dma.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998
  1. /*
  2. * Filename: dma.c
  3. *
  4. *
  5. * Authors: Joshua Morris <josh.h.morris@us.ibm.com>
  6. * Philip Kelleher <pjk1939@linux.vnet.ibm.com>
  7. *
  8. * (C) Copyright 2013 IBM Corporation
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License as
  12. * published by the Free Software Foundation; either version 2 of the
  13. * License, or (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful, but
  16. * WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software Foundation,
  22. * Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  23. */
  24. #include <linux/slab.h>
  25. #include "rsxx_priv.h"
  26. struct rsxx_dma {
  27. struct list_head list;
  28. u8 cmd;
  29. unsigned int laddr; /* Logical address on the ramsan */
  30. struct {
  31. u32 off;
  32. u32 cnt;
  33. } sub_page;
  34. dma_addr_t dma_addr;
  35. struct page *page;
  36. unsigned int pg_off; /* Page Offset */
  37. rsxx_dma_cb cb;
  38. void *cb_data;
  39. };
  40. /* This timeout is used to detect a stalled DMA channel */
  41. #define DMA_ACTIVITY_TIMEOUT msecs_to_jiffies(10000)
  42. struct hw_status {
  43. u8 status;
  44. u8 tag;
  45. __le16 count;
  46. __le32 _rsvd2;
  47. __le64 _rsvd3;
  48. } __packed;
  49. enum rsxx_dma_status {
  50. DMA_SW_ERR = 0x1,
  51. DMA_HW_FAULT = 0x2,
  52. DMA_CANCELLED = 0x4,
  53. };
  54. struct hw_cmd {
  55. u8 command;
  56. u8 tag;
  57. u8 _rsvd;
  58. u8 sub_page; /* Bit[0:2]: 512byte offset */
  59. /* Bit[4:6]: 512byte count */
  60. __le32 device_addr;
  61. __le64 host_addr;
  62. } __packed;
  63. enum rsxx_hw_cmd {
  64. HW_CMD_BLK_DISCARD = 0x70,
  65. HW_CMD_BLK_WRITE = 0x80,
  66. HW_CMD_BLK_READ = 0xC0,
  67. HW_CMD_BLK_RECON_READ = 0xE0,
  68. };
  69. enum rsxx_hw_status {
  70. HW_STATUS_CRC = 0x01,
  71. HW_STATUS_HARD_ERR = 0x02,
  72. HW_STATUS_SOFT_ERR = 0x04,
  73. HW_STATUS_FAULT = 0x08,
  74. };
  75. #define STATUS_BUFFER_SIZE8 4096
  76. #define COMMAND_BUFFER_SIZE8 4096
  77. static struct kmem_cache *rsxx_dma_pool;
  78. struct dma_tracker {
  79. int next_tag;
  80. struct rsxx_dma *dma;
  81. };
  82. #define DMA_TRACKER_LIST_SIZE8 (sizeof(struct dma_tracker_list) + \
  83. (sizeof(struct dma_tracker) * RSXX_MAX_OUTSTANDING_CMDS))
  84. struct dma_tracker_list {
  85. spinlock_t lock;
  86. int head;
  87. struct dma_tracker list[0];
  88. };
  89. /*----------------- Misc Utility Functions -------------------*/
  90. static unsigned int rsxx_addr8_to_laddr(u64 addr8, struct rsxx_cardinfo *card)
  91. {
  92. unsigned long long tgt_addr8;
  93. tgt_addr8 = ((addr8 >> card->_stripe.upper_shift) &
  94. card->_stripe.upper_mask) |
  95. ((addr8) & card->_stripe.lower_mask);
  96. do_div(tgt_addr8, RSXX_HW_BLK_SIZE);
  97. return tgt_addr8;
  98. }
  99. static unsigned int rsxx_get_dma_tgt(struct rsxx_cardinfo *card, u64 addr8)
  100. {
  101. unsigned int tgt;
  102. tgt = (addr8 >> card->_stripe.target_shift) & card->_stripe.target_mask;
  103. return tgt;
  104. }
  105. static void rsxx_dma_queue_reset(struct rsxx_cardinfo *card)
  106. {
  107. /* Reset all DMA Command/Status Queues */
  108. iowrite32(DMA_QUEUE_RESET, card->regmap + RESET);
  109. }
  110. static unsigned int get_dma_size(struct rsxx_dma *dma)
  111. {
  112. if (dma->sub_page.cnt)
  113. return dma->sub_page.cnt << 9;
  114. else
  115. return RSXX_HW_BLK_SIZE;
  116. }
  117. /*----------------- DMA Tracker -------------------*/
  118. static void set_tracker_dma(struct dma_tracker_list *trackers,
  119. int tag,
  120. struct rsxx_dma *dma)
  121. {
  122. trackers->list[tag].dma = dma;
  123. }
  124. static struct rsxx_dma *get_tracker_dma(struct dma_tracker_list *trackers,
  125. int tag)
  126. {
  127. return trackers->list[tag].dma;
  128. }
  129. static int pop_tracker(struct dma_tracker_list *trackers)
  130. {
  131. int tag;
  132. spin_lock(&trackers->lock);
  133. tag = trackers->head;
  134. if (tag != -1) {
  135. trackers->head = trackers->list[tag].next_tag;
  136. trackers->list[tag].next_tag = -1;
  137. }
  138. spin_unlock(&trackers->lock);
  139. return tag;
  140. }
  141. static void push_tracker(struct dma_tracker_list *trackers, int tag)
  142. {
  143. spin_lock(&trackers->lock);
  144. trackers->list[tag].next_tag = trackers->head;
  145. trackers->head = tag;
  146. trackers->list[tag].dma = NULL;
  147. spin_unlock(&trackers->lock);
  148. }
  149. /*----------------- Interrupt Coalescing -------------*/
  150. /*
  151. * Interrupt Coalescing Register Format:
  152. * Interrupt Timer (64ns units) [15:0]
  153. * Interrupt Count [24:16]
  154. * Reserved [31:25]
  155. */
  156. #define INTR_COAL_LATENCY_MASK (0x0000ffff)
  157. #define INTR_COAL_COUNT_SHIFT 16
  158. #define INTR_COAL_COUNT_BITS 9
  159. #define INTR_COAL_COUNT_MASK (((1 << INTR_COAL_COUNT_BITS) - 1) << \
  160. INTR_COAL_COUNT_SHIFT)
  161. #define INTR_COAL_LATENCY_UNITS_NS 64
  162. static u32 dma_intr_coal_val(u32 mode, u32 count, u32 latency)
  163. {
  164. u32 latency_units = latency / INTR_COAL_LATENCY_UNITS_NS;
  165. if (mode == RSXX_INTR_COAL_DISABLED)
  166. return 0;
  167. return ((count << INTR_COAL_COUNT_SHIFT) & INTR_COAL_COUNT_MASK) |
  168. (latency_units & INTR_COAL_LATENCY_MASK);
  169. }
  170. static void dma_intr_coal_auto_tune(struct rsxx_cardinfo *card)
  171. {
  172. int i;
  173. u32 q_depth = 0;
  174. u32 intr_coal;
  175. if (card->config.data.intr_coal.mode != RSXX_INTR_COAL_AUTO_TUNE)
  176. return;
  177. for (i = 0; i < card->n_targets; i++)
  178. q_depth += atomic_read(&card->ctrl[i].stats.hw_q_depth);
  179. intr_coal = dma_intr_coal_val(card->config.data.intr_coal.mode,
  180. q_depth / 2,
  181. card->config.data.intr_coal.latency);
  182. iowrite32(intr_coal, card->regmap + INTR_COAL);
  183. }
  184. /*----------------- RSXX DMA Handling -------------------*/
  185. static void rsxx_complete_dma(struct rsxx_cardinfo *card,
  186. struct rsxx_dma *dma,
  187. unsigned int status)
  188. {
  189. if (status & DMA_SW_ERR)
  190. printk_ratelimited(KERN_ERR
  191. "SW Error in DMA(cmd x%02x, laddr x%08x)\n",
  192. dma->cmd, dma->laddr);
  193. if (status & DMA_HW_FAULT)
  194. printk_ratelimited(KERN_ERR
  195. "HW Fault in DMA(cmd x%02x, laddr x%08x)\n",
  196. dma->cmd, dma->laddr);
  197. if (status & DMA_CANCELLED)
  198. printk_ratelimited(KERN_ERR
  199. "DMA Cancelled(cmd x%02x, laddr x%08x)\n",
  200. dma->cmd, dma->laddr);
  201. if (dma->dma_addr)
  202. pci_unmap_page(card->dev, dma->dma_addr, get_dma_size(dma),
  203. dma->cmd == HW_CMD_BLK_WRITE ?
  204. PCI_DMA_TODEVICE :
  205. PCI_DMA_FROMDEVICE);
  206. if (dma->cb)
  207. dma->cb(card, dma->cb_data, status ? 1 : 0);
  208. kmem_cache_free(rsxx_dma_pool, dma);
  209. }
  210. static void rsxx_requeue_dma(struct rsxx_dma_ctrl *ctrl,
  211. struct rsxx_dma *dma)
  212. {
  213. /*
  214. * Requeued DMAs go to the front of the queue so they are issued
  215. * first.
  216. */
  217. spin_lock(&ctrl->queue_lock);
  218. list_add(&dma->list, &ctrl->queue);
  219. spin_unlock(&ctrl->queue_lock);
  220. }
  221. static void rsxx_handle_dma_error(struct rsxx_dma_ctrl *ctrl,
  222. struct rsxx_dma *dma,
  223. u8 hw_st)
  224. {
  225. unsigned int status = 0;
  226. int requeue_cmd = 0;
  227. dev_dbg(CARD_TO_DEV(ctrl->card),
  228. "Handling DMA error(cmd x%02x, laddr x%08x st:x%02x)\n",
  229. dma->cmd, dma->laddr, hw_st);
  230. if (hw_st & HW_STATUS_CRC)
  231. ctrl->stats.crc_errors++;
  232. if (hw_st & HW_STATUS_HARD_ERR)
  233. ctrl->stats.hard_errors++;
  234. if (hw_st & HW_STATUS_SOFT_ERR)
  235. ctrl->stats.soft_errors++;
  236. switch (dma->cmd) {
  237. case HW_CMD_BLK_READ:
  238. if (hw_st & (HW_STATUS_CRC | HW_STATUS_HARD_ERR)) {
  239. if (ctrl->card->scrub_hard) {
  240. dma->cmd = HW_CMD_BLK_RECON_READ;
  241. requeue_cmd = 1;
  242. ctrl->stats.reads_retried++;
  243. } else {
  244. status |= DMA_HW_FAULT;
  245. ctrl->stats.reads_failed++;
  246. }
  247. } else if (hw_st & HW_STATUS_FAULT) {
  248. status |= DMA_HW_FAULT;
  249. ctrl->stats.reads_failed++;
  250. }
  251. break;
  252. case HW_CMD_BLK_RECON_READ:
  253. if (hw_st & (HW_STATUS_CRC | HW_STATUS_HARD_ERR)) {
  254. /* Data could not be reconstructed. */
  255. status |= DMA_HW_FAULT;
  256. ctrl->stats.reads_failed++;
  257. }
  258. break;
  259. case HW_CMD_BLK_WRITE:
  260. status |= DMA_HW_FAULT;
  261. ctrl->stats.writes_failed++;
  262. break;
  263. case HW_CMD_BLK_DISCARD:
  264. status |= DMA_HW_FAULT;
  265. ctrl->stats.discards_failed++;
  266. break;
  267. default:
  268. dev_err(CARD_TO_DEV(ctrl->card),
  269. "Unknown command in DMA!(cmd: x%02x "
  270. "laddr x%08x st: x%02x\n",
  271. dma->cmd, dma->laddr, hw_st);
  272. status |= DMA_SW_ERR;
  273. break;
  274. }
  275. if (requeue_cmd)
  276. rsxx_requeue_dma(ctrl, dma);
  277. else
  278. rsxx_complete_dma(ctrl->card, dma, status);
  279. }
  280. static void dma_engine_stalled(unsigned long data)
  281. {
  282. struct rsxx_dma_ctrl *ctrl = (struct rsxx_dma_ctrl *)data;
  283. if (atomic_read(&ctrl->stats.hw_q_depth) == 0)
  284. return;
  285. if (ctrl->cmd.idx != ioread32(ctrl->regmap + SW_CMD_IDX)) {
  286. /*
  287. * The dma engine was stalled because the SW_CMD_IDX write
  288. * was lost. Issue it again to recover.
  289. */
  290. dev_warn(CARD_TO_DEV(ctrl->card),
  291. "SW_CMD_IDX write was lost, re-writing...\n");
  292. iowrite32(ctrl->cmd.idx, ctrl->regmap + SW_CMD_IDX);
  293. mod_timer(&ctrl->activity_timer,
  294. jiffies + DMA_ACTIVITY_TIMEOUT);
  295. } else {
  296. dev_warn(CARD_TO_DEV(ctrl->card),
  297. "DMA channel %d has stalled, faulting interface.\n",
  298. ctrl->id);
  299. ctrl->card->dma_fault = 1;
  300. }
  301. }
  302. static void rsxx_issue_dmas(struct work_struct *work)
  303. {
  304. struct rsxx_dma_ctrl *ctrl;
  305. struct rsxx_dma *dma;
  306. int tag;
  307. int cmds_pending = 0;
  308. struct hw_cmd *hw_cmd_buf;
  309. ctrl = container_of(work, struct rsxx_dma_ctrl, issue_dma_work);
  310. hw_cmd_buf = ctrl->cmd.buf;
  311. if (unlikely(ctrl->card->halt))
  312. return;
  313. while (1) {
  314. spin_lock(&ctrl->queue_lock);
  315. if (list_empty(&ctrl->queue)) {
  316. spin_unlock(&ctrl->queue_lock);
  317. break;
  318. }
  319. spin_unlock(&ctrl->queue_lock);
  320. tag = pop_tracker(ctrl->trackers);
  321. if (tag == -1)
  322. break;
  323. spin_lock(&ctrl->queue_lock);
  324. dma = list_entry(ctrl->queue.next, struct rsxx_dma, list);
  325. list_del(&dma->list);
  326. ctrl->stats.sw_q_depth--;
  327. spin_unlock(&ctrl->queue_lock);
  328. /*
  329. * This will catch any DMAs that slipped in right before the
  330. * fault, but was queued after all the other DMAs were
  331. * cancelled.
  332. */
  333. if (unlikely(ctrl->card->dma_fault)) {
  334. push_tracker(ctrl->trackers, tag);
  335. rsxx_complete_dma(ctrl->card, dma, DMA_CANCELLED);
  336. continue;
  337. }
  338. set_tracker_dma(ctrl->trackers, tag, dma);
  339. hw_cmd_buf[ctrl->cmd.idx].command = dma->cmd;
  340. hw_cmd_buf[ctrl->cmd.idx].tag = tag;
  341. hw_cmd_buf[ctrl->cmd.idx]._rsvd = 0;
  342. hw_cmd_buf[ctrl->cmd.idx].sub_page =
  343. ((dma->sub_page.cnt & 0x7) << 4) |
  344. (dma->sub_page.off & 0x7);
  345. hw_cmd_buf[ctrl->cmd.idx].device_addr =
  346. cpu_to_le32(dma->laddr);
  347. hw_cmd_buf[ctrl->cmd.idx].host_addr =
  348. cpu_to_le64(dma->dma_addr);
  349. dev_dbg(CARD_TO_DEV(ctrl->card),
  350. "Issue DMA%d(laddr %d tag %d) to idx %d\n",
  351. ctrl->id, dma->laddr, tag, ctrl->cmd.idx);
  352. ctrl->cmd.idx = (ctrl->cmd.idx + 1) & RSXX_CS_IDX_MASK;
  353. cmds_pending++;
  354. if (dma->cmd == HW_CMD_BLK_WRITE)
  355. ctrl->stats.writes_issued++;
  356. else if (dma->cmd == HW_CMD_BLK_DISCARD)
  357. ctrl->stats.discards_issued++;
  358. else
  359. ctrl->stats.reads_issued++;
  360. }
  361. /* Let HW know we've queued commands. */
  362. if (cmds_pending) {
  363. /*
  364. * We must guarantee that the CPU writes to 'ctrl->cmd.buf'
  365. * (which is in PCI-consistent system-memory) from the loop
  366. * above make it into the coherency domain before the
  367. * following PIO "trigger" updating the cmd.idx. A WMB is
  368. * sufficient. We need not explicitly CPU cache-flush since
  369. * the memory is a PCI-consistent (ie; coherent) mapping.
  370. */
  371. wmb();
  372. atomic_add(cmds_pending, &ctrl->stats.hw_q_depth);
  373. mod_timer(&ctrl->activity_timer,
  374. jiffies + DMA_ACTIVITY_TIMEOUT);
  375. iowrite32(ctrl->cmd.idx, ctrl->regmap + SW_CMD_IDX);
  376. }
  377. }
  378. static void rsxx_dma_done(struct work_struct *work)
  379. {
  380. struct rsxx_dma_ctrl *ctrl;
  381. struct rsxx_dma *dma;
  382. unsigned long flags;
  383. u16 count;
  384. u8 status;
  385. u8 tag;
  386. struct hw_status *hw_st_buf;
  387. ctrl = container_of(work, struct rsxx_dma_ctrl, dma_done_work);
  388. hw_st_buf = ctrl->status.buf;
  389. if (unlikely(ctrl->card->halt) ||
  390. unlikely(ctrl->card->dma_fault))
  391. return;
  392. count = le16_to_cpu(hw_st_buf[ctrl->status.idx].count);
  393. while (count == ctrl->e_cnt) {
  394. /*
  395. * The read memory-barrier is necessary to keep aggressive
  396. * processors/optimizers (such as the PPC Apple G5) from
  397. * reordering the following status-buffer tag & status read
  398. * *before* the count read on subsequent iterations of the
  399. * loop!
  400. */
  401. rmb();
  402. status = hw_st_buf[ctrl->status.idx].status;
  403. tag = hw_st_buf[ctrl->status.idx].tag;
  404. dma = get_tracker_dma(ctrl->trackers, tag);
  405. if (dma == NULL) {
  406. spin_lock_irqsave(&ctrl->card->irq_lock, flags);
  407. rsxx_disable_ier(ctrl->card, CR_INTR_DMA_ALL);
  408. spin_unlock_irqrestore(&ctrl->card->irq_lock, flags);
  409. dev_err(CARD_TO_DEV(ctrl->card),
  410. "No tracker for tag %d "
  411. "(idx %d id %d)\n",
  412. tag, ctrl->status.idx, ctrl->id);
  413. return;
  414. }
  415. dev_dbg(CARD_TO_DEV(ctrl->card),
  416. "Completing DMA%d"
  417. "(laddr x%x tag %d st: x%x cnt: x%04x) from idx %d.\n",
  418. ctrl->id, dma->laddr, tag, status, count,
  419. ctrl->status.idx);
  420. atomic_dec(&ctrl->stats.hw_q_depth);
  421. mod_timer(&ctrl->activity_timer,
  422. jiffies + DMA_ACTIVITY_TIMEOUT);
  423. if (status)
  424. rsxx_handle_dma_error(ctrl, dma, status);
  425. else
  426. rsxx_complete_dma(ctrl->card, dma, 0);
  427. push_tracker(ctrl->trackers, tag);
  428. ctrl->status.idx = (ctrl->status.idx + 1) &
  429. RSXX_CS_IDX_MASK;
  430. ctrl->e_cnt++;
  431. count = le16_to_cpu(hw_st_buf[ctrl->status.idx].count);
  432. }
  433. dma_intr_coal_auto_tune(ctrl->card);
  434. if (atomic_read(&ctrl->stats.hw_q_depth) == 0)
  435. del_timer_sync(&ctrl->activity_timer);
  436. spin_lock_irqsave(&ctrl->card->irq_lock, flags);
  437. rsxx_enable_ier(ctrl->card, CR_INTR_DMA(ctrl->id));
  438. spin_unlock_irqrestore(&ctrl->card->irq_lock, flags);
  439. spin_lock(&ctrl->queue_lock);
  440. if (ctrl->stats.sw_q_depth)
  441. queue_work(ctrl->issue_wq, &ctrl->issue_dma_work);
  442. spin_unlock(&ctrl->queue_lock);
  443. }
  444. static int rsxx_cleanup_dma_queue(struct rsxx_cardinfo *card,
  445. struct list_head *q)
  446. {
  447. struct rsxx_dma *dma;
  448. struct rsxx_dma *tmp;
  449. int cnt = 0;
  450. list_for_each_entry_safe(dma, tmp, q, list) {
  451. list_del(&dma->list);
  452. if (dma->dma_addr)
  453. pci_unmap_page(card->dev, dma->dma_addr,
  454. get_dma_size(dma),
  455. (dma->cmd == HW_CMD_BLK_WRITE) ?
  456. PCI_DMA_TODEVICE :
  457. PCI_DMA_FROMDEVICE);
  458. kmem_cache_free(rsxx_dma_pool, dma);
  459. cnt++;
  460. }
  461. return cnt;
  462. }
  463. static int rsxx_queue_discard(struct rsxx_cardinfo *card,
  464. struct list_head *q,
  465. unsigned int laddr,
  466. rsxx_dma_cb cb,
  467. void *cb_data)
  468. {
  469. struct rsxx_dma *dma;
  470. dma = kmem_cache_alloc(rsxx_dma_pool, GFP_KERNEL);
  471. if (!dma)
  472. return -ENOMEM;
  473. dma->cmd = HW_CMD_BLK_DISCARD;
  474. dma->laddr = laddr;
  475. dma->dma_addr = 0;
  476. dma->sub_page.off = 0;
  477. dma->sub_page.cnt = 0;
  478. dma->page = NULL;
  479. dma->pg_off = 0;
  480. dma->cb = cb;
  481. dma->cb_data = cb_data;
  482. dev_dbg(CARD_TO_DEV(card), "Queuing[D] laddr %x\n", dma->laddr);
  483. list_add_tail(&dma->list, q);
  484. return 0;
  485. }
  486. static int rsxx_queue_dma(struct rsxx_cardinfo *card,
  487. struct list_head *q,
  488. int dir,
  489. unsigned int dma_off,
  490. unsigned int dma_len,
  491. unsigned int laddr,
  492. struct page *page,
  493. unsigned int pg_off,
  494. rsxx_dma_cb cb,
  495. void *cb_data)
  496. {
  497. struct rsxx_dma *dma;
  498. dma = kmem_cache_alloc(rsxx_dma_pool, GFP_KERNEL);
  499. if (!dma)
  500. return -ENOMEM;
  501. dma->dma_addr = pci_map_page(card->dev, page, pg_off, dma_len,
  502. dir ? PCI_DMA_TODEVICE :
  503. PCI_DMA_FROMDEVICE);
  504. if (!dma->dma_addr) {
  505. kmem_cache_free(rsxx_dma_pool, dma);
  506. return -ENOMEM;
  507. }
  508. dma->cmd = dir ? HW_CMD_BLK_WRITE : HW_CMD_BLK_READ;
  509. dma->laddr = laddr;
  510. dma->sub_page.off = (dma_off >> 9);
  511. dma->sub_page.cnt = (dma_len >> 9);
  512. dma->page = page;
  513. dma->pg_off = pg_off;
  514. dma->cb = cb;
  515. dma->cb_data = cb_data;
  516. dev_dbg(CARD_TO_DEV(card),
  517. "Queuing[%c] laddr %x off %d cnt %d page %p pg_off %d\n",
  518. dir ? 'W' : 'R', dma->laddr, dma->sub_page.off,
  519. dma->sub_page.cnt, dma->page, dma->pg_off);
  520. /* Queue the DMA */
  521. list_add_tail(&dma->list, q);
  522. return 0;
  523. }
  524. int rsxx_dma_queue_bio(struct rsxx_cardinfo *card,
  525. struct bio *bio,
  526. atomic_t *n_dmas,
  527. rsxx_dma_cb cb,
  528. void *cb_data)
  529. {
  530. struct list_head dma_list[RSXX_MAX_TARGETS];
  531. struct bio_vec *bvec;
  532. unsigned long long addr8;
  533. unsigned int laddr;
  534. unsigned int bv_len;
  535. unsigned int bv_off;
  536. unsigned int dma_off;
  537. unsigned int dma_len;
  538. int dma_cnt[RSXX_MAX_TARGETS];
  539. int tgt;
  540. int st;
  541. int i;
  542. addr8 = bio->bi_sector << 9; /* sectors are 512 bytes */
  543. atomic_set(n_dmas, 0);
  544. for (i = 0; i < card->n_targets; i++) {
  545. INIT_LIST_HEAD(&dma_list[i]);
  546. dma_cnt[i] = 0;
  547. }
  548. if (bio->bi_rw & REQ_DISCARD) {
  549. bv_len = bio->bi_size;
  550. while (bv_len > 0) {
  551. tgt = rsxx_get_dma_tgt(card, addr8);
  552. laddr = rsxx_addr8_to_laddr(addr8, card);
  553. st = rsxx_queue_discard(card, &dma_list[tgt], laddr,
  554. cb, cb_data);
  555. if (st)
  556. goto bvec_err;
  557. dma_cnt[tgt]++;
  558. atomic_inc(n_dmas);
  559. addr8 += RSXX_HW_BLK_SIZE;
  560. bv_len -= RSXX_HW_BLK_SIZE;
  561. }
  562. } else {
  563. bio_for_each_segment(bvec, bio, i) {
  564. bv_len = bvec->bv_len;
  565. bv_off = bvec->bv_offset;
  566. while (bv_len > 0) {
  567. tgt = rsxx_get_dma_tgt(card, addr8);
  568. laddr = rsxx_addr8_to_laddr(addr8, card);
  569. dma_off = addr8 & RSXX_HW_BLK_MASK;
  570. dma_len = min(bv_len,
  571. RSXX_HW_BLK_SIZE - dma_off);
  572. st = rsxx_queue_dma(card, &dma_list[tgt],
  573. bio_data_dir(bio),
  574. dma_off, dma_len,
  575. laddr, bvec->bv_page,
  576. bv_off, cb, cb_data);
  577. if (st)
  578. goto bvec_err;
  579. dma_cnt[tgt]++;
  580. atomic_inc(n_dmas);
  581. addr8 += dma_len;
  582. bv_off += dma_len;
  583. bv_len -= dma_len;
  584. }
  585. }
  586. }
  587. for (i = 0; i < card->n_targets; i++) {
  588. if (!list_empty(&dma_list[i])) {
  589. spin_lock(&card->ctrl[i].queue_lock);
  590. card->ctrl[i].stats.sw_q_depth += dma_cnt[i];
  591. list_splice_tail(&dma_list[i], &card->ctrl[i].queue);
  592. spin_unlock(&card->ctrl[i].queue_lock);
  593. queue_work(card->ctrl[i].issue_wq,
  594. &card->ctrl[i].issue_dma_work);
  595. }
  596. }
  597. return 0;
  598. bvec_err:
  599. for (i = 0; i < card->n_targets; i++)
  600. rsxx_cleanup_dma_queue(card, &dma_list[i]);
  601. return st;
  602. }
  603. /*----------------- DMA Engine Initialization & Setup -------------------*/
  604. static int rsxx_dma_ctrl_init(struct pci_dev *dev,
  605. struct rsxx_dma_ctrl *ctrl)
  606. {
  607. int i;
  608. memset(&ctrl->stats, 0, sizeof(ctrl->stats));
  609. ctrl->status.buf = pci_alloc_consistent(dev, STATUS_BUFFER_SIZE8,
  610. &ctrl->status.dma_addr);
  611. ctrl->cmd.buf = pci_alloc_consistent(dev, COMMAND_BUFFER_SIZE8,
  612. &ctrl->cmd.dma_addr);
  613. if (ctrl->status.buf == NULL || ctrl->cmd.buf == NULL)
  614. return -ENOMEM;
  615. ctrl->trackers = vmalloc(DMA_TRACKER_LIST_SIZE8);
  616. if (!ctrl->trackers)
  617. return -ENOMEM;
  618. ctrl->trackers->head = 0;
  619. for (i = 0; i < RSXX_MAX_OUTSTANDING_CMDS; i++) {
  620. ctrl->trackers->list[i].next_tag = i + 1;
  621. ctrl->trackers->list[i].dma = NULL;
  622. }
  623. ctrl->trackers->list[RSXX_MAX_OUTSTANDING_CMDS-1].next_tag = -1;
  624. spin_lock_init(&ctrl->trackers->lock);
  625. spin_lock_init(&ctrl->queue_lock);
  626. INIT_LIST_HEAD(&ctrl->queue);
  627. setup_timer(&ctrl->activity_timer, dma_engine_stalled,
  628. (unsigned long)ctrl);
  629. ctrl->issue_wq = alloc_ordered_workqueue(DRIVER_NAME"_issue", 0);
  630. if (!ctrl->issue_wq)
  631. return -ENOMEM;
  632. ctrl->done_wq = alloc_ordered_workqueue(DRIVER_NAME"_done", 0);
  633. if (!ctrl->done_wq)
  634. return -ENOMEM;
  635. INIT_WORK(&ctrl->issue_dma_work, rsxx_issue_dmas);
  636. INIT_WORK(&ctrl->dma_done_work, rsxx_dma_done);
  637. memset(ctrl->status.buf, 0xac, STATUS_BUFFER_SIZE8);
  638. iowrite32(lower_32_bits(ctrl->status.dma_addr),
  639. ctrl->regmap + SB_ADD_LO);
  640. iowrite32(upper_32_bits(ctrl->status.dma_addr),
  641. ctrl->regmap + SB_ADD_HI);
  642. memset(ctrl->cmd.buf, 0x83, COMMAND_BUFFER_SIZE8);
  643. iowrite32(lower_32_bits(ctrl->cmd.dma_addr), ctrl->regmap + CB_ADD_LO);
  644. iowrite32(upper_32_bits(ctrl->cmd.dma_addr), ctrl->regmap + CB_ADD_HI);
  645. ctrl->status.idx = ioread32(ctrl->regmap + HW_STATUS_CNT);
  646. if (ctrl->status.idx > RSXX_MAX_OUTSTANDING_CMDS) {
  647. dev_crit(&dev->dev, "Failed reading status cnt x%x\n",
  648. ctrl->status.idx);
  649. return -EINVAL;
  650. }
  651. iowrite32(ctrl->status.idx, ctrl->regmap + HW_STATUS_CNT);
  652. iowrite32(ctrl->status.idx, ctrl->regmap + SW_STATUS_CNT);
  653. ctrl->cmd.idx = ioread32(ctrl->regmap + HW_CMD_IDX);
  654. if (ctrl->cmd.idx > RSXX_MAX_OUTSTANDING_CMDS) {
  655. dev_crit(&dev->dev, "Failed reading cmd cnt x%x\n",
  656. ctrl->status.idx);
  657. return -EINVAL;
  658. }
  659. iowrite32(ctrl->cmd.idx, ctrl->regmap + HW_CMD_IDX);
  660. iowrite32(ctrl->cmd.idx, ctrl->regmap + SW_CMD_IDX);
  661. wmb();
  662. return 0;
  663. }
  664. static int rsxx_dma_stripe_setup(struct rsxx_cardinfo *card,
  665. unsigned int stripe_size8)
  666. {
  667. if (!is_power_of_2(stripe_size8)) {
  668. dev_err(CARD_TO_DEV(card),
  669. "stripe_size is NOT a power of 2!\n");
  670. return -EINVAL;
  671. }
  672. card->_stripe.lower_mask = stripe_size8 - 1;
  673. card->_stripe.upper_mask = ~(card->_stripe.lower_mask);
  674. card->_stripe.upper_shift = ffs(card->n_targets) - 1;
  675. card->_stripe.target_mask = card->n_targets - 1;
  676. card->_stripe.target_shift = ffs(stripe_size8) - 1;
  677. dev_dbg(CARD_TO_DEV(card), "_stripe.lower_mask = x%016llx\n",
  678. card->_stripe.lower_mask);
  679. dev_dbg(CARD_TO_DEV(card), "_stripe.upper_shift = x%016llx\n",
  680. card->_stripe.upper_shift);
  681. dev_dbg(CARD_TO_DEV(card), "_stripe.upper_mask = x%016llx\n",
  682. card->_stripe.upper_mask);
  683. dev_dbg(CARD_TO_DEV(card), "_stripe.target_mask = x%016llx\n",
  684. card->_stripe.target_mask);
  685. dev_dbg(CARD_TO_DEV(card), "_stripe.target_shift = x%016llx\n",
  686. card->_stripe.target_shift);
  687. return 0;
  688. }
  689. static int rsxx_dma_configure(struct rsxx_cardinfo *card)
  690. {
  691. u32 intr_coal;
  692. intr_coal = dma_intr_coal_val(card->config.data.intr_coal.mode,
  693. card->config.data.intr_coal.count,
  694. card->config.data.intr_coal.latency);
  695. iowrite32(intr_coal, card->regmap + INTR_COAL);
  696. return rsxx_dma_stripe_setup(card, card->config.data.stripe_size);
  697. }
  698. int rsxx_dma_setup(struct rsxx_cardinfo *card)
  699. {
  700. unsigned long flags;
  701. int st;
  702. int i;
  703. dev_info(CARD_TO_DEV(card),
  704. "Initializing %d DMA targets\n",
  705. card->n_targets);
  706. /* Regmap is divided up into 4K chunks. One for each DMA channel */
  707. for (i = 0; i < card->n_targets; i++)
  708. card->ctrl[i].regmap = card->regmap + (i * 4096);
  709. card->dma_fault = 0;
  710. /* Reset the DMA queues */
  711. rsxx_dma_queue_reset(card);
  712. /************* Setup DMA Control *************/
  713. for (i = 0; i < card->n_targets; i++) {
  714. st = rsxx_dma_ctrl_init(card->dev, &card->ctrl[i]);
  715. if (st)
  716. goto failed_dma_setup;
  717. card->ctrl[i].card = card;
  718. card->ctrl[i].id = i;
  719. }
  720. card->scrub_hard = 1;
  721. if (card->config_valid)
  722. rsxx_dma_configure(card);
  723. /* Enable the interrupts after all setup has completed. */
  724. for (i = 0; i < card->n_targets; i++) {
  725. spin_lock_irqsave(&card->irq_lock, flags);
  726. rsxx_enable_ier_and_isr(card, CR_INTR_DMA(i));
  727. spin_unlock_irqrestore(&card->irq_lock, flags);
  728. }
  729. return 0;
  730. failed_dma_setup:
  731. for (i = 0; i < card->n_targets; i++) {
  732. struct rsxx_dma_ctrl *ctrl = &card->ctrl[i];
  733. if (ctrl->issue_wq) {
  734. destroy_workqueue(ctrl->issue_wq);
  735. ctrl->issue_wq = NULL;
  736. }
  737. if (ctrl->done_wq) {
  738. destroy_workqueue(ctrl->done_wq);
  739. ctrl->done_wq = NULL;
  740. }
  741. if (ctrl->trackers)
  742. vfree(ctrl->trackers);
  743. if (ctrl->status.buf)
  744. pci_free_consistent(card->dev, STATUS_BUFFER_SIZE8,
  745. ctrl->status.buf,
  746. ctrl->status.dma_addr);
  747. if (ctrl->cmd.buf)
  748. pci_free_consistent(card->dev, COMMAND_BUFFER_SIZE8,
  749. ctrl->cmd.buf, ctrl->cmd.dma_addr);
  750. }
  751. return st;
  752. }
  753. void rsxx_dma_destroy(struct rsxx_cardinfo *card)
  754. {
  755. struct rsxx_dma_ctrl *ctrl;
  756. struct rsxx_dma *dma;
  757. int i, j;
  758. int cnt = 0;
  759. for (i = 0; i < card->n_targets; i++) {
  760. ctrl = &card->ctrl[i];
  761. if (ctrl->issue_wq) {
  762. destroy_workqueue(ctrl->issue_wq);
  763. ctrl->issue_wq = NULL;
  764. }
  765. if (ctrl->done_wq) {
  766. destroy_workqueue(ctrl->done_wq);
  767. ctrl->done_wq = NULL;
  768. }
  769. if (timer_pending(&ctrl->activity_timer))
  770. del_timer_sync(&ctrl->activity_timer);
  771. /* Clean up the DMA queue */
  772. spin_lock(&ctrl->queue_lock);
  773. cnt = rsxx_cleanup_dma_queue(card, &ctrl->queue);
  774. spin_unlock(&ctrl->queue_lock);
  775. if (cnt)
  776. dev_info(CARD_TO_DEV(card),
  777. "Freed %d queued DMAs on channel %d\n",
  778. cnt, i);
  779. /* Clean up issued DMAs */
  780. for (j = 0; j < RSXX_MAX_OUTSTANDING_CMDS; j++) {
  781. dma = get_tracker_dma(ctrl->trackers, j);
  782. if (dma) {
  783. pci_unmap_page(card->dev, dma->dma_addr,
  784. get_dma_size(dma),
  785. (dma->cmd == HW_CMD_BLK_WRITE) ?
  786. PCI_DMA_TODEVICE :
  787. PCI_DMA_FROMDEVICE);
  788. kmem_cache_free(rsxx_dma_pool, dma);
  789. cnt++;
  790. }
  791. }
  792. if (cnt)
  793. dev_info(CARD_TO_DEV(card),
  794. "Freed %d pending DMAs on channel %d\n",
  795. cnt, i);
  796. vfree(ctrl->trackers);
  797. pci_free_consistent(card->dev, STATUS_BUFFER_SIZE8,
  798. ctrl->status.buf, ctrl->status.dma_addr);
  799. pci_free_consistent(card->dev, COMMAND_BUFFER_SIZE8,
  800. ctrl->cmd.buf, ctrl->cmd.dma_addr);
  801. }
  802. }
  803. int rsxx_dma_init(void)
  804. {
  805. rsxx_dma_pool = KMEM_CACHE(rsxx_dma, SLAB_HWCACHE_ALIGN);
  806. if (!rsxx_dma_pool)
  807. return -ENOMEM;
  808. return 0;
  809. }
  810. void rsxx_dma_cleanup(void)
  811. {
  812. kmem_cache_destroy(rsxx_dma_pool);
  813. }