
  1709. bf->bf_buf_addr = 0;
  1710. if (bf->bf_state.bfs_paprd) {
  1711. if (time_after(jiffies,
  1712. bf->bf_state.bfs_paprd_timestamp +
  1713. msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
  1714. dev_kfree_skb_any(skb);
  1715. else
  1716. complete(&sc->paprd_complete);
  1717. } else {
  1718. ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
  1719. ath_tx_complete(sc, skb, tx_flags, txq);
  1720. }
  1721. /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
  1722. * accidentally reference it later.
  1723. */
  1724. bf->bf_mpdu = NULL;
  1725. /*
  1726. * Return the list of ath_buf of this mpdu to free queue
  1727. */
  1728. spin_lock_irqsave(&sc->tx.txbuflock, flags);
  1729. list_splice_tail_init(bf_q, &sc->tx.txbuf);
  1730. spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
  1731. }
  1732. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  1733. struct ath_tx_status *ts, int nframes, int nbad,
  1734. int txok)
  1735. {
  1736. struct sk_buff *skb = bf->bf_mpdu;
  1737. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1738. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1739. struct ieee80211_hw *hw = sc->hw;
  1740. struct ath_hw *ah = sc->sc_ah;
  1741. u8 i, tx_rateindex;
  1742. if (txok)
  1743. tx_info->status.ack_signal = ts->ts_rssi;
  1744. tx_rateindex = ts->ts_rateindex;
  1745. WARN_ON(tx_rateindex >= hw->max_rates);
  1746. if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
  1747. tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
  1748. BUG_ON(nbad > nframes);
  1749. }
  1750. tx_info->status.ampdu_len = nframes;
  1751. tx_info->status.ampdu_ack_len = nframes - nbad;
  1752. if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
  1753. (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
  1754. /*
  1755. * If an underrun error is seen assume it as an excessive
  1756. * retry only if max frame trigger level has been reached
  1757. * (2 KB for single stream, and 4 KB for dual stream).
  1758. * Adjust the long retry as if the frame was tried
  1759. * hw->max_rate_tries times to affect how rate control updates
  1760. * PER for the failed rate.
  1761. * In case of congestion on the bus penalizing this type of
  1762. * underruns should help hardware actually transmit new frames
  1763. * successfully by eventually preferring slower rates.
  1764. * This itself should also alleviate congestion on the bus.
  1765. */
  1766. if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
  1767. ATH9K_TX_DELIM_UNDERRUN)) &&
  1768. ieee80211_is_data(hdr->frame_control) &&
  1769. ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
  1770. tx_info->status.rates[tx_rateindex].count =
  1771. hw->max_rate_tries;
  1772. }
  1773. for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
  1774. tx_info->status.rates[i].count = 0;
  1775. tx_info->status.rates[i].idx = -1;
  1776. }
  1777. tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
  1778. }
  1779. static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
  1780. {
  1781. struct ath_hw *ah = sc->sc_ah;
  1782. struct ath_common *common = ath9k_hw_common(ah);
  1783. struct ath_buf *bf, *lastbf, *bf_held = NULL;
  1784. struct list_head bf_head;
  1785. struct ath_desc *ds;
  1786. struct ath_tx_status ts;
  1787. int status;
  1788. ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
  1789. txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
  1790. txq->axq_link);
  1791. ath_txq_lock(sc, txq);
  1792. for (;;) {
  1793. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
  1794. break;
  1795. if (list_empty(&txq->axq_q)) {
  1796. txq->axq_link = NULL;
  1797. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
  1798. ath_txq_schedule(sc, txq);
  1799. break;
  1800. }
  1801. bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
  1802. /*
  1803. * There is a race condition that a BH gets scheduled
  1804. * after sw writes TxE and before hw re-load the last
  1805. * descriptor to get the newly chained one.
  1806. * Software must keep the last DONE descriptor as a
  1807. * holding descriptor - software does so by marking
  1808. * it with the STALE flag.
  1809. */
  1810. bf_held = NULL;
  1811. if (bf->bf_stale) {
  1812. bf_held = bf;
  1813. if (list_is_last(&bf_held->list, &txq->axq_q))
  1814. break;
  1815. bf = list_entry(bf_held->list.next, struct ath_buf,
  1816. list);
  1817. }
  1818. lastbf = bf->bf_lastbf;
  1819. ds = lastbf->bf_desc;
  1820. memset(&ts, 0, sizeof(ts));
  1821. status = ath9k_hw_txprocdesc(ah, ds, &ts);
  1822. if (status == -EINPROGRESS)
  1823. break;
  1824. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  1825. /*
  1826. * Remove ath_buf's of the same transmit unit from txq,
  1827. * however leave the last descriptor back as the holding
  1828. * descriptor for hw.
  1829. */
  1830. lastbf->bf_stale = true;
  1831. INIT_LIST_HEAD(&bf_head);
  1832. if (!list_is_singular(&lastbf->list))
  1833. list_cut_position(&bf_head,
  1834. &txq->axq_q, lastbf->list.prev);
  1835. if (bf_held) {
  1836. list_del(&bf_held->list);
  1837. ath_tx_return_buffer(sc, bf_held);
  1838. }
  1839. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1840. }
  1841. ath_txq_unlock_complete(sc, txq);
  1842. }
  1843. void ath_tx_tasklet(struct ath_softc *sc)
  1844. {
  1845. struct ath_hw *ah = sc->sc_ah;
  1846. u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
  1847. int i;
  1848. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1849. if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
  1850. ath_tx_processq(sc, &sc->tx.txq[i]);
  1851. }
  1852. }
  1853. void ath_tx_edma_tasklet(struct ath_softc *sc)
  1854. {
  1855. struct ath_tx_status ts;
  1856. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1857. struct ath_hw *ah = sc->sc_ah;
  1858. struct ath_txq *txq;
  1859. struct ath_buf *bf, *lastbf;
  1860. struct list_head bf_head;
  1861. struct list_head *fifo_list;
  1862. int status;
  1863. for (;;) {
  1864. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
  1865. break;
  1866. status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
  1867. if (status == -EINPROGRESS)
  1868. break;
  1869. if (status == -EIO) {
  1870. ath_dbg(common, XMIT, "Error processing tx status\n");
  1871. break;
  1872. }
  1873. /* Process beacon completions separately */
  1874. if (ts.qid == sc->beacon.beaconq) {
  1875. sc->beacon.tx_processed = true;
  1876. sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
  1877. continue;
  1878. }
  1879. txq = &sc->tx.txq[ts.qid];
  1880. ath_txq_lock(sc, txq);
  1881. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  1882. fifo_list = &txq->txq_fifo[txq->txq_tailidx];
  1883. if (list_empty(fifo_list)) {
  1884. ath_txq_unlock(sc, txq);
  1885. return;
  1886. }
  1887. bf = list_first_entry(fifo_list, struct ath_buf, list);
  1888. if (bf->bf_stale) {
  1889. list_del(&bf->list);
  1890. ath_tx_return_buffer(sc, bf);
  1891. bf = list_first_entry(fifo_list, struct ath_buf, list);
  1892. }
  1893. lastbf = bf->bf_lastbf;
  1894. INIT_LIST_HEAD(&bf_head);
  1895. if (list_is_last(&lastbf->list, fifo_list)) {
  1896. list_splice_tail_init(fifo_list, &bf_head);
  1897. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  1898. if (!list_empty(&txq->axq_q)) {
  1899. struct list_head bf_q;
  1900. INIT_LIST_HEAD(&bf_q);
  1901. txq->axq_link = NULL;
  1902. list_splice_tail_init(&txq->axq_q, &bf_q);
  1903. ath_tx_txqaddbuf(sc, txq, &bf_q, true);
  1904. }
  1905. } else {
  1906. lastbf->bf_stale = true;
  1907. if (bf != lastbf)
  1908. list_cut_position(&bf_head, fifo_list,
  1909. lastbf->list.prev);
  1910. }
  1911. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1912. ath_txq_unlock_complete(sc, txq);
  1913. }
  1914. }
  1915. /*****************/
  1916. /* Init, Cleanup */
  1917. /*****************/
  1918. static int ath_txstatus_setup(struct ath_softc *sc, int size)
  1919. {
  1920. struct ath_descdma *dd = &sc->txsdma;
  1921. u8 txs_len = sc->sc_ah->caps.txs_len;
  1922. dd->dd_desc_len = size * txs_len;
  1923. dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
  1924. &dd->dd_desc_paddr, GFP_KERNEL);
  1925. if (!dd->dd_desc)
  1926. return -ENOMEM;
  1927. return 0;
  1928. }
  1929. static int ath_tx_edma_init(struct ath_softc *sc)
  1930. {
  1931. int err;
  1932. err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
  1933. if (!err)
  1934. ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
  1935. sc->txsdma.dd_desc_paddr,
  1936. ATH_TXSTATUS_RING_SIZE);
  1937. return err;
  1938. }
  1939. int ath_tx_init(struct ath_softc *sc, int nbufs)
  1940. {
  1941. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1942. int error = 0;
  1943. spin_lock_init(&sc->tx.txbuflock);
  1944. error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
  1945. "tx", nbufs, 1, 1);
  1946. if (error != 0) {
  1947. ath_err(common,
  1948. "Failed to allocate tx descriptors: %d\n", error);
  1949. return error;
  1950. }
  1951. error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
  1952. "beacon", ATH_BCBUF, 1, 1);
  1953. if (error != 0) {
  1954. ath_err(common,
  1955. "Failed to allocate beacon descriptors: %d\n", error);
  1956. return error;
  1957. }
  1958. INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
  1959. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
  1960. error = ath_tx_edma_init(sc);
  1961. return error;
  1962. }
  1963. void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
  1964. {
  1965. struct ath_atx_tid *tid;
  1966. struct ath_atx_ac *ac;
  1967. int tidno, acno;
  1968. for (tidno = 0, tid = &an->tid[tidno];
  1969. tidno < IEEE80211_NUM_TIDS;
  1970. tidno++, tid++) {
  1971. tid->an = an;
  1972. tid->tidno = tidno;
  1973. tid->seq_start = tid->seq_next = 0;
  1974. tid->baw_size = WME_MAX_BA;
  1975. tid->baw_head = tid->baw_tail = 0;
  1976. tid->sched = false;
  1977. tid->paused = false;
  1978. tid->state &= ~AGGR_CLEANUP;
  1979. __skb_queue_head_init(&tid->buf_q);
  1980. acno = TID_TO_WME_AC(tidno);
  1981. tid->ac = &an->ac[acno];
  1982. tid->state &= ~AGGR_ADDBA_COMPLETE;
  1983. tid->state &= ~AGGR_ADDBA_PROGRESS;
  1984. }
  1985. for (acno = 0, ac = &an->ac[acno];
  1986. acno < IEEE80211_NUM_ACS; acno++, ac++) {
  1987. ac->sched = false;
  1988. ac->txq = sc->tx.txq_map[acno];
  1989. INIT_LIST_HEAD(&ac->tid_q);
  1990. }
  1991. }
  1992. void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
  1993. {
  1994. struct ath_atx_ac *ac;
  1995. struct ath_atx_tid *tid;
  1996. struct ath_txq *txq;
  1997. int tidno;
  1998. for (tidno = 0, tid = &an->tid[tidno];
  1999. tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
  2000. ac = tid->ac;
  2001. txq = ac->txq;
  2002. ath_txq_lock(sc, txq);
  2003. if (tid->sched) {
  2004. list_del(&tid->list);
  2005. tid->sched = false;
  2006. }
  2007. if (ac->sched) {
  2008. list_del(&ac->list);
  2009. tid->ac->sched = false;
  2010. }
  2011. ath_tid_drain(sc, txq, tid);
  2012. tid->state &= ~AGGR_ADDBA_COMPLETE;
  2013. tid->state &= ~AGGR_CLEANUP;
  2014. ath_txq_unlock(sc, txq);
  2015. }
  2016. }