123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716 |
- /*
- * Freescale GPMI NAND Flash Driver
- *
- * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
- * Copyright (C) 2008 Embedded Alley Solutions, Inc.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License along
- * with this program; if not, write to the Free Software Foundation, Inc.,
- * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
- */
- #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
- #include <linux/clk.h>
- #include <linux/slab.h>
- #include <linux/interrupt.h>
- #include <linux/module.h>
- #include <linux/mtd/partitions.h>
- #include <linux/pinctrl/consumer.h>
- #include <linux/of.h>
- #include <linux/of_device.h>
- #include <linux/of_mtd.h>
- #include "gpmi-nand.h"
- /* Resource names for the GPMI NAND driver. */
- #define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME "gpmi-nand"
- #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch"
- #define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch"
- #define GPMI_NAND_DMA_INTERRUPT_RES_NAME "gpmi-dma"
- /* add our owner bbt descriptor */
- static uint8_t scan_ff_pattern[] = { 0xff };
- static struct nand_bbt_descr gpmi_bbt_descr = {
- .options = 0,
- .offs = 0,
- .len = 1,
- .pattern = scan_ff_pattern
- };
- /* We will use all the (page + OOB). */
- static struct nand_ecclayout gpmi_hw_ecclayout = {
- .eccbytes = 0,
- .eccpos = { 0, },
- .oobfree = { {.offset = 0, .length = 0} }
- };
- static irqreturn_t bch_irq(int irq, void *cookie)
- {
- struct gpmi_nand_data *this = cookie;
- gpmi_clear_bch(this);
- complete(&this->bch_done);
- return IRQ_HANDLED;
- }
- /*
- * Calculate the ECC strength by hand:
- * E : The ECC strength.
- * G : the length of Galois Field.
- * N : The chunk count of per page.
- * O : the oobsize of the NAND chip.
- * M : the metasize of per page.
- *
- * The formula is :
- * E * G * N
- * ------------ <= (O - M)
- * 8
- *
- * So, we get E by:
- * (O - M) * 8
- * E <= -------------
- * G * N
- */
- static inline int get_ecc_strength(struct gpmi_nand_data *this)
- {
- struct bch_geometry *geo = &this->bch_geometry;
- struct mtd_info *mtd = &this->mtd;
- int ecc_strength;
- ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
- / (geo->gf_len * geo->ecc_chunk_count);
- /* We need the minor even number. */
- return round_down(ecc_strength, 2);
- }
- static inline bool gpmi_check_ecc(struct gpmi_nand_data *this)
- {
- struct bch_geometry *geo = &this->bch_geometry;
- /* Do the sanity check. */
- if (GPMI_IS_MX23(this) || GPMI_IS_MX28(this)) {
- /* The mx23/mx28 only support the GF13. */
- if (geo->gf_len == 14)
- return false;
- if (geo->ecc_strength > MXS_ECC_STRENGTH_MAX)
- return false;
- } else if (GPMI_IS_MX6Q(this)) {
- if (geo->ecc_strength > MX6_ECC_STRENGTH_MAX)
- return false;
- }
- return true;
- }
- int common_nfc_set_geometry(struct gpmi_nand_data *this)
- {
- struct bch_geometry *geo = &this->bch_geometry;
- struct mtd_info *mtd = &this->mtd;
- unsigned int metadata_size;
- unsigned int status_size;
- unsigned int block_mark_bit_offset;
- /*
- * The size of the metadata can be changed, though we set it to 10
- * bytes now. But it can't be too large, because we have to save
- * enough space for BCH.
- */
- geo->metadata_size = 10;
- /* The default for the length of Galois Field. */
- geo->gf_len = 13;
- /* The default for chunk size. */
- geo->ecc_chunk_size = 512;
- while (geo->ecc_chunk_size < mtd->oobsize) {
- geo->ecc_chunk_size *= 2; /* keep C >= O */
- geo->gf_len = 14;
- }
- geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
- /* We use the same ECC strength for all chunks. */
- geo->ecc_strength = get_ecc_strength(this);
- if (!gpmi_check_ecc(this)) {
- dev_err(this->dev,
- "We can not support this nand chip."
- " Its required ecc strength(%d) is beyond our"
- " capability(%d).\n", geo->ecc_strength,
- (GPMI_IS_MX6Q(this) ? MX6_ECC_STRENGTH_MAX
- : MXS_ECC_STRENGTH_MAX));
- return -EINVAL;
- }
- geo->page_size = mtd->writesize + mtd->oobsize;
- geo->payload_size = mtd->writesize;
- /*
- * The auxiliary buffer contains the metadata and the ECC status. The
- * metadata is padded to the nearest 32-bit boundary. The ECC status
- * contains one byte for every ECC chunk, and is also padded to the
- * nearest 32-bit boundary.
- */
- metadata_size = ALIGN(geo->metadata_size, 4);
- status_size = ALIGN(geo->ecc_chunk_count, 4);
- geo->auxiliary_size = metadata_size + status_size;
- geo->auxiliary_status_offset = metadata_size;
- if (!this->swap_block_mark)
- return 0;
- /*
- * We need to compute the byte and bit offsets of
- * the physical block mark within the ECC-based view of the page.
- *
- * NAND chip with 2K page shows below:
- * (Block Mark)
- * | |
- * | D |
- * |<---->|
- * V V
- * +---+----------+-+----------+-+----------+-+----------+-+
- * | M | data |E| data |E| data |E| data |E|
- * +---+----------+-+----------+-+----------+-+----------+-+
- *
- * The position of block mark moves forward in the ECC-based view
- * of page, and the delta is:
- *
- * E * G * (N - 1)
- * D = (---------------- + M)
- * 8
- *
- * With the formula to compute the ECC strength, and the condition
- * : C >= O (C is the ecc chunk size)
- *
- * It's easy to deduce to the following result:
- *
- * E * G (O - M) C - M C - M
- * ----------- <= ------- <= -------- < ---------
- * 8 N N (N - 1)
- *
- * So, we get:
- *
- * E * G * (N - 1)
- * D = (---------------- + M) < C
- * 8
- *
- * The above inequality means the position of block mark
- * within the ECC-based view of the page is still in the data chunk,
- * and it's NOT in the ECC bits of the chunk.
- *
- * Use the following to compute the bit position of the
- * physical block mark within the ECC-based view of the page:
- * (page_size - D) * 8
- *
- * --Huang Shijie
- */
- block_mark_bit_offset = mtd->writesize * 8 -
- (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
- + geo->metadata_size * 8);
- geo->block_mark_byte_offset = block_mark_bit_offset / 8;
- geo->block_mark_bit_offset = block_mark_bit_offset % 8;
- return 0;
- }
- struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
- {
- int chipnr = this->current_chip;
- return this->dma_chans[chipnr];
- }
- /* Can we use the upper's buffer directly for DMA? */
- void prepare_data_dma(struct gpmi_nand_data *this, enum dma_data_direction dr)
- {
- struct scatterlist *sgl = &this->data_sgl;
- int ret;
- this->direct_dma_map_ok = true;
- /* first try to map the upper buffer directly */
- sg_init_one(sgl, this->upper_buf, this->upper_len);
- ret = dma_map_sg(this->dev, sgl, 1, dr);
- if (ret == 0) {
- /* We have to use our own DMA buffer. */
- sg_init_one(sgl, this->data_buffer_dma, PAGE_SIZE);
- if (dr == DMA_TO_DEVICE)
- memcpy(this->data_buffer_dma, this->upper_buf,
- this->upper_len);
- ret = dma_map_sg(this->dev, sgl, 1, dr);
- if (ret == 0)
- pr_err("DMA mapping failed.\n");
- this->direct_dma_map_ok = false;
- }
- }
- /* This will be called after the DMA operation is finished. */
- static void dma_irq_callback(void *param)
- {
- struct gpmi_nand_data *this = param;
- struct completion *dma_c = &this->dma_done;
- complete(dma_c);
- switch (this->dma_type) {
- case DMA_FOR_COMMAND:
- dma_unmap_sg(this->dev, &this->cmd_sgl, 1, DMA_TO_DEVICE);
- break;
- case DMA_FOR_READ_DATA:
- dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE);
- if (this->direct_dma_map_ok == false)
- memcpy(this->upper_buf, this->data_buffer_dma,
- this->upper_len);
- break;
- case DMA_FOR_WRITE_DATA:
- dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE);
- break;
- case DMA_FOR_READ_ECC_PAGE:
- case DMA_FOR_WRITE_ECC_PAGE:
- /* We have to wait the BCH interrupt to finish. */
- break;
- default:
- pr_err("in wrong DMA operation.\n");
- }
- }
- int start_dma_without_bch_irq(struct gpmi_nand_data *this,
- struct dma_async_tx_descriptor *desc)
- {
- struct completion *dma_c = &this->dma_done;
- int err;
- init_completion(dma_c);
- desc->callback = dma_irq_callback;
- desc->callback_param = this;
- dmaengine_submit(desc);
- dma_async_issue_pending(get_dma_chan(this));
- /* Wait for the interrupt from the DMA block. */
- err = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000));
- if (!err) {
- pr_err("DMA timeout, last DMA :%d\n", this->last_dma_type);
- gpmi_dump_info(this);
- return -ETIMEDOUT;
- }
- return 0;
- }
- /*
- * This function is used in BCH reading or BCH writing pages.
- * It will wait for the BCH interrupt as long as ONE second.
- * Actually, we must wait for two interrupts :
- * [1] firstly the DMA interrupt and
- * [2] secondly the BCH interrupt.
- */
- int start_dma_with_bch_irq(struct gpmi_nand_data *this,
- struct dma_async_tx_descriptor *desc)
- {
- struct completion *bch_c = &this->bch_done;
- int err;
- /* Prepare to receive an interrupt from the BCH block. */
- init_completion(bch_c);
- /* start the DMA */
- start_dma_without_bch_irq(this, desc);
- /* Wait for the interrupt from the BCH block. */
- err = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000));
- if (!err) {
- pr_err("BCH timeout, last DMA :%d\n", this->last_dma_type);
- gpmi_dump_info(this);
- return -ETIMEDOUT;
- }
- return 0;
- }
- static int acquire_register_block(struct gpmi_nand_data *this,
- const char *res_name)
- {
- struct platform_device *pdev = this->pdev;
- struct resources *res = &this->resources;
- struct resource *r;
- void __iomem *p;
- r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
- if (!r) {
- pr_err("Can't get resource for %s\n", res_name);
- return -ENXIO;
- }
- p = ioremap(r->start, resource_size(r));
- if (!p) {
- pr_err("Can't remap %s\n", res_name);
- return -ENOMEM;
- }
- if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
- res->gpmi_regs = p;
- else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
- res->bch_regs = p;
- else
- pr_err("unknown resource name : %s\n", res_name);
- return 0;
- }
- static void release_register_block(struct gpmi_nand_data *this)
- {
- struct resources *res = &this->resources;
- if (res->gpmi_regs)
- iounmap(res->gpmi_regs);
- if (res->bch_regs)
- iounmap(res->bch_regs);
- res->gpmi_regs = NULL;
- res->bch_regs = NULL;
- }
- static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
- {
- struct platform_device *pdev = this->pdev;
- struct resources *res = &this->resources;
- const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
- struct resource *r;
- int err;
- r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
- if (!r) {
- pr_err("Can't get resource for %s\n", res_name);
- return -ENXIO;
- }
- err = request_irq(r->start, irq_h, 0, res_name, this);
- if (err) {
- pr_err("Can't own %s\n", res_name);
- return err;
- }
- res->bch_low_interrupt = r->start;
- res->bch_high_interrupt = r->end;
- return 0;
- }
- static void release_bch_irq(struct gpmi_nand_data *this)
- {
- struct resources *res = &this->resources;
- int i = res->bch_low_interrupt;
- for (; i <= res->bch_high_interrupt; i++)
- free_irq(i, this);
- }
- static bool gpmi_dma_filter(struct dma_chan *chan, void *param)
- {
- struct gpmi_nand_data *this = param;
- int dma_channel = (int)this->private;
- if (!mxs_dma_is_apbh(chan))
- return false;
- /*
- * only catch the GPMI dma channels :
- * for mx23 : MX23_DMA_GPMI0 ~ MX23_DMA_GPMI3
- * (These four channels share the same IRQ!)
- *
- * for mx28 : MX28_DMA_GPMI0 ~ MX28_DMA_GPMI7
- * (These eight channels share the same IRQ!)
- */
- if (dma_channel == chan->chan_id) {
- chan->private = &this->dma_data;
- return true;
- }
- return false;
- }
- static void release_dma_channels(struct gpmi_nand_data *this)
- {
- unsigned int i;
- for (i = 0; i < DMA_CHANS; i++)
- if (this->dma_chans[i]) {
- dma_release_channel(this->dma_chans[i]);
- this->dma_chans[i] = NULL;
- }
- }
- static int acquire_dma_channels(struct gpmi_nand_data *this)
- {
- struct platform_device *pdev = this->pdev;
- struct resource *r_dma;
- struct device_node *dn;
- u32 dma_channel;
- int ret;
- struct dma_chan *dma_chan;
- dma_cap_mask_t mask;
- /* dma channel, we only use the first one. */
- dn = pdev->dev.of_node;
- ret = of_property_read_u32(dn, "fsl,gpmi-dma-channel", &dma_channel);
- if (ret) {
- pr_err("unable to get DMA channel from dt.\n");
- goto acquire_err;
- }
- this->private = (void *)dma_channel;
- /* gpmi dma interrupt */
- r_dma = platform_get_resource_byname(pdev, IORESOURCE_IRQ,
- GPMI_NAND_DMA_INTERRUPT_RES_NAME);
- if (!r_dma) {
- pr_err("Can't get resource for DMA\n");
- goto acquire_err;
- }
- this->dma_data.chan_irq = r_dma->start;
- /* request dma channel */
- dma_cap_zero(mask);
- dma_cap_set(DMA_SLAVE, mask);
- dma_chan = dma_request_channel(mask, gpmi_dma_filter, this);
- if (!dma_chan) {
- pr_err("Failed to request DMA channel.\n");
- goto acquire_err;
- }
- this->dma_chans[0] = dma_chan;
- return 0;
- acquire_err:
- release_dma_channels(this);
- return -EINVAL;
- }
- static void gpmi_put_clks(struct gpmi_nand_data *this)
- {
- struct resources *r = &this->resources;
- struct clk *clk;
- int i;
- for (i = 0; i < GPMI_CLK_MAX; i++) {
- clk = r->clock[i];
- if (clk) {
- clk_put(clk);
- r->clock[i] = NULL;
- }
- }
- }
- static char *extra_clks_for_mx6q[GPMI_CLK_MAX] = {
- "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
- };
- static int gpmi_get_clks(struct gpmi_nand_data *this)
- {
- struct resources *r = &this->resources;
- char **extra_clks = NULL;
- struct clk *clk;
- int i;
- /* The main clock is stored in the first. */
- r->clock[0] = clk_get(this->dev, "gpmi_io");
- if (IS_ERR(r->clock[0]))
- goto err_clock;
- /* Get extra clocks */
- if (GPMI_IS_MX6Q(this))
- extra_clks = extra_clks_for_mx6q;
- if (!extra_clks)
- return 0;
- for (i = 1; i < GPMI_CLK_MAX; i++) {
- if (extra_clks[i - 1] == NULL)
- break;
- clk = clk_get(this->dev, extra_clks[i - 1]);
- if (IS_ERR(clk))
- goto err_clock;
- r->clock[i] = clk;
- }
- if (GPMI_IS_MX6Q(this))
- /*
- * Set the default value for the gpmi clock in mx6q:
- *
- * If you want to use the ONFI nand which is in the
- * Synchronous Mode, you should change the clock as you need.
- */
- clk_set_rate(r->clock[0], 22000000);
- return 0;
- err_clock:
- dev_dbg(this->dev, "failed in finding the clocks.\n");
- gpmi_put_clks(this);
- return -ENOMEM;
- }
- static int acquire_resources(struct gpmi_nand_data *this)
- {
- struct pinctrl *pinctrl;
- int ret;
- ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
- if (ret)
- goto exit_regs;
- ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
- if (ret)
- goto exit_regs;
- ret = acquire_bch_irq(this, bch_irq);
- if (ret)
- goto exit_regs;
- ret = acquire_dma_channels(this);
- if (ret)
- goto exit_dma_channels;
- pinctrl = devm_pinctrl_get_select_default(&this->pdev->dev);
- if (IS_ERR(pinctrl)) {
- ret = PTR_ERR(pinctrl);
- goto exit_pin;
- }
- ret = gpmi_get_clks(this);
- if (ret)
- goto exit_clock;
- return 0;
- exit_clock:
- exit_pin:
- release_dma_channels(this);
- exit_dma_channels:
- release_bch_irq(this);
- exit_regs:
- release_register_block(this);
- return ret;
- }
- static void release_resources(struct gpmi_nand_data *this)
- {
- gpmi_put_clks(this);
- release_register_block(this);
- release_bch_irq(this);
- release_dma_channels(this);
- }
- static int init_hardware(struct gpmi_nand_data *this)
- {
- int ret;
- /*
- * This structure contains the "safe" GPMI timing that should succeed
- * with any NAND Flash device
- * (although, with less-than-optimal performance).
- */
- struct nand_timing safe_timing = {
- .data_setup_in_ns = 80,
- .data_hold_in_ns = 60,
- .address_setup_in_ns = 25,
- .gpmi_sample_delay_in_ns = 6,
- .tREA_in_ns = -1,
- .tRLOH_in_ns = -1,
- .tRHOH_in_ns = -1,
- };
- /* Initialize the hardwares. */
- ret = gpmi_init(this);
- if (ret)
- return ret;
- this->timing = safe_timing;
- return 0;
- }
- static int read_page_prepare(struct gpmi_nand_data *this,
- void *destination, unsigned length,
- void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
- void **use_virt, dma_addr_t *use_phys)
- {
- struct device *dev = this->dev;
- if (virt_addr_valid(destination)) {
- dma_addr_t dest_phys;
- dest_phys = dma_map_single(dev, destination,
- length, DMA_FROM_DEVICE);
- if (dma_mapping_error(dev, dest_phys)) {
- if (alt_size < length) {
- pr_err("%s, Alternate buffer is too small\n",
- __func__);
- return -ENOMEM;
- }
- goto map_failed;
- }
- *use_virt = destination;
- *use_phys = dest_phys;
- this->direct_dma_map_ok = true;
- return 0;
- }
- map_failed:
- *use_virt = alt_virt;
- *use_phys = alt_phys;
- this->direct_dma_map_ok = false;
- return 0;
- }
- static inline void read_page_end(struct gpmi_nand_data *this,
- void *destination, unsigned length,
- void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
- void *used_virt, dma_addr_t used_phys)
- {
- if (this->direct_dma_map_ok)
- dma_unmap_single(this->dev, used_phys, length, DMA_FROM_DEVICE);
- }
- static inline void read_page_swap_end(struct gpmi_nand_data *this,
- void *destination, unsigned length,
- void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
- void *used_virt, dma_addr_t used_phys)
- {
- if (!this->direct_dma_map_ok)
- memcpy(destination, alt_virt, length);
- }
- static int send_page_prepare(struct gpmi_nand_data *this,
- const void *source, unsigned length,
- void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
- const void **use_virt, dma_addr_t *use_phys)
- {
- struct device *dev = this->dev;
- if (virt_addr_valid(source)) {
- dma_addr_t source_phys;
- source_phys = dma_map_single(dev, (void *)source, length,
- DMA_TO_DEVICE);
- if (dma_mapping_error(dev, source_phys)) {
- if (alt_size < length) {
- pr_err("%s, Alternate buffer is too small\n",
- __func__);
- return -ENOMEM;
- }
- goto map_failed;
- }
- *use_virt = source;
- *use_phys = source_phys;
- return 0;
- }
- map_failed:
- /*
- * Copy the content of the source buffer into the alternate
- * buffer and set up the return values accordingly.
- */
- memcpy(alt_virt, source, length);
- *use_virt = alt_virt;
- *use_phys = alt_phys;
- return 0;
- }
- static void send_page_end(struct gpmi_nand_data *this,
- const void *source, unsigned length,
- void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
- const void *used_virt, dma_addr_t used_phys)
- {
- struct device *dev = this->dev;
- if (used_virt == source)
- dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE);
- }
- static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
- {
- struct device *dev = this->dev;
- if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt))
- dma_free_coherent(dev, this->page_buffer_size,
- this->page_buffer_virt,
- this->page_buffer_phys);
- kfree(this->cmd_buffer);
- kfree(this->data_buffer_dma);
- this->cmd_buffer = NULL;
- this->data_buffer_dma = NULL;
- this->page_buffer_virt = NULL;
- this->page_buffer_size = 0;
- }
- /* Allocate the DMA buffers */
- static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
- {
- struct bch_geometry *geo = &this->bch_geometry;
- struct device *dev = this->dev;
- /* [1] Allocate a command buffer. PAGE_SIZE is enough. */
- this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL);
- if (this->cmd_buffer == NULL)
- goto error_alloc;
- /* [2] Allocate a read/write data buffer. PAGE_SIZE is enough. */
- this->data_buffer_dma = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL);
- if (this->data_buffer_dma == NULL)
- goto error_alloc;
- /*
- * [3] Allocate the page buffer.
- *
- * Both the payload buffer and the auxiliary buffer must appear on
- * 32-bit boundaries. We presume the size of the payload buffer is a
- * power of two and is much larger than four, which guarantees the
- * auxiliary buffer will appear on a 32-bit boundary.
- */
- this->page_buffer_size = geo->payload_size + geo->auxiliary_size;
- this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size,
- &this->page_buffer_phys, GFP_DMA);
- if (!this->page_buffer_virt)
- goto error_alloc;
- /* Slice up the page buffer. */
- this->payload_virt = this->page_buffer_virt;
- this->payload_phys = this->page_buffer_phys;
- this->auxiliary_virt = this->payload_virt + geo->payload_size;
- this->auxiliary_phys = this->payload_phys + geo->payload_size;
- return 0;
- error_alloc:
- gpmi_free_dma_buffer(this);
- pr_err("Error allocating DMA buffers!\n");
- return -ENOMEM;
- }
- static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
- {
- struct nand_chip *chip = mtd->priv;
- struct gpmi_nand_data *this = chip->priv;
- int ret;
- /*
- * Every operation begins with a command byte and a series of zero or
- * more address bytes. These are distinguished by either the Address
- * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
- * asserted. When MTD is ready to execute the command, it will deassert
- * both latch enables.
- *
- * Rather than run a separate DMA operation for every single byte, we
- * queue them up and run a single DMA operation for the entire series
- * of command and data bytes. NAND_CMD_NONE means the END of the queue.
- */
- if ((ctrl & (NAND_ALE | NAND_CLE))) {
- if (data != NAND_CMD_NONE)
- this->cmd_buffer[this->command_length++] = data;
- return;
- }
- if (!this->command_length)
- return;
- ret = gpmi_send_command(this);
- if (ret)
- pr_err("Chip: %u, Error %d\n", this->current_chip, ret);
- this->command_length = 0;
- }
- static int gpmi_dev_ready(struct mtd_info *mtd)
- {
- struct nand_chip *chip = mtd->priv;
- struct gpmi_nand_data *this = chip->priv;
- return gpmi_is_ready(this, this->current_chip);
- }
- static void gpmi_select_chip(struct mtd_info *mtd, int chipnr)
- {
- struct nand_chip *chip = mtd->priv;
- struct gpmi_nand_data *this = chip->priv;
- if ((this->current_chip < 0) && (chipnr >= 0))
- gpmi_begin(this);
- else if ((this->current_chip >= 0) && (chipnr < 0))
- gpmi_end(this);
- this->current_chip = chipnr;
- }
- static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
- {
- struct nand_chip *chip = mtd->priv;
- struct gpmi_nand_data *this = chip->priv;
- pr_debug("len is %d\n", len);
- this->upper_buf = buf;
- this->upper_len = len;
- gpmi_read_data(this);
- }
- static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
- {
- struct nand_chip *chip = mtd->priv;
- struct gpmi_nand_data *this = chip->priv;
- pr_debug("len is %d\n", len);
- this->upper_buf = (uint8_t *)buf;
- this->upper_len = len;
- gpmi_send_data(this);
- }
- static uint8_t gpmi_read_byte(struct mtd_info *mtd)
- {
- struct nand_chip *chip = mtd->priv;
- struct gpmi_nand_data *this = chip->priv;
- uint8_t *buf = this->data_buffer_dma;
- gpmi_read_buf(mtd, buf, 1);
- return buf[0];
- }
- /*
- * Handles block mark swapping.
- * It can be called in swapping the block mark, or swapping it back,
- * because the the operations are the same.
- */
- static void block_mark_swapping(struct gpmi_nand_data *this,
- void *payload, void *auxiliary)
- {
- struct bch_geometry *nfc_geo = &this->bch_geometry;
- unsigned char *p;
- unsigned char *a;
- unsigned int bit;
- unsigned char mask;
- unsigned char from_data;
- unsigned char from_oob;
- if (!this->swap_block_mark)
- return;
- /*
- * If control arrives here, we're swapping. Make some convenience
- * variables.
- */
- bit = nfc_geo->block_mark_bit_offset;
- p = payload + nfc_geo->block_mark_byte_offset;
- a = auxiliary;
- /*
- * Get the byte from the data area that overlays the block mark. Since
- * the ECC engine applies its own view to the bits in the page, the
- * physical block mark won't (in general) appear on a byte boundary in
- * the data.
- */
- from_data = (p[0] >> bit) | (p[1] << (8 - bit));
- /* Get the byte from the OOB. */
- from_oob = a[0];
- /* Swap them. */
- a[0] = from_data;
- mask = (0x1 << bit) - 1;
- p[0] = (p[0] & mask) | (from_oob << bit);
- mask = ~0 << bit;
- p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
- }
- static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
- uint8_t *buf, int oob_required, int page)
- {
- struct gpmi_nand_data *this = chip->priv;
- struct bch_geometry *nfc_geo = &this->bch_geometry;
- void *payload_virt;
- dma_addr_t payload_phys;
- void *auxiliary_virt;
- dma_addr_t auxiliary_phys;
- unsigned int i;
- unsigned char *status;
- unsigned int max_bitflips = 0;
- int ret;
- pr_debug("page number is : %d\n", page);
- ret = read_page_prepare(this, buf, mtd->writesize,
- this->payload_virt, this->payload_phys,
- nfc_geo->payload_size,
- &payload_virt, &payload_phys);
- if (ret) {
- pr_err("Inadequate DMA buffer\n");
- ret = -ENOMEM;
- return ret;
- }
- auxiliary_virt = this->auxiliary_virt;
- auxiliary_phys = this->auxiliary_phys;
- /* go! */
- ret = gpmi_read_page(this, payload_phys, auxiliary_phys);
- read_page_end(this, buf, mtd->writesize,
- this->payload_virt, this->payload_phys,
- nfc_geo->payload_size,
- payload_virt, payload_phys);
- if (ret) {
- pr_err("Error in ECC-based read: %d\n", ret);
- return ret;
- }
- /* handle the block mark swapping */
- block_mark_swapping(this, payload_virt, auxiliary_virt);
- /* Loop over status bytes, accumulating ECC status. */
- status = auxiliary_virt + nfc_geo->auxiliary_status_offset;
- for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) {
- if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
- continue;
- if (*status == STATUS_UNCORRECTABLE) {
- mtd->ecc_stats.failed++;
- continue;
- }
- mtd->ecc_stats.corrected += *status;
- max_bitflips = max_t(unsigned int, max_bitflips, *status);
- }
- if (oob_required) {
- /*
- * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
- * for details about our policy for delivering the OOB.
- *
- * We fill the caller's buffer with set bits, and then copy the
- * block mark to th caller's buffer. Note that, if block mark
- * swapping was necessary, it has already been done, so we can
- * rely on the first byte of the auxiliary buffer to contain
- * the block mark.
- */
- memset(chip->oob_poi, ~0, mtd->oobsize);
- chip->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0];
- }
- read_page_swap_end(this, buf, mtd->writesize,
- this->payload_virt, this->payload_phys,
- nfc_geo->payload_size,
- payload_virt, payload_phys);
- return max_bitflips;
- }
- static int gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
- const uint8_t *buf, int oob_required)
- {
- struct gpmi_nand_data *this = chip->priv;
- struct bch_geometry *nfc_geo = &this->bch_geometry;
- const void *payload_virt;
- dma_addr_t payload_phys;
- const void *auxiliary_virt;
- dma_addr_t auxiliary_phys;
- int ret;
- pr_debug("ecc write page.\n");
- if (this->swap_block_mark) {
- /*
- * If control arrives here, we're doing block mark swapping.
- * Since we can't modify the caller's buffers, we must copy them
- * into our own.
- */
- memcpy(this->payload_virt, buf, mtd->writesize);
- payload_virt = this->payload_virt;
- payload_phys = this->payload_phys;
- memcpy(this->auxiliary_virt, chip->oob_poi,
- nfc_geo->auxiliary_size);
- auxiliary_virt = this->auxiliary_virt;
- auxiliary_phys = this->auxiliary_phys;
- /* Handle block mark swapping. */
- block_mark_swapping(this,
- (void *) payload_virt, (void *) auxiliary_virt);
- } else {
- /*
- * If control arrives here, we're not doing block mark swapping,
- * so we can to try and use the caller's buffers.
- */
- ret = send_page_prepare(this,
- buf, mtd->writesize,
- this->payload_virt, this->payload_phys,
- nfc_geo->payload_size,
- &payload_virt, &payload_phys);
- if (ret) {
- pr_err("Inadequate payload DMA buffer\n");
- return 0;
- }
- ret = send_page_prepare(this,
- chip->oob_poi, mtd->oobsize,
- this->auxiliary_virt, this->auxiliary_phys,
- nfc_geo->auxiliary_size,
- &auxiliary_virt, &auxiliary_phys);
- if (ret) {
- pr_err("Inadequate auxiliary DMA buffer\n");
- goto exit_auxiliary;
- }
- }
- /* Ask the NFC. */
- ret = gpmi_send_page(this, payload_phys, auxiliary_phys);
- if (ret)
- pr_err("Error in ECC-based write: %d\n", ret);
- if (!this->swap_block_mark) {
- send_page_end(this, chip->oob_poi, mtd->oobsize,
- this->auxiliary_virt, this->auxiliary_phys,
- nfc_geo->auxiliary_size,
- auxiliary_virt, auxiliary_phys);
- exit_auxiliary:
- send_page_end(this, buf, mtd->writesize,
- this->payload_virt, this->payload_phys,
- nfc_geo->payload_size,
- payload_virt, payload_phys);
- }
- return 0;
- }
- /*
- * There are several places in this driver where we have to handle the OOB and
- * block marks. This is the function where things are the most complicated, so
- * this is where we try to explain it all. All the other places refer back to
- * here.
- *
- * These are the rules, in order of decreasing importance:
- *
- * 1) Nothing the caller does can be allowed to imperil the block mark.
- *
- * 2) In read operations, the first byte of the OOB we return must reflect the
- * true state of the block mark, no matter where that block mark appears in
- * the physical page.
- *
- * 3) ECC-based read operations return an OOB full of set bits (since we never
- * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
- * return).
- *
- * 4) "Raw" read operations return a direct view of the physical bytes in the
- * page, using the conventional definition of which bytes are data and which
- * are OOB. This gives the caller a way to see the actual, physical bytes
- * in the page, without the distortions applied by our ECC engine.
- *
- *
- * What we do for this specific read operation depends on two questions:
- *
- * 1) Are we doing a "raw" read, or an ECC-based read?
- *
- * 2) Are we using block mark swapping or transcription?
- *
- * There are four cases, illustrated by the following Karnaugh map:
- *
- * | Raw | ECC-based |
- * -------------+-------------------------+-------------------------+
- * | Read the conventional | |
- * | OOB at the end of the | |
- * Swapping | page and return it. It | |
- * | contains exactly what | |
- * | we want. | Read the block mark and |
- * -------------+-------------------------+ return it in a buffer |
- * | Read the conventional | full of set bits. |
- * | OOB at the end of the | |
- * | page and also the block | |
- * Transcribing | mark in the metadata. | |
- * | Copy the block mark | |
- * | into the first byte of | |
- * | the OOB. | |
- * -------------+-------------------------+-------------------------+
- *
- * Note that we break rule #4 in the Transcribing/Raw case because we're not
- * giving an accurate view of the actual, physical bytes in the page (we're
- * overwriting the block mark). That's OK because it's more important to follow
- * rule #2.
- *
- * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
- * easy. When reading a page, for example, the NAND Flash MTD code calls our
- * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
- * ECC-based or raw view of the page is implicit in which function it calls
- * (there is a similar pair of ECC-based/raw functions for writing).
- *
- * FIXME: The following paragraph is incorrect, now that there exist
- * ecc.read_oob_raw and ecc.write_oob_raw functions.
- *
- * Since MTD assumes the OOB is not covered by ECC, there is no pair of
- * ECC-based/raw functions for reading or or writing the OOB. The fact that the
- * caller wants an ECC-based or raw view of the page is not propagated down to
- * this driver.
- */
- static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
- int page)
- {
- struct gpmi_nand_data *this = chip->priv;
- pr_debug("page number is %d\n", page);
- /* clear the OOB buffer */
- memset(chip->oob_poi, ~0, mtd->oobsize);
- /* Read out the conventional OOB. */
- chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
- chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
- /*
- * Now, we want to make sure the block mark is correct. In the
- * Swapping/Raw case, we already have it. Otherwise, we need to
- * explicitly read it.
- */
- if (!this->swap_block_mark) {
- /* Read the block mark into the first byte of the OOB buffer. */
- chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
- chip->oob_poi[0] = chip->read_byte(mtd);
- }
- return 0;
- }
- static int
- gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page)
- {
- /*
- * The BCH will use all the (page + oob).
- * Our gpmi_hw_ecclayout can only prohibit the JFFS2 to write the oob.
- * But it can not stop some ioctls such MEMWRITEOOB which uses
- * MTD_OPS_PLACE_OOB. So We have to implement this function to prohibit
- * these ioctls too.
- */
- return -EPERM;
- }
- static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs)
- {
- struct nand_chip *chip = mtd->priv;
- struct gpmi_nand_data *this = chip->priv;
- int block, ret = 0;
- uint8_t *block_mark;
- int column, page, status, chipnr;
- /* Get block number */
- block = (int)(ofs >> chip->bbt_erase_shift);
- if (chip->bbt)
- chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
- /* Do we have a flash based bad block table ? */
- if (chip->bbt_options & NAND_BBT_USE_FLASH)
- ret = nand_update_bbt(mtd, ofs);
- else {
- chipnr = (int)(ofs >> chip->chip_shift);
- chip->select_chip(mtd, chipnr);
- column = this->swap_block_mark ? mtd->writesize : 0;
- /* Write the block mark. */
- block_mark = this->data_buffer_dma;
- block_mark[0] = 0; /* bad block marker */
- /* Shift to get page */
- page = (int)(ofs >> chip->page_shift);
- chip->cmdfunc(mtd, NAND_CMD_SEQIN, column, page);
- chip->write_buf(mtd, block_mark, 1);
- chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
- status = chip->waitfunc(mtd, chip);
- if (status & NAND_STATUS_FAIL)
- ret = -EIO;
- chip->select_chip(mtd, -1);
- }
- if (!ret)
- mtd->ecc_stats.badblocks++;
- return ret;
- }
- static int nand_boot_set_geometry(struct gpmi_nand_data *this)
- {
- struct boot_rom_geometry *geometry = &this->rom_geometry;
- /*
- * Set the boot block stride size.
- *
- * In principle, we should be reading this from the OTP bits, since
- * that's where the ROM is going to get it. In fact, we don't have any
- * way to read the OTP bits, so we go with the default and hope for the
- * best.
- */
- geometry->stride_size_in_pages = 64;
- /*
- * Set the search area stride exponent.
- *
- * In principle, we should be reading this from the OTP bits, since
- * that's where the ROM is going to get it. In fact, we don't have any
- * way to read the OTP bits, so we go with the default and hope for the
- * best.
- */
- geometry->search_area_stride_exponent = 2;
- return 0;
- }
- static const char *fingerprint = "STMP";
- static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
- {
- struct boot_rom_geometry *rom_geo = &this->rom_geometry;
- struct device *dev = this->dev;
- struct mtd_info *mtd = &this->mtd;
- struct nand_chip *chip = &this->nand;
- unsigned int search_area_size_in_strides;
- unsigned int stride;
- unsigned int page;
- uint8_t *buffer = chip->buffers->databuf;
- int saved_chip_number;
- int found_an_ncb_fingerprint = false;
- /* Compute the number of strides in a search area. */
- search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
- saved_chip_number = this->current_chip;
- chip->select_chip(mtd, 0);
- /*
- * Loop through the first search area, looking for the NCB fingerprint.
- */
- dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
- for (stride = 0; stride < search_area_size_in_strides; stride++) {
- /* Compute the page addresses. */
- page = stride * rom_geo->stride_size_in_pages;
- dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
- /*
- * Read the NCB fingerprint. The fingerprint is four bytes long
- * and starts in the 12th byte of the page.
- */
- chip->cmdfunc(mtd, NAND_CMD_READ0, 12, page);
- chip->read_buf(mtd, buffer, strlen(fingerprint));
- /* Look for the fingerprint. */
- if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
- found_an_ncb_fingerprint = true;
- break;
- }
- }
- chip->select_chip(mtd, saved_chip_number);
- if (found_an_ncb_fingerprint)
- dev_dbg(dev, "\tFound a fingerprint\n");
- else
- dev_dbg(dev, "\tNo fingerprint found\n");
- return found_an_ncb_fingerprint;
- }
- /* Writes a transcription stamp. */
- static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
- {
- struct device *dev = this->dev;
- struct boot_rom_geometry *rom_geo = &this->rom_geometry;
- struct mtd_info *mtd = &this->mtd;
- struct nand_chip *chip = &this->nand;
- unsigned int block_size_in_pages;
- unsigned int search_area_size_in_strides;
- unsigned int search_area_size_in_pages;
- unsigned int search_area_size_in_blocks;
- unsigned int block;
- unsigned int stride;
- unsigned int page;
- uint8_t *buffer = chip->buffers->databuf;
- int saved_chip_number;
- int status;
- /* Compute the search area geometry. */
- block_size_in_pages = mtd->erasesize / mtd->writesize;
- search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
- search_area_size_in_pages = search_area_size_in_strides *
- rom_geo->stride_size_in_pages;
- search_area_size_in_blocks =
- (search_area_size_in_pages + (block_size_in_pages - 1)) /
- block_size_in_pages;
- dev_dbg(dev, "Search Area Geometry :\n");
- dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
- dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
- dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages);
- /* Select chip 0. */
- saved_chip_number = this->current_chip;
- chip->select_chip(mtd, 0);
- /* Loop over blocks in the first search area, erasing them. */
- dev_dbg(dev, "Erasing the search area...\n");
- for (block = 0; block < search_area_size_in_blocks; block++) {
- /* Compute the page address. */
- page = block * block_size_in_pages;
- /* Erase this block. */
- dev_dbg(dev, "\tErasing block 0x%x\n", block);
- chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
- chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
- /* Wait for the erase to finish. */
- status = chip->waitfunc(mtd, chip);
- if (status & NAND_STATUS_FAIL)
- dev_err(dev, "[%s] Erase failed.\n", __func__);
- }
- /* Write the NCB fingerprint into the page buffer. */
- memset(buffer, ~0, mtd->writesize);
- memset(chip->oob_poi, ~0, mtd->oobsize);
- memcpy(buffer + 12, fingerprint, strlen(fingerprint));
- /* Loop through the first search area, writing NCB fingerprints. */
- dev_dbg(dev, "Writing NCB fingerprints...\n");
- for (stride = 0; stride < search_area_size_in_strides; stride++) {
- /* Compute the page addresses. */
- page = stride * rom_geo->stride_size_in_pages;
- /* Write the first page of the current stride. */
- dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
- chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
- chip->ecc.write_page_raw(mtd, chip, buffer, 0);
- chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
- /* Wait for the write to finish. */
- status = chip->waitfunc(mtd, chip);
- if (status & NAND_STATUS_FAIL)
- dev_err(dev, "[%s] Write failed.\n", __func__);
- }
- /* Deselect chip 0. */
- chip->select_chip(mtd, saved_chip_number);
- return 0;
- }
- static int mx23_boot_init(struct gpmi_nand_data *this)
- {
- struct device *dev = this->dev;
- struct nand_chip *chip = &this->nand;
- struct mtd_info *mtd = &this->mtd;
- unsigned int block_count;
- unsigned int block;
- int chipnr;
- int page;
- loff_t byte;
- uint8_t block_mark;
- int ret = 0;
- /*
- * If control arrives here, we can't use block mark swapping, which
- * means we're forced to use transcription. First, scan for the
- * transcription stamp. If we find it, then we don't have to do
- * anything -- the block marks are already transcribed.
- */
- if (mx23_check_transcription_stamp(this))
- return 0;
- /*
- * If control arrives here, we couldn't find a transcription stamp, so
- * so we presume the block marks are in the conventional location.
- */
- dev_dbg(dev, "Transcribing bad block marks...\n");
- /* Compute the number of blocks in the entire medium. */
- block_count = chip->chipsize >> chip->phys_erase_shift;
- /*
- * Loop over all the blocks in the medium, transcribing block marks as
- * we go.
- */
- for (block = 0; block < block_count; block++) {
- /*
- * Compute the chip, page and byte addresses for this block's
- * conventional mark.
- */
- chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
- page = block << (chip->phys_erase_shift - chip->page_shift);
- byte = block << chip->phys_erase_shift;
- /* Send the command to read the conventional block mark. */
- chip->select_chip(mtd, chipnr);
- chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
- block_mark = chip->read_byte(mtd);
- chip->select_chip(mtd, -1);
- /*
- * Check if the block is marked bad. If so, we need to mark it
- * again, but this time the result will be a mark in the
- * location where we transcribe block marks.
- */
- if (block_mark != 0xff) {
- dev_dbg(dev, "Transcribing mark in block %u\n", block);
- ret = chip->block_markbad(mtd, byte);
- if (ret)
- dev_err(dev, "Failed to mark block bad with "
- "ret %d\n", ret);
- }
- }
- /* Write the stamp that indicates we've transcribed the block marks. */
- mx23_write_transcription_stamp(this);
- return 0;
- }
- static int nand_boot_init(struct gpmi_nand_data *this)
- {
- nand_boot_set_geometry(this);
- /* This is ROM arch-specific initilization before the BBT scanning. */
- if (GPMI_IS_MX23(this))
- return mx23_boot_init(this);
- return 0;
- }
- static int gpmi_set_geometry(struct gpmi_nand_data *this)
- {
- int ret;
- /* Free the temporary DMA memory for reading ID. */
- gpmi_free_dma_buffer(this);
- /* Set up the NFC geometry which is used by BCH. */
- ret = bch_set_geometry(this);
- if (ret) {
- pr_err("Error setting BCH geometry : %d\n", ret);
- return ret;
- }
- /* Alloc the new DMA buffers according to the pagesize and oobsize */
- return gpmi_alloc_dma_buffer(this);
- }
- static int gpmi_pre_bbt_scan(struct gpmi_nand_data *this)
- {
- int ret;
- /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
- if (GPMI_IS_MX23(this))
- this->swap_block_mark = false;
- else
- this->swap_block_mark = true;
- /* Set up the medium geometry */
- ret = gpmi_set_geometry(this);
- if (ret)
- return ret;
- /* Adjust the ECC strength according to the chip. */
- this->nand.ecc.strength = this->bch_geometry.ecc_strength;
- this->mtd.ecc_strength = this->bch_geometry.ecc_strength;
- this->mtd.bitflip_threshold = this->bch_geometry.ecc_strength;
- /* NAND boot init, depends on the gpmi_set_geometry(). */
- return nand_boot_init(this);
- }
- static int gpmi_scan_bbt(struct mtd_info *mtd)
- {
- struct nand_chip *chip = mtd->priv;
- struct gpmi_nand_data *this = chip->priv;
- int ret;
- /* Prepare for the BBT scan. */
- ret = gpmi_pre_bbt_scan(this);
- if (ret)
- return ret;
- /*
- * Can we enable the extra features? such as EDO or Sync mode.
- *
- * We do not check the return value now. That's means if we fail in
- * enable the extra features, we still can run in the normal way.
- */
- gpmi_extra_init(this);
- /* use the default BBT implementation */
- return nand_default_bbt(mtd);
- }
- static void gpmi_nfc_exit(struct gpmi_nand_data *this)
- {
- nand_release(&this->mtd);
- gpmi_free_dma_buffer(this);
- }
- static int gpmi_nfc_init(struct gpmi_nand_data *this)
- {
- struct mtd_info *mtd = &this->mtd;
- struct nand_chip *chip = &this->nand;
- struct mtd_part_parser_data ppdata = {};
- int ret;
- /* init current chip */
- this->current_chip = -1;
- /* init the MTD data structures */
- mtd->priv = chip;
- mtd->name = "gpmi-nand";
- mtd->owner = THIS_MODULE;
- /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
- chip->priv = this;
- chip->select_chip = gpmi_select_chip;
- chip->cmd_ctrl = gpmi_cmd_ctrl;
- chip->dev_ready = gpmi_dev_ready;
- chip->read_byte = gpmi_read_byte;
- chip->read_buf = gpmi_read_buf;
- chip->write_buf = gpmi_write_buf;
- chip->ecc.read_page = gpmi_ecc_read_page;
- chip->ecc.write_page = gpmi_ecc_write_page;
- chip->ecc.read_oob = gpmi_ecc_read_oob;
- chip->ecc.write_oob = gpmi_ecc_write_oob;
- chip->scan_bbt = gpmi_scan_bbt;
- chip->badblock_pattern = &gpmi_bbt_descr;
- chip->block_markbad = gpmi_block_markbad;
- chip->options |= NAND_NO_SUBPAGE_WRITE;
- chip->ecc.mode = NAND_ECC_HW;
- chip->ecc.size = 1;
- chip->ecc.strength = 8;
- chip->ecc.layout = &gpmi_hw_ecclayout;
- if (of_get_nand_on_flash_bbt(this->dev->of_node))
- chip->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
- /* Allocate a temporary DMA buffer for reading ID in the nand_scan() */
- this->bch_geometry.payload_size = 1024;
- this->bch_geometry.auxiliary_size = 128;
- ret = gpmi_alloc_dma_buffer(this);
- if (ret)
- goto err_out;
- ret = nand_scan(mtd, 1);
- if (ret) {
- pr_err("Chip scan failed\n");
- goto err_out;
- }
- ppdata.of_node = this->pdev->dev.of_node;
- ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
- if (ret)
- goto err_out;
- return 0;
- err_out:
- gpmi_nfc_exit(this);
- return ret;
- }
- static const struct platform_device_id gpmi_ids[] = {
- { .name = "imx23-gpmi-nand", .driver_data = IS_MX23, },
- { .name = "imx28-gpmi-nand", .driver_data = IS_MX28, },
- { .name = "imx6q-gpmi-nand", .driver_data = IS_MX6Q, },
- {},
- };
- static const struct of_device_id gpmi_nand_id_table[] = {
- {
- .compatible = "fsl,imx23-gpmi-nand",
- .data = (void *)&gpmi_ids[IS_MX23]
- }, {
- .compatible = "fsl,imx28-gpmi-nand",
- .data = (void *)&gpmi_ids[IS_MX28]
- }, {
- .compatible = "fsl,imx6q-gpmi-nand",
- .data = (void *)&gpmi_ids[IS_MX6Q]
- }, {}
- };
- MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);
- static int gpmi_nand_probe(struct platform_device *pdev)
- {
- struct gpmi_nand_data *this;
- const struct of_device_id *of_id;
- int ret;
- of_id = of_match_device(gpmi_nand_id_table, &pdev->dev);
- if (of_id) {
- pdev->id_entry = of_id->data;
- } else {
- pr_err("Failed to find the right device id.\n");
- return -ENOMEM;
- }
- this = kzalloc(sizeof(*this), GFP_KERNEL);
- if (!this) {
- pr_err("Failed to allocate per-device memory\n");
- return -ENOMEM;
- }
- platform_set_drvdata(pdev, this);
- this->pdev = pdev;
- this->dev = &pdev->dev;
- ret = acquire_resources(this);
- if (ret)
- goto exit_acquire_resources;
- ret = init_hardware(this);
- if (ret)
- goto exit_nfc_init;
- ret = gpmi_nfc_init(this);
- if (ret)
- goto exit_nfc_init;
- dev_info(this->dev, "driver registered.\n");
- return 0;
- exit_nfc_init:
- release_resources(this);
- exit_acquire_resources:
- platform_set_drvdata(pdev, NULL);
- dev_err(this->dev, "driver registration failed: %d\n", ret);
- kfree(this);
- return ret;
- }
- static int gpmi_nand_remove(struct platform_device *pdev)
- {
- struct gpmi_nand_data *this = platform_get_drvdata(pdev);
- gpmi_nfc_exit(this);
- release_resources(this);
- platform_set_drvdata(pdev, NULL);
- kfree(this);
- return 0;
- }
- static struct platform_driver gpmi_nand_driver = {
- .driver = {
- .name = "gpmi-nand",
- .of_match_table = gpmi_nand_id_table,
- },
- .probe = gpmi_nand_probe,
- .remove = gpmi_nand_remove,
- .id_table = gpmi_ids,
- };
- module_platform_driver(gpmi_nand_driver);
- MODULE_AUTHOR("Freescale Semiconductor, Inc.");
- MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
- MODULE_LICENSE("GPL");
|