hw-me.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576
  1. /*
  2. *
  3. * Intel Management Engine Interface (Intel MEI) Linux driver
  4. * Copyright (c) 2003-2012, Intel Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms and conditions of the GNU General Public License,
  8. * version 2, as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. */
  16. #include <linux/pci.h>
  17. #include <linux/kthread.h>
  18. #include <linux/interrupt.h>
  19. #include "mei_dev.h"
  20. #include "hw-me.h"
  21. #include "hbm.h"
  22. /**
  23. * mei_reg_read - Reads 32bit data from the mei device
  24. *
  25. * @dev: the device structure
  26. * @offset: offset from which to read the data
  27. *
  28. * returns register value (u32)
  29. */
  30. static inline u32 mei_reg_read(const struct mei_me_hw *hw,
  31. unsigned long offset)
  32. {
  33. return ioread32(hw->mem_addr + offset);
  34. }
  35. /**
  36. * mei_reg_write - Writes 32bit data to the mei device
  37. *
  38. * @dev: the device structure
  39. * @offset: offset from which to write the data
  40. * @value: register value to write (u32)
  41. */
  42. static inline void mei_reg_write(const struct mei_me_hw *hw,
  43. unsigned long offset, u32 value)
  44. {
  45. iowrite32(value, hw->mem_addr + offset);
  46. }
  47. /**
  48. * mei_mecbrw_read - Reads 32bit data from ME circular buffer
  49. * read window register
  50. *
  51. * @dev: the device structure
  52. *
  53. * returns ME_CB_RW register value (u32)
  54. */
  55. static u32 mei_me_mecbrw_read(const struct mei_device *dev)
  56. {
  57. return mei_reg_read(to_me_hw(dev), ME_CB_RW);
  58. }
  59. /**
  60. * mei_mecsr_read - Reads 32bit data from the ME CSR
  61. *
  62. * @dev: the device structure
  63. *
  64. * returns ME_CSR_HA register value (u32)
  65. */
  66. static inline u32 mei_mecsr_read(const struct mei_me_hw *hw)
  67. {
  68. return mei_reg_read(hw, ME_CSR_HA);
  69. }
  70. /**
  71. * mei_hcsr_read - Reads 32bit data from the host CSR
  72. *
  73. * @dev: the device structure
  74. *
  75. * returns H_CSR register value (u32)
  76. */
  77. static inline u32 mei_hcsr_read(const struct mei_me_hw *hw)
  78. {
  79. return mei_reg_read(hw, H_CSR);
  80. }
  81. /**
  82. * mei_hcsr_set - writes H_CSR register to the mei device,
  83. * and ignores the H_IS bit for it is write-one-to-zero.
  84. *
  85. * @dev: the device structure
  86. */
  87. static inline void mei_hcsr_set(struct mei_me_hw *hw, u32 hcsr)
  88. {
  89. hcsr &= ~H_IS;
  90. mei_reg_write(hw, H_CSR, hcsr);
  91. }
  92. /**
  93. * me_hw_config - configure hw dependent settings
  94. *
  95. * @dev: mei device
  96. */
  97. static void mei_me_hw_config(struct mei_device *dev)
  98. {
  99. u32 hcsr = mei_hcsr_read(to_me_hw(dev));
  100. /* Doesn't change in runtime */
  101. dev->hbuf_depth = (hcsr & H_CBD) >> 24;
  102. }
  103. /**
  104. * mei_clear_interrupts - clear and stop interrupts
  105. *
  106. * @dev: the device structure
  107. */
  108. static void mei_me_intr_clear(struct mei_device *dev)
  109. {
  110. struct mei_me_hw *hw = to_me_hw(dev);
  111. u32 hcsr = mei_hcsr_read(hw);
  112. if ((hcsr & H_IS) == H_IS)
  113. mei_reg_write(hw, H_CSR, hcsr);
  114. }
  115. /**
  116. * mei_me_intr_enable - enables mei device interrupts
  117. *
  118. * @dev: the device structure
  119. */
  120. static void mei_me_intr_enable(struct mei_device *dev)
  121. {
  122. struct mei_me_hw *hw = to_me_hw(dev);
  123. u32 hcsr = mei_hcsr_read(hw);
  124. hcsr |= H_IE;
  125. mei_hcsr_set(hw, hcsr);
  126. }
  127. /**
  128. * mei_disable_interrupts - disables mei device interrupts
  129. *
  130. * @dev: the device structure
  131. */
  132. static void mei_me_intr_disable(struct mei_device *dev)
  133. {
  134. struct mei_me_hw *hw = to_me_hw(dev);
  135. u32 hcsr = mei_hcsr_read(hw);
  136. hcsr &= ~H_IE;
  137. mei_hcsr_set(hw, hcsr);
  138. }
  139. /**
  140. * mei_me_hw_reset - resets fw via mei csr register.
  141. *
  142. * @dev: the device structure
  143. * @interrupts_enabled: if interrupt should be enabled after reset.
  144. */
  145. static void mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
  146. {
  147. struct mei_me_hw *hw = to_me_hw(dev);
  148. u32 hcsr = mei_hcsr_read(hw);
  149. dev_dbg(&dev->pdev->dev, "before reset HCSR = 0x%08x.\n", hcsr);
  150. hcsr |= (H_RST | H_IG);
  151. if (intr_enable)
  152. hcsr |= H_IE;
  153. else
  154. hcsr &= ~H_IE;
  155. mei_hcsr_set(hw, hcsr);
  156. hcsr = mei_hcsr_read(hw) | H_IG;
  157. hcsr &= ~H_RST;
  158. mei_hcsr_set(hw, hcsr);
  159. hcsr = mei_hcsr_read(hw);
  160. dev_dbg(&dev->pdev->dev, "current HCSR = 0x%08x.\n", hcsr);
  161. }
  162. /**
  163. * mei_me_host_set_ready - enable device
  164. *
  165. * @dev - mei device
  166. * returns bool
  167. */
  168. static void mei_me_host_set_ready(struct mei_device *dev)
  169. {
  170. struct mei_me_hw *hw = to_me_hw(dev);
  171. hw->host_hw_state |= H_IE | H_IG | H_RDY;
  172. mei_hcsr_set(hw, hw->host_hw_state);
  173. }
  174. /**
  175. * mei_me_host_is_ready - check whether the host has turned ready
  176. *
  177. * @dev - mei device
  178. * returns bool
  179. */
  180. static bool mei_me_host_is_ready(struct mei_device *dev)
  181. {
  182. struct mei_me_hw *hw = to_me_hw(dev);
  183. hw->host_hw_state = mei_hcsr_read(hw);
  184. return (hw->host_hw_state & H_RDY) == H_RDY;
  185. }
  186. /**
  187. * mei_me_hw_is_ready - check whether the me(hw) has turned ready
  188. *
  189. * @dev - mei device
  190. * returns bool
  191. */
  192. static bool mei_me_hw_is_ready(struct mei_device *dev)
  193. {
  194. struct mei_me_hw *hw = to_me_hw(dev);
  195. hw->me_hw_state = mei_mecsr_read(hw);
  196. return (hw->me_hw_state & ME_RDY_HRA) == ME_RDY_HRA;
  197. }
  198. /**
  199. * mei_hbuf_filled_slots - gets number of device filled buffer slots
  200. *
  201. * @dev: the device structure
  202. *
  203. * returns number of filled slots
  204. */
  205. static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
  206. {
  207. struct mei_me_hw *hw = to_me_hw(dev);
  208. char read_ptr, write_ptr;
  209. hw->host_hw_state = mei_hcsr_read(hw);
  210. read_ptr = (char) ((hw->host_hw_state & H_CBRP) >> 8);
  211. write_ptr = (char) ((hw->host_hw_state & H_CBWP) >> 16);
  212. return (unsigned char) (write_ptr - read_ptr);
  213. }
  214. /**
  215. * mei_hbuf_is_empty - checks if host buffer is empty.
  216. *
  217. * @dev: the device structure
  218. *
  219. * returns true if empty, false - otherwise.
  220. */
  221. static bool mei_me_hbuf_is_empty(struct mei_device *dev)
  222. {
  223. return mei_hbuf_filled_slots(dev) == 0;
  224. }
  225. /**
  226. * mei_me_hbuf_empty_slots - counts write empty slots.
  227. *
  228. * @dev: the device structure
  229. *
  230. * returns -1(ESLOTS_OVERFLOW) if overflow, otherwise empty slots count
  231. */
  232. static int mei_me_hbuf_empty_slots(struct mei_device *dev)
  233. {
  234. unsigned char filled_slots, empty_slots;
  235. filled_slots = mei_hbuf_filled_slots(dev);
  236. empty_slots = dev->hbuf_depth - filled_slots;
  237. /* check for overflow */
  238. if (filled_slots > dev->hbuf_depth)
  239. return -EOVERFLOW;
  240. return empty_slots;
  241. }
  242. static size_t mei_me_hbuf_max_len(const struct mei_device *dev)
  243. {
  244. return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr);
  245. }
  246. /**
  247. * mei_write_message - writes a message to mei device.
  248. *
  249. * @dev: the device structure
  250. * @header: mei HECI header of message
  251. * @buf: message payload will be written
  252. *
  253. * This function returns -EIO if write has failed
  254. */
  255. static int mei_me_write_message(struct mei_device *dev,
  256. struct mei_msg_hdr *header,
  257. unsigned char *buf)
  258. {
  259. struct mei_me_hw *hw = to_me_hw(dev);
  260. unsigned long rem, dw_cnt;
  261. unsigned long length = header->length;
  262. u32 *reg_buf = (u32 *)buf;
  263. u32 hcsr;
  264. int i;
  265. int empty_slots;
  266. dev_dbg(&dev->pdev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
  267. empty_slots = mei_hbuf_empty_slots(dev);
  268. dev_dbg(&dev->pdev->dev, "empty slots = %hu.\n", empty_slots);
  269. dw_cnt = mei_data2slots(length);
  270. if (empty_slots < 0 || dw_cnt > empty_slots)
  271. return -EIO;
  272. mei_reg_write(hw, H_CB_WW, *((u32 *) header));
  273. for (i = 0; i < length / 4; i++)
  274. mei_reg_write(hw, H_CB_WW, reg_buf[i]);
  275. rem = length & 0x3;
  276. if (rem > 0) {
  277. u32 reg = 0;
  278. memcpy(&reg, &buf[length - rem], rem);
  279. mei_reg_write(hw, H_CB_WW, reg);
  280. }
  281. hcsr = mei_hcsr_read(hw) | H_IG;
  282. mei_hcsr_set(hw, hcsr);
  283. if (!mei_me_hw_is_ready(dev))
  284. return -EIO;
  285. return 0;
  286. }
  287. /**
  288. * mei_me_count_full_read_slots - counts read full slots.
  289. *
  290. * @dev: the device structure
  291. *
  292. * returns -1(ESLOTS_OVERFLOW) if overflow, otherwise filled slots count
  293. */
  294. static int mei_me_count_full_read_slots(struct mei_device *dev)
  295. {
  296. struct mei_me_hw *hw = to_me_hw(dev);
  297. char read_ptr, write_ptr;
  298. unsigned char buffer_depth, filled_slots;
  299. hw->me_hw_state = mei_mecsr_read(hw);
  300. buffer_depth = (unsigned char)((hw->me_hw_state & ME_CBD_HRA) >> 24);
  301. read_ptr = (char) ((hw->me_hw_state & ME_CBRP_HRA) >> 8);
  302. write_ptr = (char) ((hw->me_hw_state & ME_CBWP_HRA) >> 16);
  303. filled_slots = (unsigned char) (write_ptr - read_ptr);
  304. /* check for overflow */
  305. if (filled_slots > buffer_depth)
  306. return -EOVERFLOW;
  307. dev_dbg(&dev->pdev->dev, "filled_slots =%08x\n", filled_slots);
  308. return (int)filled_slots;
  309. }
  310. /**
  311. * mei_me_read_slots - reads a message from mei device.
  312. *
  313. * @dev: the device structure
  314. * @buffer: message buffer will be written
  315. * @buffer_length: message size will be read
  316. */
  317. static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
  318. unsigned long buffer_length)
  319. {
  320. struct mei_me_hw *hw = to_me_hw(dev);
  321. u32 *reg_buf = (u32 *)buffer;
  322. u32 hcsr;
  323. for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32))
  324. *reg_buf++ = mei_me_mecbrw_read(dev);
  325. if (buffer_length > 0) {
  326. u32 reg = mei_me_mecbrw_read(dev);
  327. memcpy(reg_buf, &reg, buffer_length);
  328. }
  329. hcsr = mei_hcsr_read(hw) | H_IG;
  330. mei_hcsr_set(hw, hcsr);
  331. return 0;
  332. }
  333. /**
  334. * mei_me_irq_quick_handler - The ISR of the MEI device
  335. *
  336. * @irq: The irq number
  337. * @dev_id: pointer to the device structure
  338. *
  339. * returns irqreturn_t
  340. */
  341. irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
  342. {
  343. struct mei_device *dev = (struct mei_device *) dev_id;
  344. struct mei_me_hw *hw = to_me_hw(dev);
  345. u32 csr_reg = mei_hcsr_read(hw);
  346. if ((csr_reg & H_IS) != H_IS)
  347. return IRQ_NONE;
  348. /* clear H_IS bit in H_CSR */
  349. mei_reg_write(hw, H_CSR, csr_reg);
  350. return IRQ_WAKE_THREAD;
  351. }
  352. /**
  353. * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
  354. * processing.
  355. *
  356. * @irq: The irq number
  357. * @dev_id: pointer to the device structure
  358. *
  359. * returns irqreturn_t
  360. *
  361. */
  362. irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
  363. {
  364. struct mei_device *dev = (struct mei_device *) dev_id;
  365. struct mei_cl_cb complete_list;
  366. struct mei_cl_cb *cb_pos = NULL, *cb_next = NULL;
  367. struct mei_cl *cl;
  368. s32 slots;
  369. int rets;
  370. bool bus_message_received;
  371. dev_dbg(&dev->pdev->dev, "function called after ISR to handle the interrupt processing.\n");
  372. /* initialize our complete list */
  373. mutex_lock(&dev->device_lock);
  374. mei_io_list_init(&complete_list);
  375. /* Ack the interrupt here
  376. * In case of MSI we don't go through the quick handler */
  377. if (pci_dev_msi_enabled(dev->pdev))
  378. mei_clear_interrupts(dev);
  379. /* check if ME wants a reset */
  380. if (!mei_hw_is_ready(dev) &&
  381. dev->dev_state != MEI_DEV_RESETING &&
  382. dev->dev_state != MEI_DEV_INITIALIZING) {
  383. dev_dbg(&dev->pdev->dev, "FW not ready.\n");
  384. mei_reset(dev, 1);
  385. mutex_unlock(&dev->device_lock);
  386. return IRQ_HANDLED;
  387. }
  388. /* check if we need to start the dev */
  389. if (!mei_host_is_ready(dev)) {
  390. if (mei_hw_is_ready(dev)) {
  391. dev_dbg(&dev->pdev->dev, "we need to start the dev.\n");
  392. mei_host_set_ready(dev);
  393. dev_dbg(&dev->pdev->dev, "link is established start sending messages.\n");
  394. /* link is established * start sending messages. */
  395. dev->dev_state = MEI_DEV_INIT_CLIENTS;
  396. mei_hbm_start_req(dev);
  397. mutex_unlock(&dev->device_lock);
  398. return IRQ_HANDLED;
  399. } else {
  400. dev_dbg(&dev->pdev->dev, "FW not ready.\n");
  401. mutex_unlock(&dev->device_lock);
  402. return IRQ_HANDLED;
  403. }
  404. }
  405. /* check slots available for reading */
  406. slots = mei_count_full_read_slots(dev);
  407. while (slots > 0) {
  408. /* we have urgent data to send so break the read */
  409. if (dev->wr_ext_msg.hdr.length)
  410. break;
  411. dev_dbg(&dev->pdev->dev, "slots =%08x\n", slots);
  412. dev_dbg(&dev->pdev->dev, "call mei_irq_read_handler.\n");
  413. rets = mei_irq_read_handler(dev, &complete_list, &slots);
  414. if (rets)
  415. goto end;
  416. }
  417. rets = mei_irq_write_handler(dev, &complete_list);
  418. end:
  419. dev_dbg(&dev->pdev->dev, "end of bottom half function.\n");
  420. dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
  421. bus_message_received = false;
  422. if (dev->recvd_msg && waitqueue_active(&dev->wait_recvd_msg)) {
  423. dev_dbg(&dev->pdev->dev, "received waiting bus message\n");
  424. bus_message_received = true;
  425. }
  426. mutex_unlock(&dev->device_lock);
  427. if (bus_message_received) {
  428. dev_dbg(&dev->pdev->dev, "wake up dev->wait_recvd_msg\n");
  429. wake_up_interruptible(&dev->wait_recvd_msg);
  430. bus_message_received = false;
  431. }
  432. if (list_empty(&complete_list.list))
  433. return IRQ_HANDLED;
  434. list_for_each_entry_safe(cb_pos, cb_next, &complete_list.list, list) {
  435. cl = cb_pos->cl;
  436. list_del(&cb_pos->list);
  437. if (cl) {
  438. if (cl != &dev->iamthif_cl) {
  439. dev_dbg(&dev->pdev->dev, "completing call back.\n");
  440. mei_irq_complete_handler(cl, cb_pos);
  441. cb_pos = NULL;
  442. } else if (cl == &dev->iamthif_cl) {
  443. mei_amthif_complete(dev, cb_pos);
  444. }
  445. }
  446. }
  447. return IRQ_HANDLED;
  448. }
  449. static const struct mei_hw_ops mei_me_hw_ops = {
  450. .host_set_ready = mei_me_host_set_ready,
  451. .host_is_ready = mei_me_host_is_ready,
  452. .hw_is_ready = mei_me_hw_is_ready,
  453. .hw_reset = mei_me_hw_reset,
  454. .hw_config = mei_me_hw_config,
  455. .intr_clear = mei_me_intr_clear,
  456. .intr_enable = mei_me_intr_enable,
  457. .intr_disable = mei_me_intr_disable,
  458. .hbuf_free_slots = mei_me_hbuf_empty_slots,
  459. .hbuf_is_ready = mei_me_hbuf_is_empty,
  460. .hbuf_max_len = mei_me_hbuf_max_len,
  461. .write = mei_me_write_message,
  462. .rdbuf_full_slots = mei_me_count_full_read_slots,
  463. .read_hdr = mei_me_mecbrw_read,
  464. .read = mei_me_read_slots
  465. };
  466. /**
  467. * init_mei_device - allocates and initializes the mei device structure
  468. *
  469. * @pdev: The pci device structure
  470. *
  471. * returns The mei_device_device pointer on success, NULL on failure.
  472. */
  473. struct mei_device *mei_me_dev_init(struct pci_dev *pdev)
  474. {
  475. struct mei_device *dev;
  476. dev = kzalloc(sizeof(struct mei_device) +
  477. sizeof(struct mei_me_hw), GFP_KERNEL);
  478. if (!dev)
  479. return NULL;
  480. mei_device_init(dev);
  481. INIT_LIST_HEAD(&dev->wd_cl.link);
  482. INIT_LIST_HEAD(&dev->iamthif_cl.link);
  483. mei_io_list_init(&dev->amthif_cmd_list);
  484. mei_io_list_init(&dev->amthif_rd_complete_list);
  485. INIT_DELAYED_WORK(&dev->timer_work, mei_timer);
  486. INIT_WORK(&dev->init_work, mei_host_client_init);
  487. dev->ops = &mei_me_hw_ops;
  488. dev->pdev = pdev;
  489. return dev;
  490. }