t4_hw.c 111 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627
  1. /*
  2. * This file is part of the Chelsio T4 Ethernet driver for Linux.
  3. *
  4. * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
  5. *
  6. * This software is available to you under a choice of one of two
  7. * licenses. You may choose to be licensed under the terms of the GNU
  8. * General Public License (GPL) Version 2, available from the file
  9. * COPYING in the main directory of this source tree, or the
  10. * OpenIB.org BSD license below:
  11. *
  12. * Redistribution and use in source and binary forms, with or
  13. * without modification, are permitted provided that the following
  14. * conditions are met:
  15. *
  16. * - Redistributions of source code must retain the above
  17. * copyright notice, this list of conditions and the following
  18. * disclaimer.
  19. *
  20. * - Redistributions in binary form must reproduce the above
  21. * copyright notice, this list of conditions and the following
  22. * disclaimer in the documentation and/or other materials
  23. * provided with the distribution.
  24. *
  25. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32. * SOFTWARE.
  33. */
  34. #include <linux/init.h>
  35. #include <linux/delay.h>
  36. #include "cxgb4.h"
  37. #include "t4_regs.h"
  38. #include "t4fw_api.h"
  39. /**
  40. * t4_wait_op_done_val - wait until an operation is completed
  41. * @adapter: the adapter performing the operation
  42. * @reg: the register to check for completion
  43. * @mask: a single-bit field within @reg that indicates completion
  44. * @polarity: the value of the field when the operation is completed
  45. * @attempts: number of check iterations
  46. * @delay: delay in usecs between iterations
  47. * @valp: where to store the value of the register at completion time
  48. *
  49. * Wait until an operation is completed by checking a bit in a register
  50. * up to @attempts times. If @valp is not NULL the value of the register
  51. * at the time it indicated completion is stored there. Returns 0 if the
  52. * operation completes and -EAGAIN otherwise.
  53. */
  54. static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
  55. int polarity, int attempts, int delay, u32 *valp)
  56. {
  57. while (1) {
  58. u32 val = t4_read_reg(adapter, reg);
  59. if (!!(val & mask) == polarity) {
  60. if (valp)
  61. *valp = val;
  62. return 0;
  63. }
  64. if (--attempts == 0)
  65. return -EAGAIN;
  66. if (delay)
  67. udelay(delay);
  68. }
  69. }
  70. static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
  71. int polarity, int attempts, int delay)
  72. {
  73. return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
  74. delay, NULL);
  75. }
  76. /**
  77. * t4_set_reg_field - set a register field to a value
  78. * @adapter: the adapter to program
  79. * @addr: the register address
  80. * @mask: specifies the portion of the register to modify
  81. * @val: the new value for the register field
  82. *
  83. * Sets a register field specified by the supplied mask to the
  84. * given value.
  85. */
  86. void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
  87. u32 val)
  88. {
  89. u32 v = t4_read_reg(adapter, addr) & ~mask;
  90. t4_write_reg(adapter, addr, v | val);
  91. (void) t4_read_reg(adapter, addr); /* flush */
  92. }
  93. /**
  94. * t4_read_indirect - read indirectly addressed registers
  95. * @adap: the adapter
  96. * @addr_reg: register holding the indirect address
  97. * @data_reg: register holding the value of the indirect register
  98. * @vals: where the read register values are stored
  99. * @nregs: how many indirect registers to read
  100. * @start_idx: index of first indirect register to read
  101. *
  102. * Reads registers that are accessed indirectly through an address/data
  103. * register pair.
  104. */
  105. void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
  106. unsigned int data_reg, u32 *vals,
  107. unsigned int nregs, unsigned int start_idx)
  108. {
  109. while (nregs--) {
  110. t4_write_reg(adap, addr_reg, start_idx);
  111. *vals++ = t4_read_reg(adap, data_reg);
  112. start_idx++;
  113. }
  114. }
  115. /**
  116. * t4_write_indirect - write indirectly addressed registers
  117. * @adap: the adapter
  118. * @addr_reg: register holding the indirect addresses
  119. * @data_reg: register holding the value for the indirect registers
  120. * @vals: values to write
  121. * @nregs: how many indirect registers to write
  122. * @start_idx: address of first indirect register to write
  123. *
  124. * Writes a sequential block of registers that are accessed indirectly
  125. * through an address/data register pair.
  126. */
  127. void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
  128. unsigned int data_reg, const u32 *vals,
  129. unsigned int nregs, unsigned int start_idx)
  130. {
  131. while (nregs--) {
  132. t4_write_reg(adap, addr_reg, start_idx++);
  133. t4_write_reg(adap, data_reg, *vals++);
  134. }
  135. }
  136. /*
  137. * Get the reply to a mailbox command and store it in @rpl in big-endian order.
  138. */
  139. static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
  140. u32 mbox_addr)
  141. {
  142. for ( ; nflit; nflit--, mbox_addr += 8)
  143. *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
  144. }
  145. /*
  146. * Handle a FW assertion reported in a mailbox.
  147. */
  148. static void fw_asrt(struct adapter *adap, u32 mbox_addr)
  149. {
  150. struct fw_debug_cmd asrt;
  151. get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
  152. dev_alert(adap->pdev_dev,
  153. "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
  154. asrt.u.assert.filename_0_7, ntohl(asrt.u.assert.line),
  155. ntohl(asrt.u.assert.x), ntohl(asrt.u.assert.y));
  156. }
  157. static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
  158. {
  159. dev_err(adap->pdev_dev,
  160. "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
  161. (unsigned long long)t4_read_reg64(adap, data_reg),
  162. (unsigned long long)t4_read_reg64(adap, data_reg + 8),
  163. (unsigned long long)t4_read_reg64(adap, data_reg + 16),
  164. (unsigned long long)t4_read_reg64(adap, data_reg + 24),
  165. (unsigned long long)t4_read_reg64(adap, data_reg + 32),
  166. (unsigned long long)t4_read_reg64(adap, data_reg + 40),
  167. (unsigned long long)t4_read_reg64(adap, data_reg + 48),
  168. (unsigned long long)t4_read_reg64(adap, data_reg + 56));
  169. }
  170. /**
  171. * t4_wr_mbox_meat - send a command to FW through the given mailbox
  172. * @adap: the adapter
  173. * @mbox: index of the mailbox to use
  174. * @cmd: the command to write
  175. * @size: command length in bytes
  176. * @rpl: where to optionally store the reply
  177. * @sleep_ok: if true we may sleep while awaiting command completion
  178. *
  179. * Sends the given command to FW through the selected mailbox and waits
  180. * for the FW to execute the command. If @rpl is not %NULL it is used to
  181. * store the FW's reply to the command. The command and its optional
  182. * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms
  183. * to respond. @sleep_ok determines whether we may sleep while awaiting
  184. * the response. If sleeping is allowed we use progressive backoff
  185. * otherwise we spin.
  186. *
  187. * The return value is 0 on success or a negative errno on failure. A
  188. * failure can happen either because we are not able to execute the
  189. * command or FW executes it but signals an error. In the latter case
  190. * the return value is the error code indicated by FW (negated).
  191. */
  192. int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
  193. void *rpl, bool sleep_ok)
  194. {
  195. static const int delay[] = {
  196. 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
  197. };
  198. u32 v;
  199. u64 res;
  200. int i, ms, delay_idx;
  201. const __be64 *p = cmd;
  202. u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA);
  203. u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL);
  204. if ((size & 15) || size > MBOX_LEN)
  205. return -EINVAL;
  206. /*
  207. * If the device is off-line, as in EEH, commands will time out.
  208. * Fail them early so we don't waste time waiting.
  209. */
  210. if (adap->pdev->error_state != pci_channel_io_normal)
  211. return -EIO;
  212. v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));
  213. for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
  214. v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));
  215. if (v != MBOX_OWNER_DRV)
  216. return v ? -EBUSY : -ETIMEDOUT;
  217. for (i = 0; i < size; i += 8)
  218. t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
  219. t4_write_reg(adap, ctl_reg, MBMSGVALID | MBOWNER(MBOX_OWNER_FW));
  220. t4_read_reg(adap, ctl_reg); /* flush write */
  221. delay_idx = 0;
  222. ms = delay[0];
  223. for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
  224. if (sleep_ok) {
  225. ms = delay[delay_idx]; /* last element may repeat */
  226. if (delay_idx < ARRAY_SIZE(delay) - 1)
  227. delay_idx++;
  228. msleep(ms);
  229. } else
  230. mdelay(ms);
  231. v = t4_read_reg(adap, ctl_reg);
  232. if (MBOWNER_GET(v) == MBOX_OWNER_DRV) {
  233. if (!(v & MBMSGVALID)) {
  234. t4_write_reg(adap, ctl_reg, 0);
  235. continue;
  236. }
  237. res = t4_read_reg64(adap, data_reg);
  238. if (FW_CMD_OP_GET(res >> 32) == FW_DEBUG_CMD) {
  239. fw_asrt(adap, data_reg);
  240. res = FW_CMD_RETVAL(EIO);
  241. } else if (rpl)
  242. get_mbox_rpl(adap, rpl, size / 8, data_reg);
  243. if (FW_CMD_RETVAL_GET((int)res))
  244. dump_mbox(adap, mbox, data_reg);
  245. t4_write_reg(adap, ctl_reg, 0);
  246. return -FW_CMD_RETVAL_GET((int)res);
  247. }
  248. }
  249. dump_mbox(adap, mbox, data_reg);
  250. dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
  251. *(const u8 *)cmd, mbox);
  252. return -ETIMEDOUT;
  253. }
  254. /**
  255. * t4_mc_read - read from MC through backdoor accesses
  256. * @adap: the adapter
  257. * @addr: address of first byte requested
  258. * @data: 64 bytes of data containing the requested address
  259. * @ecc: where to store the corresponding 64-bit ECC word
  260. *
  261. * Read 64 bytes of data from MC starting at a 64-byte-aligned address
  262. * that covers the requested address @addr. If @parity is not %NULL it
  263. * is assigned the 64-bit ECC word for the read data.
  264. */
  265. int t4_mc_read(struct adapter *adap, u32 addr, __be32 *data, u64 *ecc)
  266. {
  267. int i;
  268. if (t4_read_reg(adap, MC_BIST_CMD) & START_BIST)
  269. return -EBUSY;
  270. t4_write_reg(adap, MC_BIST_CMD_ADDR, addr & ~0x3fU);
  271. t4_write_reg(adap, MC_BIST_CMD_LEN, 64);
  272. t4_write_reg(adap, MC_BIST_DATA_PATTERN, 0xc);
  273. t4_write_reg(adap, MC_BIST_CMD, BIST_OPCODE(1) | START_BIST |
  274. BIST_CMD_GAP(1));
  275. i = t4_wait_op_done(adap, MC_BIST_CMD, START_BIST, 0, 10, 1);
  276. if (i)
  277. return i;
  278. #define MC_DATA(i) MC_BIST_STATUS_REG(MC_BIST_STATUS_RDATA, i)
  279. for (i = 15; i >= 0; i--)
  280. *data++ = htonl(t4_read_reg(adap, MC_DATA(i)));
  281. if (ecc)
  282. *ecc = t4_read_reg64(adap, MC_DATA(16));
  283. #undef MC_DATA
  284. return 0;
  285. }
  286. /**
  287. * t4_edc_read - read from EDC through backdoor accesses
  288. * @adap: the adapter
  289. * @idx: which EDC to access
  290. * @addr: address of first byte requested
  291. * @data: 64 bytes of data containing the requested address
  292. * @ecc: where to store the corresponding 64-bit ECC word
  293. *
  294. * Read 64 bytes of data from EDC starting at a 64-byte-aligned address
  295. * that covers the requested address @addr. If @parity is not %NULL it
  296. * is assigned the 64-bit ECC word for the read data.
  297. */
  298. int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
  299. {
  300. int i;
  301. idx *= EDC_STRIDE;
  302. if (t4_read_reg(adap, EDC_BIST_CMD + idx) & START_BIST)
  303. return -EBUSY;
  304. t4_write_reg(adap, EDC_BIST_CMD_ADDR + idx, addr & ~0x3fU);
  305. t4_write_reg(adap, EDC_BIST_CMD_LEN + idx, 64);
  306. t4_write_reg(adap, EDC_BIST_DATA_PATTERN + idx, 0xc);
  307. t4_write_reg(adap, EDC_BIST_CMD + idx,
  308. BIST_OPCODE(1) | BIST_CMD_GAP(1) | START_BIST);
  309. i = t4_wait_op_done(adap, EDC_BIST_CMD + idx, START_BIST, 0, 10, 1);
  310. if (i)
  311. return i;
  312. #define EDC_DATA(i) (EDC_BIST_STATUS_REG(EDC_BIST_STATUS_RDATA, i) + idx)
  313. for (i = 15; i >= 0; i--)
  314. *data++ = htonl(t4_read_reg(adap, EDC_DATA(i)));
  315. if (ecc)
  316. *ecc = t4_read_reg64(adap, EDC_DATA(16));
  317. #undef EDC_DATA
  318. return 0;
  319. }
  320. /*
  321. * t4_mem_win_rw - read/write memory through PCIE memory window
  322. * @adap: the adapter
  323. * @addr: address of first byte requested
  324. * @data: MEMWIN0_APERTURE bytes of data containing the requested address
  325. * @dir: direction of transfer 1 => read, 0 => write
  326. *
  327. * Read/write MEMWIN0_APERTURE bytes of data from MC starting at a
  328. * MEMWIN0_APERTURE-byte-aligned address that covers the requested
  329. * address @addr.
  330. */
  331. static int t4_mem_win_rw(struct adapter *adap, u32 addr, __be32 *data, int dir)
  332. {
  333. int i;
  334. /*
  335. * Setup offset into PCIE memory window. Address must be a
  336. * MEMWIN0_APERTURE-byte-aligned address. (Read back MA register to
  337. * ensure that changes propagate before we attempt to use the new
  338. * values.)
  339. */
  340. t4_write_reg(adap, PCIE_MEM_ACCESS_OFFSET,
  341. addr & ~(MEMWIN0_APERTURE - 1));
  342. t4_read_reg(adap, PCIE_MEM_ACCESS_OFFSET);
  343. /* Collecting data 4 bytes at a time upto MEMWIN0_APERTURE */
  344. for (i = 0; i < MEMWIN0_APERTURE; i = i+0x4) {
  345. if (dir)
  346. *data++ = (__force __be32) t4_read_reg(adap,
  347. (MEMWIN0_BASE + i));
  348. else
  349. t4_write_reg(adap, (MEMWIN0_BASE + i),
  350. (__force u32) *data++);
  351. }
  352. return 0;
  353. }
  354. /**
  355. * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
  356. * @adap: the adapter
  357. * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
  358. * @addr: address within indicated memory type
  359. * @len: amount of memory to transfer
  360. * @buf: host memory buffer
  361. * @dir: direction of transfer 1 => read, 0 => write
  362. *
  363. * Reads/writes an [almost] arbitrary memory region in the firmware: the
  364. * firmware memory address, length and host buffer must be aligned on
  365. * 32-bit boudaries. The memory is transferred as a raw byte sequence
  366. * from/to the firmware's memory. If this memory contains data
  367. * structures which contain multi-byte integers, it's the callers
  368. * responsibility to perform appropriate byte order conversions.
  369. */
  370. static int t4_memory_rw(struct adapter *adap, int mtype, u32 addr, u32 len,
  371. __be32 *buf, int dir)
  372. {
  373. u32 pos, start, end, offset, memoffset;
  374. int ret = 0;
  375. __be32 *data;
  376. /*
  377. * Argument sanity checks ...
  378. */
  379. if ((addr & 0x3) || (len & 0x3))
  380. return -EINVAL;
  381. data = vmalloc(MEMWIN0_APERTURE);
  382. if (!data)
  383. return -ENOMEM;
  384. /*
  385. * Offset into the region of memory which is being accessed
  386. * MEM_EDC0 = 0
  387. * MEM_EDC1 = 1
  388. * MEM_MC = 2
  389. */
  390. memoffset = (mtype * (5 * 1024 * 1024));
  391. /* Determine the PCIE_MEM_ACCESS_OFFSET */
  392. addr = addr + memoffset;
  393. /*
  394. * The underlaying EDC/MC read routines read MEMWIN0_APERTURE bytes
  395. * at a time so we need to round down the start and round up the end.
  396. * We'll start copying out of the first line at (addr - start) a word
  397. * at a time.
  398. */
  399. start = addr & ~(MEMWIN0_APERTURE-1);
  400. end = (addr + len + MEMWIN0_APERTURE-1) & ~(MEMWIN0_APERTURE-1);
  401. offset = (addr - start)/sizeof(__be32);
  402. for (pos = start; pos < end; pos += MEMWIN0_APERTURE, offset = 0) {
  403. /*
  404. * If we're writing, copy the data from the caller's memory
  405. * buffer
  406. */
  407. if (!dir) {
  408. /*
  409. * If we're doing a partial write, then we need to do
  410. * a read-modify-write ...
  411. */
  412. if (offset || len < MEMWIN0_APERTURE) {
  413. ret = t4_mem_win_rw(adap, pos, data, 1);
  414. if (ret)
  415. break;
  416. }
  417. while (offset < (MEMWIN0_APERTURE/sizeof(__be32)) &&
  418. len > 0) {
  419. data[offset++] = *buf++;
  420. len -= sizeof(__be32);
  421. }
  422. }
  423. /*
  424. * Transfer a block of memory and bail if there's an error.
  425. */
  426. ret = t4_mem_win_rw(adap, pos, data, dir);
  427. if (ret)
  428. break;
  429. /*
  430. * If we're reading, copy the data into the caller's memory
  431. * buffer.
  432. */
  433. if (dir)
  434. while (offset < (MEMWIN0_APERTURE/sizeof(__be32)) &&
  435. len > 0) {
  436. *buf++ = data[offset++];
  437. len -= sizeof(__be32);
  438. }
  439. }
  440. vfree(data);
  441. return ret;
  442. }
  443. int t4_memory_write(struct adapter *adap, int mtype, u32 addr, u32 len,
  444. __be32 *buf)
  445. {
  446. return t4_memory_rw(adap, mtype, addr, len, buf, 0);
  447. }
  448. #define EEPROM_STAT_ADDR 0x7bfc
  449. #define VPD_BASE 0
  450. #define VPD_LEN 512
  451. /**
  452. * t4_seeprom_wp - enable/disable EEPROM write protection
  453. * @adapter: the adapter
  454. * @enable: whether to enable or disable write protection
  455. *
  456. * Enables or disables write protection on the serial EEPROM.
  457. */
  458. int t4_seeprom_wp(struct adapter *adapter, bool enable)
  459. {
  460. unsigned int v = enable ? 0xc : 0;
  461. int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
  462. return ret < 0 ? ret : 0;
  463. }
  464. /**
  465. * get_vpd_params - read VPD parameters from VPD EEPROM
  466. * @adapter: adapter to read
  467. * @p: where to store the parameters
  468. *
  469. * Reads card parameters stored in VPD EEPROM.
  470. */
  471. int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
  472. {
  473. u32 cclk_param, cclk_val;
  474. int i, ret;
  475. int ec, sn;
  476. u8 *vpd, csum;
  477. unsigned int vpdr_len, kw_offset, id_len;
  478. vpd = vmalloc(VPD_LEN);
  479. if (!vpd)
  480. return -ENOMEM;
  481. ret = pci_read_vpd(adapter->pdev, VPD_BASE, VPD_LEN, vpd);
  482. if (ret < 0)
  483. goto out;
  484. if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
  485. dev_err(adapter->pdev_dev, "missing VPD ID string\n");
  486. ret = -EINVAL;
  487. goto out;
  488. }
  489. id_len = pci_vpd_lrdt_size(vpd);
  490. if (id_len > ID_LEN)
  491. id_len = ID_LEN;
  492. i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
  493. if (i < 0) {
  494. dev_err(adapter->pdev_dev, "missing VPD-R section\n");
  495. ret = -EINVAL;
  496. goto out;
  497. }
  498. vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
  499. kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
  500. if (vpdr_len + kw_offset > VPD_LEN) {
  501. dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
  502. ret = -EINVAL;
  503. goto out;
  504. }
  505. #define FIND_VPD_KW(var, name) do { \
  506. var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
  507. if (var < 0) { \
  508. dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
  509. ret = -EINVAL; \
  510. goto out; \
  511. } \
  512. var += PCI_VPD_INFO_FLD_HDR_SIZE; \
  513. } while (0)
  514. FIND_VPD_KW(i, "RV");
  515. for (csum = 0; i >= 0; i--)
  516. csum += vpd[i];
  517. if (csum) {
  518. dev_err(adapter->pdev_dev,
  519. "corrupted VPD EEPROM, actual csum %u\n", csum);
  520. ret = -EINVAL;
  521. goto out;
  522. }
  523. FIND_VPD_KW(ec, "EC");
  524. FIND_VPD_KW(sn, "SN");
  525. #undef FIND_VPD_KW
  526. memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
  527. strim(p->id);
  528. memcpy(p->ec, vpd + ec, EC_LEN);
  529. strim(p->ec);
  530. i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
  531. memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
  532. strim(p->sn);
  533. /*
  534. * Ask firmware for the Core Clock since it knows how to translate the
  535. * Reference Clock ('V2') VPD field into a Core Clock value ...
  536. */
  537. cclk_param = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
  538. FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK));
  539. ret = t4_query_params(adapter, adapter->mbox, 0, 0,
  540. 1, &cclk_param, &cclk_val);
  541. out:
  542. vfree(vpd);
  543. if (ret)
  544. return ret;
  545. p->cclk = cclk_val;
  546. return 0;
  547. }
  548. /* serial flash and firmware constants */
  549. enum {
  550. SF_ATTEMPTS = 10, /* max retries for SF operations */
  551. /* flash command opcodes */
  552. SF_PROG_PAGE = 2, /* program page */
  553. SF_WR_DISABLE = 4, /* disable writes */
  554. SF_RD_STATUS = 5, /* read status register */
  555. SF_WR_ENABLE = 6, /* enable writes */
  556. SF_RD_DATA_FAST = 0xb, /* read flash */
  557. SF_RD_ID = 0x9f, /* read ID */
  558. SF_ERASE_SECTOR = 0xd8, /* erase sector */
  559. FW_MAX_SIZE = 512 * 1024,
  560. };
  561. /**
  562. * sf1_read - read data from the serial flash
  563. * @adapter: the adapter
  564. * @byte_cnt: number of bytes to read
  565. * @cont: whether another operation will be chained
  566. * @lock: whether to lock SF for PL access only
  567. * @valp: where to store the read data
  568. *
  569. * Reads up to 4 bytes of data from the serial flash. The location of
  570. * the read needs to be specified prior to calling this by issuing the
  571. * appropriate commands to the serial flash.
  572. */
  573. static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
  574. int lock, u32 *valp)
  575. {
  576. int ret;
  577. if (!byte_cnt || byte_cnt > 4)
  578. return -EINVAL;
  579. if (t4_read_reg(adapter, SF_OP) & SF_BUSY)
  580. return -EBUSY;
  581. cont = cont ? SF_CONT : 0;
  582. lock = lock ? SF_LOCK : 0;
  583. t4_write_reg(adapter, SF_OP, lock | cont | BYTECNT(byte_cnt - 1));
  584. ret = t4_wait_op_done(adapter, SF_OP, SF_BUSY, 0, SF_ATTEMPTS, 5);
  585. if (!ret)
  586. *valp = t4_read_reg(adapter, SF_DATA);
  587. return ret;
  588. }
  589. /**
  590. * sf1_write - write data to the serial flash
  591. * @adapter: the adapter
  592. * @byte_cnt: number of bytes to write
  593. * @cont: whether another operation will be chained
  594. * @lock: whether to lock SF for PL access only
  595. * @val: value to write
  596. *
  597. * Writes up to 4 bytes of data to the serial flash. The location of
  598. * the write needs to be specified prior to calling this by issuing the
  599. * appropriate commands to the serial flash.
  600. */
  601. static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
  602. int lock, u32 val)
  603. {
  604. if (!byte_cnt || byte_cnt > 4)
  605. return -EINVAL;
  606. if (t4_read_reg(adapter, SF_OP) & SF_BUSY)
  607. return -EBUSY;
  608. cont = cont ? SF_CONT : 0;
  609. lock = lock ? SF_LOCK : 0;
  610. t4_write_reg(adapter, SF_DATA, val);
  611. t4_write_reg(adapter, SF_OP, lock |
  612. cont | BYTECNT(byte_cnt - 1) | OP_WR);
  613. return t4_wait_op_done(adapter, SF_OP, SF_BUSY, 0, SF_ATTEMPTS, 5);
  614. }
  615. /**
  616. * flash_wait_op - wait for a flash operation to complete
  617. * @adapter: the adapter
  618. * @attempts: max number of polls of the status register
  619. * @delay: delay between polls in ms
  620. *
  621. * Wait for a flash operation to complete by polling the status register.
  622. */
  623. static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
  624. {
  625. int ret;
  626. u32 status;
  627. while (1) {
  628. if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
  629. (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
  630. return ret;
  631. if (!(status & 1))
  632. return 0;
  633. if (--attempts == 0)
  634. return -EAGAIN;
  635. if (delay)
  636. msleep(delay);
  637. }
  638. }
  639. /**
  640. * t4_read_flash - read words from serial flash
  641. * @adapter: the adapter
  642. * @addr: the start address for the read
  643. * @nwords: how many 32-bit words to read
  644. * @data: where to store the read data
  645. * @byte_oriented: whether to store data as bytes or as words
  646. *
  647. * Read the specified number of 32-bit words from the serial flash.
  648. * If @byte_oriented is set the read data is stored as a byte array
  649. * (i.e., big-endian), otherwise as 32-bit words in the platform's
  650. * natural endianess.
  651. */
  652. static int t4_read_flash(struct adapter *adapter, unsigned int addr,
  653. unsigned int nwords, u32 *data, int byte_oriented)
  654. {
  655. int ret;
  656. if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
  657. return -EINVAL;
  658. addr = swab32(addr) | SF_RD_DATA_FAST;
  659. if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
  660. (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
  661. return ret;
  662. for ( ; nwords; nwords--, data++) {
  663. ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
  664. if (nwords == 1)
  665. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  666. if (ret)
  667. return ret;
  668. if (byte_oriented)
  669. *data = (__force __u32) (htonl(*data));
  670. }
  671. return 0;
  672. }
  673. /**
  674. * t4_write_flash - write up to a page of data to the serial flash
  675. * @adapter: the adapter
  676. * @addr: the start address to write
  677. * @n: length of data to write in bytes
  678. * @data: the data to write
  679. *
  680. * Writes up to a page of data (256 bytes) to the serial flash starting
  681. * at the given address. All the data must be written to the same page.
  682. */
  683. static int t4_write_flash(struct adapter *adapter, unsigned int addr,
  684. unsigned int n, const u8 *data)
  685. {
  686. int ret;
  687. u32 buf[64];
  688. unsigned int i, c, left, val, offset = addr & 0xff;
  689. if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
  690. return -EINVAL;
  691. val = swab32(addr) | SF_PROG_PAGE;
  692. if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
  693. (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
  694. goto unlock;
  695. for (left = n; left; left -= c) {
  696. c = min(left, 4U);
  697. for (val = 0, i = 0; i < c; ++i)
  698. val = (val << 8) + *data++;
  699. ret = sf1_write(adapter, c, c != left, 1, val);
  700. if (ret)
  701. goto unlock;
  702. }
  703. ret = flash_wait_op(adapter, 8, 1);
  704. if (ret)
  705. goto unlock;
  706. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  707. /* Read the page to verify the write succeeded */
  708. ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
  709. if (ret)
  710. return ret;
  711. if (memcmp(data - n, (u8 *)buf + offset, n)) {
  712. dev_err(adapter->pdev_dev,
  713. "failed to correctly write the flash page at %#x\n",
  714. addr);
  715. return -EIO;
  716. }
  717. return 0;
  718. unlock:
  719. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  720. return ret;
  721. }
  722. /**
  723. * get_fw_version - read the firmware version
  724. * @adapter: the adapter
  725. * @vers: where to place the version
  726. *
  727. * Reads the FW version from flash.
  728. */
  729. static int get_fw_version(struct adapter *adapter, u32 *vers)
  730. {
  731. return t4_read_flash(adapter, adapter->params.sf_fw_start +
  732. offsetof(struct fw_hdr, fw_ver), 1, vers, 0);
  733. }
  734. /**
  735. * get_tp_version - read the TP microcode version
  736. * @adapter: the adapter
  737. * @vers: where to place the version
  738. *
  739. * Reads the TP microcode version from flash.
  740. */
  741. static int get_tp_version(struct adapter *adapter, u32 *vers)
  742. {
  743. return t4_read_flash(adapter, adapter->params.sf_fw_start +
  744. offsetof(struct fw_hdr, tp_microcode_ver),
  745. 1, vers, 0);
  746. }
  747. /**
  748. * t4_check_fw_version - check if the FW is compatible with this driver
  749. * @adapter: the adapter
  750. *
  751. * Checks if an adapter's FW is compatible with the driver. Returns 0
  752. * if there's exact match, a negative error if the version could not be
  753. * read or there's a major version mismatch, and a positive value if the
  754. * expected major version is found but there's a minor version mismatch.
  755. */
  756. int t4_check_fw_version(struct adapter *adapter)
  757. {
  758. u32 api_vers[2];
  759. int ret, major, minor, micro;
  760. ret = get_fw_version(adapter, &adapter->params.fw_vers);
  761. if (!ret)
  762. ret = get_tp_version(adapter, &adapter->params.tp_vers);
  763. if (!ret)
  764. ret = t4_read_flash(adapter, adapter->params.sf_fw_start +
  765. offsetof(struct fw_hdr, intfver_nic),
  766. 2, api_vers, 1);
  767. if (ret)
  768. return ret;
  769. major = FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers);
  770. minor = FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers);
  771. micro = FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers);
  772. memcpy(adapter->params.api_vers, api_vers,
  773. sizeof(adapter->params.api_vers));
  774. if (major != FW_VERSION_MAJOR) { /* major mismatch - fail */
  775. dev_err(adapter->pdev_dev,
  776. "card FW has major version %u, driver wants %u\n",
  777. major, FW_VERSION_MAJOR);
  778. return -EINVAL;
  779. }
  780. if (minor == FW_VERSION_MINOR && micro == FW_VERSION_MICRO)
  781. return 0; /* perfect match */
  782. /* Minor/micro version mismatch. Report it but often it's OK. */
  783. return 1;
  784. }
  785. /**
  786. * t4_flash_erase_sectors - erase a range of flash sectors
  787. * @adapter: the adapter
  788. * @start: the first sector to erase
  789. * @end: the last sector to erase
  790. *
  791. * Erases the sectors in the given inclusive range.
  792. */
  793. static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
  794. {
  795. int ret = 0;
  796. while (start <= end) {
  797. if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
  798. (ret = sf1_write(adapter, 4, 0, 1,
  799. SF_ERASE_SECTOR | (start << 8))) != 0 ||
  800. (ret = flash_wait_op(adapter, 14, 500)) != 0) {
  801. dev_err(adapter->pdev_dev,
  802. "erase of flash sector %d failed, error %d\n",
  803. start, ret);
  804. break;
  805. }
  806. start++;
  807. }
  808. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  809. return ret;
  810. }
  811. /**
  812. * t4_flash_cfg_addr - return the address of the flash configuration file
  813. * @adapter: the adapter
  814. *
  815. * Return the address within the flash where the Firmware Configuration
  816. * File is stored.
  817. */
  818. unsigned int t4_flash_cfg_addr(struct adapter *adapter)
  819. {
  820. if (adapter->params.sf_size == 0x100000)
  821. return FLASH_FPGA_CFG_START;
  822. else
  823. return FLASH_CFG_START;
  824. }
  825. /**
  826. * t4_load_cfg - download config file
  827. * @adap: the adapter
  828. * @cfg_data: the cfg text file to write
  829. * @size: text file size
  830. *
  831. * Write the supplied config text file to the card's serial flash.
  832. */
  833. int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
  834. {
  835. int ret, i, n;
  836. unsigned int addr;
  837. unsigned int flash_cfg_start_sec;
  838. unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
  839. addr = t4_flash_cfg_addr(adap);
  840. flash_cfg_start_sec = addr / SF_SEC_SIZE;
  841. if (size > FLASH_CFG_MAX_SIZE) {
  842. dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
  843. FLASH_CFG_MAX_SIZE);
  844. return -EFBIG;
  845. }
  846. i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */
  847. sf_sec_size);
  848. ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
  849. flash_cfg_start_sec + i - 1);
  850. /*
  851. * If size == 0 then we're simply erasing the FLASH sectors associated
  852. * with the on-adapter Firmware Configuration File.
  853. */
  854. if (ret || size == 0)
  855. goto out;
  856. /* this will write to the flash up to SF_PAGE_SIZE at a time */
  857. for (i = 0; i < size; i += SF_PAGE_SIZE) {
  858. if ((size - i) < SF_PAGE_SIZE)
  859. n = size - i;
  860. else
  861. n = SF_PAGE_SIZE;
  862. ret = t4_write_flash(adap, addr, n, cfg_data);
  863. if (ret)
  864. goto out;
  865. addr += SF_PAGE_SIZE;
  866. cfg_data += SF_PAGE_SIZE;
  867. }
  868. out:
  869. if (ret)
  870. dev_err(adap->pdev_dev, "config file %s failed %d\n",
  871. (size == 0 ? "clear" : "download"), ret);
  872. return ret;
  873. }
  874. /**
  875. * t4_load_fw - download firmware
  876. * @adap: the adapter
  877. * @fw_data: the firmware image to write
  878. * @size: image size
  879. *
  880. * Write the supplied firmware image to the card's serial flash.
  881. */
  882. int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
  883. {
  884. u32 csum;
  885. int ret, addr;
  886. unsigned int i;
  887. u8 first_page[SF_PAGE_SIZE];
  888. const __be32 *p = (const __be32 *)fw_data;
  889. const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
  890. unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
  891. unsigned int fw_img_start = adap->params.sf_fw_start;
  892. unsigned int fw_start_sec = fw_img_start / sf_sec_size;
  893. if (!size) {
  894. dev_err(adap->pdev_dev, "FW image has no data\n");
  895. return -EINVAL;
  896. }
  897. if (size & 511) {
  898. dev_err(adap->pdev_dev,
  899. "FW image size not multiple of 512 bytes\n");
  900. return -EINVAL;
  901. }
  902. if (ntohs(hdr->len512) * 512 != size) {
  903. dev_err(adap->pdev_dev,
  904. "FW image size differs from size in FW header\n");
  905. return -EINVAL;
  906. }
  907. if (size > FW_MAX_SIZE) {
  908. dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
  909. FW_MAX_SIZE);
  910. return -EFBIG;
  911. }
  912. for (csum = 0, i = 0; i < size / sizeof(csum); i++)
  913. csum += ntohl(p[i]);
  914. if (csum != 0xffffffff) {
  915. dev_err(adap->pdev_dev,
  916. "corrupted firmware image, checksum %#x\n", csum);
  917. return -EINVAL;
  918. }
  919. i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
  920. ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
  921. if (ret)
  922. goto out;
  923. /*
  924. * We write the correct version at the end so the driver can see a bad
  925. * version if the FW write fails. Start by writing a copy of the
  926. * first page with a bad version.
  927. */
  928. memcpy(first_page, fw_data, SF_PAGE_SIZE);
  929. ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
  930. ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
  931. if (ret)
  932. goto out;
  933. addr = fw_img_start;
  934. for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
  935. addr += SF_PAGE_SIZE;
  936. fw_data += SF_PAGE_SIZE;
  937. ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
  938. if (ret)
  939. goto out;
  940. }
  941. ret = t4_write_flash(adap,
  942. fw_img_start + offsetof(struct fw_hdr, fw_ver),
  943. sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
  944. out:
  945. if (ret)
  946. dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
  947. ret);
  948. return ret;
  949. }
  950. #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
  951. FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_ANEG)
  952. /**
  953. * t4_link_start - apply link configuration to MAC/PHY
  954. * @phy: the PHY to setup
  955. * @mac: the MAC to setup
  956. * @lc: the requested link configuration
  957. *
  958. * Set up a port's MAC and PHY according to a desired link configuration.
  959. * - If the PHY can auto-negotiate first decide what to advertise, then
  960. * enable/disable auto-negotiation as desired, and reset.
  961. * - If the PHY does not auto-negotiate just reset it.
  962. * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
  963. * otherwise do it later based on the outcome of auto-negotiation.
  964. */
  965. int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port,
  966. struct link_config *lc)
  967. {
  968. struct fw_port_cmd c;
  969. unsigned int fc = 0, mdi = FW_PORT_MDI(FW_PORT_MDI_AUTO);
  970. lc->link_ok = 0;
  971. if (lc->requested_fc & PAUSE_RX)
  972. fc |= FW_PORT_CAP_FC_RX;
  973. if (lc->requested_fc & PAUSE_TX)
  974. fc |= FW_PORT_CAP_FC_TX;
  975. memset(&c, 0, sizeof(c));
  976. c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST |
  977. FW_CMD_EXEC | FW_PORT_CMD_PORTID(port));
  978. c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
  979. FW_LEN16(c));
  980. if (!(lc->supported & FW_PORT_CAP_ANEG)) {
  981. c.u.l1cfg.rcap = htonl((lc->supported & ADVERT_MASK) | fc);
  982. lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  983. } else if (lc->autoneg == AUTONEG_DISABLE) {
  984. c.u.l1cfg.rcap = htonl(lc->requested_speed | fc | mdi);
  985. lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  986. } else
  987. c.u.l1cfg.rcap = htonl(lc->advertising | fc | mdi);
  988. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  989. }
  990. /**
  991. * t4_restart_aneg - restart autonegotiation
  992. * @adap: the adapter
  993. * @mbox: mbox to use for the FW command
  994. * @port: the port id
  995. *
  996. * Restarts autonegotiation for the selected port.
  997. */
  998. int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
  999. {
  1000. struct fw_port_cmd c;
  1001. memset(&c, 0, sizeof(c));
  1002. c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST |
  1003. FW_CMD_EXEC | FW_PORT_CMD_PORTID(port));
  1004. c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
  1005. FW_LEN16(c));
  1006. c.u.l1cfg.rcap = htonl(FW_PORT_CAP_ANEG);
  1007. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  1008. }
  1009. typedef void (*int_handler_t)(struct adapter *adap);
  1010. struct intr_info {
  1011. unsigned int mask; /* bits to check in interrupt status */
  1012. const char *msg; /* message to print or NULL */
  1013. short stat_idx; /* stat counter to increment or -1 */
  1014. unsigned short fatal; /* whether the condition reported is fatal */
  1015. int_handler_t int_handler; /* platform-specific int handler */
  1016. };
  1017. /**
  1018. * t4_handle_intr_status - table driven interrupt handler
  1019. * @adapter: the adapter that generated the interrupt
  1020. * @reg: the interrupt status register to process
  1021. * @acts: table of interrupt actions
  1022. *
  1023. * A table driven interrupt handler that applies a set of masks to an
  1024. * interrupt status word and performs the corresponding actions if the
  1025. * interrupts described by the mask have occurred. The actions include
  1026. * optionally emitting a warning or alert message. The table is terminated
  1027. * by an entry specifying mask 0. Returns the number of fatal interrupt
  1028. * conditions.
  1029. */
  1030. static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
  1031. const struct intr_info *acts)
  1032. {
  1033. int fatal = 0;
  1034. unsigned int mask = 0;
  1035. unsigned int status = t4_read_reg(adapter, reg);
  1036. for ( ; acts->mask; ++acts) {
  1037. if (!(status & acts->mask))
  1038. continue;
  1039. if (acts->fatal) {
  1040. fatal++;
  1041. dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
  1042. status & acts->mask);
  1043. } else if (acts->msg && printk_ratelimit())
  1044. dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
  1045. status & acts->mask);
  1046. if (acts->int_handler)
  1047. acts->int_handler(adapter);
  1048. mask |= acts->mask;
  1049. }
  1050. status &= mask;
  1051. if (status) /* clear processed interrupts */
  1052. t4_write_reg(adapter, reg, status);
  1053. return fatal;
  1054. }
  1055. /*
  1056. * Interrupt handler for the PCIE module.
  1057. */
  1058. static void pcie_intr_handler(struct adapter *adapter)
  1059. {
  1060. static const struct intr_info sysbus_intr_info[] = {
  1061. { RNPP, "RXNP array parity error", -1, 1 },
  1062. { RPCP, "RXPC array parity error", -1, 1 },
  1063. { RCIP, "RXCIF array parity error", -1, 1 },
  1064. { RCCP, "Rx completions control array parity error", -1, 1 },
  1065. { RFTP, "RXFT array parity error", -1, 1 },
  1066. { 0 }
  1067. };
  1068. static const struct intr_info pcie_port_intr_info[] = {
  1069. { TPCP, "TXPC array parity error", -1, 1 },
  1070. { TNPP, "TXNP array parity error", -1, 1 },
  1071. { TFTP, "TXFT array parity error", -1, 1 },
  1072. { TCAP, "TXCA array parity error", -1, 1 },
  1073. { TCIP, "TXCIF array parity error", -1, 1 },
  1074. { RCAP, "RXCA array parity error", -1, 1 },
  1075. { OTDD, "outbound request TLP discarded", -1, 1 },
  1076. { RDPE, "Rx data parity error", -1, 1 },
  1077. { TDUE, "Tx uncorrectable data error", -1, 1 },
  1078. { 0 }
  1079. };
  1080. static const struct intr_info pcie_intr_info[] = {
  1081. { MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
  1082. { MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
  1083. { MSIDATAPERR, "MSI data parity error", -1, 1 },
  1084. { MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
  1085. { MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
  1086. { MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
  1087. { MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
  1088. { PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
  1089. { PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
  1090. { TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
  1091. { CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
  1092. { CREQPERR, "PCI CMD channel request parity error", -1, 1 },
  1093. { CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
  1094. { DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
  1095. { DREQPERR, "PCI DMA channel request parity error", -1, 1 },
  1096. { DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
  1097. { HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
  1098. { HREQPERR, "PCI HMA channel request parity error", -1, 1 },
  1099. { HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
  1100. { CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
  1101. { FIDPERR, "PCI FID parity error", -1, 1 },
  1102. { INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
  1103. { MATAGPERR, "PCI MA tag parity error", -1, 1 },
  1104. { PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
  1105. { RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
  1106. { RXWRPERR, "PCI Rx write parity error", -1, 1 },
  1107. { RPLPERR, "PCI replay buffer parity error", -1, 1 },
  1108. { PCIESINT, "PCI core secondary fault", -1, 1 },
  1109. { PCIEPINT, "PCI core primary fault", -1, 1 },
  1110. { UNXSPLCPLERR, "PCI unexpected split completion error", -1, 0 },
  1111. { 0 }
  1112. };
  1113. int fat;
  1114. fat = t4_handle_intr_status(adapter,
  1115. PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
  1116. sysbus_intr_info) +
  1117. t4_handle_intr_status(adapter,
  1118. PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
  1119. pcie_port_intr_info) +
  1120. t4_handle_intr_status(adapter, PCIE_INT_CAUSE, pcie_intr_info);
  1121. if (fat)
  1122. t4_fatal_err(adapter);
  1123. }
  1124. /*
  1125. * TP interrupt handler.
  1126. */
  1127. static void tp_intr_handler(struct adapter *adapter)
  1128. {
  1129. static const struct intr_info tp_intr_info[] = {
  1130. { 0x3fffffff, "TP parity error", -1, 1 },
  1131. { FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
  1132. { 0 }
  1133. };
  1134. if (t4_handle_intr_status(adapter, TP_INT_CAUSE, tp_intr_info))
  1135. t4_fatal_err(adapter);
  1136. }
  1137. /*
  1138. * SGE interrupt handler.
  1139. */
  1140. static void sge_intr_handler(struct adapter *adapter)
  1141. {
  1142. u64 v;
  1143. static const struct intr_info sge_intr_info[] = {
  1144. { ERR_CPL_EXCEED_IQE_SIZE,
  1145. "SGE received CPL exceeding IQE size", -1, 1 },
  1146. { ERR_INVALID_CIDX_INC,
  1147. "SGE GTS CIDX increment too large", -1, 0 },
  1148. { ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
  1149. { DBFIFO_LP_INT, NULL, -1, 0, t4_db_full },
  1150. { DBFIFO_HP_INT, NULL, -1, 0, t4_db_full },
  1151. { ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped },
  1152. { ERR_DATA_CPL_ON_HIGH_QID1 | ERR_DATA_CPL_ON_HIGH_QID0,
  1153. "SGE IQID > 1023 received CPL for FL", -1, 0 },
  1154. { ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
  1155. 0 },
  1156. { ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
  1157. 0 },
  1158. { ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
  1159. 0 },
  1160. { ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
  1161. 0 },
  1162. { ERR_ING_CTXT_PRIO,
  1163. "SGE too many priority ingress contexts", -1, 0 },
  1164. { ERR_EGR_CTXT_PRIO,
  1165. "SGE too many priority egress contexts", -1, 0 },
  1166. { INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
  1167. { EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
  1168. { 0 }
  1169. };
  1170. v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1) |
  1171. ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2) << 32);
  1172. if (v) {
  1173. dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
  1174. (unsigned long long)v);
  1175. t4_write_reg(adapter, SGE_INT_CAUSE1, v);
  1176. t4_write_reg(adapter, SGE_INT_CAUSE2, v >> 32);
  1177. }
  1178. if (t4_handle_intr_status(adapter, SGE_INT_CAUSE3, sge_intr_info) ||
  1179. v != 0)
  1180. t4_fatal_err(adapter);
  1181. }
  1182. /*
  1183. * CIM interrupt handler.
  1184. */
  1185. static void cim_intr_handler(struct adapter *adapter)
  1186. {
  1187. static const struct intr_info cim_intr_info[] = {
  1188. { PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
  1189. { OBQPARERR, "CIM OBQ parity error", -1, 1 },
  1190. { IBQPARERR, "CIM IBQ parity error", -1, 1 },
  1191. { MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
  1192. { MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
  1193. { TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
  1194. { TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
  1195. { 0 }
  1196. };
  1197. static const struct intr_info cim_upintr_info[] = {
  1198. { RSVDSPACEINT, "CIM reserved space access", -1, 1 },
  1199. { ILLTRANSINT, "CIM illegal transaction", -1, 1 },
  1200. { ILLWRINT, "CIM illegal write", -1, 1 },
  1201. { ILLRDINT, "CIM illegal read", -1, 1 },
  1202. { ILLRDBEINT, "CIM illegal read BE", -1, 1 },
  1203. { ILLWRBEINT, "CIM illegal write BE", -1, 1 },
  1204. { SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
  1205. { SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
  1206. { BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
  1207. { SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
  1208. { SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
  1209. { BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
  1210. { SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
  1211. { SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
  1212. { BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
  1213. { BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
  1214. { SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
  1215. { SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
  1216. { BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
  1217. { BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
  1218. { SGLRDPLINT , "CIM single read from PL space", -1, 1 },
  1219. { SGLWRPLINT , "CIM single write to PL space", -1, 1 },
  1220. { BLKRDPLINT , "CIM block read from PL space", -1, 1 },
  1221. { BLKWRPLINT , "CIM block write to PL space", -1, 1 },
  1222. { REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
  1223. { RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
  1224. { TIMEOUTINT , "CIM PIF timeout", -1, 1 },
  1225. { TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
  1226. { 0 }
  1227. };
  1228. int fat;
  1229. fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE,
  1230. cim_intr_info) +
  1231. t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE,
  1232. cim_upintr_info);
  1233. if (fat)
  1234. t4_fatal_err(adapter);
  1235. }
  1236. /*
  1237. * ULP RX interrupt handler.
  1238. */
  1239. static void ulprx_intr_handler(struct adapter *adapter)
  1240. {
  1241. static const struct intr_info ulprx_intr_info[] = {
  1242. { 0x1800000, "ULPRX context error", -1, 1 },
  1243. { 0x7fffff, "ULPRX parity error", -1, 1 },
  1244. { 0 }
  1245. };
  1246. if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE, ulprx_intr_info))
  1247. t4_fatal_err(adapter);
  1248. }
  1249. /*
  1250. * ULP TX interrupt handler.
  1251. */
  1252. static void ulptx_intr_handler(struct adapter *adapter)
  1253. {
  1254. static const struct intr_info ulptx_intr_info[] = {
  1255. { PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
  1256. 0 },
  1257. { PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
  1258. 0 },
  1259. { PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
  1260. 0 },
  1261. { PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
  1262. 0 },
  1263. { 0xfffffff, "ULPTX parity error", -1, 1 },
  1264. { 0 }
  1265. };
  1266. if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE, ulptx_intr_info))
  1267. t4_fatal_err(adapter);
  1268. }
  1269. /*
  1270. * PM TX interrupt handler.
  1271. */
  1272. static void pmtx_intr_handler(struct adapter *adapter)
  1273. {
  1274. static const struct intr_info pmtx_intr_info[] = {
  1275. { PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
  1276. { PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
  1277. { PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
  1278. { ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
  1279. { PMTX_FRAMING_ERROR, "PMTX framing error", -1, 1 },
  1280. { OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
  1281. { DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1, 1 },
  1282. { ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
  1283. { C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
  1284. { 0 }
  1285. };
  1286. if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE, pmtx_intr_info))
  1287. t4_fatal_err(adapter);
  1288. }
  1289. /*
  1290. * PM RX interrupt handler.
  1291. */
  1292. static void pmrx_intr_handler(struct adapter *adapter)
  1293. {
  1294. static const struct intr_info pmrx_intr_info[] = {
  1295. { ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
  1296. { PMRX_FRAMING_ERROR, "PMRX framing error", -1, 1 },
  1297. { OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
  1298. { DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1, 1 },
  1299. { IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
  1300. { E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
  1301. { 0 }
  1302. };
  1303. if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE, pmrx_intr_info))
  1304. t4_fatal_err(adapter);
  1305. }
  1306. /*
  1307. * CPL switch interrupt handler.
  1308. */
  1309. static void cplsw_intr_handler(struct adapter *adapter)
  1310. {
  1311. static const struct intr_info cplsw_intr_info[] = {
  1312. { CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
  1313. { CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
  1314. { TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
  1315. { SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
  1316. { CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
  1317. { ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
  1318. { 0 }
  1319. };
  1320. if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE, cplsw_intr_info))
  1321. t4_fatal_err(adapter);
  1322. }
  1323. /*
  1324. * LE interrupt handler.
  1325. */
  1326. static void le_intr_handler(struct adapter *adap)
  1327. {
  1328. static const struct intr_info le_intr_info[] = {
  1329. { LIPMISS, "LE LIP miss", -1, 0 },
  1330. { LIP0, "LE 0 LIP error", -1, 0 },
  1331. { PARITYERR, "LE parity error", -1, 1 },
  1332. { UNKNOWNCMD, "LE unknown command", -1, 1 },
  1333. { REQQPARERR, "LE request queue parity error", -1, 1 },
  1334. { 0 }
  1335. };
  1336. if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE, le_intr_info))
  1337. t4_fatal_err(adap);
  1338. }
  1339. /*
  1340. * MPS interrupt handler.
  1341. */
  1342. static void mps_intr_handler(struct adapter *adapter)
  1343. {
  1344. static const struct intr_info mps_rx_intr_info[] = {
  1345. { 0xffffff, "MPS Rx parity error", -1, 1 },
  1346. { 0 }
  1347. };
  1348. static const struct intr_info mps_tx_intr_info[] = {
  1349. { TPFIFO, "MPS Tx TP FIFO parity error", -1, 1 },
  1350. { NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
  1351. { TXDATAFIFO, "MPS Tx data FIFO parity error", -1, 1 },
  1352. { TXDESCFIFO, "MPS Tx desc FIFO parity error", -1, 1 },
  1353. { BUBBLE, "MPS Tx underflow", -1, 1 },
  1354. { SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
  1355. { FRMERR, "MPS Tx framing error", -1, 1 },
  1356. { 0 }
  1357. };
  1358. static const struct intr_info mps_trc_intr_info[] = {
  1359. { FILTMEM, "MPS TRC filter parity error", -1, 1 },
  1360. { PKTFIFO, "MPS TRC packet FIFO parity error", -1, 1 },
  1361. { MISCPERR, "MPS TRC misc parity error", -1, 1 },
  1362. { 0 }
  1363. };
  1364. static const struct intr_info mps_stat_sram_intr_info[] = {
  1365. { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
  1366. { 0 }
  1367. };
  1368. static const struct intr_info mps_stat_tx_intr_info[] = {
  1369. { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
  1370. { 0 }
  1371. };
  1372. static const struct intr_info mps_stat_rx_intr_info[] = {
  1373. { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
  1374. { 0 }
  1375. };
  1376. static const struct intr_info mps_cls_intr_info[] = {
  1377. { MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
  1378. { MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
  1379. { HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
  1380. { 0 }
  1381. };
  1382. int fat;
  1383. fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE,
  1384. mps_rx_intr_info) +
  1385. t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE,
  1386. mps_tx_intr_info) +
  1387. t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE,
  1388. mps_trc_intr_info) +
  1389. t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM,
  1390. mps_stat_sram_intr_info) +
  1391. t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
  1392. mps_stat_tx_intr_info) +
  1393. t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
  1394. mps_stat_rx_intr_info) +
  1395. t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE,
  1396. mps_cls_intr_info);
  1397. t4_write_reg(adapter, MPS_INT_CAUSE, CLSINT | TRCINT |
  1398. RXINT | TXINT | STATINT);
  1399. t4_read_reg(adapter, MPS_INT_CAUSE); /* flush */
  1400. if (fat)
  1401. t4_fatal_err(adapter);
  1402. }
  1403. #define MEM_INT_MASK (PERR_INT_CAUSE | ECC_CE_INT_CAUSE | ECC_UE_INT_CAUSE)
  1404. /*
  1405. * EDC/MC interrupt handler.
  1406. */
  1407. static void mem_intr_handler(struct adapter *adapter, int idx)
  1408. {
  1409. static const char name[3][5] = { "EDC0", "EDC1", "MC" };
  1410. unsigned int addr, cnt_addr, v;
  1411. if (idx <= MEM_EDC1) {
  1412. addr = EDC_REG(EDC_INT_CAUSE, idx);
  1413. cnt_addr = EDC_REG(EDC_ECC_STATUS, idx);
  1414. } else {
  1415. addr = MC_INT_CAUSE;
  1416. cnt_addr = MC_ECC_STATUS;
  1417. }
  1418. v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
  1419. if (v & PERR_INT_CAUSE)
  1420. dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
  1421. name[idx]);
  1422. if (v & ECC_CE_INT_CAUSE) {
  1423. u32 cnt = ECC_CECNT_GET(t4_read_reg(adapter, cnt_addr));
  1424. t4_write_reg(adapter, cnt_addr, ECC_CECNT_MASK);
  1425. if (printk_ratelimit())
  1426. dev_warn(adapter->pdev_dev,
  1427. "%u %s correctable ECC data error%s\n",
  1428. cnt, name[idx], cnt > 1 ? "s" : "");
  1429. }
  1430. if (v & ECC_UE_INT_CAUSE)
  1431. dev_alert(adapter->pdev_dev,
  1432. "%s uncorrectable ECC data error\n", name[idx]);
  1433. t4_write_reg(adapter, addr, v);
  1434. if (v & (PERR_INT_CAUSE | ECC_UE_INT_CAUSE))
  1435. t4_fatal_err(adapter);
  1436. }
  1437. /*
  1438. * MA interrupt handler.
  1439. */
  1440. static void ma_intr_handler(struct adapter *adap)
  1441. {
  1442. u32 v, status = t4_read_reg(adap, MA_INT_CAUSE);
  1443. if (status & MEM_PERR_INT_CAUSE)
  1444. dev_alert(adap->pdev_dev,
  1445. "MA parity error, parity status %#x\n",
  1446. t4_read_reg(adap, MA_PARITY_ERROR_STATUS));
  1447. if (status & MEM_WRAP_INT_CAUSE) {
  1448. v = t4_read_reg(adap, MA_INT_WRAP_STATUS);
  1449. dev_alert(adap->pdev_dev, "MA address wrap-around error by "
  1450. "client %u to address %#x\n",
  1451. MEM_WRAP_CLIENT_NUM_GET(v),
  1452. MEM_WRAP_ADDRESS_GET(v) << 4);
  1453. }
  1454. t4_write_reg(adap, MA_INT_CAUSE, status);
  1455. t4_fatal_err(adap);
  1456. }
  1457. /*
  1458. * SMB interrupt handler.
  1459. */
  1460. static void smb_intr_handler(struct adapter *adap)
  1461. {
  1462. static const struct intr_info smb_intr_info[] = {
  1463. { MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
  1464. { MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
  1465. { SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
  1466. { 0 }
  1467. };
  1468. if (t4_handle_intr_status(adap, SMB_INT_CAUSE, smb_intr_info))
  1469. t4_fatal_err(adap);
  1470. }
  1471. /*
  1472. * NC-SI interrupt handler.
  1473. */
  1474. static void ncsi_intr_handler(struct adapter *adap)
  1475. {
  1476. static const struct intr_info ncsi_intr_info[] = {
  1477. { CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
  1478. { MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
  1479. { TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
  1480. { RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
  1481. { 0 }
  1482. };
  1483. if (t4_handle_intr_status(adap, NCSI_INT_CAUSE, ncsi_intr_info))
  1484. t4_fatal_err(adap);
  1485. }
  1486. /*
  1487. * XGMAC interrupt handler.
  1488. */
  1489. static void xgmac_intr_handler(struct adapter *adap, int port)
  1490. {
  1491. u32 v = t4_read_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE));
  1492. v &= TXFIFO_PRTY_ERR | RXFIFO_PRTY_ERR;
  1493. if (!v)
  1494. return;
  1495. if (v & TXFIFO_PRTY_ERR)
  1496. dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
  1497. port);
  1498. if (v & RXFIFO_PRTY_ERR)
  1499. dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
  1500. port);
  1501. t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE), v);
  1502. t4_fatal_err(adap);
  1503. }
  1504. /*
  1505. * PL interrupt handler.
  1506. */
  1507. static void pl_intr_handler(struct adapter *adap)
  1508. {
  1509. static const struct intr_info pl_intr_info[] = {
  1510. { FATALPERR, "T4 fatal parity error", -1, 1 },
  1511. { PERRVFID, "PL VFID_MAP parity error", -1, 1 },
  1512. { 0 }
  1513. };
  1514. if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE, pl_intr_info))
  1515. t4_fatal_err(adap);
  1516. }
  1517. #define PF_INTR_MASK (PFSW)
  1518. #define GLBL_INTR_MASK (CIM | MPS | PL | PCIE | MC | EDC0 | \
  1519. EDC1 | LE | TP | MA | PM_TX | PM_RX | ULP_RX | \
  1520. CPL_SWITCH | SGE | ULP_TX)
  1521. /**
  1522. * t4_slow_intr_handler - control path interrupt handler
  1523. * @adapter: the adapter
  1524. *
  1525. * T4 interrupt handler for non-data global interrupt events, e.g., errors.
  1526. * The designation 'slow' is because it involves register reads, while
  1527. * data interrupts typically don't involve any MMIOs.
  1528. */
  1529. int t4_slow_intr_handler(struct adapter *adapter)
  1530. {
  1531. u32 cause = t4_read_reg(adapter, PL_INT_CAUSE);
  1532. if (!(cause & GLBL_INTR_MASK))
  1533. return 0;
  1534. if (cause & CIM)
  1535. cim_intr_handler(adapter);
  1536. if (cause & MPS)
  1537. mps_intr_handler(adapter);
  1538. if (cause & NCSI)
  1539. ncsi_intr_handler(adapter);
  1540. if (cause & PL)
  1541. pl_intr_handler(adapter);
  1542. if (cause & SMB)
  1543. smb_intr_handler(adapter);
  1544. if (cause & XGMAC0)
  1545. xgmac_intr_handler(adapter, 0);
  1546. if (cause & XGMAC1)
  1547. xgmac_intr_handler(adapter, 1);
  1548. if (cause & XGMAC_KR0)
  1549. xgmac_intr_handler(adapter, 2);
  1550. if (cause & XGMAC_KR1)
  1551. xgmac_intr_handler(adapter, 3);
  1552. if (cause & PCIE)
  1553. pcie_intr_handler(adapter);
  1554. if (cause & MC)
  1555. mem_intr_handler(adapter, MEM_MC);
  1556. if (cause & EDC0)
  1557. mem_intr_handler(adapter, MEM_EDC0);
  1558. if (cause & EDC1)
  1559. mem_intr_handler(adapter, MEM_EDC1);
  1560. if (cause & LE)
  1561. le_intr_handler(adapter);
  1562. if (cause & TP)
  1563. tp_intr_handler(adapter);
  1564. if (cause & MA)
  1565. ma_intr_handler(adapter);
  1566. if (cause & PM_TX)
  1567. pmtx_intr_handler(adapter);
  1568. if (cause & PM_RX)
  1569. pmrx_intr_handler(adapter);
  1570. if (cause & ULP_RX)
  1571. ulprx_intr_handler(adapter);
  1572. if (cause & CPL_SWITCH)
  1573. cplsw_intr_handler(adapter);
  1574. if (cause & SGE)
  1575. sge_intr_handler(adapter);
  1576. if (cause & ULP_TX)
  1577. ulptx_intr_handler(adapter);
  1578. /* Clear the interrupts just processed for which we are the master. */
  1579. t4_write_reg(adapter, PL_INT_CAUSE, cause & GLBL_INTR_MASK);
  1580. (void) t4_read_reg(adapter, PL_INT_CAUSE); /* flush */
  1581. return 1;
  1582. }
  1583. /**
  1584. * t4_intr_enable - enable interrupts
  1585. * @adapter: the adapter whose interrupts should be enabled
  1586. *
  1587. * Enable PF-specific interrupts for the calling function and the top-level
  1588. * interrupt concentrator for global interrupts. Interrupts are already
  1589. * enabled at each module, here we just enable the roots of the interrupt
  1590. * hierarchies.
  1591. *
  1592. * Note: this function should be called only when the driver manages
  1593. * non PF-specific interrupts from the various HW modules. Only one PCI
  1594. * function at a time should be doing this.
  1595. */
  1596. void t4_intr_enable(struct adapter *adapter)
  1597. {
  1598. u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));
  1599. t4_write_reg(adapter, SGE_INT_ENABLE3, ERR_CPL_EXCEED_IQE_SIZE |
  1600. ERR_INVALID_CIDX_INC | ERR_CPL_OPCODE_0 |
  1601. ERR_DROPPED_DB | ERR_DATA_CPL_ON_HIGH_QID1 |
  1602. ERR_DATA_CPL_ON_HIGH_QID0 | ERR_BAD_DB_PIDX3 |
  1603. ERR_BAD_DB_PIDX2 | ERR_BAD_DB_PIDX1 |
  1604. ERR_BAD_DB_PIDX0 | ERR_ING_CTXT_PRIO |
  1605. ERR_EGR_CTXT_PRIO | INGRESS_SIZE_ERR |
  1606. DBFIFO_HP_INT | DBFIFO_LP_INT |
  1607. EGRESS_SIZE_ERR);
  1608. t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), PF_INTR_MASK);
  1609. t4_set_reg_field(adapter, PL_INT_MAP0, 0, 1 << pf);
  1610. }
  1611. /**
  1612. * t4_intr_disable - disable interrupts
  1613. * @adapter: the adapter whose interrupts should be disabled
  1614. *
  1615. * Disable interrupts. We only disable the top-level interrupt
  1616. * concentrators. The caller must be a PCI function managing global
  1617. * interrupts.
  1618. */
  1619. void t4_intr_disable(struct adapter *adapter)
  1620. {
  1621. u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));
  1622. t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), 0);
  1623. t4_set_reg_field(adapter, PL_INT_MAP0, 1 << pf, 0);
  1624. }
  1625. /**
  1626. * hash_mac_addr - return the hash value of a MAC address
  1627. * @addr: the 48-bit Ethernet MAC address
  1628. *
  1629. * Hashes a MAC address according to the hash function used by HW inexact
  1630. * (hash) address matching.
  1631. */
  1632. static int hash_mac_addr(const u8 *addr)
  1633. {
  1634. u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
  1635. u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
  1636. a ^= b;
  1637. a ^= (a >> 12);
  1638. a ^= (a >> 6);
  1639. return a & 0x3f;
  1640. }
  1641. /**
  1642. * t4_config_rss_range - configure a portion of the RSS mapping table
  1643. * @adapter: the adapter
  1644. * @mbox: mbox to use for the FW command
  1645. * @viid: virtual interface whose RSS subtable is to be written
  1646. * @start: start entry in the table to write
  1647. * @n: how many table entries to write
  1648. * @rspq: values for the response queue lookup table
  1649. * @nrspq: number of values in @rspq
  1650. *
  1651. * Programs the selected part of the VI's RSS mapping table with the
  1652. * provided values. If @nrspq < @n the supplied values are used repeatedly
  1653. * until the full table range is populated.
  1654. *
  1655. * The caller must ensure the values in @rspq are in the range allowed for
  1656. * @viid.
  1657. */
  1658. int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
  1659. int start, int n, const u16 *rspq, unsigned int nrspq)
  1660. {
  1661. int ret;
  1662. const u16 *rsp = rspq;
  1663. const u16 *rsp_end = rspq + nrspq;
  1664. struct fw_rss_ind_tbl_cmd cmd;
  1665. memset(&cmd, 0, sizeof(cmd));
  1666. cmd.op_to_viid = htonl(FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
  1667. FW_CMD_REQUEST | FW_CMD_WRITE |
  1668. FW_RSS_IND_TBL_CMD_VIID(viid));
  1669. cmd.retval_len16 = htonl(FW_LEN16(cmd));
  1670. /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
  1671. while (n > 0) {
  1672. int nq = min(n, 32);
  1673. __be32 *qp = &cmd.iq0_to_iq2;
  1674. cmd.niqid = htons(nq);
  1675. cmd.startidx = htons(start);
  1676. start += nq;
  1677. n -= nq;
  1678. while (nq > 0) {
  1679. unsigned int v;
  1680. v = FW_RSS_IND_TBL_CMD_IQ0(*rsp);
  1681. if (++rsp >= rsp_end)
  1682. rsp = rspq;
  1683. v |= FW_RSS_IND_TBL_CMD_IQ1(*rsp);
  1684. if (++rsp >= rsp_end)
  1685. rsp = rspq;
  1686. v |= FW_RSS_IND_TBL_CMD_IQ2(*rsp);
  1687. if (++rsp >= rsp_end)
  1688. rsp = rspq;
  1689. *qp++ = htonl(v);
  1690. nq -= 3;
  1691. }
  1692. ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
  1693. if (ret)
  1694. return ret;
  1695. }
  1696. return 0;
  1697. }
  1698. /**
  1699. * t4_config_glbl_rss - configure the global RSS mode
  1700. * @adapter: the adapter
  1701. * @mbox: mbox to use for the FW command
  1702. * @mode: global RSS mode
  1703. * @flags: mode-specific flags
  1704. *
  1705. * Sets the global RSS mode.
  1706. */
  1707. int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
  1708. unsigned int flags)
  1709. {
  1710. struct fw_rss_glb_config_cmd c;
  1711. memset(&c, 0, sizeof(c));
  1712. c.op_to_write = htonl(FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
  1713. FW_CMD_REQUEST | FW_CMD_WRITE);
  1714. c.retval_len16 = htonl(FW_LEN16(c));
  1715. if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
  1716. c.u.manual.mode_pkd = htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode));
  1717. } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
  1718. c.u.basicvirtual.mode_pkd =
  1719. htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode));
  1720. c.u.basicvirtual.synmapen_to_hashtoeplitz = htonl(flags);
  1721. } else
  1722. return -EINVAL;
  1723. return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
  1724. }
  1725. /**
  1726. * t4_tp_get_tcp_stats - read TP's TCP MIB counters
  1727. * @adap: the adapter
  1728. * @v4: holds the TCP/IP counter values
  1729. * @v6: holds the TCP/IPv6 counter values
  1730. *
  1731. * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
  1732. * Either @v4 or @v6 may be %NULL to skip the corresponding stats.
  1733. */
  1734. void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
  1735. struct tp_tcp_stats *v6)
  1736. {
  1737. u32 val[TP_MIB_TCP_RXT_SEG_LO - TP_MIB_TCP_OUT_RST + 1];
  1738. #define STAT_IDX(x) ((TP_MIB_TCP_##x) - TP_MIB_TCP_OUT_RST)
  1739. #define STAT(x) val[STAT_IDX(x)]
  1740. #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
  1741. if (v4) {
  1742. t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
  1743. ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST);
  1744. v4->tcpOutRsts = STAT(OUT_RST);
  1745. v4->tcpInSegs = STAT64(IN_SEG);
  1746. v4->tcpOutSegs = STAT64(OUT_SEG);
  1747. v4->tcpRetransSegs = STAT64(RXT_SEG);
  1748. }
  1749. if (v6) {
  1750. t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
  1751. ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST);
  1752. v6->tcpOutRsts = STAT(OUT_RST);
  1753. v6->tcpInSegs = STAT64(IN_SEG);
  1754. v6->tcpOutSegs = STAT64(OUT_SEG);
  1755. v6->tcpRetransSegs = STAT64(RXT_SEG);
  1756. }
  1757. #undef STAT64
  1758. #undef STAT
  1759. #undef STAT_IDX
  1760. }
  1761. /**
  1762. * t4_read_mtu_tbl - returns the values in the HW path MTU table
  1763. * @adap: the adapter
  1764. * @mtus: where to store the MTU values
  1765. * @mtu_log: where to store the MTU base-2 log (may be %NULL)
  1766. *
  1767. * Reads the HW path MTU table.
  1768. */
  1769. void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
  1770. {
  1771. u32 v;
  1772. int i;
  1773. for (i = 0; i < NMTUS; ++i) {
  1774. t4_write_reg(adap, TP_MTU_TABLE,
  1775. MTUINDEX(0xff) | MTUVALUE(i));
  1776. v = t4_read_reg(adap, TP_MTU_TABLE);
  1777. mtus[i] = MTUVALUE_GET(v);
  1778. if (mtu_log)
  1779. mtu_log[i] = MTUWIDTH_GET(v);
  1780. }
  1781. }
  1782. /**
  1783. * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
  1784. * @adap: the adapter
  1785. * @addr: the indirect TP register address
  1786. * @mask: specifies the field within the register to modify
  1787. * @val: new value for the field
  1788. *
  1789. * Sets a field of an indirect TP register to the given value.
  1790. */
  1791. void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
  1792. unsigned int mask, unsigned int val)
  1793. {
  1794. t4_write_reg(adap, TP_PIO_ADDR, addr);
  1795. val |= t4_read_reg(adap, TP_PIO_DATA) & ~mask;
  1796. t4_write_reg(adap, TP_PIO_DATA, val);
  1797. }
  1798. /**
  1799. * init_cong_ctrl - initialize congestion control parameters
  1800. * @a: the alpha values for congestion control
  1801. * @b: the beta values for congestion control
  1802. *
  1803. * Initialize the congestion control parameters.
  1804. */
  1805. static void init_cong_ctrl(unsigned short *a, unsigned short *b)
  1806. {
  1807. a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
  1808. a[9] = 2;
  1809. a[10] = 3;
  1810. a[11] = 4;
  1811. a[12] = 5;
  1812. a[13] = 6;
  1813. a[14] = 7;
  1814. a[15] = 8;
  1815. a[16] = 9;
  1816. a[17] = 10;
  1817. a[18] = 14;
  1818. a[19] = 17;
  1819. a[20] = 21;
  1820. a[21] = 25;
  1821. a[22] = 30;
  1822. a[23] = 35;
  1823. a[24] = 45;
  1824. a[25] = 60;
  1825. a[26] = 80;
  1826. a[27] = 100;
  1827. a[28] = 200;
  1828. a[29] = 300;
  1829. a[30] = 400;
  1830. a[31] = 500;
  1831. b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
  1832. b[9] = b[10] = 1;
  1833. b[11] = b[12] = 2;
  1834. b[13] = b[14] = b[15] = b[16] = 3;
  1835. b[17] = b[18] = b[19] = b[20] = b[21] = 4;
  1836. b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
  1837. b[28] = b[29] = 6;
  1838. b[30] = b[31] = 7;
  1839. }
  1840. /* The minimum additive increment value for the congestion control table */
  1841. #define CC_MIN_INCR 2U
  1842. /**
  1843. * t4_load_mtus - write the MTU and congestion control HW tables
  1844. * @adap: the adapter
  1845. * @mtus: the values for the MTU table
  1846. * @alpha: the values for the congestion control alpha parameter
  1847. * @beta: the values for the congestion control beta parameter
  1848. *
  1849. * Write the HW MTU table with the supplied MTUs and the high-speed
  1850. * congestion control table with the supplied alpha, beta, and MTUs.
  1851. * We write the two tables together because the additive increments
  1852. * depend on the MTUs.
  1853. */
  1854. void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
  1855. const unsigned short *alpha, const unsigned short *beta)
  1856. {
  1857. static const unsigned int avg_pkts[NCCTRL_WIN] = {
  1858. 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
  1859. 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
  1860. 28672, 40960, 57344, 81920, 114688, 163840, 229376
  1861. };
  1862. unsigned int i, w;
  1863. for (i = 0; i < NMTUS; ++i) {
  1864. unsigned int mtu = mtus[i];
  1865. unsigned int log2 = fls(mtu);
  1866. if (!(mtu & ((1 << log2) >> 2))) /* round */
  1867. log2--;
  1868. t4_write_reg(adap, TP_MTU_TABLE, MTUINDEX(i) |
  1869. MTUWIDTH(log2) | MTUVALUE(mtu));
  1870. for (w = 0; w < NCCTRL_WIN; ++w) {
  1871. unsigned int inc;
  1872. inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
  1873. CC_MIN_INCR);
  1874. t4_write_reg(adap, TP_CCTRL_TABLE, (i << 21) |
  1875. (w << 16) | (beta[w] << 13) | inc);
  1876. }
  1877. }
  1878. }
  1879. /**
  1880. * get_mps_bg_map - return the buffer groups associated with a port
  1881. * @adap: the adapter
  1882. * @idx: the port index
  1883. *
  1884. * Returns a bitmap indicating which MPS buffer groups are associated
  1885. * with the given port. Bit i is set if buffer group i is used by the
  1886. * port.
  1887. */
  1888. static unsigned int get_mps_bg_map(struct adapter *adap, int idx)
  1889. {
  1890. u32 n = NUMPORTS_GET(t4_read_reg(adap, MPS_CMN_CTL));
  1891. if (n == 0)
  1892. return idx == 0 ? 0xf : 0;
  1893. if (n == 1)
  1894. return idx < 2 ? (3 << (2 * idx)) : 0;
  1895. return 1 << idx;
  1896. }
  1897. /**
  1898. * t4_get_port_stats - collect port statistics
  1899. * @adap: the adapter
  1900. * @idx: the port index
  1901. * @p: the stats structure to fill
  1902. *
  1903. * Collect statistics related to the given port from HW.
  1904. */
  1905. void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
  1906. {
  1907. u32 bgmap = get_mps_bg_map(adap, idx);
  1908. #define GET_STAT(name) \
  1909. t4_read_reg64(adap, PORT_REG(idx, MPS_PORT_STAT_##name##_L))
  1910. #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
  1911. p->tx_octets = GET_STAT(TX_PORT_BYTES);
  1912. p->tx_frames = GET_STAT(TX_PORT_FRAMES);
  1913. p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST);
  1914. p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST);
  1915. p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST);
  1916. p->tx_error_frames = GET_STAT(TX_PORT_ERROR);
  1917. p->tx_frames_64 = GET_STAT(TX_PORT_64B);
  1918. p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B);
  1919. p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B);
  1920. p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B);
  1921. p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B);
  1922. p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
  1923. p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX);
  1924. p->tx_drop = GET_STAT(TX_PORT_DROP);
  1925. p->tx_pause = GET_STAT(TX_PORT_PAUSE);
  1926. p->tx_ppp0 = GET_STAT(TX_PORT_PPP0);
  1927. p->tx_ppp1 = GET_STAT(TX_PORT_PPP1);
  1928. p->tx_ppp2 = GET_STAT(TX_PORT_PPP2);
  1929. p->tx_ppp3 = GET_STAT(TX_PORT_PPP3);
  1930. p->tx_ppp4 = GET_STAT(TX_PORT_PPP4);
  1931. p->tx_ppp5 = GET_STAT(TX_PORT_PPP5);
  1932. p->tx_ppp6 = GET_STAT(TX_PORT_PPP6);
  1933. p->tx_ppp7 = GET_STAT(TX_PORT_PPP7);
  1934. p->rx_octets = GET_STAT(RX_PORT_BYTES);
  1935. p->rx_frames = GET_STAT(RX_PORT_FRAMES);
  1936. p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST);
  1937. p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST);
  1938. p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST);
  1939. p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR);
  1940. p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR);
  1941. p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR);
  1942. p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR);
  1943. p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR);
  1944. p->rx_runt = GET_STAT(RX_PORT_LESS_64B);
  1945. p->rx_frames_64 = GET_STAT(RX_PORT_64B);
  1946. p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B);
  1947. p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B);
  1948. p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B);
  1949. p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B);
  1950. p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
  1951. p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX);
  1952. p->rx_pause = GET_STAT(RX_PORT_PAUSE);
  1953. p->rx_ppp0 = GET_STAT(RX_PORT_PPP0);
  1954. p->rx_ppp1 = GET_STAT(RX_PORT_PPP1);
  1955. p->rx_ppp2 = GET_STAT(RX_PORT_PPP2);
  1956. p->rx_ppp3 = GET_STAT(RX_PORT_PPP3);
  1957. p->rx_ppp4 = GET_STAT(RX_PORT_PPP4);
  1958. p->rx_ppp5 = GET_STAT(RX_PORT_PPP5);
  1959. p->rx_ppp6 = GET_STAT(RX_PORT_PPP6);
  1960. p->rx_ppp7 = GET_STAT(RX_PORT_PPP7);
  1961. p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
  1962. p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
  1963. p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
  1964. p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
  1965. p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
  1966. p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
  1967. p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
  1968. p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
  1969. #undef GET_STAT
  1970. #undef GET_STAT_COM
  1971. }
  1972. /**
  1973. * t4_wol_magic_enable - enable/disable magic packet WoL
  1974. * @adap: the adapter
  1975. * @port: the physical port index
  1976. * @addr: MAC address expected in magic packets, %NULL to disable
  1977. *
  1978. * Enables/disables magic packet wake-on-LAN for the selected port.
  1979. */
  1980. void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
  1981. const u8 *addr)
  1982. {
  1983. if (addr) {
  1984. t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_MAGIC_MACID_LO),
  1985. (addr[2] << 24) | (addr[3] << 16) |
  1986. (addr[4] << 8) | addr[5]);
  1987. t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_MAGIC_MACID_HI),
  1988. (addr[0] << 8) | addr[1]);
  1989. }
  1990. t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), MAGICEN,
  1991. addr ? MAGICEN : 0);
  1992. }
  1993. /**
  1994. * t4_wol_pat_enable - enable/disable pattern-based WoL
  1995. * @adap: the adapter
  1996. * @port: the physical port index
  1997. * @map: bitmap of which HW pattern filters to set
  1998. * @mask0: byte mask for bytes 0-63 of a packet
  1999. * @mask1: byte mask for bytes 64-127 of a packet
  2000. * @crc: Ethernet CRC for selected bytes
  2001. * @enable: enable/disable switch
  2002. *
  2003. * Sets the pattern filters indicated in @map to mask out the bytes
  2004. * specified in @mask0/@mask1 in received packets and compare the CRC of
  2005. * the resulting packet against @crc. If @enable is %true pattern-based
  2006. * WoL is enabled, otherwise disabled.
  2007. */
  2008. int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
  2009. u64 mask0, u64 mask1, unsigned int crc, bool enable)
  2010. {
  2011. int i;
  2012. if (!enable) {
  2013. t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2),
  2014. PATEN, 0);
  2015. return 0;
  2016. }
  2017. if (map > 0xff)
  2018. return -EINVAL;
  2019. #define EPIO_REG(name) PORT_REG(port, XGMAC_PORT_EPIO_##name)
  2020. t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
  2021. t4_write_reg(adap, EPIO_REG(DATA2), mask1);
  2022. t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
  2023. for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
  2024. if (!(map & 1))
  2025. continue;
  2026. /* write byte masks */
  2027. t4_write_reg(adap, EPIO_REG(DATA0), mask0);
  2028. t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i) | EPIOWR);
  2029. t4_read_reg(adap, EPIO_REG(OP)); /* flush */
  2030. if (t4_read_reg(adap, EPIO_REG(OP)) & SF_BUSY)
  2031. return -ETIMEDOUT;
  2032. /* write CRC */
  2033. t4_write_reg(adap, EPIO_REG(DATA0), crc);
  2034. t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i + 32) | EPIOWR);
  2035. t4_read_reg(adap, EPIO_REG(OP)); /* flush */
  2036. if (t4_read_reg(adap, EPIO_REG(OP)) & SF_BUSY)
  2037. return -ETIMEDOUT;
  2038. }
  2039. #undef EPIO_REG
  2040. t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), 0, PATEN);
  2041. return 0;
  2042. }
  2043. /* t4_mk_filtdelwr - create a delete filter WR
  2044. * @ftid: the filter ID
  2045. * @wr: the filter work request to populate
  2046. * @qid: ingress queue to receive the delete notification
  2047. *
  2048. * Creates a filter work request to delete the supplied filter. If @qid is
  2049. * negative the delete notification is suppressed.
  2050. */
  2051. void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
  2052. {
  2053. memset(wr, 0, sizeof(*wr));
  2054. wr->op_pkd = htonl(FW_WR_OP(FW_FILTER_WR));
  2055. wr->len16_pkd = htonl(FW_WR_LEN16(sizeof(*wr) / 16));
  2056. wr->tid_to_iq = htonl(V_FW_FILTER_WR_TID(ftid) |
  2057. V_FW_FILTER_WR_NOREPLY(qid < 0));
  2058. wr->del_filter_to_l2tix = htonl(F_FW_FILTER_WR_DEL_FILTER);
  2059. if (qid >= 0)
  2060. wr->rx_chan_rx_rpl_iq = htons(V_FW_FILTER_WR_RX_RPL_IQ(qid));
  2061. }
  2062. #define INIT_CMD(var, cmd, rd_wr) do { \
  2063. (var).op_to_write = htonl(FW_CMD_OP(FW_##cmd##_CMD) | \
  2064. FW_CMD_REQUEST | FW_CMD_##rd_wr); \
  2065. (var).retval_len16 = htonl(FW_LEN16(var)); \
  2066. } while (0)
  2067. int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
  2068. u32 addr, u32 val)
  2069. {
  2070. struct fw_ldst_cmd c;
  2071. memset(&c, 0, sizeof(c));
  2072. c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
  2073. FW_CMD_WRITE |
  2074. FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE));
  2075. c.cycles_to_len16 = htonl(FW_LEN16(c));
  2076. c.u.addrval.addr = htonl(addr);
  2077. c.u.addrval.val = htonl(val);
  2078. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2079. }
  2080. /**
  2081. * t4_mem_win_read_len - read memory through PCIE memory window
  2082. * @adap: the adapter
  2083. * @addr: address of first byte requested aligned on 32b.
  2084. * @data: len bytes to hold the data read
  2085. * @len: amount of data to read from window. Must be <=
  2086. * MEMWIN0_APERATURE after adjusting for 16B alignment
  2087. * requirements of the the memory window.
  2088. *
  2089. * Read len bytes of data from MC starting at @addr.
  2090. */
  2091. int t4_mem_win_read_len(struct adapter *adap, u32 addr, __be32 *data, int len)
  2092. {
  2093. int i;
  2094. int off;
  2095. /*
  2096. * Align on a 16B boundary.
  2097. */
  2098. off = addr & 15;
  2099. if ((addr & 3) || (len + off) > MEMWIN0_APERTURE)
  2100. return -EINVAL;
  2101. t4_write_reg(adap, PCIE_MEM_ACCESS_OFFSET, addr & ~15);
  2102. t4_read_reg(adap, PCIE_MEM_ACCESS_OFFSET);
  2103. for (i = 0; i < len; i += 4)
  2104. *data++ = (__force __be32) t4_read_reg(adap,
  2105. (MEMWIN0_BASE + off + i));
  2106. return 0;
  2107. }
  2108. /**
  2109. * t4_mdio_rd - read a PHY register through MDIO
  2110. * @adap: the adapter
  2111. * @mbox: mailbox to use for the FW command
  2112. * @phy_addr: the PHY address
  2113. * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
  2114. * @reg: the register to read
  2115. * @valp: where to store the value
  2116. *
  2117. * Issues a FW command through the given mailbox to read a PHY register.
  2118. */
  2119. int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
  2120. unsigned int mmd, unsigned int reg, u16 *valp)
  2121. {
  2122. int ret;
  2123. struct fw_ldst_cmd c;
  2124. memset(&c, 0, sizeof(c));
  2125. c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
  2126. FW_CMD_READ | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
  2127. c.cycles_to_len16 = htonl(FW_LEN16(c));
  2128. c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) |
  2129. FW_LDST_CMD_MMD(mmd));
  2130. c.u.mdio.raddr = htons(reg);
  2131. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2132. if (ret == 0)
  2133. *valp = ntohs(c.u.mdio.rval);
  2134. return ret;
  2135. }
  2136. /**
  2137. * t4_mdio_wr - write a PHY register through MDIO
  2138. * @adap: the adapter
  2139. * @mbox: mailbox to use for the FW command
  2140. * @phy_addr: the PHY address
  2141. * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
  2142. * @reg: the register to write
  2143. * @valp: value to write
  2144. *
  2145. * Issues a FW command through the given mailbox to write a PHY register.
  2146. */
  2147. int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
  2148. unsigned int mmd, unsigned int reg, u16 val)
  2149. {
  2150. struct fw_ldst_cmd c;
  2151. memset(&c, 0, sizeof(c));
  2152. c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
  2153. FW_CMD_WRITE | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
  2154. c.cycles_to_len16 = htonl(FW_LEN16(c));
  2155. c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) |
  2156. FW_LDST_CMD_MMD(mmd));
  2157. c.u.mdio.raddr = htons(reg);
  2158. c.u.mdio.rval = htons(val);
  2159. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2160. }
  2161. /**
  2162. * t4_fw_hello - establish communication with FW
  2163. * @adap: the adapter
  2164. * @mbox: mailbox to use for the FW command
  2165. * @evt_mbox: mailbox to receive async FW events
  2166. * @master: specifies the caller's willingness to be the device master
  2167. * @state: returns the current device state (if non-NULL)
  2168. *
  2169. * Issues a command to establish communication with FW. Returns either
  2170. * an error (negative integer) or the mailbox of the Master PF.
  2171. */
  2172. int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
  2173. enum dev_master master, enum dev_state *state)
  2174. {
  2175. int ret;
  2176. struct fw_hello_cmd c;
  2177. u32 v;
  2178. unsigned int master_mbox;
  2179. int retries = FW_CMD_HELLO_RETRIES;
  2180. retry:
  2181. memset(&c, 0, sizeof(c));
  2182. INIT_CMD(c, HELLO, WRITE);
  2183. c.err_to_clearinit = htonl(
  2184. FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
  2185. FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
  2186. FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? mbox :
  2187. FW_HELLO_CMD_MBMASTER_MASK) |
  2188. FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
  2189. FW_HELLO_CMD_STAGE(fw_hello_cmd_stage_os) |
  2190. FW_HELLO_CMD_CLEARINIT);
  2191. /*
  2192. * Issue the HELLO command to the firmware. If it's not successful
  2193. * but indicates that we got a "busy" or "timeout" condition, retry
  2194. * the HELLO until we exhaust our retry limit.
  2195. */
  2196. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2197. if (ret < 0) {
  2198. if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
  2199. goto retry;
  2200. return ret;
  2201. }
  2202. v = ntohl(c.err_to_clearinit);
  2203. master_mbox = FW_HELLO_CMD_MBMASTER_GET(v);
  2204. if (state) {
  2205. if (v & FW_HELLO_CMD_ERR)
  2206. *state = DEV_STATE_ERR;
  2207. else if (v & FW_HELLO_CMD_INIT)
  2208. *state = DEV_STATE_INIT;
  2209. else
  2210. *state = DEV_STATE_UNINIT;
  2211. }
  2212. /*
  2213. * If we're not the Master PF then we need to wait around for the
  2214. * Master PF Driver to finish setting up the adapter.
  2215. *
  2216. * Note that we also do this wait if we're a non-Master-capable PF and
  2217. * there is no current Master PF; a Master PF may show up momentarily
  2218. * and we wouldn't want to fail pointlessly. (This can happen when an
  2219. * OS loads lots of different drivers rapidly at the same time). In
  2220. * this case, the Master PF returned by the firmware will be
  2221. * FW_PCIE_FW_MASTER_MASK so the test below will work ...
  2222. */
  2223. if ((v & (FW_HELLO_CMD_ERR|FW_HELLO_CMD_INIT)) == 0 &&
  2224. master_mbox != mbox) {
  2225. int waiting = FW_CMD_HELLO_TIMEOUT;
  2226. /*
  2227. * Wait for the firmware to either indicate an error or
  2228. * initialized state. If we see either of these we bail out
  2229. * and report the issue to the caller. If we exhaust the
  2230. * "hello timeout" and we haven't exhausted our retries, try
  2231. * again. Otherwise bail with a timeout error.
  2232. */
  2233. for (;;) {
  2234. u32 pcie_fw;
  2235. msleep(50);
  2236. waiting -= 50;
  2237. /*
  2238. * If neither Error nor Initialialized are indicated
  2239. * by the firmware keep waiting till we exaust our
  2240. * timeout ... and then retry if we haven't exhausted
  2241. * our retries ...
  2242. */
  2243. pcie_fw = t4_read_reg(adap, MA_PCIE_FW);
  2244. if (!(pcie_fw & (FW_PCIE_FW_ERR|FW_PCIE_FW_INIT))) {
  2245. if (waiting <= 0) {
  2246. if (retries-- > 0)
  2247. goto retry;
  2248. return -ETIMEDOUT;
  2249. }
  2250. continue;
  2251. }
  2252. /*
  2253. * We either have an Error or Initialized condition
  2254. * report errors preferentially.
  2255. */
  2256. if (state) {
  2257. if (pcie_fw & FW_PCIE_FW_ERR)
  2258. *state = DEV_STATE_ERR;
  2259. else if (pcie_fw & FW_PCIE_FW_INIT)
  2260. *state = DEV_STATE_INIT;
  2261. }
  2262. /*
  2263. * If we arrived before a Master PF was selected and
  2264. * there's not a valid Master PF, grab its identity
  2265. * for our caller.
  2266. */
  2267. if (master_mbox == FW_PCIE_FW_MASTER_MASK &&
  2268. (pcie_fw & FW_PCIE_FW_MASTER_VLD))
  2269. master_mbox = FW_PCIE_FW_MASTER_GET(pcie_fw);
  2270. break;
  2271. }
  2272. }
  2273. return master_mbox;
  2274. }
  2275. /**
  2276. * t4_fw_bye - end communication with FW
  2277. * @adap: the adapter
  2278. * @mbox: mailbox to use for the FW command
  2279. *
  2280. * Issues a command to terminate communication with FW.
  2281. */
  2282. int t4_fw_bye(struct adapter *adap, unsigned int mbox)
  2283. {
  2284. struct fw_bye_cmd c;
  2285. memset(&c, 0, sizeof(c));
  2286. INIT_CMD(c, BYE, WRITE);
  2287. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2288. }
  2289. /**
  2290. * t4_init_cmd - ask FW to initialize the device
  2291. * @adap: the adapter
  2292. * @mbox: mailbox to use for the FW command
  2293. *
  2294. * Issues a command to FW to partially initialize the device. This
  2295. * performs initialization that generally doesn't depend on user input.
  2296. */
  2297. int t4_early_init(struct adapter *adap, unsigned int mbox)
  2298. {
  2299. struct fw_initialize_cmd c;
  2300. memset(&c, 0, sizeof(c));
  2301. INIT_CMD(c, INITIALIZE, WRITE);
  2302. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2303. }
  2304. /**
  2305. * t4_fw_reset - issue a reset to FW
  2306. * @adap: the adapter
  2307. * @mbox: mailbox to use for the FW command
  2308. * @reset: specifies the type of reset to perform
  2309. *
  2310. * Issues a reset command of the specified type to FW.
  2311. */
  2312. int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
  2313. {
  2314. struct fw_reset_cmd c;
  2315. memset(&c, 0, sizeof(c));
  2316. INIT_CMD(c, RESET, WRITE);
  2317. c.val = htonl(reset);
  2318. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2319. }
  2320. /**
  2321. * t4_fw_halt - issue a reset/halt to FW and put uP into RESET
  2322. * @adap: the adapter
  2323. * @mbox: mailbox to use for the FW RESET command (if desired)
  2324. * @force: force uP into RESET even if FW RESET command fails
  2325. *
  2326. * Issues a RESET command to firmware (if desired) with a HALT indication
  2327. * and then puts the microprocessor into RESET state. The RESET command
  2328. * will only be issued if a legitimate mailbox is provided (mbox <=
  2329. * FW_PCIE_FW_MASTER_MASK).
  2330. *
  2331. * This is generally used in order for the host to safely manipulate the
  2332. * adapter without fear of conflicting with whatever the firmware might
  2333. * be doing. The only way out of this state is to RESTART the firmware
  2334. * ...
  2335. */
  2336. int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
  2337. {
  2338. int ret = 0;
  2339. /*
  2340. * If a legitimate mailbox is provided, issue a RESET command
  2341. * with a HALT indication.
  2342. */
  2343. if (mbox <= FW_PCIE_FW_MASTER_MASK) {
  2344. struct fw_reset_cmd c;
  2345. memset(&c, 0, sizeof(c));
  2346. INIT_CMD(c, RESET, WRITE);
  2347. c.val = htonl(PIORST | PIORSTMODE);
  2348. c.halt_pkd = htonl(FW_RESET_CMD_HALT(1U));
  2349. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2350. }
  2351. /*
  2352. * Normally we won't complete the operation if the firmware RESET
  2353. * command fails but if our caller insists we'll go ahead and put the
  2354. * uP into RESET. This can be useful if the firmware is hung or even
  2355. * missing ... We'll have to take the risk of putting the uP into
  2356. * RESET without the cooperation of firmware in that case.
  2357. *
  2358. * We also force the firmware's HALT flag to be on in case we bypassed
  2359. * the firmware RESET command above or we're dealing with old firmware
  2360. * which doesn't have the HALT capability. This will serve as a flag
  2361. * for the incoming firmware to know that it's coming out of a HALT
  2362. * rather than a RESET ... if it's new enough to understand that ...
  2363. */
  2364. if (ret == 0 || force) {
  2365. t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, UPCRST);
  2366. t4_set_reg_field(adap, PCIE_FW, FW_PCIE_FW_HALT,
  2367. FW_PCIE_FW_HALT);
  2368. }
  2369. /*
  2370. * And we always return the result of the firmware RESET command
  2371. * even when we force the uP into RESET ...
  2372. */
  2373. return ret;
  2374. }
  2375. /**
  2376. * t4_fw_restart - restart the firmware by taking the uP out of RESET
  2377. * @adap: the adapter
  2378. * @reset: if we want to do a RESET to restart things
  2379. *
  2380. * Restart firmware previously halted by t4_fw_halt(). On successful
  2381. * return the previous PF Master remains as the new PF Master and there
  2382. * is no need to issue a new HELLO command, etc.
  2383. *
  2384. * We do this in two ways:
  2385. *
  2386. * 1. If we're dealing with newer firmware we'll simply want to take
  2387. * the chip's microprocessor out of RESET. This will cause the
  2388. * firmware to start up from its start vector. And then we'll loop
  2389. * until the firmware indicates it's started again (PCIE_FW.HALT
  2390. * reset to 0) or we timeout.
  2391. *
  2392. * 2. If we're dealing with older firmware then we'll need to RESET
  2393. * the chip since older firmware won't recognize the PCIE_FW.HALT
  2394. * flag and automatically RESET itself on startup.
  2395. */
  2396. int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
  2397. {
  2398. if (reset) {
  2399. /*
  2400. * Since we're directing the RESET instead of the firmware
  2401. * doing it automatically, we need to clear the PCIE_FW.HALT
  2402. * bit.
  2403. */
  2404. t4_set_reg_field(adap, PCIE_FW, FW_PCIE_FW_HALT, 0);
  2405. /*
  2406. * If we've been given a valid mailbox, first try to get the
  2407. * firmware to do the RESET. If that works, great and we can
  2408. * return success. Otherwise, if we haven't been given a
  2409. * valid mailbox or the RESET command failed, fall back to
  2410. * hitting the chip with a hammer.
  2411. */
  2412. if (mbox <= FW_PCIE_FW_MASTER_MASK) {
  2413. t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, 0);
  2414. msleep(100);
  2415. if (t4_fw_reset(adap, mbox,
  2416. PIORST | PIORSTMODE) == 0)
  2417. return 0;
  2418. }
  2419. t4_write_reg(adap, PL_RST, PIORST | PIORSTMODE);
  2420. msleep(2000);
  2421. } else {
  2422. int ms;
  2423. t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, 0);
  2424. for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
  2425. if (!(t4_read_reg(adap, PCIE_FW) & FW_PCIE_FW_HALT))
  2426. return 0;
  2427. msleep(100);
  2428. ms += 100;
  2429. }
  2430. return -ETIMEDOUT;
  2431. }
  2432. return 0;
  2433. }
  2434. /**
  2435. * t4_fw_upgrade - perform all of the steps necessary to upgrade FW
  2436. * @adap: the adapter
  2437. * @mbox: mailbox to use for the FW RESET command (if desired)
  2438. * @fw_data: the firmware image to write
  2439. * @size: image size
  2440. * @force: force upgrade even if firmware doesn't cooperate
  2441. *
  2442. * Perform all of the steps necessary for upgrading an adapter's
  2443. * firmware image. Normally this requires the cooperation of the
  2444. * existing firmware in order to halt all existing activities
  2445. * but if an invalid mailbox token is passed in we skip that step
  2446. * (though we'll still put the adapter microprocessor into RESET in
  2447. * that case).
  2448. *
  2449. * On successful return the new firmware will have been loaded and
  2450. * the adapter will have been fully RESET losing all previous setup
  2451. * state. On unsuccessful return the adapter may be completely hosed ...
  2452. * positive errno indicates that the adapter is ~probably~ intact, a
  2453. * negative errno indicates that things are looking bad ...
  2454. */
  2455. int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
  2456. const u8 *fw_data, unsigned int size, int force)
  2457. {
  2458. const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
  2459. int reset, ret;
  2460. ret = t4_fw_halt(adap, mbox, force);
  2461. if (ret < 0 && !force)
  2462. return ret;
  2463. ret = t4_load_fw(adap, fw_data, size);
  2464. if (ret < 0)
  2465. return ret;
  2466. /*
  2467. * Older versions of the firmware don't understand the new
  2468. * PCIE_FW.HALT flag and so won't know to perform a RESET when they
  2469. * restart. So for newly loaded older firmware we'll have to do the
  2470. * RESET for it so it starts up on a clean slate. We can tell if
  2471. * the newly loaded firmware will handle this right by checking
  2472. * its header flags to see if it advertises the capability.
  2473. */
  2474. reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
  2475. return t4_fw_restart(adap, mbox, reset);
  2476. }
  2477. /**
  2478. * t4_fw_config_file - setup an adapter via a Configuration File
  2479. * @adap: the adapter
  2480. * @mbox: mailbox to use for the FW command
  2481. * @mtype: the memory type where the Configuration File is located
  2482. * @maddr: the memory address where the Configuration File is located
  2483. * @finiver: return value for CF [fini] version
  2484. * @finicsum: return value for CF [fini] checksum
  2485. * @cfcsum: return value for CF computed checksum
  2486. *
  2487. * Issue a command to get the firmware to process the Configuration
  2488. * File located at the specified mtype/maddress. If the Configuration
  2489. * File is processed successfully and return value pointers are
  2490. * provided, the Configuration File "[fini] section version and
  2491. * checksum values will be returned along with the computed checksum.
  2492. * It's up to the caller to decide how it wants to respond to the
  2493. * checksums not matching but it recommended that a prominant warning
  2494. * be emitted in order to help people rapidly identify changed or
  2495. * corrupted Configuration Files.
  2496. *
  2497. * Also note that it's possible to modify things like "niccaps",
  2498. * "toecaps",etc. between processing the Configuration File and telling
  2499. * the firmware to use the new configuration. Callers which want to
  2500. * do this will need to "hand-roll" their own CAPS_CONFIGS commands for
  2501. * Configuration Files if they want to do this.
  2502. */
  2503. int t4_fw_config_file(struct adapter *adap, unsigned int mbox,
  2504. unsigned int mtype, unsigned int maddr,
  2505. u32 *finiver, u32 *finicsum, u32 *cfcsum)
  2506. {
  2507. struct fw_caps_config_cmd caps_cmd;
  2508. int ret;
  2509. /*
  2510. * Tell the firmware to process the indicated Configuration File.
  2511. * If there are no errors and the caller has provided return value
  2512. * pointers for the [fini] section version, checksum and computed
  2513. * checksum, pass those back to the caller.
  2514. */
  2515. memset(&caps_cmd, 0, sizeof(caps_cmd));
  2516. caps_cmd.op_to_write =
  2517. htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
  2518. FW_CMD_REQUEST |
  2519. FW_CMD_READ);
  2520. caps_cmd.cfvalid_to_len16 =
  2521. htonl(FW_CAPS_CONFIG_CMD_CFVALID |
  2522. FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
  2523. FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
  2524. FW_LEN16(caps_cmd));
  2525. ret = t4_wr_mbox(adap, mbox, &caps_cmd, sizeof(caps_cmd), &caps_cmd);
  2526. if (ret < 0)
  2527. return ret;
  2528. if (finiver)
  2529. *finiver = ntohl(caps_cmd.finiver);
  2530. if (finicsum)
  2531. *finicsum = ntohl(caps_cmd.finicsum);
  2532. if (cfcsum)
  2533. *cfcsum = ntohl(caps_cmd.cfcsum);
  2534. /*
  2535. * And now tell the firmware to use the configuration we just loaded.
  2536. */
  2537. caps_cmd.op_to_write =
  2538. htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
  2539. FW_CMD_REQUEST |
  2540. FW_CMD_WRITE);
  2541. caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
  2542. return t4_wr_mbox(adap, mbox, &caps_cmd, sizeof(caps_cmd), NULL);
  2543. }
  2544. /**
  2545. * t4_fixup_host_params - fix up host-dependent parameters
  2546. * @adap: the adapter
  2547. * @page_size: the host's Base Page Size
  2548. * @cache_line_size: the host's Cache Line Size
  2549. *
  2550. * Various registers in T4 contain values which are dependent on the
  2551. * host's Base Page and Cache Line Sizes. This function will fix all of
  2552. * those registers with the appropriate values as passed in ...
  2553. */
  2554. int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
  2555. unsigned int cache_line_size)
  2556. {
  2557. unsigned int page_shift = fls(page_size) - 1;
  2558. unsigned int sge_hps = page_shift - 10;
  2559. unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
  2560. unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
  2561. unsigned int fl_align_log = fls(fl_align) - 1;
  2562. t4_write_reg(adap, SGE_HOST_PAGE_SIZE,
  2563. HOSTPAGESIZEPF0(sge_hps) |
  2564. HOSTPAGESIZEPF1(sge_hps) |
  2565. HOSTPAGESIZEPF2(sge_hps) |
  2566. HOSTPAGESIZEPF3(sge_hps) |
  2567. HOSTPAGESIZEPF4(sge_hps) |
  2568. HOSTPAGESIZEPF5(sge_hps) |
  2569. HOSTPAGESIZEPF6(sge_hps) |
  2570. HOSTPAGESIZEPF7(sge_hps));
  2571. t4_set_reg_field(adap, SGE_CONTROL,
  2572. INGPADBOUNDARY_MASK |
  2573. EGRSTATUSPAGESIZE_MASK,
  2574. INGPADBOUNDARY(fl_align_log - 5) |
  2575. EGRSTATUSPAGESIZE(stat_len != 64));
  2576. /*
  2577. * Adjust various SGE Free List Host Buffer Sizes.
  2578. *
  2579. * This is something of a crock since we're using fixed indices into
  2580. * the array which are also known by the sge.c code and the T4
  2581. * Firmware Configuration File. We need to come up with a much better
  2582. * approach to managing this array. For now, the first four entries
  2583. * are:
  2584. *
  2585. * 0: Host Page Size
  2586. * 1: 64KB
  2587. * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
  2588. * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
  2589. *
  2590. * For the single-MTU buffers in unpacked mode we need to include
  2591. * space for the SGE Control Packet Shift, 14 byte Ethernet header,
  2592. * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
  2593. * Padding boundry. All of these are accommodated in the Factory
  2594. * Default Firmware Configuration File but we need to adjust it for
  2595. * this host's cache line size.
  2596. */
  2597. t4_write_reg(adap, SGE_FL_BUFFER_SIZE0, page_size);
  2598. t4_write_reg(adap, SGE_FL_BUFFER_SIZE2,
  2599. (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2) + fl_align-1)
  2600. & ~(fl_align-1));
  2601. t4_write_reg(adap, SGE_FL_BUFFER_SIZE3,
  2602. (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3) + fl_align-1)
  2603. & ~(fl_align-1));
  2604. t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(page_shift - 12));
  2605. return 0;
  2606. }
  2607. /**
  2608. * t4_fw_initialize - ask FW to initialize the device
  2609. * @adap: the adapter
  2610. * @mbox: mailbox to use for the FW command
  2611. *
  2612. * Issues a command to FW to partially initialize the device. This
  2613. * performs initialization that generally doesn't depend on user input.
  2614. */
  2615. int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
  2616. {
  2617. struct fw_initialize_cmd c;
  2618. memset(&c, 0, sizeof(c));
  2619. INIT_CMD(c, INITIALIZE, WRITE);
  2620. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2621. }
  2622. /**
  2623. * t4_query_params - query FW or device parameters
  2624. * @adap: the adapter
  2625. * @mbox: mailbox to use for the FW command
  2626. * @pf: the PF
  2627. * @vf: the VF
  2628. * @nparams: the number of parameters
  2629. * @params: the parameter names
  2630. * @val: the parameter values
  2631. *
  2632. * Reads the value of FW or device parameters. Up to 7 parameters can be
  2633. * queried at once.
  2634. */
  2635. int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2636. unsigned int vf, unsigned int nparams, const u32 *params,
  2637. u32 *val)
  2638. {
  2639. int i, ret;
  2640. struct fw_params_cmd c;
  2641. __be32 *p = &c.param[0].mnem;
  2642. if (nparams > 7)
  2643. return -EINVAL;
  2644. memset(&c, 0, sizeof(c));
  2645. c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST |
  2646. FW_CMD_READ | FW_PARAMS_CMD_PFN(pf) |
  2647. FW_PARAMS_CMD_VFN(vf));
  2648. c.retval_len16 = htonl(FW_LEN16(c));
  2649. for (i = 0; i < nparams; i++, p += 2)
  2650. *p = htonl(*params++);
  2651. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2652. if (ret == 0)
  2653. for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
  2654. *val++ = ntohl(*p);
  2655. return ret;
  2656. }
  2657. /**
  2658. * t4_set_params - sets FW or device parameters
  2659. * @adap: the adapter
  2660. * @mbox: mailbox to use for the FW command
  2661. * @pf: the PF
  2662. * @vf: the VF
  2663. * @nparams: the number of parameters
  2664. * @params: the parameter names
  2665. * @val: the parameter values
  2666. *
  2667. * Sets the value of FW or device parameters. Up to 7 parameters can be
  2668. * specified at once.
  2669. */
  2670. int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2671. unsigned int vf, unsigned int nparams, const u32 *params,
  2672. const u32 *val)
  2673. {
  2674. struct fw_params_cmd c;
  2675. __be32 *p = &c.param[0].mnem;
  2676. if (nparams > 7)
  2677. return -EINVAL;
  2678. memset(&c, 0, sizeof(c));
  2679. c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST |
  2680. FW_CMD_WRITE | FW_PARAMS_CMD_PFN(pf) |
  2681. FW_PARAMS_CMD_VFN(vf));
  2682. c.retval_len16 = htonl(FW_LEN16(c));
  2683. while (nparams--) {
  2684. *p++ = htonl(*params++);
  2685. *p++ = htonl(*val++);
  2686. }
  2687. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2688. }
  2689. /**
  2690. * t4_cfg_pfvf - configure PF/VF resource limits
  2691. * @adap: the adapter
  2692. * @mbox: mailbox to use for the FW command
  2693. * @pf: the PF being configured
  2694. * @vf: the VF being configured
  2695. * @txq: the max number of egress queues
  2696. * @txq_eth_ctrl: the max number of egress Ethernet or control queues
  2697. * @rxqi: the max number of interrupt-capable ingress queues
  2698. * @rxq: the max number of interruptless ingress queues
  2699. * @tc: the PCI traffic class
  2700. * @vi: the max number of virtual interfaces
  2701. * @cmask: the channel access rights mask for the PF/VF
  2702. * @pmask: the port access rights mask for the PF/VF
  2703. * @nexact: the maximum number of exact MPS filters
  2704. * @rcaps: read capabilities
  2705. * @wxcaps: write/execute capabilities
  2706. *
  2707. * Configures resource limits and capabilities for a physical or virtual
  2708. * function.
  2709. */
  2710. int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2711. unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
  2712. unsigned int rxqi, unsigned int rxq, unsigned int tc,
  2713. unsigned int vi, unsigned int cmask, unsigned int pmask,
  2714. unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
  2715. {
  2716. struct fw_pfvf_cmd c;
  2717. memset(&c, 0, sizeof(c));
  2718. c.op_to_vfn = htonl(FW_CMD_OP(FW_PFVF_CMD) | FW_CMD_REQUEST |
  2719. FW_CMD_WRITE | FW_PFVF_CMD_PFN(pf) |
  2720. FW_PFVF_CMD_VFN(vf));
  2721. c.retval_len16 = htonl(FW_LEN16(c));
  2722. c.niqflint_niq = htonl(FW_PFVF_CMD_NIQFLINT(rxqi) |
  2723. FW_PFVF_CMD_NIQ(rxq));
  2724. c.type_to_neq = htonl(FW_PFVF_CMD_CMASK(cmask) |
  2725. FW_PFVF_CMD_PMASK(pmask) |
  2726. FW_PFVF_CMD_NEQ(txq));
  2727. c.tc_to_nexactf = htonl(FW_PFVF_CMD_TC(tc) | FW_PFVF_CMD_NVI(vi) |
  2728. FW_PFVF_CMD_NEXACTF(nexact));
  2729. c.r_caps_to_nethctrl = htonl(FW_PFVF_CMD_R_CAPS(rcaps) |
  2730. FW_PFVF_CMD_WX_CAPS(wxcaps) |
  2731. FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
  2732. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2733. }
  2734. /**
  2735. * t4_alloc_vi - allocate a virtual interface
  2736. * @adap: the adapter
  2737. * @mbox: mailbox to use for the FW command
  2738. * @port: physical port associated with the VI
  2739. * @pf: the PF owning the VI
  2740. * @vf: the VF owning the VI
  2741. * @nmac: number of MAC addresses needed (1 to 5)
  2742. * @mac: the MAC addresses of the VI
  2743. * @rss_size: size of RSS table slice associated with this VI
  2744. *
  2745. * Allocates a virtual interface for the given physical port. If @mac is
  2746. * not %NULL it contains the MAC addresses of the VI as assigned by FW.
  2747. * @mac should be large enough to hold @nmac Ethernet addresses, they are
  2748. * stored consecutively so the space needed is @nmac * 6 bytes.
  2749. * Returns a negative error number or the non-negative VI id.
  2750. */
  2751. int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
  2752. unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
  2753. unsigned int *rss_size)
  2754. {
  2755. int ret;
  2756. struct fw_vi_cmd c;
  2757. memset(&c, 0, sizeof(c));
  2758. c.op_to_vfn = htonl(FW_CMD_OP(FW_VI_CMD) | FW_CMD_REQUEST |
  2759. FW_CMD_WRITE | FW_CMD_EXEC |
  2760. FW_VI_CMD_PFN(pf) | FW_VI_CMD_VFN(vf));
  2761. c.alloc_to_len16 = htonl(FW_VI_CMD_ALLOC | FW_LEN16(c));
  2762. c.portid_pkd = FW_VI_CMD_PORTID(port);
  2763. c.nmac = nmac - 1;
  2764. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2765. if (ret)
  2766. return ret;
  2767. if (mac) {
  2768. memcpy(mac, c.mac, sizeof(c.mac));
  2769. switch (nmac) {
  2770. case 5:
  2771. memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
  2772. case 4:
  2773. memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
  2774. case 3:
  2775. memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
  2776. case 2:
  2777. memcpy(mac + 6, c.nmac0, sizeof(c.nmac0));
  2778. }
  2779. }
  2780. if (rss_size)
  2781. *rss_size = FW_VI_CMD_RSSSIZE_GET(ntohs(c.rsssize_pkd));
  2782. return FW_VI_CMD_VIID_GET(ntohs(c.type_viid));
  2783. }
  2784. /**
  2785. * t4_set_rxmode - set Rx properties of a virtual interface
  2786. * @adap: the adapter
  2787. * @mbox: mailbox to use for the FW command
  2788. * @viid: the VI id
  2789. * @mtu: the new MTU or -1
  2790. * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
  2791. * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
  2792. * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
  2793. * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
  2794. * @sleep_ok: if true we may sleep while awaiting command completion
  2795. *
  2796. * Sets Rx properties of a virtual interface.
  2797. */
  2798. int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
  2799. int mtu, int promisc, int all_multi, int bcast, int vlanex,
  2800. bool sleep_ok)
  2801. {
  2802. struct fw_vi_rxmode_cmd c;
  2803. /* convert to FW values */
  2804. if (mtu < 0)
  2805. mtu = FW_RXMODE_MTU_NO_CHG;
  2806. if (promisc < 0)
  2807. promisc = FW_VI_RXMODE_CMD_PROMISCEN_MASK;
  2808. if (all_multi < 0)
  2809. all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_MASK;
  2810. if (bcast < 0)
  2811. bcast = FW_VI_RXMODE_CMD_BROADCASTEN_MASK;
  2812. if (vlanex < 0)
  2813. vlanex = FW_VI_RXMODE_CMD_VLANEXEN_MASK;
  2814. memset(&c, 0, sizeof(c));
  2815. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_RXMODE_CMD) | FW_CMD_REQUEST |
  2816. FW_CMD_WRITE | FW_VI_RXMODE_CMD_VIID(viid));
  2817. c.retval_len16 = htonl(FW_LEN16(c));
  2818. c.mtu_to_vlanexen = htonl(FW_VI_RXMODE_CMD_MTU(mtu) |
  2819. FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
  2820. FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
  2821. FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
  2822. FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
  2823. return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
  2824. }
  2825. /**
  2826. * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
  2827. * @adap: the adapter
  2828. * @mbox: mailbox to use for the FW command
  2829. * @viid: the VI id
  2830. * @free: if true any existing filters for this VI id are first removed
  2831. * @naddr: the number of MAC addresses to allocate filters for (up to 7)
  2832. * @addr: the MAC address(es)
  2833. * @idx: where to store the index of each allocated filter
  2834. * @hash: pointer to hash address filter bitmap
  2835. * @sleep_ok: call is allowed to sleep
  2836. *
  2837. * Allocates an exact-match filter for each of the supplied addresses and
  2838. * sets it to the corresponding address. If @idx is not %NULL it should
  2839. * have at least @naddr entries, each of which will be set to the index of
  2840. * the filter allocated for the corresponding MAC address. If a filter
  2841. * could not be allocated for an address its index is set to 0xffff.
  2842. * If @hash is not %NULL addresses that fail to allocate an exact filter
  2843. * are hashed and update the hash filter bitmap pointed at by @hash.
  2844. *
  2845. * Returns a negative error number or the number of filters allocated.
  2846. */
  2847. int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
  2848. unsigned int viid, bool free, unsigned int naddr,
  2849. const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
  2850. {
  2851. int i, ret;
  2852. struct fw_vi_mac_cmd c;
  2853. struct fw_vi_mac_exact *p;
  2854. if (naddr > 7)
  2855. return -EINVAL;
  2856. memset(&c, 0, sizeof(c));
  2857. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
  2858. FW_CMD_WRITE | (free ? FW_CMD_EXEC : 0) |
  2859. FW_VI_MAC_CMD_VIID(viid));
  2860. c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_FREEMACS(free) |
  2861. FW_CMD_LEN16((naddr + 2) / 2));
  2862. for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
  2863. p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID |
  2864. FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
  2865. memcpy(p->macaddr, addr[i], sizeof(p->macaddr));
  2866. }
  2867. ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
  2868. if (ret)
  2869. return ret;
  2870. for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
  2871. u16 index = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx));
  2872. if (idx)
  2873. idx[i] = index >= NEXACT_MAC ? 0xffff : index;
  2874. if (index < NEXACT_MAC)
  2875. ret++;
  2876. else if (hash)
  2877. *hash |= (1ULL << hash_mac_addr(addr[i]));
  2878. }
  2879. return ret;
  2880. }
  2881. /**
  2882. * t4_change_mac - modifies the exact-match filter for a MAC address
  2883. * @adap: the adapter
  2884. * @mbox: mailbox to use for the FW command
  2885. * @viid: the VI id
  2886. * @idx: index of existing filter for old value of MAC address, or -1
  2887. * @addr: the new MAC address value
  2888. * @persist: whether a new MAC allocation should be persistent
  2889. * @add_smt: if true also add the address to the HW SMT
  2890. *
  2891. * Modifies an exact-match filter and sets it to the new MAC address.
  2892. * Note that in general it is not possible to modify the value of a given
  2893. * filter so the generic way to modify an address filter is to free the one
  2894. * being used by the old address value and allocate a new filter for the
  2895. * new address value. @idx can be -1 if the address is a new addition.
  2896. *
  2897. * Returns a negative error number or the index of the filter with the new
  2898. * MAC value.
  2899. */
  2900. int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
  2901. int idx, const u8 *addr, bool persist, bool add_smt)
  2902. {
  2903. int ret, mode;
  2904. struct fw_vi_mac_cmd c;
  2905. struct fw_vi_mac_exact *p = c.u.exact;
  2906. if (idx < 0) /* new allocation */
  2907. idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
  2908. mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
  2909. memset(&c, 0, sizeof(c));
  2910. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
  2911. FW_CMD_WRITE | FW_VI_MAC_CMD_VIID(viid));
  2912. c.freemacs_to_len16 = htonl(FW_CMD_LEN16(1));
  2913. p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID |
  2914. FW_VI_MAC_CMD_SMAC_RESULT(mode) |
  2915. FW_VI_MAC_CMD_IDX(idx));
  2916. memcpy(p->macaddr, addr, sizeof(p->macaddr));
  2917. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2918. if (ret == 0) {
  2919. ret = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx));
  2920. if (ret >= NEXACT_MAC)
  2921. ret = -ENOMEM;
  2922. }
  2923. return ret;
  2924. }
  2925. /**
  2926. * t4_set_addr_hash - program the MAC inexact-match hash filter
  2927. * @adap: the adapter
  2928. * @mbox: mailbox to use for the FW command
  2929. * @viid: the VI id
  2930. * @ucast: whether the hash filter should also match unicast addresses
  2931. * @vec: the value to be written to the hash filter
  2932. * @sleep_ok: call is allowed to sleep
  2933. *
  2934. * Sets the 64-bit inexact-match hash filter for a virtual interface.
  2935. */
  2936. int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
  2937. bool ucast, u64 vec, bool sleep_ok)
  2938. {
  2939. struct fw_vi_mac_cmd c;
  2940. memset(&c, 0, sizeof(c));
  2941. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
  2942. FW_CMD_WRITE | FW_VI_ENABLE_CMD_VIID(viid));
  2943. c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_HASHVECEN |
  2944. FW_VI_MAC_CMD_HASHUNIEN(ucast) |
  2945. FW_CMD_LEN16(1));
  2946. c.u.hash.hashvec = cpu_to_be64(vec);
  2947. return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
  2948. }
  2949. /**
  2950. * t4_enable_vi - enable/disable a virtual interface
  2951. * @adap: the adapter
  2952. * @mbox: mailbox to use for the FW command
  2953. * @viid: the VI id
  2954. * @rx_en: 1=enable Rx, 0=disable Rx
  2955. * @tx_en: 1=enable Tx, 0=disable Tx
  2956. *
  2957. * Enables/disables a virtual interface.
  2958. */
  2959. int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
  2960. bool rx_en, bool tx_en)
  2961. {
  2962. struct fw_vi_enable_cmd c;
  2963. memset(&c, 0, sizeof(c));
  2964. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST |
  2965. FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid));
  2966. c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_IEN(rx_en) |
  2967. FW_VI_ENABLE_CMD_EEN(tx_en) | FW_LEN16(c));
  2968. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2969. }
  2970. /**
  2971. * t4_identify_port - identify a VI's port by blinking its LED
  2972. * @adap: the adapter
  2973. * @mbox: mailbox to use for the FW command
  2974. * @viid: the VI id
  2975. * @nblinks: how many times to blink LED at 2.5 Hz
  2976. *
  2977. * Identifies a VI's port by blinking its LED.
  2978. */
  2979. int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
  2980. unsigned int nblinks)
  2981. {
  2982. struct fw_vi_enable_cmd c;
  2983. memset(&c, 0, sizeof(c));
  2984. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST |
  2985. FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid));
  2986. c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
  2987. c.blinkdur = htons(nblinks);
  2988. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2989. }
  2990. /**
  2991. * t4_iq_free - free an ingress queue and its FLs
  2992. * @adap: the adapter
  2993. * @mbox: mailbox to use for the FW command
  2994. * @pf: the PF owning the queues
  2995. * @vf: the VF owning the queues
  2996. * @iqtype: the ingress queue type
  2997. * @iqid: ingress queue id
  2998. * @fl0id: FL0 queue id or 0xffff if no attached FL0
  2999. * @fl1id: FL1 queue id or 0xffff if no attached FL1
  3000. *
  3001. * Frees an ingress queue and its associated FLs, if any.
  3002. */
  3003. int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  3004. unsigned int vf, unsigned int iqtype, unsigned int iqid,
  3005. unsigned int fl0id, unsigned int fl1id)
  3006. {
  3007. struct fw_iq_cmd c;
  3008. memset(&c, 0, sizeof(c));
  3009. c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST |
  3010. FW_CMD_EXEC | FW_IQ_CMD_PFN(pf) |
  3011. FW_IQ_CMD_VFN(vf));
  3012. c.alloc_to_len16 = htonl(FW_IQ_CMD_FREE | FW_LEN16(c));
  3013. c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE(iqtype));
  3014. c.iqid = htons(iqid);
  3015. c.fl0id = htons(fl0id);
  3016. c.fl1id = htons(fl1id);
  3017. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3018. }
  3019. /**
  3020. * t4_eth_eq_free - free an Ethernet egress queue
  3021. * @adap: the adapter
  3022. * @mbox: mailbox to use for the FW command
  3023. * @pf: the PF owning the queue
  3024. * @vf: the VF owning the queue
  3025. * @eqid: egress queue id
  3026. *
  3027. * Frees an Ethernet egress queue.
  3028. */
  3029. int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  3030. unsigned int vf, unsigned int eqid)
  3031. {
  3032. struct fw_eq_eth_cmd c;
  3033. memset(&c, 0, sizeof(c));
  3034. c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_ETH_CMD) | FW_CMD_REQUEST |
  3035. FW_CMD_EXEC | FW_EQ_ETH_CMD_PFN(pf) |
  3036. FW_EQ_ETH_CMD_VFN(vf));
  3037. c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
  3038. c.eqid_pkd = htonl(FW_EQ_ETH_CMD_EQID(eqid));
  3039. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3040. }
  3041. /**
  3042. * t4_ctrl_eq_free - free a control egress queue
  3043. * @adap: the adapter
  3044. * @mbox: mailbox to use for the FW command
  3045. * @pf: the PF owning the queue
  3046. * @vf: the VF owning the queue
  3047. * @eqid: egress queue id
  3048. *
  3049. * Frees a control egress queue.
  3050. */
  3051. int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  3052. unsigned int vf, unsigned int eqid)
  3053. {
  3054. struct fw_eq_ctrl_cmd c;
  3055. memset(&c, 0, sizeof(c));
  3056. c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST |
  3057. FW_CMD_EXEC | FW_EQ_CTRL_CMD_PFN(pf) |
  3058. FW_EQ_CTRL_CMD_VFN(vf));
  3059. c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
  3060. c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_EQID(eqid));
  3061. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3062. }
  3063. /**
  3064. * t4_ofld_eq_free - free an offload egress queue
  3065. * @adap: the adapter
  3066. * @mbox: mailbox to use for the FW command
  3067. * @pf: the PF owning the queue
  3068. * @vf: the VF owning the queue
  3069. * @eqid: egress queue id
  3070. *
  3071. * Frees a control egress queue.
  3072. */
  3073. int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  3074. unsigned int vf, unsigned int eqid)
  3075. {
  3076. struct fw_eq_ofld_cmd c;
  3077. memset(&c, 0, sizeof(c));
  3078. c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST |
  3079. FW_CMD_EXEC | FW_EQ_OFLD_CMD_PFN(pf) |
  3080. FW_EQ_OFLD_CMD_VFN(vf));
  3081. c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
  3082. c.eqid_pkd = htonl(FW_EQ_OFLD_CMD_EQID(eqid));
  3083. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3084. }
  3085. /**
  3086. * t4_handle_fw_rpl - process a FW reply message
  3087. * @adap: the adapter
  3088. * @rpl: start of the FW message
  3089. *
  3090. * Processes a FW message, such as link state change messages.
  3091. */
  3092. int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
  3093. {
  3094. u8 opcode = *(const u8 *)rpl;
  3095. if (opcode == FW_PORT_CMD) { /* link/module state change message */
  3096. int speed = 0, fc = 0;
  3097. const struct fw_port_cmd *p = (void *)rpl;
  3098. int chan = FW_PORT_CMD_PORTID_GET(ntohl(p->op_to_portid));
  3099. int port = adap->chan_map[chan];
  3100. struct port_info *pi = adap2pinfo(adap, port);
  3101. struct link_config *lc = &pi->link_cfg;
  3102. u32 stat = ntohl(p->u.info.lstatus_to_modtype);
  3103. int link_ok = (stat & FW_PORT_CMD_LSTATUS) != 0;
  3104. u32 mod = FW_PORT_CMD_MODTYPE_GET(stat);
  3105. if (stat & FW_PORT_CMD_RXPAUSE)
  3106. fc |= PAUSE_RX;
  3107. if (stat & FW_PORT_CMD_TXPAUSE)
  3108. fc |= PAUSE_TX;
  3109. if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
  3110. speed = SPEED_100;
  3111. else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
  3112. speed = SPEED_1000;
  3113. else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
  3114. speed = SPEED_10000;
  3115. if (link_ok != lc->link_ok || speed != lc->speed ||
  3116. fc != lc->fc) { /* something changed */
  3117. lc->link_ok = link_ok;
  3118. lc->speed = speed;
  3119. lc->fc = fc;
  3120. t4_os_link_changed(adap, port, link_ok);
  3121. }
  3122. if (mod != pi->mod_type) {
  3123. pi->mod_type = mod;
  3124. t4_os_portmod_changed(adap, port);
  3125. }
  3126. }
  3127. return 0;
  3128. }
  3129. static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
  3130. {
  3131. u16 val;
  3132. if (pci_is_pcie(adapter->pdev)) {
  3133. pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
  3134. p->speed = val & PCI_EXP_LNKSTA_CLS;
  3135. p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
  3136. }
  3137. }
  3138. /**
  3139. * init_link_config - initialize a link's SW state
  3140. * @lc: structure holding the link state
  3141. * @caps: link capabilities
  3142. *
  3143. * Initializes the SW state maintained for each link, including the link's
  3144. * capabilities and default speed/flow-control/autonegotiation settings.
  3145. */
  3146. static void init_link_config(struct link_config *lc, unsigned int caps)
  3147. {
  3148. lc->supported = caps;
  3149. lc->requested_speed = 0;
  3150. lc->speed = 0;
  3151. lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
  3152. if (lc->supported & FW_PORT_CAP_ANEG) {
  3153. lc->advertising = lc->supported & ADVERT_MASK;
  3154. lc->autoneg = AUTONEG_ENABLE;
  3155. lc->requested_fc |= PAUSE_AUTONEG;
  3156. } else {
  3157. lc->advertising = 0;
  3158. lc->autoneg = AUTONEG_DISABLE;
  3159. }
  3160. }
  3161. int t4_wait_dev_ready(struct adapter *adap)
  3162. {
  3163. if (t4_read_reg(adap, PL_WHOAMI) != 0xffffffff)
  3164. return 0;
  3165. msleep(500);
  3166. return t4_read_reg(adap, PL_WHOAMI) != 0xffffffff ? 0 : -EIO;
  3167. }
  3168. static int get_flash_params(struct adapter *adap)
  3169. {
  3170. int ret;
  3171. u32 info;
  3172. ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
  3173. if (!ret)
  3174. ret = sf1_read(adap, 3, 0, 1, &info);
  3175. t4_write_reg(adap, SF_OP, 0); /* unlock SF */
  3176. if (ret)
  3177. return ret;
  3178. if ((info & 0xff) != 0x20) /* not a Numonix flash */
  3179. return -EINVAL;
  3180. info >>= 16; /* log2 of size */
  3181. if (info >= 0x14 && info < 0x18)
  3182. adap->params.sf_nsec = 1 << (info - 16);
  3183. else if (info == 0x18)
  3184. adap->params.sf_nsec = 64;
  3185. else
  3186. return -EINVAL;
  3187. adap->params.sf_size = 1 << info;
  3188. adap->params.sf_fw_start =
  3189. t4_read_reg(adap, CIM_BOOT_CFG) & BOOTADDR_MASK;
  3190. return 0;
  3191. }
  3192. /**
  3193. * t4_prep_adapter - prepare SW and HW for operation
  3194. * @adapter: the adapter
  3195. * @reset: if true perform a HW reset
  3196. *
  3197. * Initialize adapter SW state for the various HW modules, set initial
  3198. * values for some adapter tunables, take PHYs out of reset, and
  3199. * initialize the MDIO interface.
  3200. */
  3201. int t4_prep_adapter(struct adapter *adapter)
  3202. {
  3203. int ret;
  3204. ret = t4_wait_dev_ready(adapter);
  3205. if (ret < 0)
  3206. return ret;
  3207. get_pci_mode(adapter, &adapter->params.pci);
  3208. adapter->params.rev = t4_read_reg(adapter, PL_REV);
  3209. ret = get_flash_params(adapter);
  3210. if (ret < 0) {
  3211. dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
  3212. return ret;
  3213. }
  3214. init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
  3215. /*
  3216. * Default port for debugging in case we can't reach FW.
  3217. */
  3218. adapter->params.nports = 1;
  3219. adapter->params.portvec = 1;
  3220. adapter->params.vpd.cclk = 50000;
  3221. return 0;
  3222. }
  3223. int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
  3224. {
  3225. u8 addr[6];
  3226. int ret, i, j = 0;
  3227. struct fw_port_cmd c;
  3228. struct fw_rss_vi_config_cmd rvc;
  3229. memset(&c, 0, sizeof(c));
  3230. memset(&rvc, 0, sizeof(rvc));
  3231. for_each_port(adap, i) {
  3232. unsigned int rss_size;
  3233. struct port_info *p = adap2pinfo(adap, i);
  3234. while ((adap->params.portvec & (1 << j)) == 0)
  3235. j++;
  3236. c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) |
  3237. FW_CMD_REQUEST | FW_CMD_READ |
  3238. FW_PORT_CMD_PORTID(j));
  3239. c.action_to_len16 = htonl(
  3240. FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
  3241. FW_LEN16(c));
  3242. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  3243. if (ret)
  3244. return ret;
  3245. ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
  3246. if (ret < 0)
  3247. return ret;
  3248. p->viid = ret;
  3249. p->tx_chan = j;
  3250. p->lport = j;
  3251. p->rss_size = rss_size;
  3252. memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
  3253. adap->port[i]->dev_id = j;
  3254. ret = ntohl(c.u.info.lstatus_to_modtype);
  3255. p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP) ?
  3256. FW_PORT_CMD_MDIOADDR_GET(ret) : -1;
  3257. p->port_type = FW_PORT_CMD_PTYPE_GET(ret);
  3258. p->mod_type = FW_PORT_MOD_TYPE_NA;
  3259. rvc.op_to_viid = htonl(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
  3260. FW_CMD_REQUEST | FW_CMD_READ |
  3261. FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
  3262. rvc.retval_len16 = htonl(FW_LEN16(rvc));
  3263. ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
  3264. if (ret)
  3265. return ret;
  3266. p->rss_mode = ntohl(rvc.u.basicvirtual.defaultq_to_udpen);
  3267. init_link_config(&p->link_cfg, ntohs(c.u.info.pcap));
  3268. j++;
  3269. }
  3270. return 0;
  3271. }