db8500-prcmu.c 82 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231
  1. /*
  2. * Copyright (C) STMicroelectronics 2009
  3. * Copyright (C) ST-Ericsson SA 2010
  4. *
  5. * License Terms: GNU General Public License v2
  6. * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
  7. * Author: Sundar Iyer <sundar.iyer@stericsson.com>
  8. * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
  9. *
  10. * U8500 PRCM Unit interface driver
  11. *
  12. */
  13. #include <linux/module.h>
  14. #include <linux/kernel.h>
  15. #include <linux/delay.h>
  16. #include <linux/errno.h>
  17. #include <linux/err.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/io.h>
  20. #include <linux/slab.h>
  21. #include <linux/mutex.h>
  22. #include <linux/completion.h>
  23. #include <linux/irq.h>
  24. #include <linux/jiffies.h>
  25. #include <linux/bitops.h>
  26. #include <linux/fs.h>
  27. #include <linux/platform_device.h>
  28. #include <linux/uaccess.h>
  29. #include <linux/irqchip/arm-gic.h>
  30. #include <linux/mfd/core.h>
  31. #include <linux/mfd/dbx500-prcmu.h>
  32. #include <linux/mfd/abx500/ab8500.h>
  33. #include <linux/regulator/db8500-prcmu.h>
  34. #include <linux/regulator/machine.h>
  35. #include <linux/cpufreq.h>
  36. #include <linux/platform_data/ux500_wdt.h>
  37. #include <mach/hardware.h>
  38. #include <mach/irqs.h>
  39. #include <mach/db8500-regs.h>
  40. #include "dbx500-prcmu-regs.h"
  41. /* Index of different voltages to be used when accessing AVSData */
  42. #define PRCM_AVS_BASE 0x2FC
  43. #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
  44. #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
  45. #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
  46. #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
  47. #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
  48. #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
  49. #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
  50. #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
  51. #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
  52. #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
  53. #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
  54. #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
  55. #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
  56. #define PRCM_AVS_VOLTAGE 0
  57. #define PRCM_AVS_VOLTAGE_MASK 0x3f
  58. #define PRCM_AVS_ISSLOWSTARTUP 6
  59. #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
  60. #define PRCM_AVS_ISMODEENABLE 7
  61. #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
  62. #define PRCM_BOOT_STATUS 0xFFF
  63. #define PRCM_ROMCODE_A2P 0xFFE
  64. #define PRCM_ROMCODE_P2A 0xFFD
  65. #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
  66. #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
  67. #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
  68. #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
  69. #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
  70. #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
  71. #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
  72. #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
  73. #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
  74. #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
  75. /* Req Mailboxes */
  76. #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
  77. #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
  78. #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
  79. #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
  80. #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
  81. #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
  82. /* Ack Mailboxes */
  83. #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
  84. #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
  85. #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
  86. #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
  87. #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
  88. #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
  89. /* Mailbox 0 headers */
  90. #define MB0H_POWER_STATE_TRANS 0
  91. #define MB0H_CONFIG_WAKEUPS_EXE 1
  92. #define MB0H_READ_WAKEUP_ACK 3
  93. #define MB0H_CONFIG_WAKEUPS_SLEEP 4
  94. #define MB0H_WAKEUP_EXE 2
  95. #define MB0H_WAKEUP_SLEEP 5
  96. /* Mailbox 0 REQs */
  97. #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
  98. #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
  99. #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
  100. #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
  101. #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
  102. #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
  103. /* Mailbox 0 ACKs */
  104. #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
  105. #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
  106. #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
  107. #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
  108. #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
  109. #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
  110. #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
  111. /* Mailbox 1 headers */
  112. #define MB1H_ARM_APE_OPP 0x0
  113. #define MB1H_RESET_MODEM 0x2
  114. #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
  115. #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
  116. #define MB1H_RELEASE_USB_WAKEUP 0x5
  117. #define MB1H_PLL_ON_OFF 0x6
  118. /* Mailbox 1 Requests */
  119. #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
  120. #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
  121. #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
  122. #define PLL_SOC0_OFF 0x1
  123. #define PLL_SOC0_ON 0x2
  124. #define PLL_SOC1_OFF 0x4
  125. #define PLL_SOC1_ON 0x8
  126. /* Mailbox 1 ACKs */
  127. #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
  128. #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
  129. #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
  130. #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
  131. /* Mailbox 2 headers */
  132. #define MB2H_DPS 0x0
  133. #define MB2H_AUTO_PWR 0x1
  134. /* Mailbox 2 REQs */
  135. #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
  136. #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
  137. #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
  138. #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
  139. #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
  140. #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
  141. #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
  142. #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
  143. #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
  144. #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
  145. /* Mailbox 2 ACKs */
  146. #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
  147. #define HWACC_PWR_ST_OK 0xFE
  148. /* Mailbox 3 headers */
  149. #define MB3H_ANC 0x0
  150. #define MB3H_SIDETONE 0x1
  151. #define MB3H_SYSCLK 0xE
  152. /* Mailbox 3 Requests */
  153. #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
  154. #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
  155. #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
  156. #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
  157. #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
  158. #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
  159. #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
  160. /* Mailbox 4 headers */
  161. #define MB4H_DDR_INIT 0x0
  162. #define MB4H_MEM_ST 0x1
  163. #define MB4H_HOTDOG 0x12
  164. #define MB4H_HOTMON 0x13
  165. #define MB4H_HOT_PERIOD 0x14
  166. #define MB4H_A9WDOG_CONF 0x16
  167. #define MB4H_A9WDOG_EN 0x17
  168. #define MB4H_A9WDOG_DIS 0x18
  169. #define MB4H_A9WDOG_LOAD 0x19
  170. #define MB4H_A9WDOG_KICK 0x20
  171. /* Mailbox 4 Requests */
  172. #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
  173. #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
  174. #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
  175. #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
  176. #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
  177. #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
  178. #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
  179. #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
  180. #define HOTMON_CONFIG_LOW BIT(0)
  181. #define HOTMON_CONFIG_HIGH BIT(1)
  182. #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
  183. #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
  184. #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
  185. #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
  186. #define A9WDOG_AUTO_OFF_EN BIT(7)
  187. #define A9WDOG_AUTO_OFF_DIS 0
  188. #define A9WDOG_ID_MASK 0xf
  189. /* Mailbox 5 Requests */
  190. #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
  191. #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
  192. #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
  193. #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
  194. #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
  195. #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
  196. #define PRCMU_I2C_STOP_EN BIT(3)
  197. /* Mailbox 5 ACKs */
  198. #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
  199. #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
  200. #define I2C_WR_OK 0x1
  201. #define I2C_RD_OK 0x2
  202. #define NUM_MB 8
  203. #define MBOX_BIT BIT
  204. #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
  205. /*
  206. * Wakeups/IRQs
  207. */
  208. #define WAKEUP_BIT_RTC BIT(0)
  209. #define WAKEUP_BIT_RTT0 BIT(1)
  210. #define WAKEUP_BIT_RTT1 BIT(2)
  211. #define WAKEUP_BIT_HSI0 BIT(3)
  212. #define WAKEUP_BIT_HSI1 BIT(4)
  213. #define WAKEUP_BIT_CA_WAKE BIT(5)
  214. #define WAKEUP_BIT_USB BIT(6)
  215. #define WAKEUP_BIT_ABB BIT(7)
  216. #define WAKEUP_BIT_ABB_FIFO BIT(8)
  217. #define WAKEUP_BIT_SYSCLK_OK BIT(9)
  218. #define WAKEUP_BIT_CA_SLEEP BIT(10)
  219. #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
  220. #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
  221. #define WAKEUP_BIT_ANC_OK BIT(13)
  222. #define WAKEUP_BIT_SW_ERROR BIT(14)
  223. #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
  224. #define WAKEUP_BIT_ARM BIT(17)
  225. #define WAKEUP_BIT_HOTMON_LOW BIT(18)
  226. #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
  227. #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
  228. #define WAKEUP_BIT_GPIO0 BIT(23)
  229. #define WAKEUP_BIT_GPIO1 BIT(24)
  230. #define WAKEUP_BIT_GPIO2 BIT(25)
  231. #define WAKEUP_BIT_GPIO3 BIT(26)
  232. #define WAKEUP_BIT_GPIO4 BIT(27)
  233. #define WAKEUP_BIT_GPIO5 BIT(28)
  234. #define WAKEUP_BIT_GPIO6 BIT(29)
  235. #define WAKEUP_BIT_GPIO7 BIT(30)
  236. #define WAKEUP_BIT_GPIO8 BIT(31)
  237. static struct {
  238. bool valid;
  239. struct prcmu_fw_version version;
  240. } fw_info;
  241. static struct irq_domain *db8500_irq_domain;
  242. /*
  243. * This vector maps irq numbers to the bits in the bit field used in
  244. * communication with the PRCMU firmware.
  245. *
  246. * The reason for having this is to keep the irq numbers contiguous even though
  247. * the bits in the bit field are not. (The bits also have a tendency to move
  248. * around, to further complicate matters.)
  249. */
  250. #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
  251. #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
  252. static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
  253. IRQ_ENTRY(RTC),
  254. IRQ_ENTRY(RTT0),
  255. IRQ_ENTRY(RTT1),
  256. IRQ_ENTRY(HSI0),
  257. IRQ_ENTRY(HSI1),
  258. IRQ_ENTRY(CA_WAKE),
  259. IRQ_ENTRY(USB),
  260. IRQ_ENTRY(ABB),
  261. IRQ_ENTRY(ABB_FIFO),
  262. IRQ_ENTRY(CA_SLEEP),
  263. IRQ_ENTRY(ARM),
  264. IRQ_ENTRY(HOTMON_LOW),
  265. IRQ_ENTRY(HOTMON_HIGH),
  266. IRQ_ENTRY(MODEM_SW_RESET_REQ),
  267. IRQ_ENTRY(GPIO0),
  268. IRQ_ENTRY(GPIO1),
  269. IRQ_ENTRY(GPIO2),
  270. IRQ_ENTRY(GPIO3),
  271. IRQ_ENTRY(GPIO4),
  272. IRQ_ENTRY(GPIO5),
  273. IRQ_ENTRY(GPIO6),
  274. IRQ_ENTRY(GPIO7),
  275. IRQ_ENTRY(GPIO8)
  276. };
  277. #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
  278. #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
  279. static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
  280. WAKEUP_ENTRY(RTC),
  281. WAKEUP_ENTRY(RTT0),
  282. WAKEUP_ENTRY(RTT1),
  283. WAKEUP_ENTRY(HSI0),
  284. WAKEUP_ENTRY(HSI1),
  285. WAKEUP_ENTRY(USB),
  286. WAKEUP_ENTRY(ABB),
  287. WAKEUP_ENTRY(ABB_FIFO),
  288. WAKEUP_ENTRY(ARM)
  289. };
  290. /*
  291. * mb0_transfer - state needed for mailbox 0 communication.
  292. * @lock: The transaction lock.
  293. * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
  294. * the request data.
  295. * @mask_work: Work structure used for (un)masking wakeup interrupts.
  296. * @req: Request data that need to persist between requests.
  297. */
  298. static struct {
  299. spinlock_t lock;
  300. spinlock_t dbb_irqs_lock;
  301. struct work_struct mask_work;
  302. struct mutex ac_wake_lock;
  303. struct completion ac_wake_work;
  304. struct {
  305. u32 dbb_irqs;
  306. u32 dbb_wakeups;
  307. u32 abb_events;
  308. } req;
  309. } mb0_transfer;
  310. /*
  311. * mb1_transfer - state needed for mailbox 1 communication.
  312. * @lock: The transaction lock.
  313. * @work: The transaction completion structure.
  314. * @ape_opp: The current APE OPP.
  315. * @ack: Reply ("acknowledge") data.
  316. */
  317. static struct {
  318. struct mutex lock;
  319. struct completion work;
  320. u8 ape_opp;
  321. struct {
  322. u8 header;
  323. u8 arm_opp;
  324. u8 ape_opp;
  325. u8 ape_voltage_status;
  326. } ack;
  327. } mb1_transfer;
  328. /*
  329. * mb2_transfer - state needed for mailbox 2 communication.
  330. * @lock: The transaction lock.
  331. * @work: The transaction completion structure.
  332. * @auto_pm_lock: The autonomous power management configuration lock.
  333. * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
  334. * @req: Request data that need to persist between requests.
  335. * @ack: Reply ("acknowledge") data.
  336. */
  337. static struct {
  338. struct mutex lock;
  339. struct completion work;
  340. spinlock_t auto_pm_lock;
  341. bool auto_pm_enabled;
  342. struct {
  343. u8 status;
  344. } ack;
  345. } mb2_transfer;
  346. /*
  347. * mb3_transfer - state needed for mailbox 3 communication.
  348. * @lock: The request lock.
  349. * @sysclk_lock: A lock used to handle concurrent sysclk requests.
  350. * @sysclk_work: Work structure used for sysclk requests.
  351. */
  352. static struct {
  353. spinlock_t lock;
  354. struct mutex sysclk_lock;
  355. struct completion sysclk_work;
  356. } mb3_transfer;
  357. /*
  358. * mb4_transfer - state needed for mailbox 4 communication.
  359. * @lock: The transaction lock.
  360. * @work: The transaction completion structure.
  361. */
  362. static struct {
  363. struct mutex lock;
  364. struct completion work;
  365. } mb4_transfer;
  366. /*
  367. * mb5_transfer - state needed for mailbox 5 communication.
  368. * @lock: The transaction lock.
  369. * @work: The transaction completion structure.
  370. * @ack: Reply ("acknowledge") data.
  371. */
  372. static struct {
  373. struct mutex lock;
  374. struct completion work;
  375. struct {
  376. u8 status;
  377. u8 value;
  378. } ack;
  379. } mb5_transfer;
  380. static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
  381. /* Spinlocks */
  382. static DEFINE_SPINLOCK(prcmu_lock);
  383. static DEFINE_SPINLOCK(clkout_lock);
  384. /* Global var to runtime determine TCDM base for v2 or v1 */
  385. static __iomem void *tcdm_base;
  386. struct clk_mgt {
  387. void __iomem *reg;
  388. u32 pllsw;
  389. int branch;
  390. bool clk38div;
  391. };
  392. enum {
  393. PLL_RAW,
  394. PLL_FIX,
  395. PLL_DIV
  396. };
  397. static DEFINE_SPINLOCK(clk_mgt_lock);
  398. #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
  399. { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
  400. struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
  401. CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
  402. CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
  403. CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
  404. CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
  405. CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
  406. CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
  407. CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
  408. CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
  409. CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
  410. CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
  411. CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
  412. CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
  413. CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
  414. CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
  415. CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
  416. CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
  417. CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
  418. CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
  419. CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
  420. CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
  421. CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
  422. CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
  423. CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
  424. CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
  425. CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
  426. CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
  427. CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
  428. CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
  429. CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
  430. };
  431. struct dsiclk {
  432. u32 divsel_mask;
  433. u32 divsel_shift;
  434. u32 divsel;
  435. };
  436. static struct dsiclk dsiclk[2] = {
  437. {
  438. .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
  439. .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
  440. .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
  441. },
  442. {
  443. .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
  444. .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
  445. .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
  446. }
  447. };
  448. struct dsiescclk {
  449. u32 en;
  450. u32 div_mask;
  451. u32 div_shift;
  452. };
  453. static struct dsiescclk dsiescclk[3] = {
  454. {
  455. .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
  456. .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
  457. .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
  458. },
  459. {
  460. .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
  461. .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
  462. .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
  463. },
  464. {
  465. .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
  466. .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
  467. .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
  468. }
  469. };
  470. /*
  471. * Used by MCDE to setup all necessary PRCMU registers
  472. */
  473. #define PRCMU_RESET_DSIPLL 0x00004000
  474. #define PRCMU_UNCLAMP_DSIPLL 0x00400800
  475. #define PRCMU_CLK_PLL_DIV_SHIFT 0
  476. #define PRCMU_CLK_PLL_SW_SHIFT 5
  477. #define PRCMU_CLK_38 (1 << 9)
  478. #define PRCMU_CLK_38_SRC (1 << 10)
  479. #define PRCMU_CLK_38_DIV (1 << 11)
  480. /* PLLDIV=12, PLLSW=4 (PLLDDR) */
  481. #define PRCMU_DSI_CLOCK_SETTING 0x0000008C
  482. /* DPI 50000000 Hz */
  483. #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
  484. (16 << PRCMU_CLK_PLL_DIV_SHIFT))
  485. #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
  486. /* D=101, N=1, R=4, SELDIV2=0 */
  487. #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
  488. #define PRCMU_ENABLE_PLLDSI 0x00000001
  489. #define PRCMU_DISABLE_PLLDSI 0x00000000
  490. #define PRCMU_RELEASE_RESET_DSS 0x0000400C
  491. #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
  492. /* ESC clk, div0=1, div1=1, div2=3 */
  493. #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
  494. #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
  495. #define PRCMU_DSI_RESET_SW 0x00000007
  496. #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
  497. int db8500_prcmu_enable_dsipll(void)
  498. {
  499. int i;
  500. /* Clear DSIPLL_RESETN */
  501. writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
  502. /* Unclamp DSIPLL in/out */
  503. writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
  504. /* Set DSI PLL FREQ */
  505. writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
  506. writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
  507. /* Enable Escape clocks */
  508. writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
  509. /* Start DSI PLL */
  510. writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
  511. /* Reset DSI PLL */
  512. writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
  513. for (i = 0; i < 10; i++) {
  514. if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
  515. == PRCMU_PLLDSI_LOCKP_LOCKED)
  516. break;
  517. udelay(100);
  518. }
  519. /* Set DSIPLL_RESETN */
  520. writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
  521. return 0;
  522. }
  523. int db8500_prcmu_disable_dsipll(void)
  524. {
  525. /* Disable dsi pll */
  526. writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
  527. /* Disable escapeclock */
  528. writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
  529. return 0;
  530. }
  531. int db8500_prcmu_set_display_clocks(void)
  532. {
  533. unsigned long flags;
  534. spin_lock_irqsave(&clk_mgt_lock, flags);
  535. /* Grab the HW semaphore. */
  536. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  537. cpu_relax();
  538. writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT);
  539. writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
  540. writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
  541. /* Release the HW semaphore. */
  542. writel(0, PRCM_SEM);
  543. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  544. return 0;
  545. }
  546. u32 db8500_prcmu_read(unsigned int reg)
  547. {
  548. return readl(_PRCMU_BASE + reg);
  549. }
  550. void db8500_prcmu_write(unsigned int reg, u32 value)
  551. {
  552. unsigned long flags;
  553. spin_lock_irqsave(&prcmu_lock, flags);
  554. writel(value, (_PRCMU_BASE + reg));
  555. spin_unlock_irqrestore(&prcmu_lock, flags);
  556. }
  557. void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
  558. {
  559. u32 val;
  560. unsigned long flags;
  561. spin_lock_irqsave(&prcmu_lock, flags);
  562. val = readl(_PRCMU_BASE + reg);
  563. val = ((val & ~mask) | (value & mask));
  564. writel(val, (_PRCMU_BASE + reg));
  565. spin_unlock_irqrestore(&prcmu_lock, flags);
  566. }
  567. struct prcmu_fw_version *prcmu_get_fw_version(void)
  568. {
  569. return fw_info.valid ? &fw_info.version : NULL;
  570. }
  571. bool prcmu_has_arm_maxopp(void)
  572. {
  573. return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
  574. PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
  575. }
  576. /**
  577. * prcmu_get_boot_status - PRCMU boot status checking
  578. * Returns: the current PRCMU boot status
  579. */
  580. int prcmu_get_boot_status(void)
  581. {
  582. return readb(tcdm_base + PRCM_BOOT_STATUS);
  583. }
  584. /**
  585. * prcmu_set_rc_a2p - This function is used to run few power state sequences
  586. * @val: Value to be set, i.e. transition requested
  587. * Returns: 0 on success, -EINVAL on invalid argument
  588. *
  589. * This function is used to run the following power state sequences -
  590. * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
  591. */
  592. int prcmu_set_rc_a2p(enum romcode_write val)
  593. {
  594. if (val < RDY_2_DS || val > RDY_2_XP70_RST)
  595. return -EINVAL;
  596. writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
  597. return 0;
  598. }
  599. /**
  600. * prcmu_get_rc_p2a - This function is used to get power state sequences
  601. * Returns: the power transition that has last happened
  602. *
  603. * This function can return the following transitions-
  604. * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
  605. */
  606. enum romcode_read prcmu_get_rc_p2a(void)
  607. {
  608. return readb(tcdm_base + PRCM_ROMCODE_P2A);
  609. }
  610. /**
  611. * prcmu_get_current_mode - Return the current XP70 power mode
  612. * Returns: Returns the current AP(ARM) power mode: init,
  613. * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
  614. */
  615. enum ap_pwrst prcmu_get_xp70_current_state(void)
  616. {
  617. return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
  618. }
  619. /**
  620. * prcmu_config_clkout - Configure one of the programmable clock outputs.
  621. * @clkout: The CLKOUT number (0 or 1).
  622. * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
  623. * @div: The divider to be applied.
  624. *
  625. * Configures one of the programmable clock outputs (CLKOUTs).
  626. * @div should be in the range [1,63] to request a configuration, or 0 to
  627. * inform that the configuration is no longer requested.
  628. */
  629. int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
  630. {
  631. static int requests[2];
  632. int r = 0;
  633. unsigned long flags;
  634. u32 val;
  635. u32 bits;
  636. u32 mask;
  637. u32 div_mask;
  638. BUG_ON(clkout > 1);
  639. BUG_ON(div > 63);
  640. BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
  641. if (!div && !requests[clkout])
  642. return -EINVAL;
  643. switch (clkout) {
  644. case 0:
  645. div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
  646. mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
  647. bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
  648. (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
  649. break;
  650. case 1:
  651. div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
  652. mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
  653. PRCM_CLKOCR_CLK1TYPE);
  654. bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
  655. (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
  656. break;
  657. }
  658. bits &= mask;
  659. spin_lock_irqsave(&clkout_lock, flags);
  660. val = readl(PRCM_CLKOCR);
  661. if (val & div_mask) {
  662. if (div) {
  663. if ((val & mask) != bits) {
  664. r = -EBUSY;
  665. goto unlock_and_return;
  666. }
  667. } else {
  668. if ((val & mask & ~div_mask) != bits) {
  669. r = -EINVAL;
  670. goto unlock_and_return;
  671. }
  672. }
  673. }
  674. writel((bits | (val & ~mask)), PRCM_CLKOCR);
  675. requests[clkout] += (div ? 1 : -1);
  676. unlock_and_return:
  677. spin_unlock_irqrestore(&clkout_lock, flags);
  678. return r;
  679. }
  680. int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
  681. {
  682. unsigned long flags;
  683. BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
  684. spin_lock_irqsave(&mb0_transfer.lock, flags);
  685. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  686. cpu_relax();
  687. writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  688. writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
  689. writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
  690. writeb((keep_ulp_clk ? 1 : 0),
  691. (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
  692. writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
  693. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  694. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  695. return 0;
  696. }
  697. u8 db8500_prcmu_get_power_state_result(void)
  698. {
  699. return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
  700. }
  701. /* This function decouple the gic from the prcmu */
  702. int db8500_prcmu_gic_decouple(void)
  703. {
  704. u32 val = readl(PRCM_A9_MASK_REQ);
  705. /* Set bit 0 register value to 1 */
  706. writel(val | PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ,
  707. PRCM_A9_MASK_REQ);
  708. /* Make sure the register is updated */
  709. readl(PRCM_A9_MASK_REQ);
  710. /* Wait a few cycles for the gic mask completion */
  711. udelay(1);
  712. return 0;
  713. }
  714. /* This function recouple the gic with the prcmu */
  715. int db8500_prcmu_gic_recouple(void)
  716. {
  717. u32 val = readl(PRCM_A9_MASK_REQ);
  718. /* Set bit 0 register value to 0 */
  719. writel(val & ~PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ, PRCM_A9_MASK_REQ);
  720. return 0;
  721. }
  722. #define PRCMU_GIC_NUMBER_REGS 5
  723. /*
  724. * This function checks if there are pending irq on the gic. It only
  725. * makes sense if the gic has been decoupled before with the
  726. * db8500_prcmu_gic_decouple function. Disabling an interrupt only
  727. * disables the forwarding of the interrupt to any CPU interface. It
  728. * does not prevent the interrupt from changing state, for example
  729. * becoming pending, or active and pending if it is already
  730. * active. Hence, we have to check the interrupt is pending *and* is
  731. * active.
  732. */
  733. bool db8500_prcmu_gic_pending_irq(void)
  734. {
  735. u32 pr; /* Pending register */
  736. u32 er; /* Enable register */
  737. void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
  738. int i;
  739. /* 5 registers. STI & PPI not skipped */
  740. for (i = 0; i < PRCMU_GIC_NUMBER_REGS; i++) {
  741. pr = readl_relaxed(dist_base + GIC_DIST_PENDING_SET + i * 4);
  742. er = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
  743. if (pr & er)
  744. return true; /* There is a pending interrupt */
  745. }
  746. return false;
  747. }
  748. /*
  749. * This function checks if there are pending interrupt on the
  750. * prcmu which has been delegated to monitor the irqs with the
  751. * db8500_prcmu_copy_gic_settings function.
  752. */
  753. bool db8500_prcmu_pending_irq(void)
  754. {
  755. u32 it, im;
  756. int i;
  757. for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
  758. it = readl(PRCM_ARMITVAL31TO0 + i * 4);
  759. im = readl(PRCM_ARMITMSK31TO0 + i * 4);
  760. if (it & im)
  761. return true; /* There is a pending interrupt */
  762. }
  763. return false;
  764. }
  765. /*
  766. * This function checks if the specified cpu is in in WFI. It's usage
  767. * makes sense only if the gic is decoupled with the db8500_prcmu_gic_decouple
  768. * function. Of course passing smp_processor_id() to this function will
  769. * always return false...
  770. */
  771. bool db8500_prcmu_is_cpu_in_wfi(int cpu)
  772. {
  773. return readl(PRCM_ARM_WFI_STANDBY) & cpu ? PRCM_ARM_WFI_STANDBY_WFI1 :
  774. PRCM_ARM_WFI_STANDBY_WFI0;
  775. }
  776. /*
  777. * This function copies the gic SPI settings to the prcmu in order to
  778. * monitor them and abort/finish the retention/off sequence or state.
  779. */
  780. int db8500_prcmu_copy_gic_settings(void)
  781. {
  782. u32 er; /* Enable register */
  783. void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
  784. int i;
  785. /* We skip the STI and PPI */
  786. for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
  787. er = readl_relaxed(dist_base +
  788. GIC_DIST_ENABLE_SET + (i + 1) * 4);
  789. writel(er, PRCM_ARMITMSK31TO0 + i * 4);
  790. }
  791. return 0;
  792. }
  793. /* This function should only be called while mb0_transfer.lock is held. */
  794. static void config_wakeups(void)
  795. {
  796. const u8 header[2] = {
  797. MB0H_CONFIG_WAKEUPS_EXE,
  798. MB0H_CONFIG_WAKEUPS_SLEEP
  799. };
  800. static u32 last_dbb_events;
  801. static u32 last_abb_events;
  802. u32 dbb_events;
  803. u32 abb_events;
  804. unsigned int i;
  805. dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
  806. dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
  807. abb_events = mb0_transfer.req.abb_events;
  808. if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
  809. return;
  810. for (i = 0; i < 2; i++) {
  811. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  812. cpu_relax();
  813. writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
  814. writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
  815. writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  816. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  817. }
  818. last_dbb_events = dbb_events;
  819. last_abb_events = abb_events;
  820. }
  821. void db8500_prcmu_enable_wakeups(u32 wakeups)
  822. {
  823. unsigned long flags;
  824. u32 bits;
  825. int i;
  826. BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
  827. for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
  828. if (wakeups & BIT(i))
  829. bits |= prcmu_wakeup_bit[i];
  830. }
  831. spin_lock_irqsave(&mb0_transfer.lock, flags);
  832. mb0_transfer.req.dbb_wakeups = bits;
  833. config_wakeups();
  834. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  835. }
  836. void db8500_prcmu_config_abb_event_readout(u32 abb_events)
  837. {
  838. unsigned long flags;
  839. spin_lock_irqsave(&mb0_transfer.lock, flags);
  840. mb0_transfer.req.abb_events = abb_events;
  841. config_wakeups();
  842. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  843. }
  844. void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
  845. {
  846. if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
  847. *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
  848. else
  849. *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
  850. }
  851. /**
  852. * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
  853. * @opp: The new ARM operating point to which transition is to be made
  854. * Returns: 0 on success, non-zero on failure
  855. *
  856. * This function sets the the operating point of the ARM.
  857. */
  858. int db8500_prcmu_set_arm_opp(u8 opp)
  859. {
  860. int r;
  861. if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
  862. return -EINVAL;
  863. r = 0;
  864. mutex_lock(&mb1_transfer.lock);
  865. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  866. cpu_relax();
  867. writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  868. writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
  869. writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
  870. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  871. wait_for_completion(&mb1_transfer.work);
  872. if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
  873. (mb1_transfer.ack.arm_opp != opp))
  874. r = -EIO;
  875. mutex_unlock(&mb1_transfer.lock);
  876. return r;
  877. }
  878. /**
  879. * db8500_prcmu_get_arm_opp - get the current ARM OPP
  880. *
  881. * Returns: the current ARM OPP
  882. */
  883. int db8500_prcmu_get_arm_opp(void)
  884. {
  885. return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
  886. }
  887. /**
  888. * db8500_prcmu_get_ddr_opp - get the current DDR OPP
  889. *
  890. * Returns: the current DDR OPP
  891. */
  892. int db8500_prcmu_get_ddr_opp(void)
  893. {
  894. return readb(PRCM_DDR_SUBSYS_APE_MINBW);
  895. }
  896. /**
  897. * db8500_set_ddr_opp - set the appropriate DDR OPP
  898. * @opp: The new DDR operating point to which transition is to be made
  899. * Returns: 0 on success, non-zero on failure
  900. *
  901. * This function sets the operating point of the DDR.
  902. */
  903. static bool enable_set_ddr_opp;
  904. int db8500_prcmu_set_ddr_opp(u8 opp)
  905. {
  906. if (opp < DDR_100_OPP || opp > DDR_25_OPP)
  907. return -EINVAL;
  908. /* Changing the DDR OPP can hang the hardware pre-v21 */
  909. if (enable_set_ddr_opp)
  910. writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
  911. return 0;
  912. }
  913. /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
  914. static void request_even_slower_clocks(bool enable)
  915. {
  916. void __iomem *clock_reg[] = {
  917. PRCM_ACLK_MGT,
  918. PRCM_DMACLK_MGT
  919. };
  920. unsigned long flags;
  921. unsigned int i;
  922. spin_lock_irqsave(&clk_mgt_lock, flags);
  923. /* Grab the HW semaphore. */
  924. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  925. cpu_relax();
  926. for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
  927. u32 val;
  928. u32 div;
  929. val = readl(clock_reg[i]);
  930. div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
  931. if (enable) {
  932. if ((div <= 1) || (div > 15)) {
  933. pr_err("prcmu: Bad clock divider %d in %s\n",
  934. div, __func__);
  935. goto unlock_and_return;
  936. }
  937. div <<= 1;
  938. } else {
  939. if (div <= 2)
  940. goto unlock_and_return;
  941. div >>= 1;
  942. }
  943. val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
  944. (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
  945. writel(val, clock_reg[i]);
  946. }
  947. unlock_and_return:
  948. /* Release the HW semaphore. */
  949. writel(0, PRCM_SEM);
  950. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  951. }
  952. /**
  953. * db8500_set_ape_opp - set the appropriate APE OPP
  954. * @opp: The new APE operating point to which transition is to be made
  955. * Returns: 0 on success, non-zero on failure
  956. *
  957. * This function sets the operating point of the APE.
  958. */
  959. int db8500_prcmu_set_ape_opp(u8 opp)
  960. {
  961. int r = 0;
  962. if (opp == mb1_transfer.ape_opp)
  963. return 0;
  964. mutex_lock(&mb1_transfer.lock);
  965. if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
  966. request_even_slower_clocks(false);
  967. if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
  968. goto skip_message;
  969. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  970. cpu_relax();
  971. writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  972. writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
  973. writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
  974. (tcdm_base + PRCM_REQ_MB1_APE_OPP));
  975. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  976. wait_for_completion(&mb1_transfer.work);
  977. if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
  978. (mb1_transfer.ack.ape_opp != opp))
  979. r = -EIO;
  980. skip_message:
  981. if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
  982. (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
  983. request_even_slower_clocks(true);
  984. if (!r)
  985. mb1_transfer.ape_opp = opp;
  986. mutex_unlock(&mb1_transfer.lock);
  987. return r;
  988. }
  989. /**
  990. * db8500_prcmu_get_ape_opp - get the current APE OPP
  991. *
  992. * Returns: the current APE OPP
  993. */
  994. int db8500_prcmu_get_ape_opp(void)
  995. {
  996. return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
  997. }
  998. /**
  999. * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
  1000. * @enable: true to request the higher voltage, false to drop a request.
  1001. *
  1002. * Calls to this function to enable and disable requests must be balanced.
  1003. */
  1004. int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
  1005. {
  1006. int r = 0;
  1007. u8 header;
  1008. static unsigned int requests;
  1009. mutex_lock(&mb1_transfer.lock);
  1010. if (enable) {
  1011. if (0 != requests++)
  1012. goto unlock_and_return;
  1013. header = MB1H_REQUEST_APE_OPP_100_VOLT;
  1014. } else {
  1015. if (requests == 0) {
  1016. r = -EIO;
  1017. goto unlock_and_return;
  1018. } else if (1 != requests--) {
  1019. goto unlock_and_return;
  1020. }
  1021. header = MB1H_RELEASE_APE_OPP_100_VOLT;
  1022. }
  1023. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  1024. cpu_relax();
  1025. writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  1026. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  1027. wait_for_completion(&mb1_transfer.work);
  1028. if ((mb1_transfer.ack.header != header) ||
  1029. ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
  1030. r = -EIO;
  1031. unlock_and_return:
  1032. mutex_unlock(&mb1_transfer.lock);
  1033. return r;
  1034. }
  1035. /**
  1036. * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
  1037. *
  1038. * This function releases the power state requirements of a USB wakeup.
  1039. */
  1040. int prcmu_release_usb_wakeup_state(void)
  1041. {
  1042. int r = 0;
  1043. mutex_lock(&mb1_transfer.lock);
  1044. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  1045. cpu_relax();
  1046. writeb(MB1H_RELEASE_USB_WAKEUP,
  1047. (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  1048. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  1049. wait_for_completion(&mb1_transfer.work);
  1050. if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
  1051. ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
  1052. r = -EIO;
  1053. mutex_unlock(&mb1_transfer.lock);
  1054. return r;
  1055. }
  1056. static int request_pll(u8 clock, bool enable)
  1057. {
  1058. int r = 0;
  1059. if (clock == PRCMU_PLLSOC0)
  1060. clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
  1061. else if (clock == PRCMU_PLLSOC1)
  1062. clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
  1063. else
  1064. return -EINVAL;
  1065. mutex_lock(&mb1_transfer.lock);
  1066. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  1067. cpu_relax();
  1068. writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  1069. writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
  1070. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  1071. wait_for_completion(&mb1_transfer.work);
  1072. if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
  1073. r = -EIO;
  1074. mutex_unlock(&mb1_transfer.lock);
  1075. return r;
  1076. }
  1077. /**
  1078. * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
  1079. * @epod_id: The EPOD to set
  1080. * @epod_state: The new EPOD state
  1081. *
  1082. * This function sets the state of a EPOD (power domain). It may not be called
  1083. * from interrupt context.
  1084. */
  1085. int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
  1086. {
  1087. int r = 0;
  1088. bool ram_retention = false;
  1089. int i;
  1090. /* check argument */
  1091. BUG_ON(epod_id >= NUM_EPOD_ID);
  1092. /* set flag if retention is possible */
  1093. switch (epod_id) {
  1094. case EPOD_ID_SVAMMDSP:
  1095. case EPOD_ID_SIAMMDSP:
  1096. case EPOD_ID_ESRAM12:
  1097. case EPOD_ID_ESRAM34:
  1098. ram_retention = true;
  1099. break;
  1100. }
  1101. /* check argument */
  1102. BUG_ON(epod_state > EPOD_STATE_ON);
  1103. BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
  1104. /* get lock */
  1105. mutex_lock(&mb2_transfer.lock);
  1106. /* wait for mailbox */
  1107. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
  1108. cpu_relax();
  1109. /* fill in mailbox */
  1110. for (i = 0; i < NUM_EPOD_ID; i++)
  1111. writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
  1112. writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
  1113. writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
  1114. writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
  1115. /*
  1116. * The current firmware version does not handle errors correctly,
  1117. * and we cannot recover if there is an error.
  1118. * This is expected to change when the firmware is updated.
  1119. */
  1120. if (!wait_for_completion_timeout(&mb2_transfer.work,
  1121. msecs_to_jiffies(20000))) {
  1122. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1123. __func__);
  1124. r = -EIO;
  1125. goto unlock_and_return;
  1126. }
  1127. if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
  1128. r = -EIO;
  1129. unlock_and_return:
  1130. mutex_unlock(&mb2_transfer.lock);
  1131. return r;
  1132. }
  1133. /**
  1134. * prcmu_configure_auto_pm - Configure autonomous power management.
  1135. * @sleep: Configuration for ApSleep.
  1136. * @idle: Configuration for ApIdle.
  1137. */
  1138. void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
  1139. struct prcmu_auto_pm_config *idle)
  1140. {
  1141. u32 sleep_cfg;
  1142. u32 idle_cfg;
  1143. unsigned long flags;
  1144. BUG_ON((sleep == NULL) || (idle == NULL));
  1145. sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
  1146. sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
  1147. sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
  1148. sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
  1149. sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
  1150. sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
  1151. idle_cfg = (idle->sva_auto_pm_enable & 0xF);
  1152. idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
  1153. idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
  1154. idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
  1155. idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
  1156. idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
  1157. spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
  1158. /*
  1159. * The autonomous power management configuration is done through
  1160. * fields in mailbox 2, but these fields are only used as shared
  1161. * variables - i.e. there is no need to send a message.
  1162. */
  1163. writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
  1164. writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
  1165. mb2_transfer.auto_pm_enabled =
  1166. ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1167. (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1168. (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1169. (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
  1170. spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
  1171. }
  1172. EXPORT_SYMBOL(prcmu_configure_auto_pm);
  1173. bool prcmu_is_auto_pm_enabled(void)
  1174. {
  1175. return mb2_transfer.auto_pm_enabled;
  1176. }
  1177. static int request_sysclk(bool enable)
  1178. {
  1179. int r;
  1180. unsigned long flags;
  1181. r = 0;
  1182. mutex_lock(&mb3_transfer.sysclk_lock);
  1183. spin_lock_irqsave(&mb3_transfer.lock, flags);
  1184. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
  1185. cpu_relax();
  1186. writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
  1187. writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
  1188. writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
  1189. spin_unlock_irqrestore(&mb3_transfer.lock, flags);
  1190. /*
  1191. * The firmware only sends an ACK if we want to enable the
  1192. * SysClk, and it succeeds.
  1193. */
  1194. if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
  1195. msecs_to_jiffies(20000))) {
  1196. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1197. __func__);
  1198. r = -EIO;
  1199. }
  1200. mutex_unlock(&mb3_transfer.sysclk_lock);
  1201. return r;
  1202. }
  1203. static int request_timclk(bool enable)
  1204. {
  1205. u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
  1206. if (!enable)
  1207. val |= PRCM_TCR_STOP_TIMERS;
  1208. writel(val, PRCM_TCR);
  1209. return 0;
  1210. }
  1211. static int request_clock(u8 clock, bool enable)
  1212. {
  1213. u32 val;
  1214. unsigned long flags;
  1215. spin_lock_irqsave(&clk_mgt_lock, flags);
  1216. /* Grab the HW semaphore. */
  1217. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  1218. cpu_relax();
  1219. val = readl(clk_mgt[clock].reg);
  1220. if (enable) {
  1221. val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
  1222. } else {
  1223. clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
  1224. val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
  1225. }
  1226. writel(val, clk_mgt[clock].reg);
  1227. /* Release the HW semaphore. */
  1228. writel(0, PRCM_SEM);
  1229. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  1230. return 0;
  1231. }
  1232. static int request_sga_clock(u8 clock, bool enable)
  1233. {
  1234. u32 val;
  1235. int ret;
  1236. if (enable) {
  1237. val = readl(PRCM_CGATING_BYPASS);
  1238. writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
  1239. }
  1240. ret = request_clock(clock, enable);
  1241. if (!ret && !enable) {
  1242. val = readl(PRCM_CGATING_BYPASS);
  1243. writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
  1244. }
  1245. return ret;
  1246. }
  1247. static inline bool plldsi_locked(void)
  1248. {
  1249. return (readl(PRCM_PLLDSI_LOCKP) &
  1250. (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
  1251. PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
  1252. (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
  1253. PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
  1254. }
  1255. static int request_plldsi(bool enable)
  1256. {
  1257. int r = 0;
  1258. u32 val;
  1259. writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
  1260. PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
  1261. PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
  1262. val = readl(PRCM_PLLDSI_ENABLE);
  1263. if (enable)
  1264. val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1265. else
  1266. val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1267. writel(val, PRCM_PLLDSI_ENABLE);
  1268. if (enable) {
  1269. unsigned int i;
  1270. bool locked = plldsi_locked();
  1271. for (i = 10; !locked && (i > 0); --i) {
  1272. udelay(100);
  1273. locked = plldsi_locked();
  1274. }
  1275. if (locked) {
  1276. writel(PRCM_APE_RESETN_DSIPLL_RESETN,
  1277. PRCM_APE_RESETN_SET);
  1278. } else {
  1279. writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
  1280. PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
  1281. PRCM_MMIP_LS_CLAMP_SET);
  1282. val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1283. writel(val, PRCM_PLLDSI_ENABLE);
  1284. r = -EAGAIN;
  1285. }
  1286. } else {
  1287. writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
  1288. }
  1289. return r;
  1290. }
  1291. static int request_dsiclk(u8 n, bool enable)
  1292. {
  1293. u32 val;
  1294. val = readl(PRCM_DSI_PLLOUT_SEL);
  1295. val &= ~dsiclk[n].divsel_mask;
  1296. val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
  1297. dsiclk[n].divsel_shift);
  1298. writel(val, PRCM_DSI_PLLOUT_SEL);
  1299. return 0;
  1300. }
  1301. static int request_dsiescclk(u8 n, bool enable)
  1302. {
  1303. u32 val;
  1304. val = readl(PRCM_DSITVCLK_DIV);
  1305. enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
  1306. writel(val, PRCM_DSITVCLK_DIV);
  1307. return 0;
  1308. }
  1309. /**
  1310. * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
  1311. * @clock: The clock for which the request is made.
  1312. * @enable: Whether the clock should be enabled (true) or disabled (false).
  1313. *
  1314. * This function should only be used by the clock implementation.
  1315. * Do not use it from any other place!
  1316. */
  1317. int db8500_prcmu_request_clock(u8 clock, bool enable)
  1318. {
  1319. if (clock == PRCMU_SGACLK)
  1320. return request_sga_clock(clock, enable);
  1321. else if (clock < PRCMU_NUM_REG_CLOCKS)
  1322. return request_clock(clock, enable);
  1323. else if (clock == PRCMU_TIMCLK)
  1324. return request_timclk(enable);
  1325. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1326. return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
  1327. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1328. return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
  1329. else if (clock == PRCMU_PLLDSI)
  1330. return request_plldsi(enable);
  1331. else if (clock == PRCMU_SYSCLK)
  1332. return request_sysclk(enable);
  1333. else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
  1334. return request_pll(clock, enable);
  1335. else
  1336. return -EINVAL;
  1337. }
  1338. static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
  1339. int branch)
  1340. {
  1341. u64 rate;
  1342. u32 val;
  1343. u32 d;
  1344. u32 div = 1;
  1345. val = readl(reg);
  1346. rate = src_rate;
  1347. rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
  1348. d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
  1349. if (d > 1)
  1350. div *= d;
  1351. d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
  1352. if (d > 1)
  1353. div *= d;
  1354. if (val & PRCM_PLL_FREQ_SELDIV2)
  1355. div *= 2;
  1356. if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
  1357. (val & PRCM_PLL_FREQ_DIV2EN) &&
  1358. ((reg == PRCM_PLLSOC0_FREQ) ||
  1359. (reg == PRCM_PLLARM_FREQ) ||
  1360. (reg == PRCM_PLLDDR_FREQ))))
  1361. div *= 2;
  1362. (void)do_div(rate, div);
  1363. return (unsigned long)rate;
  1364. }
  1365. #define ROOT_CLOCK_RATE 38400000
  1366. static unsigned long clock_rate(u8 clock)
  1367. {
  1368. u32 val;
  1369. u32 pllsw;
  1370. unsigned long rate = ROOT_CLOCK_RATE;
  1371. val = readl(clk_mgt[clock].reg);
  1372. if (val & PRCM_CLK_MGT_CLK38) {
  1373. if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
  1374. rate /= 2;
  1375. return rate;
  1376. }
  1377. val |= clk_mgt[clock].pllsw;
  1378. pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
  1379. if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
  1380. rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
  1381. else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
  1382. rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
  1383. else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
  1384. rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
  1385. else
  1386. return 0;
  1387. if ((clock == PRCMU_SGACLK) &&
  1388. (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
  1389. u64 r = (rate * 10);
  1390. (void)do_div(r, 25);
  1391. return (unsigned long)r;
  1392. }
  1393. val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
  1394. if (val)
  1395. return rate / val;
  1396. else
  1397. return 0;
  1398. }
  1399. static unsigned long armss_rate(void)
  1400. {
  1401. u32 r;
  1402. unsigned long rate;
  1403. r = readl(PRCM_ARM_CHGCLKREQ);
  1404. if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
  1405. /* External ARMCLKFIX clock */
  1406. rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
  1407. /* Check PRCM_ARM_CHGCLKREQ divider */
  1408. if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
  1409. rate /= 2;
  1410. /* Check PRCM_ARMCLKFIX_MGT divider */
  1411. r = readl(PRCM_ARMCLKFIX_MGT);
  1412. r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
  1413. rate /= r;
  1414. } else {/* ARM PLL */
  1415. rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
  1416. }
  1417. return rate;
  1418. }
  1419. static unsigned long dsiclk_rate(u8 n)
  1420. {
  1421. u32 divsel;
  1422. u32 div = 1;
  1423. divsel = readl(PRCM_DSI_PLLOUT_SEL);
  1424. divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
  1425. if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
  1426. divsel = dsiclk[n].divsel;
  1427. switch (divsel) {
  1428. case PRCM_DSI_PLLOUT_SEL_PHI_4:
  1429. div *= 2;
  1430. case PRCM_DSI_PLLOUT_SEL_PHI_2:
  1431. div *= 2;
  1432. case PRCM_DSI_PLLOUT_SEL_PHI:
  1433. return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1434. PLL_RAW) / div;
  1435. default:
  1436. return 0;
  1437. }
  1438. }
  1439. static unsigned long dsiescclk_rate(u8 n)
  1440. {
  1441. u32 div;
  1442. div = readl(PRCM_DSITVCLK_DIV);
  1443. div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
  1444. return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
  1445. }
  1446. unsigned long prcmu_clock_rate(u8 clock)
  1447. {
  1448. if (clock < PRCMU_NUM_REG_CLOCKS)
  1449. return clock_rate(clock);
  1450. else if (clock == PRCMU_TIMCLK)
  1451. return ROOT_CLOCK_RATE / 16;
  1452. else if (clock == PRCMU_SYSCLK)
  1453. return ROOT_CLOCK_RATE;
  1454. else if (clock == PRCMU_PLLSOC0)
  1455. return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1456. else if (clock == PRCMU_PLLSOC1)
  1457. return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1458. else if (clock == PRCMU_ARMSS)
  1459. return armss_rate();
  1460. else if (clock == PRCMU_PLLDDR)
  1461. return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1462. else if (clock == PRCMU_PLLDSI)
  1463. return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1464. PLL_RAW);
  1465. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1466. return dsiclk_rate(clock - PRCMU_DSI0CLK);
  1467. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1468. return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
  1469. else
  1470. return 0;
  1471. }
  1472. static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
  1473. {
  1474. if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
  1475. return ROOT_CLOCK_RATE;
  1476. clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
  1477. if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
  1478. return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
  1479. else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
  1480. return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
  1481. else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
  1482. return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
  1483. else
  1484. return 0;
  1485. }
  1486. static u32 clock_divider(unsigned long src_rate, unsigned long rate)
  1487. {
  1488. u32 div;
  1489. div = (src_rate / rate);
  1490. if (div == 0)
  1491. return 1;
  1492. if (rate < (src_rate / div))
  1493. div++;
  1494. return div;
  1495. }
  1496. static long round_clock_rate(u8 clock, unsigned long rate)
  1497. {
  1498. u32 val;
  1499. u32 div;
  1500. unsigned long src_rate;
  1501. long rounded_rate;
  1502. val = readl(clk_mgt[clock].reg);
  1503. src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
  1504. clk_mgt[clock].branch);
  1505. div = clock_divider(src_rate, rate);
  1506. if (val & PRCM_CLK_MGT_CLK38) {
  1507. if (clk_mgt[clock].clk38div) {
  1508. if (div > 2)
  1509. div = 2;
  1510. } else {
  1511. div = 1;
  1512. }
  1513. } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
  1514. u64 r = (src_rate * 10);
  1515. (void)do_div(r, 25);
  1516. if (r <= rate)
  1517. return (unsigned long)r;
  1518. }
  1519. rounded_rate = (src_rate / min(div, (u32)31));
  1520. return rounded_rate;
  1521. }
  1522. /* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
  1523. static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
  1524. { .frequency = 200000, .index = ARM_EXTCLK,},
  1525. { .frequency = 400000, .index = ARM_50_OPP,},
  1526. { .frequency = 800000, .index = ARM_100_OPP,},
  1527. { .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
  1528. { .frequency = CPUFREQ_TABLE_END,},
  1529. };
  1530. static long round_armss_rate(unsigned long rate)
  1531. {
  1532. long freq = 0;
  1533. int i = 0;
  1534. /* cpufreq table frequencies is in KHz. */
  1535. rate = rate / 1000;
  1536. /* Find the corresponding arm opp from the cpufreq table. */
  1537. while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
  1538. freq = db8500_cpufreq_table[i].frequency;
  1539. if (freq == rate)
  1540. break;
  1541. i++;
  1542. }
  1543. /* Return the last valid value, even if a match was not found. */
  1544. return freq * 1000;
  1545. }
  1546. #define MIN_PLL_VCO_RATE 600000000ULL
  1547. #define MAX_PLL_VCO_RATE 1680640000ULL
  1548. static long round_plldsi_rate(unsigned long rate)
  1549. {
  1550. long rounded_rate = 0;
  1551. unsigned long src_rate;
  1552. unsigned long rem;
  1553. u32 r;
  1554. src_rate = clock_rate(PRCMU_HDMICLK);
  1555. rem = rate;
  1556. for (r = 7; (rem > 0) && (r > 0); r--) {
  1557. u64 d;
  1558. d = (r * rate);
  1559. (void)do_div(d, src_rate);
  1560. if (d < 6)
  1561. d = 6;
  1562. else if (d > 255)
  1563. d = 255;
  1564. d *= src_rate;
  1565. if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
  1566. ((r * MAX_PLL_VCO_RATE) < (2 * d)))
  1567. continue;
  1568. (void)do_div(d, r);
  1569. if (rate < d) {
  1570. if (rounded_rate == 0)
  1571. rounded_rate = (long)d;
  1572. break;
  1573. }
  1574. if ((rate - d) < rem) {
  1575. rem = (rate - d);
  1576. rounded_rate = (long)d;
  1577. }
  1578. }
  1579. return rounded_rate;
  1580. }
  1581. static long round_dsiclk_rate(unsigned long rate)
  1582. {
  1583. u32 div;
  1584. unsigned long src_rate;
  1585. long rounded_rate;
  1586. src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1587. PLL_RAW);
  1588. div = clock_divider(src_rate, rate);
  1589. rounded_rate = (src_rate / ((div > 2) ? 4 : div));
  1590. return rounded_rate;
  1591. }
  1592. static long round_dsiescclk_rate(unsigned long rate)
  1593. {
  1594. u32 div;
  1595. unsigned long src_rate;
  1596. long rounded_rate;
  1597. src_rate = clock_rate(PRCMU_TVCLK);
  1598. div = clock_divider(src_rate, rate);
  1599. rounded_rate = (src_rate / min(div, (u32)255));
  1600. return rounded_rate;
  1601. }
  1602. long prcmu_round_clock_rate(u8 clock, unsigned long rate)
  1603. {
  1604. if (clock < PRCMU_NUM_REG_CLOCKS)
  1605. return round_clock_rate(clock, rate);
  1606. else if (clock == PRCMU_ARMSS)
  1607. return round_armss_rate(rate);
  1608. else if (clock == PRCMU_PLLDSI)
  1609. return round_plldsi_rate(rate);
  1610. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1611. return round_dsiclk_rate(rate);
  1612. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1613. return round_dsiescclk_rate(rate);
  1614. else
  1615. return (long)prcmu_clock_rate(clock);
  1616. }
  1617. static void set_clock_rate(u8 clock, unsigned long rate)
  1618. {
  1619. u32 val;
  1620. u32 div;
  1621. unsigned long src_rate;
  1622. unsigned long flags;
  1623. spin_lock_irqsave(&clk_mgt_lock, flags);
  1624. /* Grab the HW semaphore. */
  1625. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  1626. cpu_relax();
  1627. val = readl(clk_mgt[clock].reg);
  1628. src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
  1629. clk_mgt[clock].branch);
  1630. div = clock_divider(src_rate, rate);
  1631. if (val & PRCM_CLK_MGT_CLK38) {
  1632. if (clk_mgt[clock].clk38div) {
  1633. if (div > 1)
  1634. val |= PRCM_CLK_MGT_CLK38DIV;
  1635. else
  1636. val &= ~PRCM_CLK_MGT_CLK38DIV;
  1637. }
  1638. } else if (clock == PRCMU_SGACLK) {
  1639. val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
  1640. PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
  1641. if (div == 3) {
  1642. u64 r = (src_rate * 10);
  1643. (void)do_div(r, 25);
  1644. if (r <= rate) {
  1645. val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
  1646. div = 0;
  1647. }
  1648. }
  1649. val |= min(div, (u32)31);
  1650. } else {
  1651. val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
  1652. val |= min(div, (u32)31);
  1653. }
  1654. writel(val, clk_mgt[clock].reg);
  1655. /* Release the HW semaphore. */
  1656. writel(0, PRCM_SEM);
  1657. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  1658. }
  1659. static int set_armss_rate(unsigned long rate)
  1660. {
  1661. int i = 0;
  1662. /* cpufreq table frequencies is in KHz. */
  1663. rate = rate / 1000;
  1664. /* Find the corresponding arm opp from the cpufreq table. */
  1665. while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
  1666. if (db8500_cpufreq_table[i].frequency == rate)
  1667. break;
  1668. i++;
  1669. }
  1670. if (db8500_cpufreq_table[i].frequency != rate)
  1671. return -EINVAL;
  1672. /* Set the new arm opp. */
  1673. return db8500_prcmu_set_arm_opp(db8500_cpufreq_table[i].index);
  1674. }
  1675. static int set_plldsi_rate(unsigned long rate)
  1676. {
  1677. unsigned long src_rate;
  1678. unsigned long rem;
  1679. u32 pll_freq = 0;
  1680. u32 r;
  1681. src_rate = clock_rate(PRCMU_HDMICLK);
  1682. rem = rate;
  1683. for (r = 7; (rem > 0) && (r > 0); r--) {
  1684. u64 d;
  1685. u64 hwrate;
  1686. d = (r * rate);
  1687. (void)do_div(d, src_rate);
  1688. if (d < 6)
  1689. d = 6;
  1690. else if (d > 255)
  1691. d = 255;
  1692. hwrate = (d * src_rate);
  1693. if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
  1694. ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
  1695. continue;
  1696. (void)do_div(hwrate, r);
  1697. if (rate < hwrate) {
  1698. if (pll_freq == 0)
  1699. pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
  1700. (r << PRCM_PLL_FREQ_R_SHIFT));
  1701. break;
  1702. }
  1703. if ((rate - hwrate) < rem) {
  1704. rem = (rate - hwrate);
  1705. pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
  1706. (r << PRCM_PLL_FREQ_R_SHIFT));
  1707. }
  1708. }
  1709. if (pll_freq == 0)
  1710. return -EINVAL;
  1711. pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
  1712. writel(pll_freq, PRCM_PLLDSI_FREQ);
  1713. return 0;
  1714. }
  1715. static void set_dsiclk_rate(u8 n, unsigned long rate)
  1716. {
  1717. u32 val;
  1718. u32 div;
  1719. div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
  1720. clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
  1721. dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
  1722. (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
  1723. /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
  1724. val = readl(PRCM_DSI_PLLOUT_SEL);
  1725. val &= ~dsiclk[n].divsel_mask;
  1726. val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
  1727. writel(val, PRCM_DSI_PLLOUT_SEL);
  1728. }
  1729. static void set_dsiescclk_rate(u8 n, unsigned long rate)
  1730. {
  1731. u32 val;
  1732. u32 div;
  1733. div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
  1734. val = readl(PRCM_DSITVCLK_DIV);
  1735. val &= ~dsiescclk[n].div_mask;
  1736. val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
  1737. writel(val, PRCM_DSITVCLK_DIV);
  1738. }
  1739. int prcmu_set_clock_rate(u8 clock, unsigned long rate)
  1740. {
  1741. if (clock < PRCMU_NUM_REG_CLOCKS)
  1742. set_clock_rate(clock, rate);
  1743. else if (clock == PRCMU_ARMSS)
  1744. return set_armss_rate(rate);
  1745. else if (clock == PRCMU_PLLDSI)
  1746. return set_plldsi_rate(rate);
  1747. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1748. set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
  1749. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1750. set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
  1751. return 0;
  1752. }
  1753. int db8500_prcmu_config_esram0_deep_sleep(u8 state)
  1754. {
  1755. if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
  1756. (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
  1757. return -EINVAL;
  1758. mutex_lock(&mb4_transfer.lock);
  1759. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1760. cpu_relax();
  1761. writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1762. writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
  1763. (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
  1764. writeb(DDR_PWR_STATE_ON,
  1765. (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
  1766. writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
  1767. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1768. wait_for_completion(&mb4_transfer.work);
  1769. mutex_unlock(&mb4_transfer.lock);
  1770. return 0;
  1771. }
  1772. int db8500_prcmu_config_hotdog(u8 threshold)
  1773. {
  1774. mutex_lock(&mb4_transfer.lock);
  1775. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1776. cpu_relax();
  1777. writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
  1778. writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1779. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1780. wait_for_completion(&mb4_transfer.work);
  1781. mutex_unlock(&mb4_transfer.lock);
  1782. return 0;
  1783. }
  1784. int db8500_prcmu_config_hotmon(u8 low, u8 high)
  1785. {
  1786. mutex_lock(&mb4_transfer.lock);
  1787. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1788. cpu_relax();
  1789. writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
  1790. writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
  1791. writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
  1792. (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
  1793. writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1794. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1795. wait_for_completion(&mb4_transfer.work);
  1796. mutex_unlock(&mb4_transfer.lock);
  1797. return 0;
  1798. }
  1799. static int config_hot_period(u16 val)
  1800. {
  1801. mutex_lock(&mb4_transfer.lock);
  1802. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1803. cpu_relax();
  1804. writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
  1805. writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1806. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1807. wait_for_completion(&mb4_transfer.work);
  1808. mutex_unlock(&mb4_transfer.lock);
  1809. return 0;
  1810. }
  1811. int db8500_prcmu_start_temp_sense(u16 cycles32k)
  1812. {
  1813. if (cycles32k == 0xFFFF)
  1814. return -EINVAL;
  1815. return config_hot_period(cycles32k);
  1816. }
  1817. int db8500_prcmu_stop_temp_sense(void)
  1818. {
  1819. return config_hot_period(0xFFFF);
  1820. }
  1821. static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
  1822. {
  1823. mutex_lock(&mb4_transfer.lock);
  1824. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1825. cpu_relax();
  1826. writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
  1827. writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
  1828. writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
  1829. writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
  1830. writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1831. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1832. wait_for_completion(&mb4_transfer.work);
  1833. mutex_unlock(&mb4_transfer.lock);
  1834. return 0;
  1835. }
  1836. int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
  1837. {
  1838. BUG_ON(num == 0 || num > 0xf);
  1839. return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
  1840. sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
  1841. A9WDOG_AUTO_OFF_DIS);
  1842. }
  1843. EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
  1844. int db8500_prcmu_enable_a9wdog(u8 id)
  1845. {
  1846. return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
  1847. }
  1848. EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
  1849. int db8500_prcmu_disable_a9wdog(u8 id)
  1850. {
  1851. return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
  1852. }
  1853. EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
  1854. int db8500_prcmu_kick_a9wdog(u8 id)
  1855. {
  1856. return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
  1857. }
  1858. EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
  1859. /*
  1860. * timeout is 28 bit, in ms.
  1861. */
  1862. int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
  1863. {
  1864. return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
  1865. (id & A9WDOG_ID_MASK) |
  1866. /*
  1867. * Put the lowest 28 bits of timeout at
  1868. * offset 4. Four first bits are used for id.
  1869. */
  1870. (u8)((timeout << 4) & 0xf0),
  1871. (u8)((timeout >> 4) & 0xff),
  1872. (u8)((timeout >> 12) & 0xff),
  1873. (u8)((timeout >> 20) & 0xff));
  1874. }
  1875. EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
  1876. /**
  1877. * prcmu_abb_read() - Read register value(s) from the ABB.
  1878. * @slave: The I2C slave address.
  1879. * @reg: The (start) register address.
  1880. * @value: The read out value(s).
  1881. * @size: The number of registers to read.
  1882. *
  1883. * Reads register value(s) from the ABB.
  1884. * @size has to be 1 for the current firmware version.
  1885. */
  1886. int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
  1887. {
  1888. int r;
  1889. if (size != 1)
  1890. return -EINVAL;
  1891. mutex_lock(&mb5_transfer.lock);
  1892. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
  1893. cpu_relax();
  1894. writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
  1895. writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
  1896. writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
  1897. writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
  1898. writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
  1899. writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
  1900. if (!wait_for_completion_timeout(&mb5_transfer.work,
  1901. msecs_to_jiffies(20000))) {
  1902. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1903. __func__);
  1904. r = -EIO;
  1905. } else {
  1906. r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
  1907. }
  1908. if (!r)
  1909. *value = mb5_transfer.ack.value;
  1910. mutex_unlock(&mb5_transfer.lock);
  1911. return r;
  1912. }
  1913. /**
  1914. * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
  1915. * @slave: The I2C slave address.
  1916. * @reg: The (start) register address.
  1917. * @value: The value(s) to write.
  1918. * @mask: The mask(s) to use.
  1919. * @size: The number of registers to write.
  1920. *
  1921. * Writes masked register value(s) to the ABB.
  1922. * For each @value, only the bits set to 1 in the corresponding @mask
  1923. * will be written. The other bits are not changed.
  1924. * @size has to be 1 for the current firmware version.
  1925. */
  1926. int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
  1927. {
  1928. int r;
  1929. if (size != 1)
  1930. return -EINVAL;
  1931. mutex_lock(&mb5_transfer.lock);
  1932. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
  1933. cpu_relax();
  1934. writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
  1935. writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
  1936. writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
  1937. writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
  1938. writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
  1939. writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
  1940. if (!wait_for_completion_timeout(&mb5_transfer.work,
  1941. msecs_to_jiffies(20000))) {
  1942. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1943. __func__);
  1944. r = -EIO;
  1945. } else {
  1946. r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
  1947. }
  1948. mutex_unlock(&mb5_transfer.lock);
  1949. return r;
  1950. }
  1951. /**
  1952. * prcmu_abb_write() - Write register value(s) to the ABB.
  1953. * @slave: The I2C slave address.
  1954. * @reg: The (start) register address.
  1955. * @value: The value(s) to write.
  1956. * @size: The number of registers to write.
  1957. *
  1958. * Writes register value(s) to the ABB.
  1959. * @size has to be 1 for the current firmware version.
  1960. */
  1961. int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
  1962. {
  1963. u8 mask = ~0;
  1964. return prcmu_abb_write_masked(slave, reg, value, &mask, size);
  1965. }
  1966. /**
  1967. * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
  1968. */
  1969. int prcmu_ac_wake_req(void)
  1970. {
  1971. u32 val;
  1972. int ret = 0;
  1973. mutex_lock(&mb0_transfer.ac_wake_lock);
  1974. val = readl(PRCM_HOSTACCESS_REQ);
  1975. if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
  1976. goto unlock_and_return;
  1977. atomic_set(&ac_wake_req_state, 1);
  1978. /*
  1979. * Force Modem Wake-up before hostaccess_req ping-pong.
  1980. * It prevents Modem to enter in Sleep while acking the hostaccess
  1981. * request. The 31us delay has been calculated by HWI.
  1982. */
  1983. val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
  1984. writel(val, PRCM_HOSTACCESS_REQ);
  1985. udelay(31);
  1986. val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
  1987. writel(val, PRCM_HOSTACCESS_REQ);
  1988. if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  1989. msecs_to_jiffies(5000))) {
  1990. #if defined(CONFIG_DBX500_PRCMU_DEBUG)
  1991. db8500_prcmu_debug_dump(__func__, true, true);
  1992. #endif
  1993. pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
  1994. __func__);
  1995. ret = -EFAULT;
  1996. }
  1997. unlock_and_return:
  1998. mutex_unlock(&mb0_transfer.ac_wake_lock);
  1999. return ret;
  2000. }
  2001. /**
  2002. * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
  2003. */
  2004. void prcmu_ac_sleep_req()
  2005. {
  2006. u32 val;
  2007. mutex_lock(&mb0_transfer.ac_wake_lock);
  2008. val = readl(PRCM_HOSTACCESS_REQ);
  2009. if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
  2010. goto unlock_and_return;
  2011. writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
  2012. PRCM_HOSTACCESS_REQ);
  2013. if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  2014. msecs_to_jiffies(5000))) {
  2015. pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
  2016. __func__);
  2017. }
  2018. atomic_set(&ac_wake_req_state, 0);
  2019. unlock_and_return:
  2020. mutex_unlock(&mb0_transfer.ac_wake_lock);
  2021. }
  2022. bool db8500_prcmu_is_ac_wake_requested(void)
  2023. {
  2024. return (atomic_read(&ac_wake_req_state) != 0);
  2025. }
  2026. /**
  2027. * db8500_prcmu_system_reset - System reset
  2028. *
  2029. * Saves the reset reason code and then sets the APE_SOFTRST register which
  2030. * fires interrupt to fw
  2031. */
  2032. void db8500_prcmu_system_reset(u16 reset_code)
  2033. {
  2034. writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
  2035. writel(1, PRCM_APE_SOFTRST);
  2036. }
  2037. /**
  2038. * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
  2039. *
  2040. * Retrieves the reset reason code stored by prcmu_system_reset() before
  2041. * last restart.
  2042. */
  2043. u16 db8500_prcmu_get_reset_code(void)
  2044. {
  2045. return readw(tcdm_base + PRCM_SW_RST_REASON);
  2046. }
  2047. /**
  2048. * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
  2049. */
  2050. void db8500_prcmu_modem_reset(void)
  2051. {
  2052. mutex_lock(&mb1_transfer.lock);
  2053. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  2054. cpu_relax();
  2055. writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  2056. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  2057. wait_for_completion(&mb1_transfer.work);
  2058. /*
  2059. * No need to check return from PRCMU as modem should go in reset state
  2060. * This state is already managed by upper layer
  2061. */
  2062. mutex_unlock(&mb1_transfer.lock);
  2063. }
  2064. static void ack_dbb_wakeup(void)
  2065. {
  2066. unsigned long flags;
  2067. spin_lock_irqsave(&mb0_transfer.lock, flags);
  2068. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  2069. cpu_relax();
  2070. writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  2071. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  2072. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  2073. }
  2074. static inline void print_unknown_header_warning(u8 n, u8 header)
  2075. {
  2076. pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
  2077. header, n);
  2078. }
  2079. static bool read_mailbox_0(void)
  2080. {
  2081. bool r;
  2082. u32 ev;
  2083. unsigned int n;
  2084. u8 header;
  2085. header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
  2086. switch (header) {
  2087. case MB0H_WAKEUP_EXE:
  2088. case MB0H_WAKEUP_SLEEP:
  2089. if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
  2090. ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
  2091. else
  2092. ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
  2093. if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
  2094. complete(&mb0_transfer.ac_wake_work);
  2095. if (ev & WAKEUP_BIT_SYSCLK_OK)
  2096. complete(&mb3_transfer.sysclk_work);
  2097. ev &= mb0_transfer.req.dbb_irqs;
  2098. for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
  2099. if (ev & prcmu_irq_bit[n])
  2100. generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
  2101. }
  2102. r = true;
  2103. break;
  2104. default:
  2105. print_unknown_header_warning(0, header);
  2106. r = false;
  2107. break;
  2108. }
  2109. writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
  2110. return r;
  2111. }
  2112. static bool read_mailbox_1(void)
  2113. {
  2114. mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
  2115. mb1_transfer.ack.arm_opp = readb(tcdm_base +
  2116. PRCM_ACK_MB1_CURRENT_ARM_OPP);
  2117. mb1_transfer.ack.ape_opp = readb(tcdm_base +
  2118. PRCM_ACK_MB1_CURRENT_APE_OPP);
  2119. mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
  2120. PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
  2121. writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
  2122. complete(&mb1_transfer.work);
  2123. return false;
  2124. }
  2125. static bool read_mailbox_2(void)
  2126. {
  2127. mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
  2128. writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
  2129. complete(&mb2_transfer.work);
  2130. return false;
  2131. }
  2132. static bool read_mailbox_3(void)
  2133. {
  2134. writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
  2135. return false;
  2136. }
  2137. static bool read_mailbox_4(void)
  2138. {
  2139. u8 header;
  2140. bool do_complete = true;
  2141. header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
  2142. switch (header) {
  2143. case MB4H_MEM_ST:
  2144. case MB4H_HOTDOG:
  2145. case MB4H_HOTMON:
  2146. case MB4H_HOT_PERIOD:
  2147. case MB4H_A9WDOG_CONF:
  2148. case MB4H_A9WDOG_EN:
  2149. case MB4H_A9WDOG_DIS:
  2150. case MB4H_A9WDOG_LOAD:
  2151. case MB4H_A9WDOG_KICK:
  2152. break;
  2153. default:
  2154. print_unknown_header_warning(4, header);
  2155. do_complete = false;
  2156. break;
  2157. }
  2158. writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
  2159. if (do_complete)
  2160. complete(&mb4_transfer.work);
  2161. return false;
  2162. }
  2163. static bool read_mailbox_5(void)
  2164. {
  2165. mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
  2166. mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
  2167. writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
  2168. complete(&mb5_transfer.work);
  2169. return false;
  2170. }
  2171. static bool read_mailbox_6(void)
  2172. {
  2173. writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
  2174. return false;
  2175. }
  2176. static bool read_mailbox_7(void)
  2177. {
  2178. writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
  2179. return false;
  2180. }
  2181. static bool (* const read_mailbox[NUM_MB])(void) = {
  2182. read_mailbox_0,
  2183. read_mailbox_1,
  2184. read_mailbox_2,
  2185. read_mailbox_3,
  2186. read_mailbox_4,
  2187. read_mailbox_5,
  2188. read_mailbox_6,
  2189. read_mailbox_7
  2190. };
  2191. static irqreturn_t prcmu_irq_handler(int irq, void *data)
  2192. {
  2193. u32 bits;
  2194. u8 n;
  2195. irqreturn_t r;
  2196. bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
  2197. if (unlikely(!bits))
  2198. return IRQ_NONE;
  2199. r = IRQ_HANDLED;
  2200. for (n = 0; bits; n++) {
  2201. if (bits & MBOX_BIT(n)) {
  2202. bits -= MBOX_BIT(n);
  2203. if (read_mailbox[n]())
  2204. r = IRQ_WAKE_THREAD;
  2205. }
  2206. }
  2207. return r;
  2208. }
  2209. static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
  2210. {
  2211. ack_dbb_wakeup();
  2212. return IRQ_HANDLED;
  2213. }
  2214. static void prcmu_mask_work(struct work_struct *work)
  2215. {
  2216. unsigned long flags;
  2217. spin_lock_irqsave(&mb0_transfer.lock, flags);
  2218. config_wakeups();
  2219. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  2220. }
  2221. static void prcmu_irq_mask(struct irq_data *d)
  2222. {
  2223. unsigned long flags;
  2224. spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
  2225. mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
  2226. spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
  2227. if (d->irq != IRQ_PRCMU_CA_SLEEP)
  2228. schedule_work(&mb0_transfer.mask_work);
  2229. }
  2230. static void prcmu_irq_unmask(struct irq_data *d)
  2231. {
  2232. unsigned long flags;
  2233. spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
  2234. mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
  2235. spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
  2236. if (d->irq != IRQ_PRCMU_CA_SLEEP)
  2237. schedule_work(&mb0_transfer.mask_work);
  2238. }
  2239. static void noop(struct irq_data *d)
  2240. {
  2241. }
  2242. static struct irq_chip prcmu_irq_chip = {
  2243. .name = "prcmu",
  2244. .irq_disable = prcmu_irq_mask,
  2245. .irq_ack = noop,
  2246. .irq_mask = prcmu_irq_mask,
  2247. .irq_unmask = prcmu_irq_unmask,
  2248. };
  2249. static __init char *fw_project_name(u32 project)
  2250. {
  2251. switch (project) {
  2252. case PRCMU_FW_PROJECT_U8500:
  2253. return "U8500";
  2254. case PRCMU_FW_PROJECT_U8400:
  2255. return "U8400";
  2256. case PRCMU_FW_PROJECT_U9500:
  2257. return "U9500";
  2258. case PRCMU_FW_PROJECT_U8500_MBB:
  2259. return "U8500 MBB";
  2260. case PRCMU_FW_PROJECT_U8500_C1:
  2261. return "U8500 C1";
  2262. case PRCMU_FW_PROJECT_U8500_C2:
  2263. return "U8500 C2";
  2264. case PRCMU_FW_PROJECT_U8500_C3:
  2265. return "U8500 C3";
  2266. case PRCMU_FW_PROJECT_U8500_C4:
  2267. return "U8500 C4";
  2268. case PRCMU_FW_PROJECT_U9500_MBL:
  2269. return "U9500 MBL";
  2270. case PRCMU_FW_PROJECT_U8500_MBL:
  2271. return "U8500 MBL";
  2272. case PRCMU_FW_PROJECT_U8500_MBL2:
  2273. return "U8500 MBL2";
  2274. case PRCMU_FW_PROJECT_U8520:
  2275. return "U8520 MBL";
  2276. case PRCMU_FW_PROJECT_U8420:
  2277. return "U8420";
  2278. case PRCMU_FW_PROJECT_U9540:
  2279. return "U9540";
  2280. case PRCMU_FW_PROJECT_A9420:
  2281. return "A9420";
  2282. case PRCMU_FW_PROJECT_L8540:
  2283. return "L8540";
  2284. case PRCMU_FW_PROJECT_L8580:
  2285. return "L8580";
  2286. default:
  2287. return "Unknown";
  2288. }
  2289. }
  2290. static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
  2291. irq_hw_number_t hwirq)
  2292. {
  2293. irq_set_chip_and_handler(virq, &prcmu_irq_chip,
  2294. handle_simple_irq);
  2295. set_irq_flags(virq, IRQF_VALID);
  2296. return 0;
  2297. }
  2298. static struct irq_domain_ops db8500_irq_ops = {
  2299. .map = db8500_irq_map,
  2300. .xlate = irq_domain_xlate_twocell,
  2301. };
  2302. static int db8500_irq_init(struct device_node *np)
  2303. {
  2304. int irq_base = 0;
  2305. int i;
  2306. /* In the device tree case, just take some IRQs */
  2307. if (!np)
  2308. irq_base = IRQ_PRCMU_BASE;
  2309. db8500_irq_domain = irq_domain_add_simple(
  2310. np, NUM_PRCMU_WAKEUPS, irq_base,
  2311. &db8500_irq_ops, NULL);
  2312. if (!db8500_irq_domain) {
  2313. pr_err("Failed to create irqdomain\n");
  2314. return -ENOSYS;
  2315. }
  2316. /* All wakeups will be used, so create mappings for all */
  2317. for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
  2318. irq_create_mapping(db8500_irq_domain, i);
  2319. return 0;
  2320. }
  2321. static void dbx500_fw_version_init(struct platform_device *pdev,
  2322. u32 version_offset)
  2323. {
  2324. struct resource *res;
  2325. void __iomem *tcpm_base;
  2326. res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  2327. "prcmu-tcpm");
  2328. if (!res) {
  2329. dev_err(&pdev->dev,
  2330. "Error: no prcmu tcpm memory region provided\n");
  2331. return;
  2332. }
  2333. tcpm_base = ioremap(res->start, resource_size(res));
  2334. if (tcpm_base != NULL) {
  2335. u32 version;
  2336. version = readl(tcpm_base + version_offset);
  2337. fw_info.version.project = (version & 0xFF);
  2338. fw_info.version.api_version = (version >> 8) & 0xFF;
  2339. fw_info.version.func_version = (version >> 16) & 0xFF;
  2340. fw_info.version.errata = (version >> 24) & 0xFF;
  2341. strncpy(fw_info.version.project_name,
  2342. fw_project_name(fw_info.version.project),
  2343. PRCMU_FW_PROJECT_NAME_LEN);
  2344. fw_info.valid = true;
  2345. pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
  2346. fw_info.version.project_name,
  2347. fw_info.version.project,
  2348. fw_info.version.api_version,
  2349. fw_info.version.func_version,
  2350. fw_info.version.errata);
  2351. iounmap(tcpm_base);
  2352. }
  2353. }
  2354. void __init db8500_prcmu_early_init(void)
  2355. {
  2356. spin_lock_init(&mb0_transfer.lock);
  2357. spin_lock_init(&mb0_transfer.dbb_irqs_lock);
  2358. mutex_init(&mb0_transfer.ac_wake_lock);
  2359. init_completion(&mb0_transfer.ac_wake_work);
  2360. mutex_init(&mb1_transfer.lock);
  2361. init_completion(&mb1_transfer.work);
  2362. mb1_transfer.ape_opp = APE_NO_CHANGE;
  2363. mutex_init(&mb2_transfer.lock);
  2364. init_completion(&mb2_transfer.work);
  2365. spin_lock_init(&mb2_transfer.auto_pm_lock);
  2366. spin_lock_init(&mb3_transfer.lock);
  2367. mutex_init(&mb3_transfer.sysclk_lock);
  2368. init_completion(&mb3_transfer.sysclk_work);
  2369. mutex_init(&mb4_transfer.lock);
  2370. init_completion(&mb4_transfer.work);
  2371. mutex_init(&mb5_transfer.lock);
  2372. init_completion(&mb5_transfer.work);
  2373. INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
  2374. }
  2375. static void __init init_prcm_registers(void)
  2376. {
  2377. u32 val;
  2378. val = readl(PRCM_A9PL_FORCE_CLKEN);
  2379. val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
  2380. PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
  2381. writel(val, (PRCM_A9PL_FORCE_CLKEN));
  2382. }
  2383. /*
  2384. * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
  2385. */
  2386. static struct regulator_consumer_supply db8500_vape_consumers[] = {
  2387. REGULATOR_SUPPLY("v-ape", NULL),
  2388. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
  2389. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
  2390. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
  2391. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
  2392. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
  2393. /* "v-mmc" changed to "vcore" in the mainline kernel */
  2394. REGULATOR_SUPPLY("vcore", "sdi0"),
  2395. REGULATOR_SUPPLY("vcore", "sdi1"),
  2396. REGULATOR_SUPPLY("vcore", "sdi2"),
  2397. REGULATOR_SUPPLY("vcore", "sdi3"),
  2398. REGULATOR_SUPPLY("vcore", "sdi4"),
  2399. REGULATOR_SUPPLY("v-dma", "dma40.0"),
  2400. REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
  2401. /* "v-uart" changed to "vcore" in the mainline kernel */
  2402. REGULATOR_SUPPLY("vcore", "uart0"),
  2403. REGULATOR_SUPPLY("vcore", "uart1"),
  2404. REGULATOR_SUPPLY("vcore", "uart2"),
  2405. REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
  2406. REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
  2407. REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
  2408. };
  2409. static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
  2410. REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
  2411. /* AV8100 regulator */
  2412. REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
  2413. };
  2414. static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
  2415. REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
  2416. REGULATOR_SUPPLY("vsupply", "mcde"),
  2417. };
  2418. /* SVA MMDSP regulator switch */
  2419. static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
  2420. REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
  2421. };
  2422. /* SVA pipe regulator switch */
  2423. static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
  2424. REGULATOR_SUPPLY("sva-pipe", "cm_control"),
  2425. };
  2426. /* SIA MMDSP regulator switch */
  2427. static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
  2428. REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
  2429. };
  2430. /* SIA pipe regulator switch */
  2431. static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
  2432. REGULATOR_SUPPLY("sia-pipe", "cm_control"),
  2433. };
  2434. static struct regulator_consumer_supply db8500_sga_consumers[] = {
  2435. REGULATOR_SUPPLY("v-mali", NULL),
  2436. };
  2437. /* ESRAM1 and 2 regulator switch */
  2438. static struct regulator_consumer_supply db8500_esram12_consumers[] = {
  2439. REGULATOR_SUPPLY("esram12", "cm_control"),
  2440. };
  2441. /* ESRAM3 and 4 regulator switch */
  2442. static struct regulator_consumer_supply db8500_esram34_consumers[] = {
  2443. REGULATOR_SUPPLY("v-esram34", "mcde"),
  2444. REGULATOR_SUPPLY("esram34", "cm_control"),
  2445. REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
  2446. };
  2447. static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
  2448. [DB8500_REGULATOR_VAPE] = {
  2449. .constraints = {
  2450. .name = "db8500-vape",
  2451. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2452. .always_on = true,
  2453. },
  2454. .consumer_supplies = db8500_vape_consumers,
  2455. .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
  2456. },
  2457. [DB8500_REGULATOR_VARM] = {
  2458. .constraints = {
  2459. .name = "db8500-varm",
  2460. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2461. },
  2462. },
  2463. [DB8500_REGULATOR_VMODEM] = {
  2464. .constraints = {
  2465. .name = "db8500-vmodem",
  2466. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2467. },
  2468. },
  2469. [DB8500_REGULATOR_VPLL] = {
  2470. .constraints = {
  2471. .name = "db8500-vpll",
  2472. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2473. },
  2474. },
  2475. [DB8500_REGULATOR_VSMPS1] = {
  2476. .constraints = {
  2477. .name = "db8500-vsmps1",
  2478. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2479. },
  2480. },
  2481. [DB8500_REGULATOR_VSMPS2] = {
  2482. .constraints = {
  2483. .name = "db8500-vsmps2",
  2484. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2485. },
  2486. .consumer_supplies = db8500_vsmps2_consumers,
  2487. .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
  2488. },
  2489. [DB8500_REGULATOR_VSMPS3] = {
  2490. .constraints = {
  2491. .name = "db8500-vsmps3",
  2492. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2493. },
  2494. },
  2495. [DB8500_REGULATOR_VRF1] = {
  2496. .constraints = {
  2497. .name = "db8500-vrf1",
  2498. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2499. },
  2500. },
  2501. [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
  2502. /* dependency to u8500-vape is handled outside regulator framework */
  2503. .constraints = {
  2504. .name = "db8500-sva-mmdsp",
  2505. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2506. },
  2507. .consumer_supplies = db8500_svammdsp_consumers,
  2508. .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
  2509. },
  2510. [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
  2511. .constraints = {
  2512. /* "ret" means "retention" */
  2513. .name = "db8500-sva-mmdsp-ret",
  2514. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2515. },
  2516. },
  2517. [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
  2518. /* dependency to u8500-vape is handled outside regulator framework */
  2519. .constraints = {
  2520. .name = "db8500-sva-pipe",
  2521. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2522. },
  2523. .consumer_supplies = db8500_svapipe_consumers,
  2524. .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
  2525. },
  2526. [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
  2527. /* dependency to u8500-vape is handled outside regulator framework */
  2528. .constraints = {
  2529. .name = "db8500-sia-mmdsp",
  2530. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2531. },
  2532. .consumer_supplies = db8500_siammdsp_consumers,
  2533. .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
  2534. },
  2535. [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
  2536. .constraints = {
  2537. .name = "db8500-sia-mmdsp-ret",
  2538. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2539. },
  2540. },
  2541. [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
  2542. /* dependency to u8500-vape is handled outside regulator framework */
  2543. .constraints = {
  2544. .name = "db8500-sia-pipe",
  2545. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2546. },
  2547. .consumer_supplies = db8500_siapipe_consumers,
  2548. .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
  2549. },
  2550. [DB8500_REGULATOR_SWITCH_SGA] = {
  2551. .supply_regulator = "db8500-vape",
  2552. .constraints = {
  2553. .name = "db8500-sga",
  2554. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2555. },
  2556. .consumer_supplies = db8500_sga_consumers,
  2557. .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
  2558. },
  2559. [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
  2560. .supply_regulator = "db8500-vape",
  2561. .constraints = {
  2562. .name = "db8500-b2r2-mcde",
  2563. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2564. },
  2565. .consumer_supplies = db8500_b2r2_mcde_consumers,
  2566. .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
  2567. },
  2568. [DB8500_REGULATOR_SWITCH_ESRAM12] = {
  2569. /*
  2570. * esram12 is set in retention and supplied by Vsafe when Vape is off,
  2571. * no need to hold Vape
  2572. */
  2573. .constraints = {
  2574. .name = "db8500-esram12",
  2575. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2576. },
  2577. .consumer_supplies = db8500_esram12_consumers,
  2578. .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
  2579. },
  2580. [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
  2581. .constraints = {
  2582. .name = "db8500-esram12-ret",
  2583. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2584. },
  2585. },
  2586. [DB8500_REGULATOR_SWITCH_ESRAM34] = {
  2587. /*
  2588. * esram34 is set in retention and supplied by Vsafe when Vape is off,
  2589. * no need to hold Vape
  2590. */
  2591. .constraints = {
  2592. .name = "db8500-esram34",
  2593. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2594. },
  2595. .consumer_supplies = db8500_esram34_consumers,
  2596. .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
  2597. },
  2598. [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
  2599. .constraints = {
  2600. .name = "db8500-esram34-ret",
  2601. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2602. },
  2603. },
  2604. };
  2605. static struct resource ab8500_resources[] = {
  2606. [0] = {
  2607. .start = IRQ_DB8500_AB8500,
  2608. .end = IRQ_DB8500_AB8500,
  2609. .flags = IORESOURCE_IRQ
  2610. }
  2611. };
  2612. static struct ux500_wdt_data db8500_wdt_pdata = {
  2613. .timeout = 600, /* 10 minutes */
  2614. .has_28_bits_resolution = true,
  2615. };
  2616. static struct mfd_cell db8500_prcmu_devs[] = {
  2617. {
  2618. .name = "db8500-prcmu-regulators",
  2619. .of_compatible = "stericsson,db8500-prcmu-regulator",
  2620. .platform_data = &db8500_regulators,
  2621. .pdata_size = sizeof(db8500_regulators),
  2622. },
  2623. {
  2624. .name = "cpufreq-ux500",
  2625. .of_compatible = "stericsson,cpufreq-ux500",
  2626. .platform_data = &db8500_cpufreq_table,
  2627. .pdata_size = sizeof(db8500_cpufreq_table),
  2628. },
  2629. {
  2630. .name = "ux500_wdt",
  2631. .platform_data = &db8500_wdt_pdata,
  2632. .pdata_size = sizeof(db8500_wdt_pdata),
  2633. .id = -1,
  2634. },
  2635. {
  2636. .name = "ab8500-core",
  2637. .of_compatible = "stericsson,ab8500",
  2638. .num_resources = ARRAY_SIZE(ab8500_resources),
  2639. .resources = ab8500_resources,
  2640. .id = AB8500_VERSION_AB8500,
  2641. },
  2642. };
  2643. static void db8500_prcmu_update_cpufreq(void)
  2644. {
  2645. if (prcmu_has_arm_maxopp()) {
  2646. db8500_cpufreq_table[3].frequency = 1000000;
  2647. db8500_cpufreq_table[3].index = ARM_MAX_OPP;
  2648. }
  2649. }
  2650. /**
  2651. * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
  2652. *
  2653. */
  2654. static int db8500_prcmu_probe(struct platform_device *pdev)
  2655. {
  2656. struct device_node *np = pdev->dev.of_node;
  2657. struct prcmu_pdata *pdata = dev_get_platdata(&pdev->dev);
  2658. int irq = 0, err = 0, i;
  2659. struct resource *res;
  2660. init_prcm_registers();
  2661. dbx500_fw_version_init(pdev, pdata->version_offset);
  2662. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
  2663. if (!res) {
  2664. dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
  2665. return -ENOENT;
  2666. }
  2667. tcdm_base = devm_ioremap(&pdev->dev, res->start,
  2668. resource_size(res));
  2669. /* Clean up the mailbox interrupts after pre-kernel code. */
  2670. writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
  2671. irq = platform_get_irq(pdev, 0);
  2672. if (irq <= 0) {
  2673. dev_err(&pdev->dev, "no prcmu irq provided\n");
  2674. return -ENOENT;
  2675. }
  2676. err = request_threaded_irq(irq, prcmu_irq_handler,
  2677. prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
  2678. if (err < 0) {
  2679. pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
  2680. err = -EBUSY;
  2681. goto no_irq_return;
  2682. }
  2683. db8500_irq_init(np);
  2684. for (i = 0; i < ARRAY_SIZE(db8500_prcmu_devs); i++) {
  2685. if (!strcmp(db8500_prcmu_devs[i].name, "ab8500-core")) {
  2686. db8500_prcmu_devs[i].platform_data = pdata->ab_platdata;
  2687. db8500_prcmu_devs[i].pdata_size = sizeof(struct ab8500_platform_data);
  2688. }
  2689. }
  2690. prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
  2691. db8500_prcmu_update_cpufreq();
  2692. err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
  2693. ARRAY_SIZE(db8500_prcmu_devs), NULL, 0, NULL);
  2694. if (err) {
  2695. pr_err("prcmu: Failed to add subdevices\n");
  2696. return err;
  2697. }
  2698. pr_info("DB8500 PRCMU initialized\n");
  2699. no_irq_return:
  2700. return err;
  2701. }
  2702. static const struct of_device_id db8500_prcmu_match[] = {
  2703. { .compatible = "stericsson,db8500-prcmu"},
  2704. { },
  2705. };
  2706. static struct platform_driver db8500_prcmu_driver = {
  2707. .driver = {
  2708. .name = "db8500-prcmu",
  2709. .owner = THIS_MODULE,
  2710. .of_match_table = db8500_prcmu_match,
  2711. },
  2712. .probe = db8500_prcmu_probe,
  2713. };
  2714. static int __init db8500_prcmu_init(void)
  2715. {
  2716. return platform_driver_register(&db8500_prcmu_driver);
  2717. }
  2718. core_initcall(db8500_prcmu_init);
  2719. MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
  2720. MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
  2721. MODULE_LICENSE("GPL v2");