ar5008_phy.c 38 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "hw.h"
  17. #include "hw-ops.h"
  18. #include "../regd.h"
  19. #include "ar9002_phy.h"
  20. #include "ar5008_initvals.h"
  21. /* All code below is for AR5008, AR9001, AR9002 */
  22. static const int firstep_table[] =
  23. /* level: 0 1 2 3 4 5 6 7 8 */
  24. { -4, -2, 0, 2, 4, 6, 8, 10, 12 }; /* lvl 0-8, default 2 */
  25. static const int cycpwrThr1_table[] =
  26. /* level: 0 1 2 3 4 5 6 7 8 */
  27. { -6, -4, -2, 0, 2, 4, 6, 8 }; /* lvl 0-7, default 3 */
  28. /*
  29. * register values to turn OFDM weak signal detection OFF
  30. */
  31. static const int m1ThreshLow_off = 127;
  32. static const int m2ThreshLow_off = 127;
  33. static const int m1Thresh_off = 127;
  34. static const int m2Thresh_off = 127;
  35. static const int m2CountThr_off = 31;
  36. static const int m2CountThrLow_off = 63;
  37. static const int m1ThreshLowExt_off = 127;
  38. static const int m2ThreshLowExt_off = 127;
  39. static const int m1ThreshExt_off = 127;
  40. static const int m2ThreshExt_off = 127;
  41. static const struct ar5416IniArray bank0 = STATIC_INI_ARRAY(ar5416Bank0);
  42. static const struct ar5416IniArray bank1 = STATIC_INI_ARRAY(ar5416Bank1);
  43. static const struct ar5416IniArray bank2 = STATIC_INI_ARRAY(ar5416Bank2);
  44. static const struct ar5416IniArray bank3 = STATIC_INI_ARRAY(ar5416Bank3);
  45. static const struct ar5416IniArray bank7 = STATIC_INI_ARRAY(ar5416Bank7);
  46. static void ar5008_write_bank6(struct ath_hw *ah, unsigned int *writecnt)
  47. {
  48. struct ar5416IniArray *array = &ah->iniBank6;
  49. u32 *data = ah->analogBank6Data;
  50. int r;
  51. ENABLE_REGWRITE_BUFFER(ah);
  52. for (r = 0; r < array->ia_rows; r++) {
  53. REG_WRITE(ah, INI_RA(array, r, 0), data[r]);
  54. DO_DELAY(*writecnt);
  55. }
  56. REGWRITE_BUFFER_FLUSH(ah);
  57. }
  58. /**
  59. * ar5008_hw_phy_modify_rx_buffer() - perform analog swizzling of parameters
  60. * @rfbuf:
  61. * @reg32:
  62. * @numBits:
  63. * @firstBit:
  64. * @column:
  65. *
  66. * Performs analog "swizzling" of parameters into their location.
  67. * Used on external AR2133/AR5133 radios.
  68. */
  69. static void ar5008_hw_phy_modify_rx_buffer(u32 *rfBuf, u32 reg32,
  70. u32 numBits, u32 firstBit,
  71. u32 column)
  72. {
  73. u32 tmp32, mask, arrayEntry, lastBit;
  74. int32_t bitPosition, bitsLeft;
  75. tmp32 = ath9k_hw_reverse_bits(reg32, numBits);
  76. arrayEntry = (firstBit - 1) / 8;
  77. bitPosition = (firstBit - 1) % 8;
  78. bitsLeft = numBits;
  79. while (bitsLeft > 0) {
  80. lastBit = (bitPosition + bitsLeft > 8) ?
  81. 8 : bitPosition + bitsLeft;
  82. mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
  83. (column * 8);
  84. rfBuf[arrayEntry] &= ~mask;
  85. rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
  86. (column * 8)) & mask;
  87. bitsLeft -= 8 - bitPosition;
  88. tmp32 = tmp32 >> (8 - bitPosition);
  89. bitPosition = 0;
  90. arrayEntry++;
  91. }
  92. }
  93. /*
  94. * Fix on 2.4 GHz band for orientation sensitivity issue by increasing
  95. * rf_pwd_icsyndiv.
  96. *
  97. * Theoretical Rules:
  98. * if 2 GHz band
  99. * if forceBiasAuto
  100. * if synth_freq < 2412
  101. * bias = 0
  102. * else if 2412 <= synth_freq <= 2422
  103. * bias = 1
  104. * else // synth_freq > 2422
  105. * bias = 2
  106. * else if forceBias > 0
  107. * bias = forceBias & 7
  108. * else
  109. * no change, use value from ini file
  110. * else
  111. * no change, invalid band
  112. *
  113. * 1st Mod:
  114. * 2422 also uses value of 2
  115. * <approved>
  116. *
  117. * 2nd Mod:
  118. * Less than 2412 uses value of 0, 2412 and above uses value of 2
  119. */
  120. static void ar5008_hw_force_bias(struct ath_hw *ah, u16 synth_freq)
  121. {
  122. struct ath_common *common = ath9k_hw_common(ah);
  123. u32 tmp_reg;
  124. int reg_writes = 0;
  125. u32 new_bias = 0;
  126. if (!AR_SREV_5416(ah) || synth_freq >= 3000)
  127. return;
  128. BUG_ON(AR_SREV_9280_20_OR_LATER(ah));
  129. if (synth_freq < 2412)
  130. new_bias = 0;
  131. else if (synth_freq < 2422)
  132. new_bias = 1;
  133. else
  134. new_bias = 2;
  135. /* pre-reverse this field */
  136. tmp_reg = ath9k_hw_reverse_bits(new_bias, 3);
  137. ath_dbg(common, CONFIG, "Force rf_pwd_icsyndiv to %1d on %4d\n",
  138. new_bias, synth_freq);
  139. /* swizzle rf_pwd_icsyndiv */
  140. ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data, tmp_reg, 3, 181, 3);
  141. /* write Bank 6 with new params */
  142. ar5008_write_bank6(ah, &reg_writes);
  143. }
  144. /**
  145. * ar5008_hw_set_channel - tune to a channel on the external AR2133/AR5133 radios
  146. * @ah: atheros hardware structure
  147. * @chan:
  148. *
  149. * For the external AR2133/AR5133 radios, takes the MHz channel value and set
  150. * the channel value. Assumes writes enabled to analog bus and bank6 register
  151. * cache in ah->analogBank6Data.
  152. */
  153. static int ar5008_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
  154. {
  155. struct ath_common *common = ath9k_hw_common(ah);
  156. u32 channelSel = 0;
  157. u32 bModeSynth = 0;
  158. u32 aModeRefSel = 0;
  159. u32 reg32 = 0;
  160. u16 freq;
  161. struct chan_centers centers;
  162. ath9k_hw_get_channel_centers(ah, chan, &centers);
  163. freq = centers.synth_center;
  164. if (freq < 4800) {
  165. u32 txctl;
  166. if (((freq - 2192) % 5) == 0) {
  167. channelSel = ((freq - 672) * 2 - 3040) / 10;
  168. bModeSynth = 0;
  169. } else if (((freq - 2224) % 5) == 0) {
  170. channelSel = ((freq - 704) * 2 - 3040) / 10;
  171. bModeSynth = 1;
  172. } else {
  173. ath_err(common, "Invalid channel %u MHz\n", freq);
  174. return -EINVAL;
  175. }
  176. channelSel = (channelSel << 2) & 0xff;
  177. channelSel = ath9k_hw_reverse_bits(channelSel, 8);
  178. txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
  179. if (freq == 2484) {
  180. REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
  181. txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
  182. } else {
  183. REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
  184. txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
  185. }
  186. } else if ((freq % 20) == 0 && freq >= 5120) {
  187. channelSel =
  188. ath9k_hw_reverse_bits(((freq - 4800) / 20 << 2), 8);
  189. aModeRefSel = ath9k_hw_reverse_bits(1, 2);
  190. } else if ((freq % 10) == 0) {
  191. channelSel =
  192. ath9k_hw_reverse_bits(((freq - 4800) / 10 << 1), 8);
  193. if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah))
  194. aModeRefSel = ath9k_hw_reverse_bits(2, 2);
  195. else
  196. aModeRefSel = ath9k_hw_reverse_bits(1, 2);
  197. } else if ((freq % 5) == 0) {
  198. channelSel = ath9k_hw_reverse_bits((freq - 4800) / 5, 8);
  199. aModeRefSel = ath9k_hw_reverse_bits(1, 2);
  200. } else {
  201. ath_err(common, "Invalid channel %u MHz\n", freq);
  202. return -EINVAL;
  203. }
  204. ar5008_hw_force_bias(ah, freq);
  205. reg32 =
  206. (channelSel << 8) | (aModeRefSel << 2) | (bModeSynth << 1) |
  207. (1 << 5) | 0x1;
  208. REG_WRITE(ah, AR_PHY(0x37), reg32);
  209. ah->curchan = chan;
  210. return 0;
  211. }
  212. /**
  213. * ar5008_hw_spur_mitigate - convert baseband spur frequency for external radios
  214. * @ah: atheros hardware structure
  215. * @chan:
  216. *
  217. * For non single-chip solutions. Converts to baseband spur frequency given the
  218. * input channel frequency and compute register settings below.
  219. */
  220. static void ar5008_hw_spur_mitigate(struct ath_hw *ah,
  221. struct ath9k_channel *chan)
  222. {
  223. int bb_spur = AR_NO_SPUR;
  224. int bin, cur_bin;
  225. int spur_freq_sd;
  226. int spur_delta_phase;
  227. int denominator;
  228. int upper, lower, cur_vit_mask;
  229. int tmp, new;
  230. int i;
  231. static int pilot_mask_reg[4] = {
  232. AR_PHY_TIMING7, AR_PHY_TIMING8,
  233. AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
  234. };
  235. static int chan_mask_reg[4] = {
  236. AR_PHY_TIMING9, AR_PHY_TIMING10,
  237. AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
  238. };
  239. static int inc[4] = { 0, 100, 0, 0 };
  240. int8_t mask_m[123];
  241. int8_t mask_p[123];
  242. int8_t mask_amt;
  243. int tmp_mask;
  244. int cur_bb_spur;
  245. bool is2GHz = IS_CHAN_2GHZ(chan);
  246. memset(&mask_m, 0, sizeof(int8_t) * 123);
  247. memset(&mask_p, 0, sizeof(int8_t) * 123);
  248. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  249. cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
  250. if (AR_NO_SPUR == cur_bb_spur)
  251. break;
  252. cur_bb_spur = cur_bb_spur - (chan->channel * 10);
  253. if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
  254. bb_spur = cur_bb_spur;
  255. break;
  256. }
  257. }
  258. if (AR_NO_SPUR == bb_spur)
  259. return;
  260. bin = bb_spur * 32;
  261. tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
  262. new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
  263. AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
  264. AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
  265. AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
  266. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
  267. new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
  268. AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
  269. AR_PHY_SPUR_REG_MASK_RATE_SELECT |
  270. AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
  271. SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
  272. REG_WRITE(ah, AR_PHY_SPUR_REG, new);
  273. spur_delta_phase = ((bb_spur * 524288) / 100) &
  274. AR_PHY_TIMING11_SPUR_DELTA_PHASE;
  275. denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
  276. spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
  277. new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
  278. SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
  279. SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
  280. REG_WRITE(ah, AR_PHY_TIMING11, new);
  281. cur_bin = -6000;
  282. upper = bin + 100;
  283. lower = bin - 100;
  284. for (i = 0; i < 4; i++) {
  285. int pilot_mask = 0;
  286. int chan_mask = 0;
  287. int bp = 0;
  288. for (bp = 0; bp < 30; bp++) {
  289. if ((cur_bin > lower) && (cur_bin < upper)) {
  290. pilot_mask = pilot_mask | 0x1 << bp;
  291. chan_mask = chan_mask | 0x1 << bp;
  292. }
  293. cur_bin += 100;
  294. }
  295. cur_bin += inc[i];
  296. REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
  297. REG_WRITE(ah, chan_mask_reg[i], chan_mask);
  298. }
  299. cur_vit_mask = 6100;
  300. upper = bin + 120;
  301. lower = bin - 120;
  302. for (i = 0; i < 123; i++) {
  303. if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
  304. /* workaround for gcc bug #37014 */
  305. volatile int tmp_v = abs(cur_vit_mask - bin);
  306. if (tmp_v < 75)
  307. mask_amt = 1;
  308. else
  309. mask_amt = 0;
  310. if (cur_vit_mask < 0)
  311. mask_m[abs(cur_vit_mask / 100)] = mask_amt;
  312. else
  313. mask_p[cur_vit_mask / 100] = mask_amt;
  314. }
  315. cur_vit_mask -= 100;
  316. }
  317. tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
  318. | (mask_m[48] << 26) | (mask_m[49] << 24)
  319. | (mask_m[50] << 22) | (mask_m[51] << 20)
  320. | (mask_m[52] << 18) | (mask_m[53] << 16)
  321. | (mask_m[54] << 14) | (mask_m[55] << 12)
  322. | (mask_m[56] << 10) | (mask_m[57] << 8)
  323. | (mask_m[58] << 6) | (mask_m[59] << 4)
  324. | (mask_m[60] << 2) | (mask_m[61] << 0);
  325. REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
  326. REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
  327. tmp_mask = (mask_m[31] << 28)
  328. | (mask_m[32] << 26) | (mask_m[33] << 24)
  329. | (mask_m[34] << 22) | (mask_m[35] << 20)
  330. | (mask_m[36] << 18) | (mask_m[37] << 16)
  331. | (mask_m[48] << 14) | (mask_m[39] << 12)
  332. | (mask_m[40] << 10) | (mask_m[41] << 8)
  333. | (mask_m[42] << 6) | (mask_m[43] << 4)
  334. | (mask_m[44] << 2) | (mask_m[45] << 0);
  335. REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
  336. REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
  337. tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
  338. | (mask_m[18] << 26) | (mask_m[18] << 24)
  339. | (mask_m[20] << 22) | (mask_m[20] << 20)
  340. | (mask_m[22] << 18) | (mask_m[22] << 16)
  341. | (mask_m[24] << 14) | (mask_m[24] << 12)
  342. | (mask_m[25] << 10) | (mask_m[26] << 8)
  343. | (mask_m[27] << 6) | (mask_m[28] << 4)
  344. | (mask_m[29] << 2) | (mask_m[30] << 0);
  345. REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
  346. REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
  347. tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
  348. | (mask_m[2] << 26) | (mask_m[3] << 24)
  349. | (mask_m[4] << 22) | (mask_m[5] << 20)
  350. | (mask_m[6] << 18) | (mask_m[7] << 16)
  351. | (mask_m[8] << 14) | (mask_m[9] << 12)
  352. | (mask_m[10] << 10) | (mask_m[11] << 8)
  353. | (mask_m[12] << 6) | (mask_m[13] << 4)
  354. | (mask_m[14] << 2) | (mask_m[15] << 0);
  355. REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
  356. REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
  357. tmp_mask = (mask_p[15] << 28)
  358. | (mask_p[14] << 26) | (mask_p[13] << 24)
  359. | (mask_p[12] << 22) | (mask_p[11] << 20)
  360. | (mask_p[10] << 18) | (mask_p[9] << 16)
  361. | (mask_p[8] << 14) | (mask_p[7] << 12)
  362. | (mask_p[6] << 10) | (mask_p[5] << 8)
  363. | (mask_p[4] << 6) | (mask_p[3] << 4)
  364. | (mask_p[2] << 2) | (mask_p[1] << 0);
  365. REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
  366. REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
  367. tmp_mask = (mask_p[30] << 28)
  368. | (mask_p[29] << 26) | (mask_p[28] << 24)
  369. | (mask_p[27] << 22) | (mask_p[26] << 20)
  370. | (mask_p[25] << 18) | (mask_p[24] << 16)
  371. | (mask_p[23] << 14) | (mask_p[22] << 12)
  372. | (mask_p[21] << 10) | (mask_p[20] << 8)
  373. | (mask_p[19] << 6) | (mask_p[18] << 4)
  374. | (mask_p[17] << 2) | (mask_p[16] << 0);
  375. REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
  376. REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
  377. tmp_mask = (mask_p[45] << 28)
  378. | (mask_p[44] << 26) | (mask_p[43] << 24)
  379. | (mask_p[42] << 22) | (mask_p[41] << 20)
  380. | (mask_p[40] << 18) | (mask_p[39] << 16)
  381. | (mask_p[38] << 14) | (mask_p[37] << 12)
  382. | (mask_p[36] << 10) | (mask_p[35] << 8)
  383. | (mask_p[34] << 6) | (mask_p[33] << 4)
  384. | (mask_p[32] << 2) | (mask_p[31] << 0);
  385. REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
  386. REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
  387. tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
  388. | (mask_p[59] << 26) | (mask_p[58] << 24)
  389. | (mask_p[57] << 22) | (mask_p[56] << 20)
  390. | (mask_p[55] << 18) | (mask_p[54] << 16)
  391. | (mask_p[53] << 14) | (mask_p[52] << 12)
  392. | (mask_p[51] << 10) | (mask_p[50] << 8)
  393. | (mask_p[49] << 6) | (mask_p[48] << 4)
  394. | (mask_p[47] << 2) | (mask_p[46] << 0);
  395. REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
  396. REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
  397. }
  398. /**
  399. * ar5008_hw_rf_alloc_ext_banks - allocates banks for external radio programming
  400. * @ah: atheros hardware structure
  401. *
  402. * Only required for older devices with external AR2133/AR5133 radios.
  403. */
  404. static int ar5008_hw_rf_alloc_ext_banks(struct ath_hw *ah)
  405. {
  406. int size = ah->iniBank6.ia_rows * sizeof(u32);
  407. if (AR_SREV_9280_20_OR_LATER(ah))
  408. return 0;
  409. ah->analogBank6Data = devm_kzalloc(ah->dev, size, GFP_KERNEL);
  410. if (!ah->analogBank6Data)
  411. return -ENOMEM;
  412. return 0;
  413. }
  414. /* *
  415. * ar5008_hw_set_rf_regs - programs rf registers based on EEPROM
  416. * @ah: atheros hardware structure
  417. * @chan:
  418. * @modesIndex:
  419. *
  420. * Used for the external AR2133/AR5133 radios.
  421. *
  422. * Reads the EEPROM header info from the device structure and programs
  423. * all rf registers. This routine requires access to the analog
  424. * rf device. This is not required for single-chip devices.
  425. */
  426. static bool ar5008_hw_set_rf_regs(struct ath_hw *ah,
  427. struct ath9k_channel *chan,
  428. u16 modesIndex)
  429. {
  430. u32 eepMinorRev;
  431. u32 ob5GHz = 0, db5GHz = 0;
  432. u32 ob2GHz = 0, db2GHz = 0;
  433. int regWrites = 0;
  434. int i;
  435. /*
  436. * Software does not need to program bank data
  437. * for single chip devices, that is AR9280 or anything
  438. * after that.
  439. */
  440. if (AR_SREV_9280_20_OR_LATER(ah))
  441. return true;
  442. /* Setup rf parameters */
  443. eepMinorRev = ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV);
  444. for (i = 0; i < ah->iniBank6.ia_rows; i++)
  445. ah->analogBank6Data[i] = INI_RA(&ah->iniBank6, i, modesIndex);
  446. /* Only the 5 or 2 GHz OB/DB need to be set for a mode */
  447. if (eepMinorRev >= 2) {
  448. if (IS_CHAN_2GHZ(chan)) {
  449. ob2GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_2);
  450. db2GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_2);
  451. ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
  452. ob2GHz, 3, 197, 0);
  453. ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
  454. db2GHz, 3, 194, 0);
  455. } else {
  456. ob5GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_5);
  457. db5GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_5);
  458. ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
  459. ob5GHz, 3, 203, 0);
  460. ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
  461. db5GHz, 3, 200, 0);
  462. }
  463. }
  464. /* Write Analog registers */
  465. REG_WRITE_ARRAY(&bank0, 1, regWrites);
  466. REG_WRITE_ARRAY(&bank1, 1, regWrites);
  467. REG_WRITE_ARRAY(&bank2, 1, regWrites);
  468. REG_WRITE_ARRAY(&bank3, modesIndex, regWrites);
  469. ar5008_write_bank6(ah, &regWrites);
  470. REG_WRITE_ARRAY(&bank7, 1, regWrites);
  471. return true;
  472. }
  473. static void ar5008_hw_init_bb(struct ath_hw *ah,
  474. struct ath9k_channel *chan)
  475. {
  476. u32 synthDelay;
  477. synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  478. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
  479. ath9k_hw_synth_delay(ah, chan, synthDelay);
  480. }
  481. static void ar5008_hw_init_chain_masks(struct ath_hw *ah)
  482. {
  483. int rx_chainmask, tx_chainmask;
  484. rx_chainmask = ah->rxchainmask;
  485. tx_chainmask = ah->txchainmask;
  486. switch (rx_chainmask) {
  487. case 0x5:
  488. REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
  489. AR_PHY_SWAP_ALT_CHAIN);
  490. case 0x3:
  491. if (ah->hw_version.macVersion == AR_SREV_REVISION_5416_10) {
  492. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
  493. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
  494. break;
  495. }
  496. case 0x1:
  497. case 0x2:
  498. case 0x7:
  499. ENABLE_REGWRITE_BUFFER(ah);
  500. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
  501. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
  502. break;
  503. default:
  504. ENABLE_REGWRITE_BUFFER(ah);
  505. break;
  506. }
  507. REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
  508. REGWRITE_BUFFER_FLUSH(ah);
  509. if (tx_chainmask == 0x5) {
  510. REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
  511. AR_PHY_SWAP_ALT_CHAIN);
  512. }
  513. if (AR_SREV_9100(ah))
  514. REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
  515. REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
  516. }
  517. static void ar5008_hw_override_ini(struct ath_hw *ah,
  518. struct ath9k_channel *chan)
  519. {
  520. u32 val;
  521. /*
  522. * Set the RX_ABORT and RX_DIS and clear if off only after
  523. * RXE is set for MAC. This prevents frames with corrupted
  524. * descriptor status.
  525. */
  526. REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
  527. if (AR_SREV_9280_20_OR_LATER(ah)) {
  528. val = REG_READ(ah, AR_PCU_MISC_MODE2);
  529. if (!AR_SREV_9271(ah))
  530. val &= ~AR_PCU_MISC_MODE2_HWWAR1;
  531. if (AR_SREV_9287_11_OR_LATER(ah))
  532. val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
  533. REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
  534. }
  535. REG_SET_BIT(ah, AR_PHY_CCK_DETECT,
  536. AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
  537. if (AR_SREV_9280_20_OR_LATER(ah))
  538. return;
  539. /*
  540. * Disable BB clock gating
  541. * Necessary to avoid issues on AR5416 2.0
  542. */
  543. REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
  544. /*
  545. * Disable RIFS search on some chips to avoid baseband
  546. * hang issues.
  547. */
  548. if (AR_SREV_9100(ah) || AR_SREV_9160(ah)) {
  549. val = REG_READ(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS);
  550. val &= ~AR_PHY_RIFS_INIT_DELAY;
  551. REG_WRITE(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, val);
  552. }
  553. }
  554. static void ar5008_hw_set_channel_regs(struct ath_hw *ah,
  555. struct ath9k_channel *chan)
  556. {
  557. u32 phymode;
  558. u32 enableDacFifo = 0;
  559. if (AR_SREV_9285_12_OR_LATER(ah))
  560. enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
  561. AR_PHY_FC_ENABLE_DAC_FIFO);
  562. phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
  563. | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
  564. if (IS_CHAN_HT40(chan)) {
  565. phymode |= AR_PHY_FC_DYN2040_EN;
  566. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  567. (chan->chanmode == CHANNEL_G_HT40PLUS))
  568. phymode |= AR_PHY_FC_DYN2040_PRI_CH;
  569. }
  570. REG_WRITE(ah, AR_PHY_TURBO, phymode);
  571. ath9k_hw_set11nmac2040(ah);
  572. ENABLE_REGWRITE_BUFFER(ah);
  573. REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
  574. REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
  575. REGWRITE_BUFFER_FLUSH(ah);
  576. }
  577. static int ar5008_hw_process_ini(struct ath_hw *ah,
  578. struct ath9k_channel *chan)
  579. {
  580. struct ath_common *common = ath9k_hw_common(ah);
  581. int i, regWrites = 0;
  582. u32 modesIndex, freqIndex;
  583. switch (chan->chanmode) {
  584. case CHANNEL_A:
  585. case CHANNEL_A_HT20:
  586. modesIndex = 1;
  587. freqIndex = 1;
  588. break;
  589. case CHANNEL_A_HT40PLUS:
  590. case CHANNEL_A_HT40MINUS:
  591. modesIndex = 2;
  592. freqIndex = 1;
  593. break;
  594. case CHANNEL_G:
  595. case CHANNEL_G_HT20:
  596. case CHANNEL_B:
  597. modesIndex = 4;
  598. freqIndex = 2;
  599. break;
  600. case CHANNEL_G_HT40PLUS:
  601. case CHANNEL_G_HT40MINUS:
  602. modesIndex = 3;
  603. freqIndex = 2;
  604. break;
  605. default:
  606. return -EINVAL;
  607. }
  608. /*
  609. * Set correct baseband to analog shift setting to
  610. * access analog chips.
  611. */
  612. REG_WRITE(ah, AR_PHY(0), 0x00000007);
  613. /* Write ADDAC shifts */
  614. REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
  615. if (ah->eep_ops->set_addac)
  616. ah->eep_ops->set_addac(ah, chan);
  617. REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
  618. REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
  619. ENABLE_REGWRITE_BUFFER(ah);
  620. for (i = 0; i < ah->iniModes.ia_rows; i++) {
  621. u32 reg = INI_RA(&ah->iniModes, i, 0);
  622. u32 val = INI_RA(&ah->iniModes, i, modesIndex);
  623. if (reg == AR_AN_TOP2 && ah->need_an_top2_fixup)
  624. val &= ~AR_AN_TOP2_PWDCLKIND;
  625. REG_WRITE(ah, reg, val);
  626. if (reg >= 0x7800 && reg < 0x78a0
  627. && ah->config.analog_shiftreg
  628. && (common->bus_ops->ath_bus_type != ATH_USB)) {
  629. udelay(100);
  630. }
  631. DO_DELAY(regWrites);
  632. }
  633. REGWRITE_BUFFER_FLUSH(ah);
  634. if (AR_SREV_9280(ah) || AR_SREV_9287_11_OR_LATER(ah))
  635. REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
  636. if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
  637. AR_SREV_9287_11_OR_LATER(ah))
  638. REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
  639. if (AR_SREV_9271_10(ah)) {
  640. REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENA);
  641. REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_ADC_ON, 0xa);
  642. }
  643. ENABLE_REGWRITE_BUFFER(ah);
  644. /* Write common array parameters */
  645. for (i = 0; i < ah->iniCommon.ia_rows; i++) {
  646. u32 reg = INI_RA(&ah->iniCommon, i, 0);
  647. u32 val = INI_RA(&ah->iniCommon, i, 1);
  648. REG_WRITE(ah, reg, val);
  649. if (reg >= 0x7800 && reg < 0x78a0
  650. && ah->config.analog_shiftreg
  651. && (common->bus_ops->ath_bus_type != ATH_USB)) {
  652. udelay(100);
  653. }
  654. DO_DELAY(regWrites);
  655. }
  656. REGWRITE_BUFFER_FLUSH(ah);
  657. REG_WRITE_ARRAY(&ah->iniBB_RfGain, freqIndex, regWrites);
  658. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  659. REG_WRITE_ARRAY(&ah->iniModesFastClock, modesIndex,
  660. regWrites);
  661. ar5008_hw_override_ini(ah, chan);
  662. ar5008_hw_set_channel_regs(ah, chan);
  663. ar5008_hw_init_chain_masks(ah);
  664. ath9k_olc_init(ah);
  665. ath9k_hw_apply_txpower(ah, chan, false);
  666. /* Write analog registers */
  667. if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
  668. ath_err(ath9k_hw_common(ah), "ar5416SetRfRegs failed\n");
  669. return -EIO;
  670. }
  671. return 0;
  672. }
  673. static void ar5008_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
  674. {
  675. u32 rfMode = 0;
  676. if (chan == NULL)
  677. return;
  678. rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
  679. ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
  680. if (!AR_SREV_9280_20_OR_LATER(ah))
  681. rfMode |= (IS_CHAN_5GHZ(chan)) ?
  682. AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
  683. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  684. rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
  685. REG_WRITE(ah, AR_PHY_MODE, rfMode);
  686. }
  687. static void ar5008_hw_mark_phy_inactive(struct ath_hw *ah)
  688. {
  689. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
  690. }
  691. static void ar5008_hw_set_delta_slope(struct ath_hw *ah,
  692. struct ath9k_channel *chan)
  693. {
  694. u32 coef_scaled, ds_coef_exp, ds_coef_man;
  695. u32 clockMhzScaled = 0x64000000;
  696. struct chan_centers centers;
  697. if (IS_CHAN_HALF_RATE(chan))
  698. clockMhzScaled = clockMhzScaled >> 1;
  699. else if (IS_CHAN_QUARTER_RATE(chan))
  700. clockMhzScaled = clockMhzScaled >> 2;
  701. ath9k_hw_get_channel_centers(ah, chan, &centers);
  702. coef_scaled = clockMhzScaled / centers.synth_center;
  703. ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
  704. &ds_coef_exp);
  705. REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  706. AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
  707. REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  708. AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
  709. coef_scaled = (9 * coef_scaled) / 10;
  710. ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
  711. &ds_coef_exp);
  712. REG_RMW_FIELD(ah, AR_PHY_HALFGI,
  713. AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
  714. REG_RMW_FIELD(ah, AR_PHY_HALFGI,
  715. AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
  716. }
  717. static bool ar5008_hw_rfbus_req(struct ath_hw *ah)
  718. {
  719. REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
  720. return ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
  721. AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT);
  722. }
  723. static void ar5008_hw_rfbus_done(struct ath_hw *ah)
  724. {
  725. u32 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  726. ath9k_hw_synth_delay(ah, ah->curchan, synthDelay);
  727. REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
  728. }
  729. static void ar5008_restore_chainmask(struct ath_hw *ah)
  730. {
  731. int rx_chainmask = ah->rxchainmask;
  732. if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
  733. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
  734. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
  735. }
  736. }
  737. static u32 ar9160_hw_compute_pll_control(struct ath_hw *ah,
  738. struct ath9k_channel *chan)
  739. {
  740. u32 pll;
  741. pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
  742. if (chan && IS_CHAN_HALF_RATE(chan))
  743. pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
  744. else if (chan && IS_CHAN_QUARTER_RATE(chan))
  745. pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
  746. if (chan && IS_CHAN_5GHZ(chan))
  747. pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
  748. else
  749. pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
  750. return pll;
  751. }
  752. static u32 ar5008_hw_compute_pll_control(struct ath_hw *ah,
  753. struct ath9k_channel *chan)
  754. {
  755. u32 pll;
  756. pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
  757. if (chan && IS_CHAN_HALF_RATE(chan))
  758. pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
  759. else if (chan && IS_CHAN_QUARTER_RATE(chan))
  760. pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
  761. if (chan && IS_CHAN_5GHZ(chan))
  762. pll |= SM(0xa, AR_RTC_PLL_DIV);
  763. else
  764. pll |= SM(0xb, AR_RTC_PLL_DIV);
  765. return pll;
  766. }
  767. static bool ar5008_hw_ani_control_new(struct ath_hw *ah,
  768. enum ath9k_ani_cmd cmd,
  769. int param)
  770. {
  771. struct ath_common *common = ath9k_hw_common(ah);
  772. struct ath9k_channel *chan = ah->curchan;
  773. struct ar5416AniState *aniState = &chan->ani;
  774. s32 value, value2;
  775. switch (cmd & ah->ani_function) {
  776. case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{
  777. /*
  778. * on == 1 means ofdm weak signal detection is ON
  779. * on == 1 is the default, for less noise immunity
  780. *
  781. * on == 0 means ofdm weak signal detection is OFF
  782. * on == 0 means more noise imm
  783. */
  784. u32 on = param ? 1 : 0;
  785. /*
  786. * make register setting for default
  787. * (weak sig detect ON) come from INI file
  788. */
  789. int m1ThreshLow = on ?
  790. aniState->iniDef.m1ThreshLow : m1ThreshLow_off;
  791. int m2ThreshLow = on ?
  792. aniState->iniDef.m2ThreshLow : m2ThreshLow_off;
  793. int m1Thresh = on ?
  794. aniState->iniDef.m1Thresh : m1Thresh_off;
  795. int m2Thresh = on ?
  796. aniState->iniDef.m2Thresh : m2Thresh_off;
  797. int m2CountThr = on ?
  798. aniState->iniDef.m2CountThr : m2CountThr_off;
  799. int m2CountThrLow = on ?
  800. aniState->iniDef.m2CountThrLow : m2CountThrLow_off;
  801. int m1ThreshLowExt = on ?
  802. aniState->iniDef.m1ThreshLowExt : m1ThreshLowExt_off;
  803. int m2ThreshLowExt = on ?
  804. aniState->iniDef.m2ThreshLowExt : m2ThreshLowExt_off;
  805. int m1ThreshExt = on ?
  806. aniState->iniDef.m1ThreshExt : m1ThreshExt_off;
  807. int m2ThreshExt = on ?
  808. aniState->iniDef.m2ThreshExt : m2ThreshExt_off;
  809. REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
  810. AR_PHY_SFCORR_LOW_M1_THRESH_LOW,
  811. m1ThreshLow);
  812. REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
  813. AR_PHY_SFCORR_LOW_M2_THRESH_LOW,
  814. m2ThreshLow);
  815. REG_RMW_FIELD(ah, AR_PHY_SFCORR,
  816. AR_PHY_SFCORR_M1_THRESH, m1Thresh);
  817. REG_RMW_FIELD(ah, AR_PHY_SFCORR,
  818. AR_PHY_SFCORR_M2_THRESH, m2Thresh);
  819. REG_RMW_FIELD(ah, AR_PHY_SFCORR,
  820. AR_PHY_SFCORR_M2COUNT_THR, m2CountThr);
  821. REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
  822. AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW,
  823. m2CountThrLow);
  824. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  825. AR_PHY_SFCORR_EXT_M1_THRESH_LOW, m1ThreshLowExt);
  826. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  827. AR_PHY_SFCORR_EXT_M2_THRESH_LOW, m2ThreshLowExt);
  828. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  829. AR_PHY_SFCORR_EXT_M1_THRESH, m1ThreshExt);
  830. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  831. AR_PHY_SFCORR_EXT_M2_THRESH, m2ThreshExt);
  832. if (on)
  833. REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
  834. AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
  835. else
  836. REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
  837. AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
  838. if (on != aniState->ofdmWeakSigDetect) {
  839. ath_dbg(common, ANI,
  840. "** ch %d: ofdm weak signal: %s=>%s\n",
  841. chan->channel,
  842. aniState->ofdmWeakSigDetect ?
  843. "on" : "off",
  844. on ? "on" : "off");
  845. if (on)
  846. ah->stats.ast_ani_ofdmon++;
  847. else
  848. ah->stats.ast_ani_ofdmoff++;
  849. aniState->ofdmWeakSigDetect = on;
  850. }
  851. break;
  852. }
  853. case ATH9K_ANI_FIRSTEP_LEVEL:{
  854. u32 level = param;
  855. if (level >= ARRAY_SIZE(firstep_table)) {
  856. ath_dbg(common, ANI,
  857. "ATH9K_ANI_FIRSTEP_LEVEL: level out of range (%u > %zu)\n",
  858. level, ARRAY_SIZE(firstep_table));
  859. return false;
  860. }
  861. /*
  862. * make register setting relative to default
  863. * from INI file & cap value
  864. */
  865. value = firstep_table[level] -
  866. firstep_table[ATH9K_ANI_FIRSTEP_LVL] +
  867. aniState->iniDef.firstep;
  868. if (value < ATH9K_SIG_FIRSTEP_SETTING_MIN)
  869. value = ATH9K_SIG_FIRSTEP_SETTING_MIN;
  870. if (value > ATH9K_SIG_FIRSTEP_SETTING_MAX)
  871. value = ATH9K_SIG_FIRSTEP_SETTING_MAX;
  872. REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
  873. AR_PHY_FIND_SIG_FIRSTEP,
  874. value);
  875. /*
  876. * we need to set first step low register too
  877. * make register setting relative to default
  878. * from INI file & cap value
  879. */
  880. value2 = firstep_table[level] -
  881. firstep_table[ATH9K_ANI_FIRSTEP_LVL] +
  882. aniState->iniDef.firstepLow;
  883. if (value2 < ATH9K_SIG_FIRSTEP_SETTING_MIN)
  884. value2 = ATH9K_SIG_FIRSTEP_SETTING_MIN;
  885. if (value2 > ATH9K_SIG_FIRSTEP_SETTING_MAX)
  886. value2 = ATH9K_SIG_FIRSTEP_SETTING_MAX;
  887. REG_RMW_FIELD(ah, AR_PHY_FIND_SIG_LOW,
  888. AR_PHY_FIND_SIG_FIRSTEP_LOW, value2);
  889. if (level != aniState->firstepLevel) {
  890. ath_dbg(common, ANI,
  891. "** ch %d: level %d=>%d[def:%d] firstep[level]=%d ini=%d\n",
  892. chan->channel,
  893. aniState->firstepLevel,
  894. level,
  895. ATH9K_ANI_FIRSTEP_LVL,
  896. value,
  897. aniState->iniDef.firstep);
  898. ath_dbg(common, ANI,
  899. "** ch %d: level %d=>%d[def:%d] firstep_low[level]=%d ini=%d\n",
  900. chan->channel,
  901. aniState->firstepLevel,
  902. level,
  903. ATH9K_ANI_FIRSTEP_LVL,
  904. value2,
  905. aniState->iniDef.firstepLow);
  906. if (level > aniState->firstepLevel)
  907. ah->stats.ast_ani_stepup++;
  908. else if (level < aniState->firstepLevel)
  909. ah->stats.ast_ani_stepdown++;
  910. aniState->firstepLevel = level;
  911. }
  912. break;
  913. }
  914. case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{
  915. u32 level = param;
  916. if (level >= ARRAY_SIZE(cycpwrThr1_table)) {
  917. ath_dbg(common, ANI,
  918. "ATH9K_ANI_SPUR_IMMUNITY_LEVEL: level out of range (%u > %zu)\n",
  919. level, ARRAY_SIZE(cycpwrThr1_table));
  920. return false;
  921. }
  922. /*
  923. * make register setting relative to default
  924. * from INI file & cap value
  925. */
  926. value = cycpwrThr1_table[level] -
  927. cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL] +
  928. aniState->iniDef.cycpwrThr1;
  929. if (value < ATH9K_SIG_SPUR_IMM_SETTING_MIN)
  930. value = ATH9K_SIG_SPUR_IMM_SETTING_MIN;
  931. if (value > ATH9K_SIG_SPUR_IMM_SETTING_MAX)
  932. value = ATH9K_SIG_SPUR_IMM_SETTING_MAX;
  933. REG_RMW_FIELD(ah, AR_PHY_TIMING5,
  934. AR_PHY_TIMING5_CYCPWR_THR1,
  935. value);
  936. /*
  937. * set AR_PHY_EXT_CCA for extension channel
  938. * make register setting relative to default
  939. * from INI file & cap value
  940. */
  941. value2 = cycpwrThr1_table[level] -
  942. cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL] +
  943. aniState->iniDef.cycpwrThr1Ext;
  944. if (value2 < ATH9K_SIG_SPUR_IMM_SETTING_MIN)
  945. value2 = ATH9K_SIG_SPUR_IMM_SETTING_MIN;
  946. if (value2 > ATH9K_SIG_SPUR_IMM_SETTING_MAX)
  947. value2 = ATH9K_SIG_SPUR_IMM_SETTING_MAX;
  948. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
  949. AR_PHY_EXT_TIMING5_CYCPWR_THR1, value2);
  950. if (level != aniState->spurImmunityLevel) {
  951. ath_dbg(common, ANI,
  952. "** ch %d: level %d=>%d[def:%d] cycpwrThr1[level]=%d ini=%d\n",
  953. chan->channel,
  954. aniState->spurImmunityLevel,
  955. level,
  956. ATH9K_ANI_SPUR_IMMUNE_LVL,
  957. value,
  958. aniState->iniDef.cycpwrThr1);
  959. ath_dbg(common, ANI,
  960. "** ch %d: level %d=>%d[def:%d] cycpwrThr1Ext[level]=%d ini=%d\n",
  961. chan->channel,
  962. aniState->spurImmunityLevel,
  963. level,
  964. ATH9K_ANI_SPUR_IMMUNE_LVL,
  965. value2,
  966. aniState->iniDef.cycpwrThr1Ext);
  967. if (level > aniState->spurImmunityLevel)
  968. ah->stats.ast_ani_spurup++;
  969. else if (level < aniState->spurImmunityLevel)
  970. ah->stats.ast_ani_spurdown++;
  971. aniState->spurImmunityLevel = level;
  972. }
  973. break;
  974. }
  975. case ATH9K_ANI_MRC_CCK:
  976. /*
  977. * You should not see this as AR5008, AR9001, AR9002
  978. * does not have hardware support for MRC CCK.
  979. */
  980. WARN_ON(1);
  981. break;
  982. case ATH9K_ANI_PRESENT:
  983. break;
  984. default:
  985. ath_dbg(common, ANI, "invalid cmd %u\n", cmd);
  986. return false;
  987. }
  988. ath_dbg(common, ANI,
  989. "ANI parameters: SI=%d, ofdmWS=%s FS=%d MRCcck=%s listenTime=%d ofdmErrs=%d cckErrs=%d\n",
  990. aniState->spurImmunityLevel,
  991. aniState->ofdmWeakSigDetect ? "on" : "off",
  992. aniState->firstepLevel,
  993. aniState->mrcCCK ? "on" : "off",
  994. aniState->listenTime,
  995. aniState->ofdmPhyErrCount,
  996. aniState->cckPhyErrCount);
  997. return true;
  998. }
  999. static void ar5008_hw_do_getnf(struct ath_hw *ah,
  1000. int16_t nfarray[NUM_NF_READINGS])
  1001. {
  1002. int16_t nf;
  1003. nf = MS(REG_READ(ah, AR_PHY_CCA), AR_PHY_MINCCA_PWR);
  1004. nfarray[0] = sign_extend32(nf, 8);
  1005. nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR_PHY_CH1_MINCCA_PWR);
  1006. nfarray[1] = sign_extend32(nf, 8);
  1007. nf = MS(REG_READ(ah, AR_PHY_CH2_CCA), AR_PHY_CH2_MINCCA_PWR);
  1008. nfarray[2] = sign_extend32(nf, 8);
  1009. if (!IS_CHAN_HT40(ah->curchan))
  1010. return;
  1011. nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR_PHY_EXT_MINCCA_PWR);
  1012. nfarray[3] = sign_extend32(nf, 8);
  1013. nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR_PHY_CH1_EXT_MINCCA_PWR);
  1014. nfarray[4] = sign_extend32(nf, 8);
  1015. nf = MS(REG_READ(ah, AR_PHY_CH2_EXT_CCA), AR_PHY_CH2_EXT_MINCCA_PWR);
  1016. nfarray[5] = sign_extend32(nf, 8);
  1017. }
  1018. /*
  1019. * Initialize the ANI register values with default (ini) values.
  1020. * This routine is called during a (full) hardware reset after
  1021. * all the registers are initialised from the INI.
  1022. */
  1023. static void ar5008_hw_ani_cache_ini_regs(struct ath_hw *ah)
  1024. {
  1025. struct ath_common *common = ath9k_hw_common(ah);
  1026. struct ath9k_channel *chan = ah->curchan;
  1027. struct ar5416AniState *aniState = &chan->ani;
  1028. struct ath9k_ani_default *iniDef;
  1029. u32 val;
  1030. iniDef = &aniState->iniDef;
  1031. ath_dbg(common, ANI, "ver %d.%d opmode %u chan %d Mhz/0x%x\n",
  1032. ah->hw_version.macVersion,
  1033. ah->hw_version.macRev,
  1034. ah->opmode,
  1035. chan->channel,
  1036. chan->channelFlags);
  1037. val = REG_READ(ah, AR_PHY_SFCORR);
  1038. iniDef->m1Thresh = MS(val, AR_PHY_SFCORR_M1_THRESH);
  1039. iniDef->m2Thresh = MS(val, AR_PHY_SFCORR_M2_THRESH);
  1040. iniDef->m2CountThr = MS(val, AR_PHY_SFCORR_M2COUNT_THR);
  1041. val = REG_READ(ah, AR_PHY_SFCORR_LOW);
  1042. iniDef->m1ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M1_THRESH_LOW);
  1043. iniDef->m2ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M2_THRESH_LOW);
  1044. iniDef->m2CountThrLow = MS(val, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW);
  1045. val = REG_READ(ah, AR_PHY_SFCORR_EXT);
  1046. iniDef->m1ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH);
  1047. iniDef->m2ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH);
  1048. iniDef->m1ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH_LOW);
  1049. iniDef->m2ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH_LOW);
  1050. iniDef->firstep = REG_READ_FIELD(ah,
  1051. AR_PHY_FIND_SIG,
  1052. AR_PHY_FIND_SIG_FIRSTEP);
  1053. iniDef->firstepLow = REG_READ_FIELD(ah,
  1054. AR_PHY_FIND_SIG_LOW,
  1055. AR_PHY_FIND_SIG_FIRSTEP_LOW);
  1056. iniDef->cycpwrThr1 = REG_READ_FIELD(ah,
  1057. AR_PHY_TIMING5,
  1058. AR_PHY_TIMING5_CYCPWR_THR1);
  1059. iniDef->cycpwrThr1Ext = REG_READ_FIELD(ah,
  1060. AR_PHY_EXT_CCA,
  1061. AR_PHY_EXT_TIMING5_CYCPWR_THR1);
  1062. /* these levels just got reset to defaults by the INI */
  1063. aniState->spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL;
  1064. aniState->firstepLevel = ATH9K_ANI_FIRSTEP_LVL;
  1065. aniState->ofdmWeakSigDetect = ATH9K_ANI_USE_OFDM_WEAK_SIG;
  1066. aniState->mrcCCK = false; /* not available on pre AR9003 */
  1067. }
  1068. static void ar5008_hw_set_nf_limits(struct ath_hw *ah)
  1069. {
  1070. ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_5416_2GHZ;
  1071. ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_5416_2GHZ;
  1072. ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_5416_2GHZ;
  1073. ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_5416_5GHZ;
  1074. ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_5416_5GHZ;
  1075. ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_5416_5GHZ;
  1076. }
  1077. static void ar5008_hw_set_radar_params(struct ath_hw *ah,
  1078. struct ath_hw_radar_conf *conf)
  1079. {
  1080. u32 radar_0 = 0, radar_1 = 0;
  1081. if (!conf) {
  1082. REG_CLR_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_ENA);
  1083. return;
  1084. }
  1085. radar_0 |= AR_PHY_RADAR_0_ENA | AR_PHY_RADAR_0_FFT_ENA;
  1086. radar_0 |= SM(conf->fir_power, AR_PHY_RADAR_0_FIRPWR);
  1087. radar_0 |= SM(conf->radar_rssi, AR_PHY_RADAR_0_RRSSI);
  1088. radar_0 |= SM(conf->pulse_height, AR_PHY_RADAR_0_HEIGHT);
  1089. radar_0 |= SM(conf->pulse_rssi, AR_PHY_RADAR_0_PRSSI);
  1090. radar_0 |= SM(conf->pulse_inband, AR_PHY_RADAR_0_INBAND);
  1091. radar_1 |= AR_PHY_RADAR_1_MAX_RRSSI;
  1092. radar_1 |= AR_PHY_RADAR_1_BLOCK_CHECK;
  1093. radar_1 |= SM(conf->pulse_maxlen, AR_PHY_RADAR_1_MAXLEN);
  1094. radar_1 |= SM(conf->pulse_inband_step, AR_PHY_RADAR_1_RELSTEP_THRESH);
  1095. radar_1 |= SM(conf->radar_inband, AR_PHY_RADAR_1_RELPWR_THRESH);
  1096. REG_WRITE(ah, AR_PHY_RADAR_0, radar_0);
  1097. REG_WRITE(ah, AR_PHY_RADAR_1, radar_1);
  1098. if (conf->ext_channel)
  1099. REG_SET_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
  1100. else
  1101. REG_CLR_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
  1102. }
  1103. static void ar5008_hw_set_radar_conf(struct ath_hw *ah)
  1104. {
  1105. struct ath_hw_radar_conf *conf = &ah->radar_conf;
  1106. conf->fir_power = -33;
  1107. conf->radar_rssi = 20;
  1108. conf->pulse_height = 10;
  1109. conf->pulse_rssi = 24;
  1110. conf->pulse_inband = 15;
  1111. conf->pulse_maxlen = 255;
  1112. conf->pulse_inband_step = 12;
  1113. conf->radar_inband = 8;
  1114. }
  1115. int ar5008_hw_attach_phy_ops(struct ath_hw *ah)
  1116. {
  1117. struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
  1118. static const u32 ar5416_cca_regs[6] = {
  1119. AR_PHY_CCA,
  1120. AR_PHY_CH1_CCA,
  1121. AR_PHY_CH2_CCA,
  1122. AR_PHY_EXT_CCA,
  1123. AR_PHY_CH1_EXT_CCA,
  1124. AR_PHY_CH2_EXT_CCA
  1125. };
  1126. int ret;
  1127. ret = ar5008_hw_rf_alloc_ext_banks(ah);
  1128. if (ret)
  1129. return ret;
  1130. priv_ops->rf_set_freq = ar5008_hw_set_channel;
  1131. priv_ops->spur_mitigate_freq = ar5008_hw_spur_mitigate;
  1132. priv_ops->set_rf_regs = ar5008_hw_set_rf_regs;
  1133. priv_ops->set_channel_regs = ar5008_hw_set_channel_regs;
  1134. priv_ops->init_bb = ar5008_hw_init_bb;
  1135. priv_ops->process_ini = ar5008_hw_process_ini;
  1136. priv_ops->set_rfmode = ar5008_hw_set_rfmode;
  1137. priv_ops->mark_phy_inactive = ar5008_hw_mark_phy_inactive;
  1138. priv_ops->set_delta_slope = ar5008_hw_set_delta_slope;
  1139. priv_ops->rfbus_req = ar5008_hw_rfbus_req;
  1140. priv_ops->rfbus_done = ar5008_hw_rfbus_done;
  1141. priv_ops->restore_chainmask = ar5008_restore_chainmask;
  1142. priv_ops->do_getnf = ar5008_hw_do_getnf;
  1143. priv_ops->set_radar_params = ar5008_hw_set_radar_params;
  1144. priv_ops->ani_control = ar5008_hw_ani_control_new;
  1145. priv_ops->ani_cache_ini_regs = ar5008_hw_ani_cache_ini_regs;
  1146. if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah))
  1147. priv_ops->compute_pll_control = ar9160_hw_compute_pll_control;
  1148. else
  1149. priv_ops->compute_pll_control = ar5008_hw_compute_pll_control;
  1150. ar5008_hw_set_nf_limits(ah);
  1151. ar5008_hw_set_radar_conf(ah);
  1152. memcpy(ah->nf_regs, ar5416_cca_regs, sizeof(ah->nf_regs));
  1153. return 0;
  1154. }