dm-bufio.c 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749
  1. /*
  2. * Copyright (C) 2009-2011 Red Hat, Inc.
  3. *
  4. * Author: Mikulas Patocka <mpatocka@redhat.com>
  5. *
  6. * This file is released under the GPL.
  7. */
  8. #include "dm-bufio.h"
  9. #include <linux/device-mapper.h>
  10. #include <linux/dm-io.h>
  11. #include <linux/slab.h>
  12. #include <linux/vmalloc.h>
  13. #include <linux/shrinker.h>
  14. #include <linux/module.h>
  15. #define DM_MSG_PREFIX "bufio"
  16. /*
  17. * Memory management policy:
  18. * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
  19. * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
  20. * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
  21. * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
  22. * dirty buffers.
  23. */
  24. #define DM_BUFIO_MIN_BUFFERS 8
  25. #define DM_BUFIO_MEMORY_PERCENT 2
  26. #define DM_BUFIO_VMALLOC_PERCENT 25
  27. #define DM_BUFIO_WRITEBACK_PERCENT 75
  28. /*
  29. * Check buffer ages in this interval (seconds)
  30. */
  31. #define DM_BUFIO_WORK_TIMER_SECS 10
  32. /*
  33. * Free buffers when they are older than this (seconds)
  34. */
  35. #define DM_BUFIO_DEFAULT_AGE_SECS 60
  36. /*
  37. * The number of bvec entries that are embedded directly in the buffer.
  38. * If the chunk size is larger, dm-io is used to do the io.
  39. */
  40. #define DM_BUFIO_INLINE_VECS 16
  41. /*
  42. * Buffer hash
  43. */
  44. #define DM_BUFIO_HASH_BITS 20
  45. #define DM_BUFIO_HASH(block) \
  46. ((((block) >> DM_BUFIO_HASH_BITS) ^ (block)) & \
  47. ((1 << DM_BUFIO_HASH_BITS) - 1))
  48. /*
  49. * Don't try to use kmem_cache_alloc for blocks larger than this.
  50. * For explanation, see alloc_buffer_data below.
  51. */
  52. #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT (PAGE_SIZE >> 1)
  53. #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT (PAGE_SIZE << (MAX_ORDER - 1))
  54. /*
  55. * dm_buffer->list_mode
  56. */
  57. #define LIST_CLEAN 0
  58. #define LIST_DIRTY 1
  59. #define LIST_SIZE 2
  60. /*
  61. * Linking of buffers:
  62. * All buffers are linked to cache_hash with their hash_list field.
  63. *
  64. * Clean buffers that are not being written (B_WRITING not set)
  65. * are linked to lru[LIST_CLEAN] with their lru_list field.
  66. *
  67. * Dirty and clean buffers that are being written are linked to
  68. * lru[LIST_DIRTY] with their lru_list field. When the write
  69. * finishes, the buffer cannot be relinked immediately (because we
  70. * are in an interrupt context and relinking requires process
  71. * context), so some clean-not-writing buffers can be held on
  72. * dirty_lru too. They are later added to lru in the process
  73. * context.
  74. */
  75. struct dm_bufio_client {
  76. struct mutex lock;
  77. struct list_head lru[LIST_SIZE];
  78. unsigned long n_buffers[LIST_SIZE];
  79. struct block_device *bdev;
  80. unsigned block_size;
  81. unsigned char sectors_per_block_bits;
  82. unsigned char pages_per_block_bits;
  83. unsigned char blocks_per_page_bits;
  84. unsigned aux_size;
  85. void (*alloc_callback)(struct dm_buffer *);
  86. void (*write_callback)(struct dm_buffer *);
  87. struct dm_io_client *dm_io;
  88. struct list_head reserved_buffers;
  89. unsigned need_reserved_buffers;
  90. struct hlist_head *cache_hash;
  91. wait_queue_head_t free_buffer_wait;
  92. int async_write_error;
  93. struct list_head client_list;
  94. struct shrinker shrinker;
  95. };
  96. /*
  97. * Buffer state bits.
  98. */
  99. #define B_READING 0
  100. #define B_WRITING 1
  101. #define B_DIRTY 2
  102. /*
  103. * Describes how the block was allocated:
  104. * kmem_cache_alloc(), __get_free_pages() or vmalloc().
  105. * See the comment at alloc_buffer_data.
  106. */
  107. enum data_mode {
  108. DATA_MODE_SLAB = 0,
  109. DATA_MODE_GET_FREE_PAGES = 1,
  110. DATA_MODE_VMALLOC = 2,
  111. DATA_MODE_LIMIT = 3
  112. };
  113. struct dm_buffer {
  114. struct hlist_node hash_list;
  115. struct list_head lru_list;
  116. sector_t block;
  117. void *data;
  118. enum data_mode data_mode;
  119. unsigned char list_mode; /* LIST_* */
  120. unsigned hold_count;
  121. int read_error;
  122. int write_error;
  123. unsigned long state;
  124. unsigned long last_accessed;
  125. struct dm_bufio_client *c;
  126. struct bio bio;
  127. struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
  128. };
  129. /*----------------------------------------------------------------*/
  130. static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
  131. static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
  132. static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
  133. {
  134. unsigned ret = c->blocks_per_page_bits - 1;
  135. BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
  136. return ret;
  137. }
  138. #define DM_BUFIO_CACHE(c) (dm_bufio_caches[dm_bufio_cache_index(c)])
  139. #define DM_BUFIO_CACHE_NAME(c) (dm_bufio_cache_names[dm_bufio_cache_index(c)])
  140. #define dm_bufio_in_request() (!!current->bio_list)
  141. static void dm_bufio_lock(struct dm_bufio_client *c)
  142. {
  143. mutex_lock_nested(&c->lock, dm_bufio_in_request());
  144. }
  145. static int dm_bufio_trylock(struct dm_bufio_client *c)
  146. {
  147. return mutex_trylock(&c->lock);
  148. }
  149. static void dm_bufio_unlock(struct dm_bufio_client *c)
  150. {
  151. mutex_unlock(&c->lock);
  152. }
  153. /*
  154. * FIXME Move to sched.h?
  155. */
  156. #ifdef CONFIG_PREEMPT_VOLUNTARY
  157. # define dm_bufio_cond_resched() \
  158. do { \
  159. if (unlikely(need_resched())) \
  160. _cond_resched(); \
  161. } while (0)
  162. #else
  163. # define dm_bufio_cond_resched() do { } while (0)
  164. #endif
  165. /*----------------------------------------------------------------*/
  166. /*
  167. * Default cache size: available memory divided by the ratio.
  168. */
  169. static unsigned long dm_bufio_default_cache_size;
  170. /*
  171. * Total cache size set by the user.
  172. */
  173. static unsigned long dm_bufio_cache_size;
  174. /*
  175. * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
  176. * at any time. If it disagrees, the user has changed cache size.
  177. */
  178. static unsigned long dm_bufio_cache_size_latch;
  179. static DEFINE_SPINLOCK(param_spinlock);
  180. /*
  181. * Buffers are freed after this timeout
  182. */
  183. static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
  184. static unsigned long dm_bufio_peak_allocated;
  185. static unsigned long dm_bufio_allocated_kmem_cache;
  186. static unsigned long dm_bufio_allocated_get_free_pages;
  187. static unsigned long dm_bufio_allocated_vmalloc;
  188. static unsigned long dm_bufio_current_allocated;
  189. /*----------------------------------------------------------------*/
  190. /*
  191. * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
  192. */
  193. static unsigned long dm_bufio_cache_size_per_client;
  194. /*
  195. * The current number of clients.
  196. */
  197. static int dm_bufio_client_count;
  198. /*
  199. * The list of all clients.
  200. */
  201. static LIST_HEAD(dm_bufio_all_clients);
  202. /*
  203. * This mutex protects dm_bufio_cache_size_latch,
  204. * dm_bufio_cache_size_per_client and dm_bufio_client_count
  205. */
  206. static DEFINE_MUTEX(dm_bufio_clients_lock);
  207. /*----------------------------------------------------------------*/
  208. static void adjust_total_allocated(enum data_mode data_mode, long diff)
  209. {
  210. static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
  211. &dm_bufio_allocated_kmem_cache,
  212. &dm_bufio_allocated_get_free_pages,
  213. &dm_bufio_allocated_vmalloc,
  214. };
  215. spin_lock(&param_spinlock);
  216. *class_ptr[data_mode] += diff;
  217. dm_bufio_current_allocated += diff;
  218. if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
  219. dm_bufio_peak_allocated = dm_bufio_current_allocated;
  220. spin_unlock(&param_spinlock);
  221. }
  222. /*
  223. * Change the number of clients and recalculate per-client limit.
  224. */
  225. static void __cache_size_refresh(void)
  226. {
  227. BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
  228. BUG_ON(dm_bufio_client_count < 0);
  229. dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
  230. /*
  231. * Use default if set to 0 and report the actual cache size used.
  232. */
  233. if (!dm_bufio_cache_size_latch) {
  234. (void)cmpxchg(&dm_bufio_cache_size, 0,
  235. dm_bufio_default_cache_size);
  236. dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
  237. }
  238. dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
  239. (dm_bufio_client_count ? : 1);
  240. }
  241. /*
  242. * Allocating buffer data.
  243. *
  244. * Small buffers are allocated with kmem_cache, to use space optimally.
  245. *
  246. * For large buffers, we choose between get_free_pages and vmalloc.
  247. * Each has advantages and disadvantages.
  248. *
  249. * __get_free_pages can randomly fail if the memory is fragmented.
  250. * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
  251. * as low as 128M) so using it for caching is not appropriate.
  252. *
  253. * If the allocation may fail we use __get_free_pages. Memory fragmentation
  254. * won't have a fatal effect here, but it just causes flushes of some other
  255. * buffers and more I/O will be performed. Don't use __get_free_pages if it
  256. * always fails (i.e. order >= MAX_ORDER).
  257. *
  258. * If the allocation shouldn't fail we use __vmalloc. This is only for the
  259. * initial reserve allocation, so there's no risk of wasting all vmalloc
  260. * space.
  261. */
  262. static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
  263. enum data_mode *data_mode)
  264. {
  265. if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
  266. *data_mode = DATA_MODE_SLAB;
  267. return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
  268. }
  269. if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
  270. gfp_mask & __GFP_NORETRY) {
  271. *data_mode = DATA_MODE_GET_FREE_PAGES;
  272. return (void *)__get_free_pages(gfp_mask,
  273. c->pages_per_block_bits);
  274. }
  275. *data_mode = DATA_MODE_VMALLOC;
  276. return __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL);
  277. }
  278. /*
  279. * Free buffer's data.
  280. */
  281. static void free_buffer_data(struct dm_bufio_client *c,
  282. void *data, enum data_mode data_mode)
  283. {
  284. switch (data_mode) {
  285. case DATA_MODE_SLAB:
  286. kmem_cache_free(DM_BUFIO_CACHE(c), data);
  287. break;
  288. case DATA_MODE_GET_FREE_PAGES:
  289. free_pages((unsigned long)data, c->pages_per_block_bits);
  290. break;
  291. case DATA_MODE_VMALLOC:
  292. vfree(data);
  293. break;
  294. default:
  295. DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
  296. data_mode);
  297. BUG();
  298. }
  299. }
  300. /*
  301. * Allocate buffer and its data.
  302. */
  303. static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
  304. {
  305. struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
  306. gfp_mask);
  307. if (!b)
  308. return NULL;
  309. b->c = c;
  310. b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
  311. if (!b->data) {
  312. kfree(b);
  313. return NULL;
  314. }
  315. adjust_total_allocated(b->data_mode, (long)c->block_size);
  316. return b;
  317. }
  318. /*
  319. * Free buffer and its data.
  320. */
  321. static void free_buffer(struct dm_buffer *b)
  322. {
  323. struct dm_bufio_client *c = b->c;
  324. adjust_total_allocated(b->data_mode, -(long)c->block_size);
  325. free_buffer_data(c, b->data, b->data_mode);
  326. kfree(b);
  327. }
  328. /*
  329. * Link buffer to the hash list and clean or dirty queue.
  330. */
  331. static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
  332. {
  333. struct dm_bufio_client *c = b->c;
  334. c->n_buffers[dirty]++;
  335. b->block = block;
  336. b->list_mode = dirty;
  337. list_add(&b->lru_list, &c->lru[dirty]);
  338. hlist_add_head(&b->hash_list, &c->cache_hash[DM_BUFIO_HASH(block)]);
  339. b->last_accessed = jiffies;
  340. }
  341. /*
  342. * Unlink buffer from the hash list and dirty or clean queue.
  343. */
  344. static void __unlink_buffer(struct dm_buffer *b)
  345. {
  346. struct dm_bufio_client *c = b->c;
  347. BUG_ON(!c->n_buffers[b->list_mode]);
  348. c->n_buffers[b->list_mode]--;
  349. hlist_del(&b->hash_list);
  350. list_del(&b->lru_list);
  351. }
  352. /*
  353. * Place the buffer to the head of dirty or clean LRU queue.
  354. */
  355. static void __relink_lru(struct dm_buffer *b, int dirty)
  356. {
  357. struct dm_bufio_client *c = b->c;
  358. BUG_ON(!c->n_buffers[b->list_mode]);
  359. c->n_buffers[b->list_mode]--;
  360. c->n_buffers[dirty]++;
  361. b->list_mode = dirty;
  362. list_move(&b->lru_list, &c->lru[dirty]);
  363. }
  364. /*----------------------------------------------------------------
  365. * Submit I/O on the buffer.
  366. *
  367. * Bio interface is faster but it has some problems:
  368. * the vector list is limited (increasing this limit increases
  369. * memory-consumption per buffer, so it is not viable);
  370. *
  371. * the memory must be direct-mapped, not vmalloced;
  372. *
  373. * the I/O driver can reject requests spuriously if it thinks that
  374. * the requests are too big for the device or if they cross a
  375. * controller-defined memory boundary.
  376. *
  377. * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
  378. * it is not vmalloced, try using the bio interface.
  379. *
  380. * If the buffer is big, if it is vmalloced or if the underlying device
  381. * rejects the bio because it is too large, use dm-io layer to do the I/O.
  382. * The dm-io layer splits the I/O into multiple requests, avoiding the above
  383. * shortcomings.
  384. *--------------------------------------------------------------*/
  385. /*
  386. * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
  387. * that the request was handled directly with bio interface.
  388. */
  389. static void dmio_complete(unsigned long error, void *context)
  390. {
  391. struct dm_buffer *b = context;
  392. b->bio.bi_end_io(&b->bio, error ? -EIO : 0);
  393. }
  394. static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
  395. bio_end_io_t *end_io)
  396. {
  397. int r;
  398. struct dm_io_request io_req = {
  399. .bi_rw = rw,
  400. .notify.fn = dmio_complete,
  401. .notify.context = b,
  402. .client = b->c->dm_io,
  403. };
  404. struct dm_io_region region = {
  405. .bdev = b->c->bdev,
  406. .sector = block << b->c->sectors_per_block_bits,
  407. .count = b->c->block_size >> SECTOR_SHIFT,
  408. };
  409. if (b->data_mode != DATA_MODE_VMALLOC) {
  410. io_req.mem.type = DM_IO_KMEM;
  411. io_req.mem.ptr.addr = b->data;
  412. } else {
  413. io_req.mem.type = DM_IO_VMA;
  414. io_req.mem.ptr.vma = b->data;
  415. }
  416. b->bio.bi_end_io = end_io;
  417. r = dm_io(&io_req, 1, &region, NULL);
  418. if (r)
  419. end_io(&b->bio, r);
  420. }
  421. static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
  422. bio_end_io_t *end_io)
  423. {
  424. char *ptr;
  425. int len;
  426. bio_init(&b->bio);
  427. b->bio.bi_io_vec = b->bio_vec;
  428. b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS;
  429. b->bio.bi_sector = block << b->c->sectors_per_block_bits;
  430. b->bio.bi_bdev = b->c->bdev;
  431. b->bio.bi_end_io = end_io;
  432. /*
  433. * We assume that if len >= PAGE_SIZE ptr is page-aligned.
  434. * If len < PAGE_SIZE the buffer doesn't cross page boundary.
  435. */
  436. ptr = b->data;
  437. len = b->c->block_size;
  438. if (len >= PAGE_SIZE)
  439. BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
  440. else
  441. BUG_ON((unsigned long)ptr & (len - 1));
  442. do {
  443. if (!bio_add_page(&b->bio, virt_to_page(ptr),
  444. len < PAGE_SIZE ? len : PAGE_SIZE,
  445. virt_to_phys(ptr) & (PAGE_SIZE - 1))) {
  446. BUG_ON(b->c->block_size <= PAGE_SIZE);
  447. use_dmio(b, rw, block, end_io);
  448. return;
  449. }
  450. len -= PAGE_SIZE;
  451. ptr += PAGE_SIZE;
  452. } while (len > 0);
  453. submit_bio(rw, &b->bio);
  454. }
  455. static void submit_io(struct dm_buffer *b, int rw, sector_t block,
  456. bio_end_io_t *end_io)
  457. {
  458. if (rw == WRITE && b->c->write_callback)
  459. b->c->write_callback(b);
  460. if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
  461. b->data_mode != DATA_MODE_VMALLOC)
  462. use_inline_bio(b, rw, block, end_io);
  463. else
  464. use_dmio(b, rw, block, end_io);
  465. }
  466. /*----------------------------------------------------------------
  467. * Writing dirty buffers
  468. *--------------------------------------------------------------*/
  469. /*
  470. * The endio routine for write.
  471. *
  472. * Set the error, clear B_WRITING bit and wake anyone who was waiting on
  473. * it.
  474. */
  475. static void write_endio(struct bio *bio, int error)
  476. {
  477. struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
  478. b->write_error = error;
  479. if (unlikely(error)) {
  480. struct dm_bufio_client *c = b->c;
  481. (void)cmpxchg(&c->async_write_error, 0, error);
  482. }
  483. BUG_ON(!test_bit(B_WRITING, &b->state));
  484. smp_mb__before_clear_bit();
  485. clear_bit(B_WRITING, &b->state);
  486. smp_mb__after_clear_bit();
  487. wake_up_bit(&b->state, B_WRITING);
  488. }
  489. /*
  490. * This function is called when wait_on_bit is actually waiting.
  491. */
  492. static int do_io_schedule(void *word)
  493. {
  494. io_schedule();
  495. return 0;
  496. }
  497. /*
  498. * Initiate a write on a dirty buffer, but don't wait for it.
  499. *
  500. * - If the buffer is not dirty, exit.
  501. * - If there some previous write going on, wait for it to finish (we can't
  502. * have two writes on the same buffer simultaneously).
  503. * - Submit our write and don't wait on it. We set B_WRITING indicating
  504. * that there is a write in progress.
  505. */
  506. static void __write_dirty_buffer(struct dm_buffer *b)
  507. {
  508. if (!test_bit(B_DIRTY, &b->state))
  509. return;
  510. clear_bit(B_DIRTY, &b->state);
  511. wait_on_bit_lock(&b->state, B_WRITING,
  512. do_io_schedule, TASK_UNINTERRUPTIBLE);
  513. submit_io(b, WRITE, b->block, write_endio);
  514. }
  515. /*
  516. * Wait until any activity on the buffer finishes. Possibly write the
  517. * buffer if it is dirty. When this function finishes, there is no I/O
  518. * running on the buffer and the buffer is not dirty.
  519. */
  520. static void __make_buffer_clean(struct dm_buffer *b)
  521. {
  522. BUG_ON(b->hold_count);
  523. if (!b->state) /* fast case */
  524. return;
  525. wait_on_bit(&b->state, B_READING, do_io_schedule, TASK_UNINTERRUPTIBLE);
  526. __write_dirty_buffer(b);
  527. wait_on_bit(&b->state, B_WRITING, do_io_schedule, TASK_UNINTERRUPTIBLE);
  528. }
  529. /*
  530. * Find some buffer that is not held by anybody, clean it, unlink it and
  531. * return it.
  532. */
  533. static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
  534. {
  535. struct dm_buffer *b;
  536. list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
  537. BUG_ON(test_bit(B_WRITING, &b->state));
  538. BUG_ON(test_bit(B_DIRTY, &b->state));
  539. if (!b->hold_count) {
  540. __make_buffer_clean(b);
  541. __unlink_buffer(b);
  542. return b;
  543. }
  544. dm_bufio_cond_resched();
  545. }
  546. list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
  547. BUG_ON(test_bit(B_READING, &b->state));
  548. if (!b->hold_count) {
  549. __make_buffer_clean(b);
  550. __unlink_buffer(b);
  551. return b;
  552. }
  553. dm_bufio_cond_resched();
  554. }
  555. return NULL;
  556. }
  557. /*
  558. * Wait until some other threads free some buffer or release hold count on
  559. * some buffer.
  560. *
  561. * This function is entered with c->lock held, drops it and regains it
  562. * before exiting.
  563. */
  564. static void __wait_for_free_buffer(struct dm_bufio_client *c)
  565. {
  566. DECLARE_WAITQUEUE(wait, current);
  567. add_wait_queue(&c->free_buffer_wait, &wait);
  568. set_task_state(current, TASK_UNINTERRUPTIBLE);
  569. dm_bufio_unlock(c);
  570. io_schedule();
  571. set_task_state(current, TASK_RUNNING);
  572. remove_wait_queue(&c->free_buffer_wait, &wait);
  573. dm_bufio_lock(c);
  574. }
  575. enum new_flag {
  576. NF_FRESH = 0,
  577. NF_READ = 1,
  578. NF_GET = 2,
  579. NF_PREFETCH = 3
  580. };
  581. /*
  582. * Allocate a new buffer. If the allocation is not possible, wait until
  583. * some other thread frees a buffer.
  584. *
  585. * May drop the lock and regain it.
  586. */
  587. static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
  588. {
  589. struct dm_buffer *b;
  590. /*
  591. * dm-bufio is resistant to allocation failures (it just keeps
  592. * one buffer reserved in cases all the allocations fail).
  593. * So set flags to not try too hard:
  594. * GFP_NOIO: don't recurse into the I/O layer
  595. * __GFP_NORETRY: don't retry and rather return failure
  596. * __GFP_NOMEMALLOC: don't use emergency reserves
  597. * __GFP_NOWARN: don't print a warning in case of failure
  598. *
  599. * For debugging, if we set the cache size to 1, no new buffers will
  600. * be allocated.
  601. */
  602. while (1) {
  603. if (dm_bufio_cache_size_latch != 1) {
  604. b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
  605. if (b)
  606. return b;
  607. }
  608. if (nf == NF_PREFETCH)
  609. return NULL;
  610. if (!list_empty(&c->reserved_buffers)) {
  611. b = list_entry(c->reserved_buffers.next,
  612. struct dm_buffer, lru_list);
  613. list_del(&b->lru_list);
  614. c->need_reserved_buffers++;
  615. return b;
  616. }
  617. b = __get_unclaimed_buffer(c);
  618. if (b)
  619. return b;
  620. __wait_for_free_buffer(c);
  621. }
  622. }
  623. static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
  624. {
  625. struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
  626. if (!b)
  627. return NULL;
  628. if (c->alloc_callback)
  629. c->alloc_callback(b);
  630. return b;
  631. }
  632. /*
  633. * Free a buffer and wake other threads waiting for free buffers.
  634. */
  635. static void __free_buffer_wake(struct dm_buffer *b)
  636. {
  637. struct dm_bufio_client *c = b->c;
  638. if (!c->need_reserved_buffers)
  639. free_buffer(b);
  640. else {
  641. list_add(&b->lru_list, &c->reserved_buffers);
  642. c->need_reserved_buffers--;
  643. }
  644. wake_up(&c->free_buffer_wait);
  645. }
  646. static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait)
  647. {
  648. struct dm_buffer *b, *tmp;
  649. list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
  650. BUG_ON(test_bit(B_READING, &b->state));
  651. if (!test_bit(B_DIRTY, &b->state) &&
  652. !test_bit(B_WRITING, &b->state)) {
  653. __relink_lru(b, LIST_CLEAN);
  654. continue;
  655. }
  656. if (no_wait && test_bit(B_WRITING, &b->state))
  657. return;
  658. __write_dirty_buffer(b);
  659. dm_bufio_cond_resched();
  660. }
  661. }
  662. /*
  663. * Get writeback threshold and buffer limit for a given client.
  664. */
  665. static void __get_memory_limit(struct dm_bufio_client *c,
  666. unsigned long *threshold_buffers,
  667. unsigned long *limit_buffers)
  668. {
  669. unsigned long buffers;
  670. if (ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch) {
  671. mutex_lock(&dm_bufio_clients_lock);
  672. __cache_size_refresh();
  673. mutex_unlock(&dm_bufio_clients_lock);
  674. }
  675. buffers = dm_bufio_cache_size_per_client >>
  676. (c->sectors_per_block_bits + SECTOR_SHIFT);
  677. if (buffers < DM_BUFIO_MIN_BUFFERS)
  678. buffers = DM_BUFIO_MIN_BUFFERS;
  679. *limit_buffers = buffers;
  680. *threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100;
  681. }
  682. /*
  683. * Check if we're over watermark.
  684. * If we are over threshold_buffers, start freeing buffers.
  685. * If we're over "limit_buffers", block until we get under the limit.
  686. */
  687. static void __check_watermark(struct dm_bufio_client *c)
  688. {
  689. unsigned long threshold_buffers, limit_buffers;
  690. __get_memory_limit(c, &threshold_buffers, &limit_buffers);
  691. while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
  692. limit_buffers) {
  693. struct dm_buffer *b = __get_unclaimed_buffer(c);
  694. if (!b)
  695. return;
  696. __free_buffer_wake(b);
  697. dm_bufio_cond_resched();
  698. }
  699. if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
  700. __write_dirty_buffers_async(c, 1);
  701. }
  702. /*
  703. * Find a buffer in the hash.
  704. */
  705. static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
  706. {
  707. struct dm_buffer *b;
  708. hlist_for_each_entry(b, &c->cache_hash[DM_BUFIO_HASH(block)],
  709. hash_list) {
  710. dm_bufio_cond_resched();
  711. if (b->block == block)
  712. return b;
  713. }
  714. return NULL;
  715. }
  716. /*----------------------------------------------------------------
  717. * Getting a buffer
  718. *--------------------------------------------------------------*/
  719. static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
  720. enum new_flag nf, int *need_submit)
  721. {
  722. struct dm_buffer *b, *new_b = NULL;
  723. *need_submit = 0;
  724. b = __find(c, block);
  725. if (b)
  726. goto found_buffer;
  727. if (nf == NF_GET)
  728. return NULL;
  729. new_b = __alloc_buffer_wait(c, nf);
  730. if (!new_b)
  731. return NULL;
  732. /*
  733. * We've had a period where the mutex was unlocked, so need to
  734. * recheck the hash table.
  735. */
  736. b = __find(c, block);
  737. if (b) {
  738. __free_buffer_wake(new_b);
  739. goto found_buffer;
  740. }
  741. __check_watermark(c);
  742. b = new_b;
  743. b->hold_count = 1;
  744. b->read_error = 0;
  745. b->write_error = 0;
  746. __link_buffer(b, block, LIST_CLEAN);
  747. if (nf == NF_FRESH) {
  748. b->state = 0;
  749. return b;
  750. }
  751. b->state = 1 << B_READING;
  752. *need_submit = 1;
  753. return b;
  754. found_buffer:
  755. if (nf == NF_PREFETCH)
  756. return NULL;
  757. /*
  758. * Note: it is essential that we don't wait for the buffer to be
  759. * read if dm_bufio_get function is used. Both dm_bufio_get and
  760. * dm_bufio_prefetch can be used in the driver request routine.
  761. * If the user called both dm_bufio_prefetch and dm_bufio_get on
  762. * the same buffer, it would deadlock if we waited.
  763. */
  764. if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
  765. return NULL;
  766. b->hold_count++;
  767. __relink_lru(b, test_bit(B_DIRTY, &b->state) ||
  768. test_bit(B_WRITING, &b->state));
  769. return b;
  770. }
  771. /*
  772. * The endio routine for reading: set the error, clear the bit and wake up
  773. * anyone waiting on the buffer.
  774. */
  775. static void read_endio(struct bio *bio, int error)
  776. {
  777. struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
  778. b->read_error = error;
  779. BUG_ON(!test_bit(B_READING, &b->state));
  780. smp_mb__before_clear_bit();
  781. clear_bit(B_READING, &b->state);
  782. smp_mb__after_clear_bit();
  783. wake_up_bit(&b->state, B_READING);
  784. }
  785. /*
  786. * A common routine for dm_bufio_new and dm_bufio_read. Operation of these
  787. * functions is similar except that dm_bufio_new doesn't read the
  788. * buffer from the disk (assuming that the caller overwrites all the data
  789. * and uses dm_bufio_mark_buffer_dirty to write new data back).
  790. */
  791. static void *new_read(struct dm_bufio_client *c, sector_t block,
  792. enum new_flag nf, struct dm_buffer **bp)
  793. {
  794. int need_submit;
  795. struct dm_buffer *b;
  796. dm_bufio_lock(c);
  797. b = __bufio_new(c, block, nf, &need_submit);
  798. dm_bufio_unlock(c);
  799. if (!b)
  800. return b;
  801. if (need_submit)
  802. submit_io(b, READ, b->block, read_endio);
  803. wait_on_bit(&b->state, B_READING, do_io_schedule, TASK_UNINTERRUPTIBLE);
  804. if (b->read_error) {
  805. int error = b->read_error;
  806. dm_bufio_release(b);
  807. return ERR_PTR(error);
  808. }
  809. *bp = b;
  810. return b->data;
  811. }
  812. void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
  813. struct dm_buffer **bp)
  814. {
  815. return new_read(c, block, NF_GET, bp);
  816. }
  817. EXPORT_SYMBOL_GPL(dm_bufio_get);
  818. void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
  819. struct dm_buffer **bp)
  820. {
  821. BUG_ON(dm_bufio_in_request());
  822. return new_read(c, block, NF_READ, bp);
  823. }
  824. EXPORT_SYMBOL_GPL(dm_bufio_read);
  825. void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
  826. struct dm_buffer **bp)
  827. {
  828. BUG_ON(dm_bufio_in_request());
  829. return new_read(c, block, NF_FRESH, bp);
  830. }
  831. EXPORT_SYMBOL_GPL(dm_bufio_new);
  832. void dm_bufio_prefetch(struct dm_bufio_client *c,
  833. sector_t block, unsigned n_blocks)
  834. {
  835. struct blk_plug plug;
  836. blk_start_plug(&plug);
  837. dm_bufio_lock(c);
  838. for (; n_blocks--; block++) {
  839. int need_submit;
  840. struct dm_buffer *b;
  841. b = __bufio_new(c, block, NF_PREFETCH, &need_submit);
  842. if (unlikely(b != NULL)) {
  843. dm_bufio_unlock(c);
  844. if (need_submit)
  845. submit_io(b, READ, b->block, read_endio);
  846. dm_bufio_release(b);
  847. dm_bufio_cond_resched();
  848. if (!n_blocks)
  849. goto flush_plug;
  850. dm_bufio_lock(c);
  851. }
  852. }
  853. dm_bufio_unlock(c);
  854. flush_plug:
  855. blk_finish_plug(&plug);
  856. }
  857. EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
  858. void dm_bufio_release(struct dm_buffer *b)
  859. {
  860. struct dm_bufio_client *c = b->c;
  861. dm_bufio_lock(c);
  862. BUG_ON(!b->hold_count);
  863. b->hold_count--;
  864. if (!b->hold_count) {
  865. wake_up(&c->free_buffer_wait);
  866. /*
  867. * If there were errors on the buffer, and the buffer is not
  868. * to be written, free the buffer. There is no point in caching
  869. * invalid buffer.
  870. */
  871. if ((b->read_error || b->write_error) &&
  872. !test_bit(B_READING, &b->state) &&
  873. !test_bit(B_WRITING, &b->state) &&
  874. !test_bit(B_DIRTY, &b->state)) {
  875. __unlink_buffer(b);
  876. __free_buffer_wake(b);
  877. }
  878. }
  879. dm_bufio_unlock(c);
  880. }
  881. EXPORT_SYMBOL_GPL(dm_bufio_release);
  882. void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
  883. {
  884. struct dm_bufio_client *c = b->c;
  885. dm_bufio_lock(c);
  886. BUG_ON(test_bit(B_READING, &b->state));
  887. if (!test_and_set_bit(B_DIRTY, &b->state))
  888. __relink_lru(b, LIST_DIRTY);
  889. dm_bufio_unlock(c);
  890. }
  891. EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
  892. void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
  893. {
  894. BUG_ON(dm_bufio_in_request());
  895. dm_bufio_lock(c);
  896. __write_dirty_buffers_async(c, 0);
  897. dm_bufio_unlock(c);
  898. }
  899. EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
  900. /*
  901. * For performance, it is essential that the buffers are written asynchronously
  902. * and simultaneously (so that the block layer can merge the writes) and then
  903. * waited upon.
  904. *
  905. * Finally, we flush hardware disk cache.
  906. */
  907. int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
  908. {
  909. int a, f;
  910. unsigned long buffers_processed = 0;
  911. struct dm_buffer *b, *tmp;
  912. dm_bufio_lock(c);
  913. __write_dirty_buffers_async(c, 0);
  914. again:
  915. list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
  916. int dropped_lock = 0;
  917. if (buffers_processed < c->n_buffers[LIST_DIRTY])
  918. buffers_processed++;
  919. BUG_ON(test_bit(B_READING, &b->state));
  920. if (test_bit(B_WRITING, &b->state)) {
  921. if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
  922. dropped_lock = 1;
  923. b->hold_count++;
  924. dm_bufio_unlock(c);
  925. wait_on_bit(&b->state, B_WRITING,
  926. do_io_schedule,
  927. TASK_UNINTERRUPTIBLE);
  928. dm_bufio_lock(c);
  929. b->hold_count--;
  930. } else
  931. wait_on_bit(&b->state, B_WRITING,
  932. do_io_schedule,
  933. TASK_UNINTERRUPTIBLE);
  934. }
  935. if (!test_bit(B_DIRTY, &b->state) &&
  936. !test_bit(B_WRITING, &b->state))
  937. __relink_lru(b, LIST_CLEAN);
  938. dm_bufio_cond_resched();
  939. /*
  940. * If we dropped the lock, the list is no longer consistent,
  941. * so we must restart the search.
  942. *
  943. * In the most common case, the buffer just processed is
  944. * relinked to the clean list, so we won't loop scanning the
  945. * same buffer again and again.
  946. *
  947. * This may livelock if there is another thread simultaneously
  948. * dirtying buffers, so we count the number of buffers walked
  949. * and if it exceeds the total number of buffers, it means that
  950. * someone is doing some writes simultaneously with us. In
  951. * this case, stop, dropping the lock.
  952. */
  953. if (dropped_lock)
  954. goto again;
  955. }
  956. wake_up(&c->free_buffer_wait);
  957. dm_bufio_unlock(c);
  958. a = xchg(&c->async_write_error, 0);
  959. f = dm_bufio_issue_flush(c);
  960. if (a)
  961. return a;
  962. return f;
  963. }
  964. EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
  965. /*
  966. * Use dm-io to send and empty barrier flush the device.
  967. */
  968. int dm_bufio_issue_flush(struct dm_bufio_client *c)
  969. {
  970. struct dm_io_request io_req = {
  971. .bi_rw = WRITE_FLUSH,
  972. .mem.type = DM_IO_KMEM,
  973. .mem.ptr.addr = NULL,
  974. .client = c->dm_io,
  975. };
  976. struct dm_io_region io_reg = {
  977. .bdev = c->bdev,
  978. .sector = 0,
  979. .count = 0,
  980. };
  981. BUG_ON(dm_bufio_in_request());
  982. return dm_io(&io_req, 1, &io_reg, NULL);
  983. }
  984. EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
  985. /*
  986. * We first delete any other buffer that may be at that new location.
  987. *
  988. * Then, we write the buffer to the original location if it was dirty.
  989. *
  990. * Then, if we are the only one who is holding the buffer, relink the buffer
  991. * in the hash queue for the new location.
  992. *
  993. * If there was someone else holding the buffer, we write it to the new
  994. * location but not relink it, because that other user needs to have the buffer
  995. * at the same place.
  996. */
  997. void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
  998. {
  999. struct dm_bufio_client *c = b->c;
  1000. struct dm_buffer *new;
  1001. BUG_ON(dm_bufio_in_request());
  1002. dm_bufio_lock(c);
  1003. retry:
  1004. new = __find(c, new_block);
  1005. if (new) {
  1006. if (new->hold_count) {
  1007. __wait_for_free_buffer(c);
  1008. goto retry;
  1009. }
  1010. /*
  1011. * FIXME: Is there any point waiting for a write that's going
  1012. * to be overwritten in a bit?
  1013. */
  1014. __make_buffer_clean(new);
  1015. __unlink_buffer(new);
  1016. __free_buffer_wake(new);
  1017. }
  1018. BUG_ON(!b->hold_count);
  1019. BUG_ON(test_bit(B_READING, &b->state));
  1020. __write_dirty_buffer(b);
  1021. if (b->hold_count == 1) {
  1022. wait_on_bit(&b->state, B_WRITING,
  1023. do_io_schedule, TASK_UNINTERRUPTIBLE);
  1024. set_bit(B_DIRTY, &b->state);
  1025. __unlink_buffer(b);
  1026. __link_buffer(b, new_block, LIST_DIRTY);
  1027. } else {
  1028. sector_t old_block;
  1029. wait_on_bit_lock(&b->state, B_WRITING,
  1030. do_io_schedule, TASK_UNINTERRUPTIBLE);
  1031. /*
  1032. * Relink buffer to "new_block" so that write_callback
  1033. * sees "new_block" as a block number.
  1034. * After the write, link the buffer back to old_block.
  1035. * All this must be done in bufio lock, so that block number
  1036. * change isn't visible to other threads.
  1037. */
  1038. old_block = b->block;
  1039. __unlink_buffer(b);
  1040. __link_buffer(b, new_block, b->list_mode);
  1041. submit_io(b, WRITE, new_block, write_endio);
  1042. wait_on_bit(&b->state, B_WRITING,
  1043. do_io_schedule, TASK_UNINTERRUPTIBLE);
  1044. __unlink_buffer(b);
  1045. __link_buffer(b, old_block, b->list_mode);
  1046. }
  1047. dm_bufio_unlock(c);
  1048. dm_bufio_release(b);
  1049. }
  1050. EXPORT_SYMBOL_GPL(dm_bufio_release_move);
  1051. unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
  1052. {
  1053. return c->block_size;
  1054. }
  1055. EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
  1056. sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
  1057. {
  1058. return i_size_read(c->bdev->bd_inode) >>
  1059. (SECTOR_SHIFT + c->sectors_per_block_bits);
  1060. }
  1061. EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
  1062. sector_t dm_bufio_get_block_number(struct dm_buffer *b)
  1063. {
  1064. return b->block;
  1065. }
  1066. EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
  1067. void *dm_bufio_get_block_data(struct dm_buffer *b)
  1068. {
  1069. return b->data;
  1070. }
  1071. EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
  1072. void *dm_bufio_get_aux_data(struct dm_buffer *b)
  1073. {
  1074. return b + 1;
  1075. }
  1076. EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
  1077. struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
  1078. {
  1079. return b->c;
  1080. }
  1081. EXPORT_SYMBOL_GPL(dm_bufio_get_client);
  1082. static void drop_buffers(struct dm_bufio_client *c)
  1083. {
  1084. struct dm_buffer *b;
  1085. int i;
  1086. BUG_ON(dm_bufio_in_request());
  1087. /*
  1088. * An optimization so that the buffers are not written one-by-one.
  1089. */
  1090. dm_bufio_write_dirty_buffers_async(c);
  1091. dm_bufio_lock(c);
  1092. while ((b = __get_unclaimed_buffer(c)))
  1093. __free_buffer_wake(b);
  1094. for (i = 0; i < LIST_SIZE; i++)
  1095. list_for_each_entry(b, &c->lru[i], lru_list)
  1096. DMERR("leaked buffer %llx, hold count %u, list %d",
  1097. (unsigned long long)b->block, b->hold_count, i);
  1098. for (i = 0; i < LIST_SIZE; i++)
  1099. BUG_ON(!list_empty(&c->lru[i]));
  1100. dm_bufio_unlock(c);
  1101. }
  1102. /*
  1103. * Test if the buffer is unused and too old, and commit it.
  1104. * At if noio is set, we must not do any I/O because we hold
  1105. * dm_bufio_clients_lock and we would risk deadlock if the I/O gets rerouted to
  1106. * different bufio client.
  1107. */
  1108. static int __cleanup_old_buffer(struct dm_buffer *b, gfp_t gfp,
  1109. unsigned long max_jiffies)
  1110. {
  1111. if (jiffies - b->last_accessed < max_jiffies)
  1112. return 1;
  1113. if (!(gfp & __GFP_IO)) {
  1114. if (test_bit(B_READING, &b->state) ||
  1115. test_bit(B_WRITING, &b->state) ||
  1116. test_bit(B_DIRTY, &b->state))
  1117. return 1;
  1118. }
  1119. if (b->hold_count)
  1120. return 1;
  1121. __make_buffer_clean(b);
  1122. __unlink_buffer(b);
  1123. __free_buffer_wake(b);
  1124. return 0;
  1125. }
  1126. static void __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
  1127. struct shrink_control *sc)
  1128. {
  1129. int l;
  1130. struct dm_buffer *b, *tmp;
  1131. for (l = 0; l < LIST_SIZE; l++) {
  1132. list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list)
  1133. if (!__cleanup_old_buffer(b, sc->gfp_mask, 0) &&
  1134. !--nr_to_scan)
  1135. return;
  1136. dm_bufio_cond_resched();
  1137. }
  1138. }
  1139. static int shrink(struct shrinker *shrinker, struct shrink_control *sc)
  1140. {
  1141. struct dm_bufio_client *c =
  1142. container_of(shrinker, struct dm_bufio_client, shrinker);
  1143. unsigned long r;
  1144. unsigned long nr_to_scan = sc->nr_to_scan;
  1145. if (sc->gfp_mask & __GFP_IO)
  1146. dm_bufio_lock(c);
  1147. else if (!dm_bufio_trylock(c))
  1148. return !nr_to_scan ? 0 : -1;
  1149. if (nr_to_scan)
  1150. __scan(c, nr_to_scan, sc);
  1151. r = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
  1152. if (r > INT_MAX)
  1153. r = INT_MAX;
  1154. dm_bufio_unlock(c);
  1155. return r;
  1156. }
  1157. /*
  1158. * Create the buffering interface
  1159. */
  1160. struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
  1161. unsigned reserved_buffers, unsigned aux_size,
  1162. void (*alloc_callback)(struct dm_buffer *),
  1163. void (*write_callback)(struct dm_buffer *))
  1164. {
  1165. int r;
  1166. struct dm_bufio_client *c;
  1167. unsigned i;
  1168. BUG_ON(block_size < 1 << SECTOR_SHIFT ||
  1169. (block_size & (block_size - 1)));
  1170. c = kmalloc(sizeof(*c), GFP_KERNEL);
  1171. if (!c) {
  1172. r = -ENOMEM;
  1173. goto bad_client;
  1174. }
  1175. c->cache_hash = vmalloc(sizeof(struct hlist_head) << DM_BUFIO_HASH_BITS);
  1176. if (!c->cache_hash) {
  1177. r = -ENOMEM;
  1178. goto bad_hash;
  1179. }
  1180. c->bdev = bdev;
  1181. c->block_size = block_size;
  1182. c->sectors_per_block_bits = ffs(block_size) - 1 - SECTOR_SHIFT;
  1183. c->pages_per_block_bits = (ffs(block_size) - 1 >= PAGE_SHIFT) ?
  1184. ffs(block_size) - 1 - PAGE_SHIFT : 0;
  1185. c->blocks_per_page_bits = (ffs(block_size) - 1 < PAGE_SHIFT ?
  1186. PAGE_SHIFT - (ffs(block_size) - 1) : 0);
  1187. c->aux_size = aux_size;
  1188. c->alloc_callback = alloc_callback;
  1189. c->write_callback = write_callback;
  1190. for (i = 0; i < LIST_SIZE; i++) {
  1191. INIT_LIST_HEAD(&c->lru[i]);
  1192. c->n_buffers[i] = 0;
  1193. }
  1194. for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++)
  1195. INIT_HLIST_HEAD(&c->cache_hash[i]);
  1196. mutex_init(&c->lock);
  1197. INIT_LIST_HEAD(&c->reserved_buffers);
  1198. c->need_reserved_buffers = reserved_buffers;
  1199. init_waitqueue_head(&c->free_buffer_wait);
  1200. c->async_write_error = 0;
  1201. c->dm_io = dm_io_client_create();
  1202. if (IS_ERR(c->dm_io)) {
  1203. r = PTR_ERR(c->dm_io);
  1204. goto bad_dm_io;
  1205. }
  1206. mutex_lock(&dm_bufio_clients_lock);
  1207. if (c->blocks_per_page_bits) {
  1208. if (!DM_BUFIO_CACHE_NAME(c)) {
  1209. DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
  1210. if (!DM_BUFIO_CACHE_NAME(c)) {
  1211. r = -ENOMEM;
  1212. mutex_unlock(&dm_bufio_clients_lock);
  1213. goto bad_cache;
  1214. }
  1215. }
  1216. if (!DM_BUFIO_CACHE(c)) {
  1217. DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
  1218. c->block_size,
  1219. c->block_size, 0, NULL);
  1220. if (!DM_BUFIO_CACHE(c)) {
  1221. r = -ENOMEM;
  1222. mutex_unlock(&dm_bufio_clients_lock);
  1223. goto bad_cache;
  1224. }
  1225. }
  1226. }
  1227. mutex_unlock(&dm_bufio_clients_lock);
  1228. while (c->need_reserved_buffers) {
  1229. struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
  1230. if (!b) {
  1231. r = -ENOMEM;
  1232. goto bad_buffer;
  1233. }
  1234. __free_buffer_wake(b);
  1235. }
  1236. mutex_lock(&dm_bufio_clients_lock);
  1237. dm_bufio_client_count++;
  1238. list_add(&c->client_list, &dm_bufio_all_clients);
  1239. __cache_size_refresh();
  1240. mutex_unlock(&dm_bufio_clients_lock);
  1241. c->shrinker.shrink = shrink;
  1242. c->shrinker.seeks = 1;
  1243. c->shrinker.batch = 0;
  1244. register_shrinker(&c->shrinker);
  1245. return c;
  1246. bad_buffer:
  1247. bad_cache:
  1248. while (!list_empty(&c->reserved_buffers)) {
  1249. struct dm_buffer *b = list_entry(c->reserved_buffers.next,
  1250. struct dm_buffer, lru_list);
  1251. list_del(&b->lru_list);
  1252. free_buffer(b);
  1253. }
  1254. dm_io_client_destroy(c->dm_io);
  1255. bad_dm_io:
  1256. vfree(c->cache_hash);
  1257. bad_hash:
  1258. kfree(c);
  1259. bad_client:
  1260. return ERR_PTR(r);
  1261. }
  1262. EXPORT_SYMBOL_GPL(dm_bufio_client_create);
  1263. /*
  1264. * Free the buffering interface.
  1265. * It is required that there are no references on any buffers.
  1266. */
  1267. void dm_bufio_client_destroy(struct dm_bufio_client *c)
  1268. {
  1269. unsigned i;
  1270. drop_buffers(c);
  1271. unregister_shrinker(&c->shrinker);
  1272. mutex_lock(&dm_bufio_clients_lock);
  1273. list_del(&c->client_list);
  1274. dm_bufio_client_count--;
  1275. __cache_size_refresh();
  1276. mutex_unlock(&dm_bufio_clients_lock);
  1277. for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++)
  1278. BUG_ON(!hlist_empty(&c->cache_hash[i]));
  1279. BUG_ON(c->need_reserved_buffers);
  1280. while (!list_empty(&c->reserved_buffers)) {
  1281. struct dm_buffer *b = list_entry(c->reserved_buffers.next,
  1282. struct dm_buffer, lru_list);
  1283. list_del(&b->lru_list);
  1284. free_buffer(b);
  1285. }
  1286. for (i = 0; i < LIST_SIZE; i++)
  1287. if (c->n_buffers[i])
  1288. DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
  1289. for (i = 0; i < LIST_SIZE; i++)
  1290. BUG_ON(c->n_buffers[i]);
  1291. dm_io_client_destroy(c->dm_io);
  1292. vfree(c->cache_hash);
  1293. kfree(c);
  1294. }
  1295. EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
  1296. static void cleanup_old_buffers(void)
  1297. {
  1298. unsigned long max_age = ACCESS_ONCE(dm_bufio_max_age);
  1299. struct dm_bufio_client *c;
  1300. if (max_age > ULONG_MAX / HZ)
  1301. max_age = ULONG_MAX / HZ;
  1302. mutex_lock(&dm_bufio_clients_lock);
  1303. list_for_each_entry(c, &dm_bufio_all_clients, client_list) {
  1304. if (!dm_bufio_trylock(c))
  1305. continue;
  1306. while (!list_empty(&c->lru[LIST_CLEAN])) {
  1307. struct dm_buffer *b;
  1308. b = list_entry(c->lru[LIST_CLEAN].prev,
  1309. struct dm_buffer, lru_list);
  1310. if (__cleanup_old_buffer(b, 0, max_age * HZ))
  1311. break;
  1312. dm_bufio_cond_resched();
  1313. }
  1314. dm_bufio_unlock(c);
  1315. dm_bufio_cond_resched();
  1316. }
  1317. mutex_unlock(&dm_bufio_clients_lock);
  1318. }
  1319. static struct workqueue_struct *dm_bufio_wq;
  1320. static struct delayed_work dm_bufio_work;
  1321. static void work_fn(struct work_struct *w)
  1322. {
  1323. cleanup_old_buffers();
  1324. queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
  1325. DM_BUFIO_WORK_TIMER_SECS * HZ);
  1326. }
  1327. /*----------------------------------------------------------------
  1328. * Module setup
  1329. *--------------------------------------------------------------*/
  1330. /*
  1331. * This is called only once for the whole dm_bufio module.
  1332. * It initializes memory limit.
  1333. */
  1334. static int __init dm_bufio_init(void)
  1335. {
  1336. __u64 mem;
  1337. memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
  1338. memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
  1339. mem = (__u64)((totalram_pages - totalhigh_pages) *
  1340. DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT;
  1341. if (mem > ULONG_MAX)
  1342. mem = ULONG_MAX;
  1343. #ifdef CONFIG_MMU
  1344. /*
  1345. * Get the size of vmalloc space the same way as VMALLOC_TOTAL
  1346. * in fs/proc/internal.h
  1347. */
  1348. if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100)
  1349. mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100;
  1350. #endif
  1351. dm_bufio_default_cache_size = mem;
  1352. mutex_lock(&dm_bufio_clients_lock);
  1353. __cache_size_refresh();
  1354. mutex_unlock(&dm_bufio_clients_lock);
  1355. dm_bufio_wq = create_singlethread_workqueue("dm_bufio_cache");
  1356. if (!dm_bufio_wq)
  1357. return -ENOMEM;
  1358. INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
  1359. queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
  1360. DM_BUFIO_WORK_TIMER_SECS * HZ);
  1361. return 0;
  1362. }
  1363. /*
  1364. * This is called once when unloading the dm_bufio module.
  1365. */
  1366. static void __exit dm_bufio_exit(void)
  1367. {
  1368. int bug = 0;
  1369. int i;
  1370. cancel_delayed_work_sync(&dm_bufio_work);
  1371. destroy_workqueue(dm_bufio_wq);
  1372. for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++) {
  1373. struct kmem_cache *kc = dm_bufio_caches[i];
  1374. if (kc)
  1375. kmem_cache_destroy(kc);
  1376. }
  1377. for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
  1378. kfree(dm_bufio_cache_names[i]);
  1379. if (dm_bufio_client_count) {
  1380. DMCRIT("%s: dm_bufio_client_count leaked: %d",
  1381. __func__, dm_bufio_client_count);
  1382. bug = 1;
  1383. }
  1384. if (dm_bufio_current_allocated) {
  1385. DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
  1386. __func__, dm_bufio_current_allocated);
  1387. bug = 1;
  1388. }
  1389. if (dm_bufio_allocated_get_free_pages) {
  1390. DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
  1391. __func__, dm_bufio_allocated_get_free_pages);
  1392. bug = 1;
  1393. }
  1394. if (dm_bufio_allocated_vmalloc) {
  1395. DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
  1396. __func__, dm_bufio_allocated_vmalloc);
  1397. bug = 1;
  1398. }
  1399. if (bug)
  1400. BUG();
  1401. }
  1402. module_init(dm_bufio_init)
  1403. module_exit(dm_bufio_exit)
  1404. module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
  1405. MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
  1406. module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
  1407. MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
  1408. module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
  1409. MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
  1410. module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
  1411. MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
  1412. module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
  1413. MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
  1414. module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
  1415. MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
  1416. module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
  1417. MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
  1418. MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
  1419. MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
  1420. MODULE_LICENSE("GPL");