nicstar.c 75 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861
  1. /*
  2. * nicstar.c
  3. *
  4. * Device driver supporting CBR for IDT 77201/77211 "NICStAR" based cards.
  5. *
  6. * IMPORTANT: The included file nicstarmac.c was NOT WRITTEN BY ME.
  7. * It was taken from the frle-0.22 device driver.
  8. * As the file doesn't have a copyright notice, in the file
  9. * nicstarmac.copyright I put the copyright notice from the
  10. * frle-0.22 device driver.
  11. * Some code is based on the nicstar driver by M. Welsh.
  12. *
  13. * Author: Rui Prior (rprior@inescn.pt)
  14. * PowerPC support by Jay Talbott (jay_talbott@mcg.mot.com) April 1999
  15. *
  16. *
  17. * (C) INESC 1999
  18. */
  19. /*
  20. * IMPORTANT INFORMATION
  21. *
  22. * There are currently three types of spinlocks:
  23. *
  24. * 1 - Per card interrupt spinlock (to protect structures and such)
  25. * 2 - Per SCQ scq spinlock
  26. * 3 - Per card resource spinlock (to access registers, etc.)
  27. *
  28. * These must NEVER be grabbed in reverse order.
  29. *
  30. */
  31. /* Header files */
  32. #include <linux/module.h>
  33. #include <linux/kernel.h>
  34. #include <linux/skbuff.h>
  35. #include <linux/atmdev.h>
  36. #include <linux/atm.h>
  37. #include <linux/pci.h>
  38. #include <linux/dma-mapping.h>
  39. #include <linux/types.h>
  40. #include <linux/string.h>
  41. #include <linux/delay.h>
  42. #include <linux/init.h>
  43. #include <linux/sched.h>
  44. #include <linux/timer.h>
  45. #include <linux/interrupt.h>
  46. #include <linux/bitops.h>
  47. #include <linux/slab.h>
  48. #include <linux/idr.h>
  49. #include <asm/io.h>
  50. #include <asm/uaccess.h>
  51. #include <linux/atomic.h>
  52. #include "nicstar.h"
  53. #ifdef CONFIG_ATM_NICSTAR_USE_SUNI
  54. #include "suni.h"
  55. #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */
  56. #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105
  57. #include "idt77105.h"
  58. #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */
  59. /* Additional code */
  60. #include "nicstarmac.c"
  61. /* Configurable parameters */
  62. #undef PHY_LOOPBACK
  63. #undef TX_DEBUG
  64. #undef RX_DEBUG
  65. #undef GENERAL_DEBUG
  66. #undef EXTRA_DEBUG
  67. #undef NS_USE_DESTRUCTORS /* For now keep this undefined unless you know
  68. you're going to use only raw ATM */
  69. /* Do not touch these */
  70. #ifdef TX_DEBUG
  71. #define TXPRINTK(args...) printk(args)
  72. #else
  73. #define TXPRINTK(args...)
  74. #endif /* TX_DEBUG */
  75. #ifdef RX_DEBUG
  76. #define RXPRINTK(args...) printk(args)
  77. #else
  78. #define RXPRINTK(args...)
  79. #endif /* RX_DEBUG */
  80. #ifdef GENERAL_DEBUG
  81. #define PRINTK(args...) printk(args)
  82. #else
  83. #define PRINTK(args...)
  84. #endif /* GENERAL_DEBUG */
  85. #ifdef EXTRA_DEBUG
  86. #define XPRINTK(args...) printk(args)
  87. #else
  88. #define XPRINTK(args...)
  89. #endif /* EXTRA_DEBUG */
  90. /* Macros */
  91. #define CMD_BUSY(card) (readl((card)->membase + STAT) & NS_STAT_CMDBZ)
  92. #define NS_DELAY mdelay(1)
  93. #define PTR_DIFF(a, b) ((u32)((unsigned long)(a) - (unsigned long)(b)))
  94. #ifndef ATM_SKB
  95. #define ATM_SKB(s) (&(s)->atm)
  96. #endif
  97. #define scq_virt_to_bus(scq, p) \
  98. (scq->dma + ((unsigned long)(p) - (unsigned long)(scq)->org))
  99. /* Function declarations */
  100. static u32 ns_read_sram(ns_dev * card, u32 sram_address);
  101. static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value,
  102. int count);
  103. static int ns_init_card(int i, struct pci_dev *pcidev);
  104. static void ns_init_card_error(ns_dev * card, int error);
  105. static scq_info *get_scq(ns_dev *card, int size, u32 scd);
  106. static void free_scq(ns_dev *card, scq_info * scq, struct atm_vcc *vcc);
  107. static void push_rxbufs(ns_dev *, struct sk_buff *);
  108. static irqreturn_t ns_irq_handler(int irq, void *dev_id);
  109. static int ns_open(struct atm_vcc *vcc);
  110. static void ns_close(struct atm_vcc *vcc);
  111. static void fill_tst(ns_dev * card, int n, vc_map * vc);
  112. static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb);
  113. static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd,
  114. struct sk_buff *skb);
  115. static void process_tsq(ns_dev * card);
  116. static void drain_scq(ns_dev * card, scq_info * scq, int pos);
  117. static void process_rsq(ns_dev * card);
  118. static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe);
  119. #ifdef NS_USE_DESTRUCTORS
  120. static void ns_sb_destructor(struct sk_buff *sb);
  121. static void ns_lb_destructor(struct sk_buff *lb);
  122. static void ns_hb_destructor(struct sk_buff *hb);
  123. #endif /* NS_USE_DESTRUCTORS */
  124. static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb);
  125. static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count);
  126. static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb);
  127. static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb);
  128. static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb);
  129. static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page);
  130. static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg);
  131. #ifdef EXTRA_DEBUG
  132. static void which_list(ns_dev * card, struct sk_buff *skb);
  133. #endif
  134. static void ns_poll(unsigned long arg);
  135. static int ns_parse_mac(char *mac, unsigned char *esi);
  136. static void ns_phy_put(struct atm_dev *dev, unsigned char value,
  137. unsigned long addr);
  138. static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr);
  139. /* Global variables */
  140. static struct ns_dev *cards[NS_MAX_CARDS];
  141. static unsigned num_cards;
  142. static struct atmdev_ops atm_ops = {
  143. .open = ns_open,
  144. .close = ns_close,
  145. .ioctl = ns_ioctl,
  146. .send = ns_send,
  147. .phy_put = ns_phy_put,
  148. .phy_get = ns_phy_get,
  149. .proc_read = ns_proc_read,
  150. .owner = THIS_MODULE,
  151. };
  152. static struct timer_list ns_timer;
  153. static char *mac[NS_MAX_CARDS];
  154. module_param_array(mac, charp, NULL, 0);
  155. MODULE_LICENSE("GPL");
  156. /* Functions */
  157. static int nicstar_init_one(struct pci_dev *pcidev,
  158. const struct pci_device_id *ent)
  159. {
  160. static int index = -1;
  161. unsigned int error;
  162. index++;
  163. cards[index] = NULL;
  164. error = ns_init_card(index, pcidev);
  165. if (error) {
  166. cards[index--] = NULL; /* don't increment index */
  167. goto err_out;
  168. }
  169. return 0;
  170. err_out:
  171. return -ENODEV;
  172. }
  173. static void nicstar_remove_one(struct pci_dev *pcidev)
  174. {
  175. int i, j;
  176. ns_dev *card = pci_get_drvdata(pcidev);
  177. struct sk_buff *hb;
  178. struct sk_buff *iovb;
  179. struct sk_buff *lb;
  180. struct sk_buff *sb;
  181. i = card->index;
  182. if (cards[i] == NULL)
  183. return;
  184. if (card->atmdev->phy && card->atmdev->phy->stop)
  185. card->atmdev->phy->stop(card->atmdev);
  186. /* Stop everything */
  187. writel(0x00000000, card->membase + CFG);
  188. /* De-register device */
  189. atm_dev_deregister(card->atmdev);
  190. /* Disable PCI device */
  191. pci_disable_device(pcidev);
  192. /* Free up resources */
  193. j = 0;
  194. PRINTK("nicstar%d: freeing %d huge buffers.\n", i, card->hbpool.count);
  195. while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL) {
  196. dev_kfree_skb_any(hb);
  197. j++;
  198. }
  199. PRINTK("nicstar%d: %d huge buffers freed.\n", i, j);
  200. j = 0;
  201. PRINTK("nicstar%d: freeing %d iovec buffers.\n", i,
  202. card->iovpool.count);
  203. while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL) {
  204. dev_kfree_skb_any(iovb);
  205. j++;
  206. }
  207. PRINTK("nicstar%d: %d iovec buffers freed.\n", i, j);
  208. while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL)
  209. dev_kfree_skb_any(lb);
  210. while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL)
  211. dev_kfree_skb_any(sb);
  212. free_scq(card, card->scq0, NULL);
  213. for (j = 0; j < NS_FRSCD_NUM; j++) {
  214. if (card->scd2vc[j] != NULL)
  215. free_scq(card, card->scd2vc[j]->scq, card->scd2vc[j]->tx_vcc);
  216. }
  217. idr_destroy(&card->idr);
  218. pci_free_consistent(card->pcidev, NS_RSQSIZE + NS_RSQ_ALIGNMENT,
  219. card->rsq.org, card->rsq.dma);
  220. pci_free_consistent(card->pcidev, NS_TSQSIZE + NS_TSQ_ALIGNMENT,
  221. card->tsq.org, card->tsq.dma);
  222. free_irq(card->pcidev->irq, card);
  223. iounmap(card->membase);
  224. kfree(card);
  225. }
  226. static struct pci_device_id nicstar_pci_tbl[] = {
  227. { PCI_VDEVICE(IDT, PCI_DEVICE_ID_IDT_IDT77201), 0 },
  228. {0,} /* terminate list */
  229. };
  230. MODULE_DEVICE_TABLE(pci, nicstar_pci_tbl);
  231. static struct pci_driver nicstar_driver = {
  232. .name = "nicstar",
  233. .id_table = nicstar_pci_tbl,
  234. .probe = nicstar_init_one,
  235. .remove = nicstar_remove_one,
  236. };
  237. static int __init nicstar_init(void)
  238. {
  239. unsigned error = 0; /* Initialized to remove compile warning */
  240. XPRINTK("nicstar: nicstar_init() called.\n");
  241. error = pci_register_driver(&nicstar_driver);
  242. TXPRINTK("nicstar: TX debug enabled.\n");
  243. RXPRINTK("nicstar: RX debug enabled.\n");
  244. PRINTK("nicstar: General debug enabled.\n");
  245. #ifdef PHY_LOOPBACK
  246. printk("nicstar: using PHY loopback.\n");
  247. #endif /* PHY_LOOPBACK */
  248. XPRINTK("nicstar: nicstar_init() returned.\n");
  249. if (!error) {
  250. init_timer(&ns_timer);
  251. ns_timer.expires = jiffies + NS_POLL_PERIOD;
  252. ns_timer.data = 0UL;
  253. ns_timer.function = ns_poll;
  254. add_timer(&ns_timer);
  255. }
  256. return error;
  257. }
  258. static void __exit nicstar_cleanup(void)
  259. {
  260. XPRINTK("nicstar: nicstar_cleanup() called.\n");
  261. del_timer(&ns_timer);
  262. pci_unregister_driver(&nicstar_driver);
  263. XPRINTK("nicstar: nicstar_cleanup() returned.\n");
  264. }
  265. static u32 ns_read_sram(ns_dev * card, u32 sram_address)
  266. {
  267. unsigned long flags;
  268. u32 data;
  269. sram_address <<= 2;
  270. sram_address &= 0x0007FFFC; /* address must be dword aligned */
  271. sram_address |= 0x50000000; /* SRAM read command */
  272. spin_lock_irqsave(&card->res_lock, flags);
  273. while (CMD_BUSY(card)) ;
  274. writel(sram_address, card->membase + CMD);
  275. while (CMD_BUSY(card)) ;
  276. data = readl(card->membase + DR0);
  277. spin_unlock_irqrestore(&card->res_lock, flags);
  278. return data;
  279. }
  280. static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value,
  281. int count)
  282. {
  283. unsigned long flags;
  284. int i, c;
  285. count--; /* count range now is 0..3 instead of 1..4 */
  286. c = count;
  287. c <<= 2; /* to use increments of 4 */
  288. spin_lock_irqsave(&card->res_lock, flags);
  289. while (CMD_BUSY(card)) ;
  290. for (i = 0; i <= c; i += 4)
  291. writel(*(value++), card->membase + i);
  292. /* Note: DR# registers are the first 4 dwords in nicstar's memspace,
  293. so card->membase + DR0 == card->membase */
  294. sram_address <<= 2;
  295. sram_address &= 0x0007FFFC;
  296. sram_address |= (0x40000000 | count);
  297. writel(sram_address, card->membase + CMD);
  298. spin_unlock_irqrestore(&card->res_lock, flags);
  299. }
  300. static int ns_init_card(int i, struct pci_dev *pcidev)
  301. {
  302. int j;
  303. struct ns_dev *card = NULL;
  304. unsigned char pci_latency;
  305. unsigned error;
  306. u32 data;
  307. u32 u32d[4];
  308. u32 ns_cfg_rctsize;
  309. int bcount;
  310. unsigned long membase;
  311. error = 0;
  312. if (pci_enable_device(pcidev)) {
  313. printk("nicstar%d: can't enable PCI device\n", i);
  314. error = 2;
  315. ns_init_card_error(card, error);
  316. return error;
  317. }
  318. if ((pci_set_dma_mask(pcidev, DMA_BIT_MASK(32)) != 0) ||
  319. (pci_set_consistent_dma_mask(pcidev, DMA_BIT_MASK(32)) != 0)) {
  320. printk(KERN_WARNING
  321. "nicstar%d: No suitable DMA available.\n", i);
  322. error = 2;
  323. ns_init_card_error(card, error);
  324. return error;
  325. }
  326. if ((card = kmalloc(sizeof(ns_dev), GFP_KERNEL)) == NULL) {
  327. printk
  328. ("nicstar%d: can't allocate memory for device structure.\n",
  329. i);
  330. error = 2;
  331. ns_init_card_error(card, error);
  332. return error;
  333. }
  334. cards[i] = card;
  335. spin_lock_init(&card->int_lock);
  336. spin_lock_init(&card->res_lock);
  337. pci_set_drvdata(pcidev, card);
  338. card->index = i;
  339. card->atmdev = NULL;
  340. card->pcidev = pcidev;
  341. membase = pci_resource_start(pcidev, 1);
  342. card->membase = ioremap(membase, NS_IOREMAP_SIZE);
  343. if (!card->membase) {
  344. printk("nicstar%d: can't ioremap() membase.\n", i);
  345. error = 3;
  346. ns_init_card_error(card, error);
  347. return error;
  348. }
  349. PRINTK("nicstar%d: membase at 0x%p.\n", i, card->membase);
  350. pci_set_master(pcidev);
  351. if (pci_read_config_byte(pcidev, PCI_LATENCY_TIMER, &pci_latency) != 0) {
  352. printk("nicstar%d: can't read PCI latency timer.\n", i);
  353. error = 6;
  354. ns_init_card_error(card, error);
  355. return error;
  356. }
  357. #ifdef NS_PCI_LATENCY
  358. if (pci_latency < NS_PCI_LATENCY) {
  359. PRINTK("nicstar%d: setting PCI latency timer to %d.\n", i,
  360. NS_PCI_LATENCY);
  361. for (j = 1; j < 4; j++) {
  362. if (pci_write_config_byte
  363. (pcidev, PCI_LATENCY_TIMER, NS_PCI_LATENCY) != 0)
  364. break;
  365. }
  366. if (j == 4) {
  367. printk
  368. ("nicstar%d: can't set PCI latency timer to %d.\n",
  369. i, NS_PCI_LATENCY);
  370. error = 7;
  371. ns_init_card_error(card, error);
  372. return error;
  373. }
  374. }
  375. #endif /* NS_PCI_LATENCY */
  376. /* Clear timer overflow */
  377. data = readl(card->membase + STAT);
  378. if (data & NS_STAT_TMROF)
  379. writel(NS_STAT_TMROF, card->membase + STAT);
  380. /* Software reset */
  381. writel(NS_CFG_SWRST, card->membase + CFG);
  382. NS_DELAY;
  383. writel(0x00000000, card->membase + CFG);
  384. /* PHY reset */
  385. writel(0x00000008, card->membase + GP);
  386. NS_DELAY;
  387. writel(0x00000001, card->membase + GP);
  388. NS_DELAY;
  389. while (CMD_BUSY(card)) ;
  390. writel(NS_CMD_WRITE_UTILITY | 0x00000100, card->membase + CMD); /* Sync UTOPIA with SAR clock */
  391. NS_DELAY;
  392. /* Detect PHY type */
  393. while (CMD_BUSY(card)) ;
  394. writel(NS_CMD_READ_UTILITY | 0x00000200, card->membase + CMD);
  395. while (CMD_BUSY(card)) ;
  396. data = readl(card->membase + DR0);
  397. switch (data) {
  398. case 0x00000009:
  399. printk("nicstar%d: PHY seems to be 25 Mbps.\n", i);
  400. card->max_pcr = ATM_25_PCR;
  401. while (CMD_BUSY(card)) ;
  402. writel(0x00000008, card->membase + DR0);
  403. writel(NS_CMD_WRITE_UTILITY | 0x00000200, card->membase + CMD);
  404. /* Clear an eventual pending interrupt */
  405. writel(NS_STAT_SFBQF, card->membase + STAT);
  406. #ifdef PHY_LOOPBACK
  407. while (CMD_BUSY(card)) ;
  408. writel(0x00000022, card->membase + DR0);
  409. writel(NS_CMD_WRITE_UTILITY | 0x00000202, card->membase + CMD);
  410. #endif /* PHY_LOOPBACK */
  411. break;
  412. case 0x00000030:
  413. case 0x00000031:
  414. printk("nicstar%d: PHY seems to be 155 Mbps.\n", i);
  415. card->max_pcr = ATM_OC3_PCR;
  416. #ifdef PHY_LOOPBACK
  417. while (CMD_BUSY(card)) ;
  418. writel(0x00000002, card->membase + DR0);
  419. writel(NS_CMD_WRITE_UTILITY | 0x00000205, card->membase + CMD);
  420. #endif /* PHY_LOOPBACK */
  421. break;
  422. default:
  423. printk("nicstar%d: unknown PHY type (0x%08X).\n", i, data);
  424. error = 8;
  425. ns_init_card_error(card, error);
  426. return error;
  427. }
  428. writel(0x00000000, card->membase + GP);
  429. /* Determine SRAM size */
  430. data = 0x76543210;
  431. ns_write_sram(card, 0x1C003, &data, 1);
  432. data = 0x89ABCDEF;
  433. ns_write_sram(card, 0x14003, &data, 1);
  434. if (ns_read_sram(card, 0x14003) == 0x89ABCDEF &&
  435. ns_read_sram(card, 0x1C003) == 0x76543210)
  436. card->sram_size = 128;
  437. else
  438. card->sram_size = 32;
  439. PRINTK("nicstar%d: %dK x 32bit SRAM size.\n", i, card->sram_size);
  440. card->rct_size = NS_MAX_RCTSIZE;
  441. #if (NS_MAX_RCTSIZE == 4096)
  442. if (card->sram_size == 128)
  443. printk
  444. ("nicstar%d: limiting maximum VCI. See NS_MAX_RCTSIZE in nicstar.h\n",
  445. i);
  446. #elif (NS_MAX_RCTSIZE == 16384)
  447. if (card->sram_size == 32) {
  448. printk
  449. ("nicstar%d: wasting memory. See NS_MAX_RCTSIZE in nicstar.h\n",
  450. i);
  451. card->rct_size = 4096;
  452. }
  453. #else
  454. #error NS_MAX_RCTSIZE must be either 4096 or 16384 in nicstar.c
  455. #endif
  456. card->vpibits = NS_VPIBITS;
  457. if (card->rct_size == 4096)
  458. card->vcibits = 12 - NS_VPIBITS;
  459. else /* card->rct_size == 16384 */
  460. card->vcibits = 14 - NS_VPIBITS;
  461. /* Initialize the nicstar eeprom/eprom stuff, for the MAC addr */
  462. if (mac[i] == NULL)
  463. nicstar_init_eprom(card->membase);
  464. /* Set the VPI/VCI MSb mask to zero so we can receive OAM cells */
  465. writel(0x00000000, card->membase + VPM);
  466. /* Initialize TSQ */
  467. card->tsq.org = pci_alloc_consistent(card->pcidev,
  468. NS_TSQSIZE + NS_TSQ_ALIGNMENT,
  469. &card->tsq.dma);
  470. if (card->tsq.org == NULL) {
  471. printk("nicstar%d: can't allocate TSQ.\n", i);
  472. error = 10;
  473. ns_init_card_error(card, error);
  474. return error;
  475. }
  476. card->tsq.base = PTR_ALIGN(card->tsq.org, NS_TSQ_ALIGNMENT);
  477. card->tsq.next = card->tsq.base;
  478. card->tsq.last = card->tsq.base + (NS_TSQ_NUM_ENTRIES - 1);
  479. for (j = 0; j < NS_TSQ_NUM_ENTRIES; j++)
  480. ns_tsi_init(card->tsq.base + j);
  481. writel(0x00000000, card->membase + TSQH);
  482. writel(ALIGN(card->tsq.dma, NS_TSQ_ALIGNMENT), card->membase + TSQB);
  483. PRINTK("nicstar%d: TSQ base at 0x%p.\n", i, card->tsq.base);
  484. /* Initialize RSQ */
  485. card->rsq.org = pci_alloc_consistent(card->pcidev,
  486. NS_RSQSIZE + NS_RSQ_ALIGNMENT,
  487. &card->rsq.dma);
  488. if (card->rsq.org == NULL) {
  489. printk("nicstar%d: can't allocate RSQ.\n", i);
  490. error = 11;
  491. ns_init_card_error(card, error);
  492. return error;
  493. }
  494. card->rsq.base = PTR_ALIGN(card->rsq.org, NS_RSQ_ALIGNMENT);
  495. card->rsq.next = card->rsq.base;
  496. card->rsq.last = card->rsq.base + (NS_RSQ_NUM_ENTRIES - 1);
  497. for (j = 0; j < NS_RSQ_NUM_ENTRIES; j++)
  498. ns_rsqe_init(card->rsq.base + j);
  499. writel(0x00000000, card->membase + RSQH);
  500. writel(ALIGN(card->rsq.dma, NS_RSQ_ALIGNMENT), card->membase + RSQB);
  501. PRINTK("nicstar%d: RSQ base at 0x%p.\n", i, card->rsq.base);
  502. /* Initialize SCQ0, the only VBR SCQ used */
  503. card->scq1 = NULL;
  504. card->scq2 = NULL;
  505. card->scq0 = get_scq(card, VBR_SCQSIZE, NS_VRSCD0);
  506. if (card->scq0 == NULL) {
  507. printk("nicstar%d: can't get SCQ0.\n", i);
  508. error = 12;
  509. ns_init_card_error(card, error);
  510. return error;
  511. }
  512. u32d[0] = scq_virt_to_bus(card->scq0, card->scq0->base);
  513. u32d[1] = (u32) 0x00000000;
  514. u32d[2] = (u32) 0xffffffff;
  515. u32d[3] = (u32) 0x00000000;
  516. ns_write_sram(card, NS_VRSCD0, u32d, 4);
  517. ns_write_sram(card, NS_VRSCD1, u32d, 4); /* These last two won't be used */
  518. ns_write_sram(card, NS_VRSCD2, u32d, 4); /* but are initialized, just in case... */
  519. card->scq0->scd = NS_VRSCD0;
  520. PRINTK("nicstar%d: VBR-SCQ0 base at 0x%p.\n", i, card->scq0->base);
  521. /* Initialize TSTs */
  522. card->tst_addr = NS_TST0;
  523. card->tst_free_entries = NS_TST_NUM_ENTRIES;
  524. data = NS_TST_OPCODE_VARIABLE;
  525. for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
  526. ns_write_sram(card, NS_TST0 + j, &data, 1);
  527. data = ns_tste_make(NS_TST_OPCODE_END, NS_TST0);
  528. ns_write_sram(card, NS_TST0 + NS_TST_NUM_ENTRIES, &data, 1);
  529. for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
  530. ns_write_sram(card, NS_TST1 + j, &data, 1);
  531. data = ns_tste_make(NS_TST_OPCODE_END, NS_TST1);
  532. ns_write_sram(card, NS_TST1 + NS_TST_NUM_ENTRIES, &data, 1);
  533. for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
  534. card->tste2vc[j] = NULL;
  535. writel(NS_TST0 << 2, card->membase + TSTB);
  536. /* Initialize RCT. AAL type is set on opening the VC. */
  537. #ifdef RCQ_SUPPORT
  538. u32d[0] = NS_RCTE_RAWCELLINTEN;
  539. #else
  540. u32d[0] = 0x00000000;
  541. #endif /* RCQ_SUPPORT */
  542. u32d[1] = 0x00000000;
  543. u32d[2] = 0x00000000;
  544. u32d[3] = 0xFFFFFFFF;
  545. for (j = 0; j < card->rct_size; j++)
  546. ns_write_sram(card, j * 4, u32d, 4);
  547. memset(card->vcmap, 0, NS_MAX_RCTSIZE * sizeof(vc_map));
  548. for (j = 0; j < NS_FRSCD_NUM; j++)
  549. card->scd2vc[j] = NULL;
  550. /* Initialize buffer levels */
  551. card->sbnr.min = MIN_SB;
  552. card->sbnr.init = NUM_SB;
  553. card->sbnr.max = MAX_SB;
  554. card->lbnr.min = MIN_LB;
  555. card->lbnr.init = NUM_LB;
  556. card->lbnr.max = MAX_LB;
  557. card->iovnr.min = MIN_IOVB;
  558. card->iovnr.init = NUM_IOVB;
  559. card->iovnr.max = MAX_IOVB;
  560. card->hbnr.min = MIN_HB;
  561. card->hbnr.init = NUM_HB;
  562. card->hbnr.max = MAX_HB;
  563. card->sm_handle = 0x00000000;
  564. card->sm_addr = 0x00000000;
  565. card->lg_handle = 0x00000000;
  566. card->lg_addr = 0x00000000;
  567. card->efbie = 1; /* To prevent push_rxbufs from enabling the interrupt */
  568. idr_init(&card->idr);
  569. /* Pre-allocate some huge buffers */
  570. skb_queue_head_init(&card->hbpool.queue);
  571. card->hbpool.count = 0;
  572. for (j = 0; j < NUM_HB; j++) {
  573. struct sk_buff *hb;
  574. hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
  575. if (hb == NULL) {
  576. printk
  577. ("nicstar%d: can't allocate %dth of %d huge buffers.\n",
  578. i, j, NUM_HB);
  579. error = 13;
  580. ns_init_card_error(card, error);
  581. return error;
  582. }
  583. NS_PRV_BUFTYPE(hb) = BUF_NONE;
  584. skb_queue_tail(&card->hbpool.queue, hb);
  585. card->hbpool.count++;
  586. }
  587. /* Allocate large buffers */
  588. skb_queue_head_init(&card->lbpool.queue);
  589. card->lbpool.count = 0; /* Not used */
  590. for (j = 0; j < NUM_LB; j++) {
  591. struct sk_buff *lb;
  592. lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
  593. if (lb == NULL) {
  594. printk
  595. ("nicstar%d: can't allocate %dth of %d large buffers.\n",
  596. i, j, NUM_LB);
  597. error = 14;
  598. ns_init_card_error(card, error);
  599. return error;
  600. }
  601. NS_PRV_BUFTYPE(lb) = BUF_LG;
  602. skb_queue_tail(&card->lbpool.queue, lb);
  603. skb_reserve(lb, NS_SMBUFSIZE);
  604. push_rxbufs(card, lb);
  605. /* Due to the implementation of push_rxbufs() this is 1, not 0 */
  606. if (j == 1) {
  607. card->rcbuf = lb;
  608. card->rawcell = (struct ns_rcqe *) lb->data;
  609. card->rawch = NS_PRV_DMA(lb);
  610. }
  611. }
  612. /* Test for strange behaviour which leads to crashes */
  613. if ((bcount =
  614. ns_stat_lfbqc_get(readl(card->membase + STAT))) < card->lbnr.min) {
  615. printk
  616. ("nicstar%d: Strange... Just allocated %d large buffers and lfbqc = %d.\n",
  617. i, j, bcount);
  618. error = 14;
  619. ns_init_card_error(card, error);
  620. return error;
  621. }
  622. /* Allocate small buffers */
  623. skb_queue_head_init(&card->sbpool.queue);
  624. card->sbpool.count = 0; /* Not used */
  625. for (j = 0; j < NUM_SB; j++) {
  626. struct sk_buff *sb;
  627. sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
  628. if (sb == NULL) {
  629. printk
  630. ("nicstar%d: can't allocate %dth of %d small buffers.\n",
  631. i, j, NUM_SB);
  632. error = 15;
  633. ns_init_card_error(card, error);
  634. return error;
  635. }
  636. NS_PRV_BUFTYPE(sb) = BUF_SM;
  637. skb_queue_tail(&card->sbpool.queue, sb);
  638. skb_reserve(sb, NS_AAL0_HEADER);
  639. push_rxbufs(card, sb);
  640. }
  641. /* Test for strange behaviour which leads to crashes */
  642. if ((bcount =
  643. ns_stat_sfbqc_get(readl(card->membase + STAT))) < card->sbnr.min) {
  644. printk
  645. ("nicstar%d: Strange... Just allocated %d small buffers and sfbqc = %d.\n",
  646. i, j, bcount);
  647. error = 15;
  648. ns_init_card_error(card, error);
  649. return error;
  650. }
  651. /* Allocate iovec buffers */
  652. skb_queue_head_init(&card->iovpool.queue);
  653. card->iovpool.count = 0;
  654. for (j = 0; j < NUM_IOVB; j++) {
  655. struct sk_buff *iovb;
  656. iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL);
  657. if (iovb == NULL) {
  658. printk
  659. ("nicstar%d: can't allocate %dth of %d iovec buffers.\n",
  660. i, j, NUM_IOVB);
  661. error = 16;
  662. ns_init_card_error(card, error);
  663. return error;
  664. }
  665. NS_PRV_BUFTYPE(iovb) = BUF_NONE;
  666. skb_queue_tail(&card->iovpool.queue, iovb);
  667. card->iovpool.count++;
  668. }
  669. /* Configure NICStAR */
  670. if (card->rct_size == 4096)
  671. ns_cfg_rctsize = NS_CFG_RCTSIZE_4096_ENTRIES;
  672. else /* (card->rct_size == 16384) */
  673. ns_cfg_rctsize = NS_CFG_RCTSIZE_16384_ENTRIES;
  674. card->efbie = 1;
  675. card->intcnt = 0;
  676. if (request_irq
  677. (pcidev->irq, &ns_irq_handler, IRQF_SHARED, "nicstar", card) != 0) {
  678. printk("nicstar%d: can't allocate IRQ %d.\n", i, pcidev->irq);
  679. error = 9;
  680. ns_init_card_error(card, error);
  681. return error;
  682. }
  683. /* Register device */
  684. card->atmdev = atm_dev_register("nicstar", &card->pcidev->dev, &atm_ops,
  685. -1, NULL);
  686. if (card->atmdev == NULL) {
  687. printk("nicstar%d: can't register device.\n", i);
  688. error = 17;
  689. ns_init_card_error(card, error);
  690. return error;
  691. }
  692. if (ns_parse_mac(mac[i], card->atmdev->esi)) {
  693. nicstar_read_eprom(card->membase, NICSTAR_EPROM_MAC_ADDR_OFFSET,
  694. card->atmdev->esi, 6);
  695. if (memcmp(card->atmdev->esi, "\x00\x00\x00\x00\x00\x00", 6) ==
  696. 0) {
  697. nicstar_read_eprom(card->membase,
  698. NICSTAR_EPROM_MAC_ADDR_OFFSET_ALT,
  699. card->atmdev->esi, 6);
  700. }
  701. }
  702. printk("nicstar%d: MAC address %pM\n", i, card->atmdev->esi);
  703. card->atmdev->dev_data = card;
  704. card->atmdev->ci_range.vpi_bits = card->vpibits;
  705. card->atmdev->ci_range.vci_bits = card->vcibits;
  706. card->atmdev->link_rate = card->max_pcr;
  707. card->atmdev->phy = NULL;
  708. #ifdef CONFIG_ATM_NICSTAR_USE_SUNI
  709. if (card->max_pcr == ATM_OC3_PCR)
  710. suni_init(card->atmdev);
  711. #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */
  712. #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105
  713. if (card->max_pcr == ATM_25_PCR)
  714. idt77105_init(card->atmdev);
  715. #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */
  716. if (card->atmdev->phy && card->atmdev->phy->start)
  717. card->atmdev->phy->start(card->atmdev);
  718. writel(NS_CFG_RXPATH | NS_CFG_SMBUFSIZE | NS_CFG_LGBUFSIZE | NS_CFG_EFBIE | NS_CFG_RSQSIZE | NS_CFG_VPIBITS | ns_cfg_rctsize | NS_CFG_RXINT_NODELAY | NS_CFG_RAWIE | /* Only enabled if RCQ_SUPPORT */
  719. NS_CFG_RSQAFIE | NS_CFG_TXEN | NS_CFG_TXIE | NS_CFG_TSQFIE_OPT | /* Only enabled if ENABLE_TSQFIE */
  720. NS_CFG_PHYIE, card->membase + CFG);
  721. num_cards++;
  722. return error;
  723. }
  724. static void ns_init_card_error(ns_dev *card, int error)
  725. {
  726. if (error >= 17) {
  727. writel(0x00000000, card->membase + CFG);
  728. }
  729. if (error >= 16) {
  730. struct sk_buff *iovb;
  731. while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL)
  732. dev_kfree_skb_any(iovb);
  733. }
  734. if (error >= 15) {
  735. struct sk_buff *sb;
  736. while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL)
  737. dev_kfree_skb_any(sb);
  738. free_scq(card, card->scq0, NULL);
  739. }
  740. if (error >= 14) {
  741. struct sk_buff *lb;
  742. while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL)
  743. dev_kfree_skb_any(lb);
  744. }
  745. if (error >= 13) {
  746. struct sk_buff *hb;
  747. while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL)
  748. dev_kfree_skb_any(hb);
  749. }
  750. if (error >= 12) {
  751. kfree(card->rsq.org);
  752. }
  753. if (error >= 11) {
  754. kfree(card->tsq.org);
  755. }
  756. if (error >= 10) {
  757. free_irq(card->pcidev->irq, card);
  758. }
  759. if (error >= 4) {
  760. iounmap(card->membase);
  761. }
  762. if (error >= 3) {
  763. pci_disable_device(card->pcidev);
  764. kfree(card);
  765. }
  766. }
  767. static scq_info *get_scq(ns_dev *card, int size, u32 scd)
  768. {
  769. scq_info *scq;
  770. int i;
  771. if (size != VBR_SCQSIZE && size != CBR_SCQSIZE)
  772. return NULL;
  773. scq = kmalloc(sizeof(scq_info), GFP_KERNEL);
  774. if (!scq)
  775. return NULL;
  776. scq->org = pci_alloc_consistent(card->pcidev, 2 * size, &scq->dma);
  777. if (!scq->org) {
  778. kfree(scq);
  779. return NULL;
  780. }
  781. scq->skb = kmalloc(sizeof(struct sk_buff *) *
  782. (size / NS_SCQE_SIZE), GFP_KERNEL);
  783. if (!scq->skb) {
  784. kfree(scq->org);
  785. kfree(scq);
  786. return NULL;
  787. }
  788. scq->num_entries = size / NS_SCQE_SIZE;
  789. scq->base = PTR_ALIGN(scq->org, size);
  790. scq->next = scq->base;
  791. scq->last = scq->base + (scq->num_entries - 1);
  792. scq->tail = scq->last;
  793. scq->scd = scd;
  794. scq->num_entries = size / NS_SCQE_SIZE;
  795. scq->tbd_count = 0;
  796. init_waitqueue_head(&scq->scqfull_waitq);
  797. scq->full = 0;
  798. spin_lock_init(&scq->lock);
  799. for (i = 0; i < scq->num_entries; i++)
  800. scq->skb[i] = NULL;
  801. return scq;
  802. }
  803. /* For variable rate SCQ vcc must be NULL */
  804. static void free_scq(ns_dev *card, scq_info *scq, struct atm_vcc *vcc)
  805. {
  806. int i;
  807. if (scq->num_entries == VBR_SCQ_NUM_ENTRIES)
  808. for (i = 0; i < scq->num_entries; i++) {
  809. if (scq->skb[i] != NULL) {
  810. vcc = ATM_SKB(scq->skb[i])->vcc;
  811. if (vcc->pop != NULL)
  812. vcc->pop(vcc, scq->skb[i]);
  813. else
  814. dev_kfree_skb_any(scq->skb[i]);
  815. }
  816. } else { /* vcc must be != NULL */
  817. if (vcc == NULL) {
  818. printk
  819. ("nicstar: free_scq() called with vcc == NULL for fixed rate scq.");
  820. for (i = 0; i < scq->num_entries; i++)
  821. dev_kfree_skb_any(scq->skb[i]);
  822. } else
  823. for (i = 0; i < scq->num_entries; i++) {
  824. if (scq->skb[i] != NULL) {
  825. if (vcc->pop != NULL)
  826. vcc->pop(vcc, scq->skb[i]);
  827. else
  828. dev_kfree_skb_any(scq->skb[i]);
  829. }
  830. }
  831. }
  832. kfree(scq->skb);
  833. pci_free_consistent(card->pcidev,
  834. 2 * (scq->num_entries == VBR_SCQ_NUM_ENTRIES ?
  835. VBR_SCQSIZE : CBR_SCQSIZE),
  836. scq->org, scq->dma);
  837. kfree(scq);
  838. }
  839. /* The handles passed must be pointers to the sk_buff containing the small
  840. or large buffer(s) cast to u32. */
  841. static void push_rxbufs(ns_dev * card, struct sk_buff *skb)
  842. {
  843. struct sk_buff *handle1, *handle2;
  844. int id1, id2;
  845. u32 addr1, addr2;
  846. u32 stat;
  847. unsigned long flags;
  848. /* *BARF* */
  849. handle2 = NULL;
  850. addr2 = 0;
  851. handle1 = skb;
  852. addr1 = pci_map_single(card->pcidev,
  853. skb->data,
  854. (NS_PRV_BUFTYPE(skb) == BUF_SM
  855. ? NS_SMSKBSIZE : NS_LGSKBSIZE),
  856. PCI_DMA_TODEVICE);
  857. NS_PRV_DMA(skb) = addr1; /* save so we can unmap later */
  858. #ifdef GENERAL_DEBUG
  859. if (!addr1)
  860. printk("nicstar%d: push_rxbufs called with addr1 = 0.\n",
  861. card->index);
  862. #endif /* GENERAL_DEBUG */
  863. stat = readl(card->membase + STAT);
  864. card->sbfqc = ns_stat_sfbqc_get(stat);
  865. card->lbfqc = ns_stat_lfbqc_get(stat);
  866. if (NS_PRV_BUFTYPE(skb) == BUF_SM) {
  867. if (!addr2) {
  868. if (card->sm_addr) {
  869. addr2 = card->sm_addr;
  870. handle2 = card->sm_handle;
  871. card->sm_addr = 0x00000000;
  872. card->sm_handle = 0x00000000;
  873. } else { /* (!sm_addr) */
  874. card->sm_addr = addr1;
  875. card->sm_handle = handle1;
  876. }
  877. }
  878. } else { /* buf_type == BUF_LG */
  879. if (!addr2) {
  880. if (card->lg_addr) {
  881. addr2 = card->lg_addr;
  882. handle2 = card->lg_handle;
  883. card->lg_addr = 0x00000000;
  884. card->lg_handle = 0x00000000;
  885. } else { /* (!lg_addr) */
  886. card->lg_addr = addr1;
  887. card->lg_handle = handle1;
  888. }
  889. }
  890. }
  891. if (addr2) {
  892. if (NS_PRV_BUFTYPE(skb) == BUF_SM) {
  893. if (card->sbfqc >= card->sbnr.max) {
  894. skb_unlink(handle1, &card->sbpool.queue);
  895. dev_kfree_skb_any(handle1);
  896. skb_unlink(handle2, &card->sbpool.queue);
  897. dev_kfree_skb_any(handle2);
  898. return;
  899. } else
  900. card->sbfqc += 2;
  901. } else { /* (buf_type == BUF_LG) */
  902. if (card->lbfqc >= card->lbnr.max) {
  903. skb_unlink(handle1, &card->lbpool.queue);
  904. dev_kfree_skb_any(handle1);
  905. skb_unlink(handle2, &card->lbpool.queue);
  906. dev_kfree_skb_any(handle2);
  907. return;
  908. } else
  909. card->lbfqc += 2;
  910. }
  911. id1 = idr_alloc(&card->idr, handle1, 0, 0, GFP_ATOMIC);
  912. if (id1 < 0)
  913. goto out;
  914. id2 = idr_alloc(&card->idr, handle2, 0, 0, GFP_ATOMIC);
  915. if (id2 < 0)
  916. goto out;
  917. spin_lock_irqsave(&card->res_lock, flags);
  918. while (CMD_BUSY(card)) ;
  919. writel(addr2, card->membase + DR3);
  920. writel(id2, card->membase + DR2);
  921. writel(addr1, card->membase + DR1);
  922. writel(id1, card->membase + DR0);
  923. writel(NS_CMD_WRITE_FREEBUFQ | NS_PRV_BUFTYPE(skb),
  924. card->membase + CMD);
  925. spin_unlock_irqrestore(&card->res_lock, flags);
  926. XPRINTK("nicstar%d: Pushing %s buffers at 0x%x and 0x%x.\n",
  927. card->index,
  928. (NS_PRV_BUFTYPE(skb) == BUF_SM ? "small" : "large"),
  929. addr1, addr2);
  930. }
  931. if (!card->efbie && card->sbfqc >= card->sbnr.min &&
  932. card->lbfqc >= card->lbnr.min) {
  933. card->efbie = 1;
  934. writel((readl(card->membase + CFG) | NS_CFG_EFBIE),
  935. card->membase + CFG);
  936. }
  937. out:
  938. return;
  939. }
  940. static irqreturn_t ns_irq_handler(int irq, void *dev_id)
  941. {
  942. u32 stat_r;
  943. ns_dev *card;
  944. struct atm_dev *dev;
  945. unsigned long flags;
  946. card = (ns_dev *) dev_id;
  947. dev = card->atmdev;
  948. card->intcnt++;
  949. PRINTK("nicstar%d: NICStAR generated an interrupt\n", card->index);
  950. spin_lock_irqsave(&card->int_lock, flags);
  951. stat_r = readl(card->membase + STAT);
  952. /* Transmit Status Indicator has been written to T. S. Queue */
  953. if (stat_r & NS_STAT_TSIF) {
  954. TXPRINTK("nicstar%d: TSI interrupt\n", card->index);
  955. process_tsq(card);
  956. writel(NS_STAT_TSIF, card->membase + STAT);
  957. }
  958. /* Incomplete CS-PDU has been transmitted */
  959. if (stat_r & NS_STAT_TXICP) {
  960. writel(NS_STAT_TXICP, card->membase + STAT);
  961. TXPRINTK("nicstar%d: Incomplete CS-PDU transmitted.\n",
  962. card->index);
  963. }
  964. /* Transmit Status Queue 7/8 full */
  965. if (stat_r & NS_STAT_TSQF) {
  966. writel(NS_STAT_TSQF, card->membase + STAT);
  967. PRINTK("nicstar%d: TSQ full.\n", card->index);
  968. process_tsq(card);
  969. }
  970. /* Timer overflow */
  971. if (stat_r & NS_STAT_TMROF) {
  972. writel(NS_STAT_TMROF, card->membase + STAT);
  973. PRINTK("nicstar%d: Timer overflow.\n", card->index);
  974. }
  975. /* PHY device interrupt signal active */
  976. if (stat_r & NS_STAT_PHYI) {
  977. writel(NS_STAT_PHYI, card->membase + STAT);
  978. PRINTK("nicstar%d: PHY interrupt.\n", card->index);
  979. if (dev->phy && dev->phy->interrupt) {
  980. dev->phy->interrupt(dev);
  981. }
  982. }
  983. /* Small Buffer Queue is full */
  984. if (stat_r & NS_STAT_SFBQF) {
  985. writel(NS_STAT_SFBQF, card->membase + STAT);
  986. printk("nicstar%d: Small free buffer queue is full.\n",
  987. card->index);
  988. }
  989. /* Large Buffer Queue is full */
  990. if (stat_r & NS_STAT_LFBQF) {
  991. writel(NS_STAT_LFBQF, card->membase + STAT);
  992. printk("nicstar%d: Large free buffer queue is full.\n",
  993. card->index);
  994. }
  995. /* Receive Status Queue is full */
  996. if (stat_r & NS_STAT_RSQF) {
  997. writel(NS_STAT_RSQF, card->membase + STAT);
  998. printk("nicstar%d: RSQ full.\n", card->index);
  999. process_rsq(card);
  1000. }
  1001. /* Complete CS-PDU received */
  1002. if (stat_r & NS_STAT_EOPDU) {
  1003. RXPRINTK("nicstar%d: End of CS-PDU received.\n", card->index);
  1004. process_rsq(card);
  1005. writel(NS_STAT_EOPDU, card->membase + STAT);
  1006. }
  1007. /* Raw cell received */
  1008. if (stat_r & NS_STAT_RAWCF) {
  1009. writel(NS_STAT_RAWCF, card->membase + STAT);
  1010. #ifndef RCQ_SUPPORT
  1011. printk("nicstar%d: Raw cell received and no support yet...\n",
  1012. card->index);
  1013. #endif /* RCQ_SUPPORT */
  1014. /* NOTE: the following procedure may keep a raw cell pending until the
  1015. next interrupt. As this preliminary support is only meant to
  1016. avoid buffer leakage, this is not an issue. */
  1017. while (readl(card->membase + RAWCT) != card->rawch) {
  1018. if (ns_rcqe_islast(card->rawcell)) {
  1019. struct sk_buff *oldbuf;
  1020. oldbuf = card->rcbuf;
  1021. card->rcbuf = idr_find(&card->idr,
  1022. ns_rcqe_nextbufhandle(card->rawcell));
  1023. card->rawch = NS_PRV_DMA(card->rcbuf);
  1024. card->rawcell = (struct ns_rcqe *)
  1025. card->rcbuf->data;
  1026. recycle_rx_buf(card, oldbuf);
  1027. } else {
  1028. card->rawch += NS_RCQE_SIZE;
  1029. card->rawcell++;
  1030. }
  1031. }
  1032. }
  1033. /* Small buffer queue is empty */
  1034. if (stat_r & NS_STAT_SFBQE) {
  1035. int i;
  1036. struct sk_buff *sb;
  1037. writel(NS_STAT_SFBQE, card->membase + STAT);
  1038. printk("nicstar%d: Small free buffer queue empty.\n",
  1039. card->index);
  1040. for (i = 0; i < card->sbnr.min; i++) {
  1041. sb = dev_alloc_skb(NS_SMSKBSIZE);
  1042. if (sb == NULL) {
  1043. writel(readl(card->membase + CFG) &
  1044. ~NS_CFG_EFBIE, card->membase + CFG);
  1045. card->efbie = 0;
  1046. break;
  1047. }
  1048. NS_PRV_BUFTYPE(sb) = BUF_SM;
  1049. skb_queue_tail(&card->sbpool.queue, sb);
  1050. skb_reserve(sb, NS_AAL0_HEADER);
  1051. push_rxbufs(card, sb);
  1052. }
  1053. card->sbfqc = i;
  1054. process_rsq(card);
  1055. }
  1056. /* Large buffer queue empty */
  1057. if (stat_r & NS_STAT_LFBQE) {
  1058. int i;
  1059. struct sk_buff *lb;
  1060. writel(NS_STAT_LFBQE, card->membase + STAT);
  1061. printk("nicstar%d: Large free buffer queue empty.\n",
  1062. card->index);
  1063. for (i = 0; i < card->lbnr.min; i++) {
  1064. lb = dev_alloc_skb(NS_LGSKBSIZE);
  1065. if (lb == NULL) {
  1066. writel(readl(card->membase + CFG) &
  1067. ~NS_CFG_EFBIE, card->membase + CFG);
  1068. card->efbie = 0;
  1069. break;
  1070. }
  1071. NS_PRV_BUFTYPE(lb) = BUF_LG;
  1072. skb_queue_tail(&card->lbpool.queue, lb);
  1073. skb_reserve(lb, NS_SMBUFSIZE);
  1074. push_rxbufs(card, lb);
  1075. }
  1076. card->lbfqc = i;
  1077. process_rsq(card);
  1078. }
  1079. /* Receive Status Queue is 7/8 full */
  1080. if (stat_r & NS_STAT_RSQAF) {
  1081. writel(NS_STAT_RSQAF, card->membase + STAT);
  1082. RXPRINTK("nicstar%d: RSQ almost full.\n", card->index);
  1083. process_rsq(card);
  1084. }
  1085. spin_unlock_irqrestore(&card->int_lock, flags);
  1086. PRINTK("nicstar%d: end of interrupt service\n", card->index);
  1087. return IRQ_HANDLED;
  1088. }
  1089. static int ns_open(struct atm_vcc *vcc)
  1090. {
  1091. ns_dev *card;
  1092. vc_map *vc;
  1093. unsigned long tmpl, modl;
  1094. int tcr, tcra; /* target cell rate, and absolute value */
  1095. int n = 0; /* Number of entries in the TST. Initialized to remove
  1096. the compiler warning. */
  1097. u32 u32d[4];
  1098. int frscdi = 0; /* Index of the SCD. Initialized to remove the compiler
  1099. warning. How I wish compilers were clever enough to
  1100. tell which variables can truly be used
  1101. uninitialized... */
  1102. int inuse; /* tx or rx vc already in use by another vcc */
  1103. short vpi = vcc->vpi;
  1104. int vci = vcc->vci;
  1105. card = (ns_dev *) vcc->dev->dev_data;
  1106. PRINTK("nicstar%d: opening vpi.vci %d.%d \n", card->index, (int)vpi,
  1107. vci);
  1108. if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) {
  1109. PRINTK("nicstar%d: unsupported AAL.\n", card->index);
  1110. return -EINVAL;
  1111. }
  1112. vc = &(card->vcmap[vpi << card->vcibits | vci]);
  1113. vcc->dev_data = vc;
  1114. inuse = 0;
  1115. if (vcc->qos.txtp.traffic_class != ATM_NONE && vc->tx)
  1116. inuse = 1;
  1117. if (vcc->qos.rxtp.traffic_class != ATM_NONE && vc->rx)
  1118. inuse += 2;
  1119. if (inuse) {
  1120. printk("nicstar%d: %s vci already in use.\n", card->index,
  1121. inuse == 1 ? "tx" : inuse == 2 ? "rx" : "tx and rx");
  1122. return -EINVAL;
  1123. }
  1124. set_bit(ATM_VF_ADDR, &vcc->flags);
  1125. /* NOTE: You are not allowed to modify an open connection's QOS. To change
  1126. that, remove the ATM_VF_PARTIAL flag checking. There may be other changes
  1127. needed to do that. */
  1128. if (!test_bit(ATM_VF_PARTIAL, &vcc->flags)) {
  1129. scq_info *scq;
  1130. set_bit(ATM_VF_PARTIAL, &vcc->flags);
  1131. if (vcc->qos.txtp.traffic_class == ATM_CBR) {
  1132. /* Check requested cell rate and availability of SCD */
  1133. if (vcc->qos.txtp.max_pcr == 0 && vcc->qos.txtp.pcr == 0
  1134. && vcc->qos.txtp.min_pcr == 0) {
  1135. PRINTK
  1136. ("nicstar%d: trying to open a CBR vc with cell rate = 0 \n",
  1137. card->index);
  1138. clear_bit(ATM_VF_PARTIAL, &vcc->flags);
  1139. clear_bit(ATM_VF_ADDR, &vcc->flags);
  1140. return -EINVAL;
  1141. }
  1142. tcr = atm_pcr_goal(&(vcc->qos.txtp));
  1143. tcra = tcr >= 0 ? tcr : -tcr;
  1144. PRINTK("nicstar%d: target cell rate = %d.\n",
  1145. card->index, vcc->qos.txtp.max_pcr);
  1146. tmpl =
  1147. (unsigned long)tcra *(unsigned long)
  1148. NS_TST_NUM_ENTRIES;
  1149. modl = tmpl % card->max_pcr;
  1150. n = (int)(tmpl / card->max_pcr);
  1151. if (tcr > 0) {
  1152. if (modl > 0)
  1153. n++;
  1154. } else if (tcr == 0) {
  1155. if ((n =
  1156. (card->tst_free_entries -
  1157. NS_TST_RESERVED)) <= 0) {
  1158. PRINTK
  1159. ("nicstar%d: no CBR bandwidth free.\n",
  1160. card->index);
  1161. clear_bit(ATM_VF_PARTIAL, &vcc->flags);
  1162. clear_bit(ATM_VF_ADDR, &vcc->flags);
  1163. return -EINVAL;
  1164. }
  1165. }
  1166. if (n == 0) {
  1167. printk
  1168. ("nicstar%d: selected bandwidth < granularity.\n",
  1169. card->index);
  1170. clear_bit(ATM_VF_PARTIAL, &vcc->flags);
  1171. clear_bit(ATM_VF_ADDR, &vcc->flags);
  1172. return -EINVAL;
  1173. }
  1174. if (n > (card->tst_free_entries - NS_TST_RESERVED)) {
  1175. PRINTK
  1176. ("nicstar%d: not enough free CBR bandwidth.\n",
  1177. card->index);
  1178. clear_bit(ATM_VF_PARTIAL, &vcc->flags);
  1179. clear_bit(ATM_VF_ADDR, &vcc->flags);
  1180. return -EINVAL;
  1181. } else
  1182. card->tst_free_entries -= n;
  1183. XPRINTK("nicstar%d: writing %d tst entries.\n",
  1184. card->index, n);
  1185. for (frscdi = 0; frscdi < NS_FRSCD_NUM; frscdi++) {
  1186. if (card->scd2vc[frscdi] == NULL) {
  1187. card->scd2vc[frscdi] = vc;
  1188. break;
  1189. }
  1190. }
  1191. if (frscdi == NS_FRSCD_NUM) {
  1192. PRINTK
  1193. ("nicstar%d: no SCD available for CBR channel.\n",
  1194. card->index);
  1195. card->tst_free_entries += n;
  1196. clear_bit(ATM_VF_PARTIAL, &vcc->flags);
  1197. clear_bit(ATM_VF_ADDR, &vcc->flags);
  1198. return -EBUSY;
  1199. }
  1200. vc->cbr_scd = NS_FRSCD + frscdi * NS_FRSCD_SIZE;
  1201. scq = get_scq(card, CBR_SCQSIZE, vc->cbr_scd);
  1202. if (scq == NULL) {
  1203. PRINTK("nicstar%d: can't get fixed rate SCQ.\n",
  1204. card->index);
  1205. card->scd2vc[frscdi] = NULL;
  1206. card->tst_free_entries += n;
  1207. clear_bit(ATM_VF_PARTIAL, &vcc->flags);
  1208. clear_bit(ATM_VF_ADDR, &vcc->flags);
  1209. return -ENOMEM;
  1210. }
  1211. vc->scq = scq;
  1212. u32d[0] = scq_virt_to_bus(scq, scq->base);
  1213. u32d[1] = (u32) 0x00000000;
  1214. u32d[2] = (u32) 0xffffffff;
  1215. u32d[3] = (u32) 0x00000000;
  1216. ns_write_sram(card, vc->cbr_scd, u32d, 4);
  1217. fill_tst(card, n, vc);
  1218. } else if (vcc->qos.txtp.traffic_class == ATM_UBR) {
  1219. vc->cbr_scd = 0x00000000;
  1220. vc->scq = card->scq0;
  1221. }
  1222. if (vcc->qos.txtp.traffic_class != ATM_NONE) {
  1223. vc->tx = 1;
  1224. vc->tx_vcc = vcc;
  1225. vc->tbd_count = 0;
  1226. }
  1227. if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
  1228. u32 status;
  1229. vc->rx = 1;
  1230. vc->rx_vcc = vcc;
  1231. vc->rx_iov = NULL;
  1232. /* Open the connection in hardware */
  1233. if (vcc->qos.aal == ATM_AAL5)
  1234. status = NS_RCTE_AAL5 | NS_RCTE_CONNECTOPEN;
  1235. else /* vcc->qos.aal == ATM_AAL0 */
  1236. status = NS_RCTE_AAL0 | NS_RCTE_CONNECTOPEN;
  1237. #ifdef RCQ_SUPPORT
  1238. status |= NS_RCTE_RAWCELLINTEN;
  1239. #endif /* RCQ_SUPPORT */
  1240. ns_write_sram(card,
  1241. NS_RCT +
  1242. (vpi << card->vcibits | vci) *
  1243. NS_RCT_ENTRY_SIZE, &status, 1);
  1244. }
  1245. }
  1246. set_bit(ATM_VF_READY, &vcc->flags);
  1247. return 0;
  1248. }
  1249. static void ns_close(struct atm_vcc *vcc)
  1250. {
  1251. vc_map *vc;
  1252. ns_dev *card;
  1253. u32 data;
  1254. int i;
  1255. vc = vcc->dev_data;
  1256. card = vcc->dev->dev_data;
  1257. PRINTK("nicstar%d: closing vpi.vci %d.%d \n", card->index,
  1258. (int)vcc->vpi, vcc->vci);
  1259. clear_bit(ATM_VF_READY, &vcc->flags);
  1260. if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
  1261. u32 addr;
  1262. unsigned long flags;
  1263. addr =
  1264. NS_RCT +
  1265. (vcc->vpi << card->vcibits | vcc->vci) * NS_RCT_ENTRY_SIZE;
  1266. spin_lock_irqsave(&card->res_lock, flags);
  1267. while (CMD_BUSY(card)) ;
  1268. writel(NS_CMD_CLOSE_CONNECTION | addr << 2,
  1269. card->membase + CMD);
  1270. spin_unlock_irqrestore(&card->res_lock, flags);
  1271. vc->rx = 0;
  1272. if (vc->rx_iov != NULL) {
  1273. struct sk_buff *iovb;
  1274. u32 stat;
  1275. stat = readl(card->membase + STAT);
  1276. card->sbfqc = ns_stat_sfbqc_get(stat);
  1277. card->lbfqc = ns_stat_lfbqc_get(stat);
  1278. PRINTK
  1279. ("nicstar%d: closing a VC with pending rx buffers.\n",
  1280. card->index);
  1281. iovb = vc->rx_iov;
  1282. recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
  1283. NS_PRV_IOVCNT(iovb));
  1284. NS_PRV_IOVCNT(iovb) = 0;
  1285. spin_lock_irqsave(&card->int_lock, flags);
  1286. recycle_iov_buf(card, iovb);
  1287. spin_unlock_irqrestore(&card->int_lock, flags);
  1288. vc->rx_iov = NULL;
  1289. }
  1290. }
  1291. if (vcc->qos.txtp.traffic_class != ATM_NONE) {
  1292. vc->tx = 0;
  1293. }
  1294. if (vcc->qos.txtp.traffic_class == ATM_CBR) {
  1295. unsigned long flags;
  1296. ns_scqe *scqep;
  1297. scq_info *scq;
  1298. scq = vc->scq;
  1299. for (;;) {
  1300. spin_lock_irqsave(&scq->lock, flags);
  1301. scqep = scq->next;
  1302. if (scqep == scq->base)
  1303. scqep = scq->last;
  1304. else
  1305. scqep--;
  1306. if (scqep == scq->tail) {
  1307. spin_unlock_irqrestore(&scq->lock, flags);
  1308. break;
  1309. }
  1310. /* If the last entry is not a TSR, place one in the SCQ in order to
  1311. be able to completely drain it and then close. */
  1312. if (!ns_scqe_is_tsr(scqep) && scq->tail != scq->next) {
  1313. ns_scqe tsr;
  1314. u32 scdi, scqi;
  1315. u32 data;
  1316. int index;
  1317. tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE);
  1318. scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE;
  1319. scqi = scq->next - scq->base;
  1320. tsr.word_2 = ns_tsr_mkword_2(scdi, scqi);
  1321. tsr.word_3 = 0x00000000;
  1322. tsr.word_4 = 0x00000000;
  1323. *scq->next = tsr;
  1324. index = (int)scqi;
  1325. scq->skb[index] = NULL;
  1326. if (scq->next == scq->last)
  1327. scq->next = scq->base;
  1328. else
  1329. scq->next++;
  1330. data = scq_virt_to_bus(scq, scq->next);
  1331. ns_write_sram(card, scq->scd, &data, 1);
  1332. }
  1333. spin_unlock_irqrestore(&scq->lock, flags);
  1334. schedule();
  1335. }
  1336. /* Free all TST entries */
  1337. data = NS_TST_OPCODE_VARIABLE;
  1338. for (i = 0; i < NS_TST_NUM_ENTRIES; i++) {
  1339. if (card->tste2vc[i] == vc) {
  1340. ns_write_sram(card, card->tst_addr + i, &data,
  1341. 1);
  1342. card->tste2vc[i] = NULL;
  1343. card->tst_free_entries++;
  1344. }
  1345. }
  1346. card->scd2vc[(vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE] = NULL;
  1347. free_scq(card, vc->scq, vcc);
  1348. }
  1349. /* remove all references to vcc before deleting it */
  1350. if (vcc->qos.txtp.traffic_class != ATM_NONE) {
  1351. unsigned long flags;
  1352. scq_info *scq = card->scq0;
  1353. spin_lock_irqsave(&scq->lock, flags);
  1354. for (i = 0; i < scq->num_entries; i++) {
  1355. if (scq->skb[i] && ATM_SKB(scq->skb[i])->vcc == vcc) {
  1356. ATM_SKB(scq->skb[i])->vcc = NULL;
  1357. atm_return(vcc, scq->skb[i]->truesize);
  1358. PRINTK
  1359. ("nicstar: deleted pending vcc mapping\n");
  1360. }
  1361. }
  1362. spin_unlock_irqrestore(&scq->lock, flags);
  1363. }
  1364. vcc->dev_data = NULL;
  1365. clear_bit(ATM_VF_PARTIAL, &vcc->flags);
  1366. clear_bit(ATM_VF_ADDR, &vcc->flags);
  1367. #ifdef RX_DEBUG
  1368. {
  1369. u32 stat, cfg;
  1370. stat = readl(card->membase + STAT);
  1371. cfg = readl(card->membase + CFG);
  1372. printk("STAT = 0x%08X CFG = 0x%08X \n", stat, cfg);
  1373. printk
  1374. ("TSQ: base = 0x%p next = 0x%p last = 0x%p TSQT = 0x%08X \n",
  1375. card->tsq.base, card->tsq.next,
  1376. card->tsq.last, readl(card->membase + TSQT));
  1377. printk
  1378. ("RSQ: base = 0x%p next = 0x%p last = 0x%p RSQT = 0x%08X \n",
  1379. card->rsq.base, card->rsq.next,
  1380. card->rsq.last, readl(card->membase + RSQT));
  1381. printk("Empty free buffer queue interrupt %s \n",
  1382. card->efbie ? "enabled" : "disabled");
  1383. printk("SBCNT = %d count = %d LBCNT = %d count = %d \n",
  1384. ns_stat_sfbqc_get(stat), card->sbpool.count,
  1385. ns_stat_lfbqc_get(stat), card->lbpool.count);
  1386. printk("hbpool.count = %d iovpool.count = %d \n",
  1387. card->hbpool.count, card->iovpool.count);
  1388. }
  1389. #endif /* RX_DEBUG */
  1390. }
  1391. static void fill_tst(ns_dev * card, int n, vc_map * vc)
  1392. {
  1393. u32 new_tst;
  1394. unsigned long cl;
  1395. int e, r;
  1396. u32 data;
  1397. /* It would be very complicated to keep the two TSTs synchronized while
  1398. assuring that writes are only made to the inactive TST. So, for now I
  1399. will use only one TST. If problems occur, I will change this again */
  1400. new_tst = card->tst_addr;
  1401. /* Fill procedure */
  1402. for (e = 0; e < NS_TST_NUM_ENTRIES; e++) {
  1403. if (card->tste2vc[e] == NULL)
  1404. break;
  1405. }
  1406. if (e == NS_TST_NUM_ENTRIES) {
  1407. printk("nicstar%d: No free TST entries found. \n", card->index);
  1408. return;
  1409. }
  1410. r = n;
  1411. cl = NS_TST_NUM_ENTRIES;
  1412. data = ns_tste_make(NS_TST_OPCODE_FIXED, vc->cbr_scd);
  1413. while (r > 0) {
  1414. if (cl >= NS_TST_NUM_ENTRIES && card->tste2vc[e] == NULL) {
  1415. card->tste2vc[e] = vc;
  1416. ns_write_sram(card, new_tst + e, &data, 1);
  1417. cl -= NS_TST_NUM_ENTRIES;
  1418. r--;
  1419. }
  1420. if (++e == NS_TST_NUM_ENTRIES) {
  1421. e = 0;
  1422. }
  1423. cl += n;
  1424. }
  1425. /* End of fill procedure */
  1426. data = ns_tste_make(NS_TST_OPCODE_END, new_tst);
  1427. ns_write_sram(card, new_tst + NS_TST_NUM_ENTRIES, &data, 1);
  1428. ns_write_sram(card, card->tst_addr + NS_TST_NUM_ENTRIES, &data, 1);
  1429. card->tst_addr = new_tst;
  1430. }
  1431. static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb)
  1432. {
  1433. ns_dev *card;
  1434. vc_map *vc;
  1435. scq_info *scq;
  1436. unsigned long buflen;
  1437. ns_scqe scqe;
  1438. u32 flags; /* TBD flags, not CPU flags */
  1439. card = vcc->dev->dev_data;
  1440. TXPRINTK("nicstar%d: ns_send() called.\n", card->index);
  1441. if ((vc = (vc_map *) vcc->dev_data) == NULL) {
  1442. printk("nicstar%d: vcc->dev_data == NULL on ns_send().\n",
  1443. card->index);
  1444. atomic_inc(&vcc->stats->tx_err);
  1445. dev_kfree_skb_any(skb);
  1446. return -EINVAL;
  1447. }
  1448. if (!vc->tx) {
  1449. printk("nicstar%d: Trying to transmit on a non-tx VC.\n",
  1450. card->index);
  1451. atomic_inc(&vcc->stats->tx_err);
  1452. dev_kfree_skb_any(skb);
  1453. return -EINVAL;
  1454. }
  1455. if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) {
  1456. printk("nicstar%d: Only AAL0 and AAL5 are supported.\n",
  1457. card->index);
  1458. atomic_inc(&vcc->stats->tx_err);
  1459. dev_kfree_skb_any(skb);
  1460. return -EINVAL;
  1461. }
  1462. if (skb_shinfo(skb)->nr_frags != 0) {
  1463. printk("nicstar%d: No scatter-gather yet.\n", card->index);
  1464. atomic_inc(&vcc->stats->tx_err);
  1465. dev_kfree_skb_any(skb);
  1466. return -EINVAL;
  1467. }
  1468. ATM_SKB(skb)->vcc = vcc;
  1469. NS_PRV_DMA(skb) = pci_map_single(card->pcidev, skb->data,
  1470. skb->len, PCI_DMA_TODEVICE);
  1471. if (vcc->qos.aal == ATM_AAL5) {
  1472. buflen = (skb->len + 47 + 8) / 48 * 48; /* Multiple of 48 */
  1473. flags = NS_TBD_AAL5;
  1474. scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb));
  1475. scqe.word_3 = cpu_to_le32(skb->len);
  1476. scqe.word_4 =
  1477. ns_tbd_mkword_4(0, (u32) vcc->vpi, (u32) vcc->vci, 0,
  1478. ATM_SKB(skb)->
  1479. atm_options & ATM_ATMOPT_CLP ? 1 : 0);
  1480. flags |= NS_TBD_EOPDU;
  1481. } else { /* (vcc->qos.aal == ATM_AAL0) */
  1482. buflen = ATM_CELL_PAYLOAD; /* i.e., 48 bytes */
  1483. flags = NS_TBD_AAL0;
  1484. scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb) + NS_AAL0_HEADER);
  1485. scqe.word_3 = cpu_to_le32(0x00000000);
  1486. if (*skb->data & 0x02) /* Payload type 1 - end of pdu */
  1487. flags |= NS_TBD_EOPDU;
  1488. scqe.word_4 =
  1489. cpu_to_le32(*((u32 *) skb->data) & ~NS_TBD_VC_MASK);
  1490. /* Force the VPI/VCI to be the same as in VCC struct */
  1491. scqe.word_4 |=
  1492. cpu_to_le32((((u32) vcc->
  1493. vpi) << NS_TBD_VPI_SHIFT | ((u32) vcc->
  1494. vci) <<
  1495. NS_TBD_VCI_SHIFT) & NS_TBD_VC_MASK);
  1496. }
  1497. if (vcc->qos.txtp.traffic_class == ATM_CBR) {
  1498. scqe.word_1 = ns_tbd_mkword_1_novbr(flags, (u32) buflen);
  1499. scq = ((vc_map *) vcc->dev_data)->scq;
  1500. } else {
  1501. scqe.word_1 =
  1502. ns_tbd_mkword_1(flags, (u32) 1, (u32) 1, (u32) buflen);
  1503. scq = card->scq0;
  1504. }
  1505. if (push_scqe(card, vc, scq, &scqe, skb) != 0) {
  1506. atomic_inc(&vcc->stats->tx_err);
  1507. dev_kfree_skb_any(skb);
  1508. return -EIO;
  1509. }
  1510. atomic_inc(&vcc->stats->tx);
  1511. return 0;
  1512. }
  1513. static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd,
  1514. struct sk_buff *skb)
  1515. {
  1516. unsigned long flags;
  1517. ns_scqe tsr;
  1518. u32 scdi, scqi;
  1519. int scq_is_vbr;
  1520. u32 data;
  1521. int index;
  1522. spin_lock_irqsave(&scq->lock, flags);
  1523. while (scq->tail == scq->next) {
  1524. if (in_interrupt()) {
  1525. spin_unlock_irqrestore(&scq->lock, flags);
  1526. printk("nicstar%d: Error pushing TBD.\n", card->index);
  1527. return 1;
  1528. }
  1529. scq->full = 1;
  1530. spin_unlock_irqrestore(&scq->lock, flags);
  1531. interruptible_sleep_on_timeout(&scq->scqfull_waitq,
  1532. SCQFULL_TIMEOUT);
  1533. spin_lock_irqsave(&scq->lock, flags);
  1534. if (scq->full) {
  1535. spin_unlock_irqrestore(&scq->lock, flags);
  1536. printk("nicstar%d: Timeout pushing TBD.\n",
  1537. card->index);
  1538. return 1;
  1539. }
  1540. }
  1541. *scq->next = *tbd;
  1542. index = (int)(scq->next - scq->base);
  1543. scq->skb[index] = skb;
  1544. XPRINTK("nicstar%d: sending skb at 0x%p (pos %d).\n",
  1545. card->index, skb, index);
  1546. XPRINTK("nicstar%d: TBD written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n",
  1547. card->index, le32_to_cpu(tbd->word_1), le32_to_cpu(tbd->word_2),
  1548. le32_to_cpu(tbd->word_3), le32_to_cpu(tbd->word_4),
  1549. scq->next);
  1550. if (scq->next == scq->last)
  1551. scq->next = scq->base;
  1552. else
  1553. scq->next++;
  1554. vc->tbd_count++;
  1555. if (scq->num_entries == VBR_SCQ_NUM_ENTRIES) {
  1556. scq->tbd_count++;
  1557. scq_is_vbr = 1;
  1558. } else
  1559. scq_is_vbr = 0;
  1560. if (vc->tbd_count >= MAX_TBD_PER_VC
  1561. || scq->tbd_count >= MAX_TBD_PER_SCQ) {
  1562. int has_run = 0;
  1563. while (scq->tail == scq->next) {
  1564. if (in_interrupt()) {
  1565. data = scq_virt_to_bus(scq, scq->next);
  1566. ns_write_sram(card, scq->scd, &data, 1);
  1567. spin_unlock_irqrestore(&scq->lock, flags);
  1568. printk("nicstar%d: Error pushing TSR.\n",
  1569. card->index);
  1570. return 0;
  1571. }
  1572. scq->full = 1;
  1573. if (has_run++)
  1574. break;
  1575. spin_unlock_irqrestore(&scq->lock, flags);
  1576. interruptible_sleep_on_timeout(&scq->scqfull_waitq,
  1577. SCQFULL_TIMEOUT);
  1578. spin_lock_irqsave(&scq->lock, flags);
  1579. }
  1580. if (!scq->full) {
  1581. tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE);
  1582. if (scq_is_vbr)
  1583. scdi = NS_TSR_SCDISVBR;
  1584. else
  1585. scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE;
  1586. scqi = scq->next - scq->base;
  1587. tsr.word_2 = ns_tsr_mkword_2(scdi, scqi);
  1588. tsr.word_3 = 0x00000000;
  1589. tsr.word_4 = 0x00000000;
  1590. *scq->next = tsr;
  1591. index = (int)scqi;
  1592. scq->skb[index] = NULL;
  1593. XPRINTK
  1594. ("nicstar%d: TSR written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n",
  1595. card->index, le32_to_cpu(tsr.word_1),
  1596. le32_to_cpu(tsr.word_2), le32_to_cpu(tsr.word_3),
  1597. le32_to_cpu(tsr.word_4), scq->next);
  1598. if (scq->next == scq->last)
  1599. scq->next = scq->base;
  1600. else
  1601. scq->next++;
  1602. vc->tbd_count = 0;
  1603. scq->tbd_count = 0;
  1604. } else
  1605. PRINTK("nicstar%d: Timeout pushing TSR.\n",
  1606. card->index);
  1607. }
  1608. data = scq_virt_to_bus(scq, scq->next);
  1609. ns_write_sram(card, scq->scd, &data, 1);
  1610. spin_unlock_irqrestore(&scq->lock, flags);
  1611. return 0;
  1612. }
  1613. static void process_tsq(ns_dev * card)
  1614. {
  1615. u32 scdi;
  1616. scq_info *scq;
  1617. ns_tsi *previous = NULL, *one_ahead, *two_ahead;
  1618. int serviced_entries; /* flag indicating at least on entry was serviced */
  1619. serviced_entries = 0;
  1620. if (card->tsq.next == card->tsq.last)
  1621. one_ahead = card->tsq.base;
  1622. else
  1623. one_ahead = card->tsq.next + 1;
  1624. if (one_ahead == card->tsq.last)
  1625. two_ahead = card->tsq.base;
  1626. else
  1627. two_ahead = one_ahead + 1;
  1628. while (!ns_tsi_isempty(card->tsq.next) || !ns_tsi_isempty(one_ahead) ||
  1629. !ns_tsi_isempty(two_ahead))
  1630. /* At most two empty, as stated in the 77201 errata */
  1631. {
  1632. serviced_entries = 1;
  1633. /* Skip the one or two possible empty entries */
  1634. while (ns_tsi_isempty(card->tsq.next)) {
  1635. if (card->tsq.next == card->tsq.last)
  1636. card->tsq.next = card->tsq.base;
  1637. else
  1638. card->tsq.next++;
  1639. }
  1640. if (!ns_tsi_tmrof(card->tsq.next)) {
  1641. scdi = ns_tsi_getscdindex(card->tsq.next);
  1642. if (scdi == NS_TSI_SCDISVBR)
  1643. scq = card->scq0;
  1644. else {
  1645. if (card->scd2vc[scdi] == NULL) {
  1646. printk
  1647. ("nicstar%d: could not find VC from SCD index.\n",
  1648. card->index);
  1649. ns_tsi_init(card->tsq.next);
  1650. return;
  1651. }
  1652. scq = card->scd2vc[scdi]->scq;
  1653. }
  1654. drain_scq(card, scq, ns_tsi_getscqpos(card->tsq.next));
  1655. scq->full = 0;
  1656. wake_up_interruptible(&(scq->scqfull_waitq));
  1657. }
  1658. ns_tsi_init(card->tsq.next);
  1659. previous = card->tsq.next;
  1660. if (card->tsq.next == card->tsq.last)
  1661. card->tsq.next = card->tsq.base;
  1662. else
  1663. card->tsq.next++;
  1664. if (card->tsq.next == card->tsq.last)
  1665. one_ahead = card->tsq.base;
  1666. else
  1667. one_ahead = card->tsq.next + 1;
  1668. if (one_ahead == card->tsq.last)
  1669. two_ahead = card->tsq.base;
  1670. else
  1671. two_ahead = one_ahead + 1;
  1672. }
  1673. if (serviced_entries)
  1674. writel(PTR_DIFF(previous, card->tsq.base),
  1675. card->membase + TSQH);
  1676. }
  1677. static void drain_scq(ns_dev * card, scq_info * scq, int pos)
  1678. {
  1679. struct atm_vcc *vcc;
  1680. struct sk_buff *skb;
  1681. int i;
  1682. unsigned long flags;
  1683. XPRINTK("nicstar%d: drain_scq() called, scq at 0x%p, pos %d.\n",
  1684. card->index, scq, pos);
  1685. if (pos >= scq->num_entries) {
  1686. printk("nicstar%d: Bad index on drain_scq().\n", card->index);
  1687. return;
  1688. }
  1689. spin_lock_irqsave(&scq->lock, flags);
  1690. i = (int)(scq->tail - scq->base);
  1691. if (++i == scq->num_entries)
  1692. i = 0;
  1693. while (i != pos) {
  1694. skb = scq->skb[i];
  1695. XPRINTK("nicstar%d: freeing skb at 0x%p (index %d).\n",
  1696. card->index, skb, i);
  1697. if (skb != NULL) {
  1698. pci_unmap_single(card->pcidev,
  1699. NS_PRV_DMA(skb),
  1700. skb->len,
  1701. PCI_DMA_TODEVICE);
  1702. vcc = ATM_SKB(skb)->vcc;
  1703. if (vcc && vcc->pop != NULL) {
  1704. vcc->pop(vcc, skb);
  1705. } else {
  1706. dev_kfree_skb_irq(skb);
  1707. }
  1708. scq->skb[i] = NULL;
  1709. }
  1710. if (++i == scq->num_entries)
  1711. i = 0;
  1712. }
  1713. scq->tail = scq->base + pos;
  1714. spin_unlock_irqrestore(&scq->lock, flags);
  1715. }
  1716. static void process_rsq(ns_dev * card)
  1717. {
  1718. ns_rsqe *previous;
  1719. if (!ns_rsqe_valid(card->rsq.next))
  1720. return;
  1721. do {
  1722. dequeue_rx(card, card->rsq.next);
  1723. ns_rsqe_init(card->rsq.next);
  1724. previous = card->rsq.next;
  1725. if (card->rsq.next == card->rsq.last)
  1726. card->rsq.next = card->rsq.base;
  1727. else
  1728. card->rsq.next++;
  1729. } while (ns_rsqe_valid(card->rsq.next));
  1730. writel(PTR_DIFF(previous, card->rsq.base), card->membase + RSQH);
  1731. }
  1732. static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe)
  1733. {
  1734. u32 vpi, vci;
  1735. vc_map *vc;
  1736. struct sk_buff *iovb;
  1737. struct iovec *iov;
  1738. struct atm_vcc *vcc;
  1739. struct sk_buff *skb;
  1740. unsigned short aal5_len;
  1741. int len;
  1742. u32 stat;
  1743. u32 id;
  1744. stat = readl(card->membase + STAT);
  1745. card->sbfqc = ns_stat_sfbqc_get(stat);
  1746. card->lbfqc = ns_stat_lfbqc_get(stat);
  1747. id = le32_to_cpu(rsqe->buffer_handle);
  1748. skb = idr_find(&card->idr, id);
  1749. if (!skb) {
  1750. RXPRINTK(KERN_ERR
  1751. "nicstar%d: idr_find() failed!\n", card->index);
  1752. return;
  1753. }
  1754. idr_remove(&card->idr, id);
  1755. pci_dma_sync_single_for_cpu(card->pcidev,
  1756. NS_PRV_DMA(skb),
  1757. (NS_PRV_BUFTYPE(skb) == BUF_SM
  1758. ? NS_SMSKBSIZE : NS_LGSKBSIZE),
  1759. PCI_DMA_FROMDEVICE);
  1760. pci_unmap_single(card->pcidev,
  1761. NS_PRV_DMA(skb),
  1762. (NS_PRV_BUFTYPE(skb) == BUF_SM
  1763. ? NS_SMSKBSIZE : NS_LGSKBSIZE),
  1764. PCI_DMA_FROMDEVICE);
  1765. vpi = ns_rsqe_vpi(rsqe);
  1766. vci = ns_rsqe_vci(rsqe);
  1767. if (vpi >= 1UL << card->vpibits || vci >= 1UL << card->vcibits) {
  1768. printk("nicstar%d: SDU received for out-of-range vc %d.%d.\n",
  1769. card->index, vpi, vci);
  1770. recycle_rx_buf(card, skb);
  1771. return;
  1772. }
  1773. vc = &(card->vcmap[vpi << card->vcibits | vci]);
  1774. if (!vc->rx) {
  1775. RXPRINTK("nicstar%d: SDU received on non-rx vc %d.%d.\n",
  1776. card->index, vpi, vci);
  1777. recycle_rx_buf(card, skb);
  1778. return;
  1779. }
  1780. vcc = vc->rx_vcc;
  1781. if (vcc->qos.aal == ATM_AAL0) {
  1782. struct sk_buff *sb;
  1783. unsigned char *cell;
  1784. int i;
  1785. cell = skb->data;
  1786. for (i = ns_rsqe_cellcount(rsqe); i; i--) {
  1787. if ((sb = dev_alloc_skb(NS_SMSKBSIZE)) == NULL) {
  1788. printk
  1789. ("nicstar%d: Can't allocate buffers for aal0.\n",
  1790. card->index);
  1791. atomic_add(i, &vcc->stats->rx_drop);
  1792. break;
  1793. }
  1794. if (!atm_charge(vcc, sb->truesize)) {
  1795. RXPRINTK
  1796. ("nicstar%d: atm_charge() dropped aal0 packets.\n",
  1797. card->index);
  1798. atomic_add(i - 1, &vcc->stats->rx_drop); /* already increased by 1 */
  1799. dev_kfree_skb_any(sb);
  1800. break;
  1801. }
  1802. /* Rebuild the header */
  1803. *((u32 *) sb->data) = le32_to_cpu(rsqe->word_1) << 4 |
  1804. (ns_rsqe_clp(rsqe) ? 0x00000001 : 0x00000000);
  1805. if (i == 1 && ns_rsqe_eopdu(rsqe))
  1806. *((u32 *) sb->data) |= 0x00000002;
  1807. skb_put(sb, NS_AAL0_HEADER);
  1808. memcpy(skb_tail_pointer(sb), cell, ATM_CELL_PAYLOAD);
  1809. skb_put(sb, ATM_CELL_PAYLOAD);
  1810. ATM_SKB(sb)->vcc = vcc;
  1811. __net_timestamp(sb);
  1812. vcc->push(vcc, sb);
  1813. atomic_inc(&vcc->stats->rx);
  1814. cell += ATM_CELL_PAYLOAD;
  1815. }
  1816. recycle_rx_buf(card, skb);
  1817. return;
  1818. }
  1819. /* To reach this point, the AAL layer can only be AAL5 */
  1820. if ((iovb = vc->rx_iov) == NULL) {
  1821. iovb = skb_dequeue(&(card->iovpool.queue));
  1822. if (iovb == NULL) { /* No buffers in the queue */
  1823. iovb = alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC);
  1824. if (iovb == NULL) {
  1825. printk("nicstar%d: Out of iovec buffers.\n",
  1826. card->index);
  1827. atomic_inc(&vcc->stats->rx_drop);
  1828. recycle_rx_buf(card, skb);
  1829. return;
  1830. }
  1831. NS_PRV_BUFTYPE(iovb) = BUF_NONE;
  1832. } else if (--card->iovpool.count < card->iovnr.min) {
  1833. struct sk_buff *new_iovb;
  1834. if ((new_iovb =
  1835. alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC)) != NULL) {
  1836. NS_PRV_BUFTYPE(iovb) = BUF_NONE;
  1837. skb_queue_tail(&card->iovpool.queue, new_iovb);
  1838. card->iovpool.count++;
  1839. }
  1840. }
  1841. vc->rx_iov = iovb;
  1842. NS_PRV_IOVCNT(iovb) = 0;
  1843. iovb->len = 0;
  1844. iovb->data = iovb->head;
  1845. skb_reset_tail_pointer(iovb);
  1846. /* IMPORTANT: a pointer to the sk_buff containing the small or large
  1847. buffer is stored as iovec base, NOT a pointer to the
  1848. small or large buffer itself. */
  1849. } else if (NS_PRV_IOVCNT(iovb) >= NS_MAX_IOVECS) {
  1850. printk("nicstar%d: received too big AAL5 SDU.\n", card->index);
  1851. atomic_inc(&vcc->stats->rx_err);
  1852. recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
  1853. NS_MAX_IOVECS);
  1854. NS_PRV_IOVCNT(iovb) = 0;
  1855. iovb->len = 0;
  1856. iovb->data = iovb->head;
  1857. skb_reset_tail_pointer(iovb);
  1858. }
  1859. iov = &((struct iovec *)iovb->data)[NS_PRV_IOVCNT(iovb)++];
  1860. iov->iov_base = (void *)skb;
  1861. iov->iov_len = ns_rsqe_cellcount(rsqe) * 48;
  1862. iovb->len += iov->iov_len;
  1863. #ifdef EXTRA_DEBUG
  1864. if (NS_PRV_IOVCNT(iovb) == 1) {
  1865. if (NS_PRV_BUFTYPE(skb) != BUF_SM) {
  1866. printk
  1867. ("nicstar%d: Expected a small buffer, and this is not one.\n",
  1868. card->index);
  1869. which_list(card, skb);
  1870. atomic_inc(&vcc->stats->rx_err);
  1871. recycle_rx_buf(card, skb);
  1872. vc->rx_iov = NULL;
  1873. recycle_iov_buf(card, iovb);
  1874. return;
  1875. }
  1876. } else { /* NS_PRV_IOVCNT(iovb) >= 2 */
  1877. if (NS_PRV_BUFTYPE(skb) != BUF_LG) {
  1878. printk
  1879. ("nicstar%d: Expected a large buffer, and this is not one.\n",
  1880. card->index);
  1881. which_list(card, skb);
  1882. atomic_inc(&vcc->stats->rx_err);
  1883. recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
  1884. NS_PRV_IOVCNT(iovb));
  1885. vc->rx_iov = NULL;
  1886. recycle_iov_buf(card, iovb);
  1887. return;
  1888. }
  1889. }
  1890. #endif /* EXTRA_DEBUG */
  1891. if (ns_rsqe_eopdu(rsqe)) {
  1892. /* This works correctly regardless of the endianness of the host */
  1893. unsigned char *L1L2 = (unsigned char *)
  1894. (skb->data + iov->iov_len - 6);
  1895. aal5_len = L1L2[0] << 8 | L1L2[1];
  1896. len = (aal5_len == 0x0000) ? 0x10000 : aal5_len;
  1897. if (ns_rsqe_crcerr(rsqe) ||
  1898. len + 8 > iovb->len || len + (47 + 8) < iovb->len) {
  1899. printk("nicstar%d: AAL5 CRC error", card->index);
  1900. if (len + 8 > iovb->len || len + (47 + 8) < iovb->len)
  1901. printk(" - PDU size mismatch.\n");
  1902. else
  1903. printk(".\n");
  1904. atomic_inc(&vcc->stats->rx_err);
  1905. recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
  1906. NS_PRV_IOVCNT(iovb));
  1907. vc->rx_iov = NULL;
  1908. recycle_iov_buf(card, iovb);
  1909. return;
  1910. }
  1911. /* By this point we (hopefully) have a complete SDU without errors. */
  1912. if (NS_PRV_IOVCNT(iovb) == 1) { /* Just a small buffer */
  1913. /* skb points to a small buffer */
  1914. if (!atm_charge(vcc, skb->truesize)) {
  1915. push_rxbufs(card, skb);
  1916. atomic_inc(&vcc->stats->rx_drop);
  1917. } else {
  1918. skb_put(skb, len);
  1919. dequeue_sm_buf(card, skb);
  1920. #ifdef NS_USE_DESTRUCTORS
  1921. skb->destructor = ns_sb_destructor;
  1922. #endif /* NS_USE_DESTRUCTORS */
  1923. ATM_SKB(skb)->vcc = vcc;
  1924. __net_timestamp(skb);
  1925. vcc->push(vcc, skb);
  1926. atomic_inc(&vcc->stats->rx);
  1927. }
  1928. } else if (NS_PRV_IOVCNT(iovb) == 2) { /* One small plus one large buffer */
  1929. struct sk_buff *sb;
  1930. sb = (struct sk_buff *)(iov - 1)->iov_base;
  1931. /* skb points to a large buffer */
  1932. if (len <= NS_SMBUFSIZE) {
  1933. if (!atm_charge(vcc, sb->truesize)) {
  1934. push_rxbufs(card, sb);
  1935. atomic_inc(&vcc->stats->rx_drop);
  1936. } else {
  1937. skb_put(sb, len);
  1938. dequeue_sm_buf(card, sb);
  1939. #ifdef NS_USE_DESTRUCTORS
  1940. sb->destructor = ns_sb_destructor;
  1941. #endif /* NS_USE_DESTRUCTORS */
  1942. ATM_SKB(sb)->vcc = vcc;
  1943. __net_timestamp(sb);
  1944. vcc->push(vcc, sb);
  1945. atomic_inc(&vcc->stats->rx);
  1946. }
  1947. push_rxbufs(card, skb);
  1948. } else { /* len > NS_SMBUFSIZE, the usual case */
  1949. if (!atm_charge(vcc, skb->truesize)) {
  1950. push_rxbufs(card, skb);
  1951. atomic_inc(&vcc->stats->rx_drop);
  1952. } else {
  1953. dequeue_lg_buf(card, skb);
  1954. #ifdef NS_USE_DESTRUCTORS
  1955. skb->destructor = ns_lb_destructor;
  1956. #endif /* NS_USE_DESTRUCTORS */
  1957. skb_push(skb, NS_SMBUFSIZE);
  1958. skb_copy_from_linear_data(sb, skb->data,
  1959. NS_SMBUFSIZE);
  1960. skb_put(skb, len - NS_SMBUFSIZE);
  1961. ATM_SKB(skb)->vcc = vcc;
  1962. __net_timestamp(skb);
  1963. vcc->push(vcc, skb);
  1964. atomic_inc(&vcc->stats->rx);
  1965. }
  1966. push_rxbufs(card, sb);
  1967. }
  1968. } else { /* Must push a huge buffer */
  1969. struct sk_buff *hb, *sb, *lb;
  1970. int remaining, tocopy;
  1971. int j;
  1972. hb = skb_dequeue(&(card->hbpool.queue));
  1973. if (hb == NULL) { /* No buffers in the queue */
  1974. hb = dev_alloc_skb(NS_HBUFSIZE);
  1975. if (hb == NULL) {
  1976. printk
  1977. ("nicstar%d: Out of huge buffers.\n",
  1978. card->index);
  1979. atomic_inc(&vcc->stats->rx_drop);
  1980. recycle_iovec_rx_bufs(card,
  1981. (struct iovec *)
  1982. iovb->data,
  1983. NS_PRV_IOVCNT(iovb));
  1984. vc->rx_iov = NULL;
  1985. recycle_iov_buf(card, iovb);
  1986. return;
  1987. } else if (card->hbpool.count < card->hbnr.min) {
  1988. struct sk_buff *new_hb;
  1989. if ((new_hb =
  1990. dev_alloc_skb(NS_HBUFSIZE)) !=
  1991. NULL) {
  1992. skb_queue_tail(&card->hbpool.
  1993. queue, new_hb);
  1994. card->hbpool.count++;
  1995. }
  1996. }
  1997. NS_PRV_BUFTYPE(hb) = BUF_NONE;
  1998. } else if (--card->hbpool.count < card->hbnr.min) {
  1999. struct sk_buff *new_hb;
  2000. if ((new_hb =
  2001. dev_alloc_skb(NS_HBUFSIZE)) != NULL) {
  2002. NS_PRV_BUFTYPE(new_hb) = BUF_NONE;
  2003. skb_queue_tail(&card->hbpool.queue,
  2004. new_hb);
  2005. card->hbpool.count++;
  2006. }
  2007. if (card->hbpool.count < card->hbnr.min) {
  2008. if ((new_hb =
  2009. dev_alloc_skb(NS_HBUFSIZE)) !=
  2010. NULL) {
  2011. NS_PRV_BUFTYPE(new_hb) =
  2012. BUF_NONE;
  2013. skb_queue_tail(&card->hbpool.
  2014. queue, new_hb);
  2015. card->hbpool.count++;
  2016. }
  2017. }
  2018. }
  2019. iov = (struct iovec *)iovb->data;
  2020. if (!atm_charge(vcc, hb->truesize)) {
  2021. recycle_iovec_rx_bufs(card, iov,
  2022. NS_PRV_IOVCNT(iovb));
  2023. if (card->hbpool.count < card->hbnr.max) {
  2024. skb_queue_tail(&card->hbpool.queue, hb);
  2025. card->hbpool.count++;
  2026. } else
  2027. dev_kfree_skb_any(hb);
  2028. atomic_inc(&vcc->stats->rx_drop);
  2029. } else {
  2030. /* Copy the small buffer to the huge buffer */
  2031. sb = (struct sk_buff *)iov->iov_base;
  2032. skb_copy_from_linear_data(sb, hb->data,
  2033. iov->iov_len);
  2034. skb_put(hb, iov->iov_len);
  2035. remaining = len - iov->iov_len;
  2036. iov++;
  2037. /* Free the small buffer */
  2038. push_rxbufs(card, sb);
  2039. /* Copy all large buffers to the huge buffer and free them */
  2040. for (j = 1; j < NS_PRV_IOVCNT(iovb); j++) {
  2041. lb = (struct sk_buff *)iov->iov_base;
  2042. tocopy =
  2043. min_t(int, remaining, iov->iov_len);
  2044. skb_copy_from_linear_data(lb,
  2045. skb_tail_pointer
  2046. (hb), tocopy);
  2047. skb_put(hb, tocopy);
  2048. iov++;
  2049. remaining -= tocopy;
  2050. push_rxbufs(card, lb);
  2051. }
  2052. #ifdef EXTRA_DEBUG
  2053. if (remaining != 0 || hb->len != len)
  2054. printk
  2055. ("nicstar%d: Huge buffer len mismatch.\n",
  2056. card->index);
  2057. #endif /* EXTRA_DEBUG */
  2058. ATM_SKB(hb)->vcc = vcc;
  2059. #ifdef NS_USE_DESTRUCTORS
  2060. hb->destructor = ns_hb_destructor;
  2061. #endif /* NS_USE_DESTRUCTORS */
  2062. __net_timestamp(hb);
  2063. vcc->push(vcc, hb);
  2064. atomic_inc(&vcc->stats->rx);
  2065. }
  2066. }
  2067. vc->rx_iov = NULL;
  2068. recycle_iov_buf(card, iovb);
  2069. }
  2070. }
  2071. #ifdef NS_USE_DESTRUCTORS
  2072. static void ns_sb_destructor(struct sk_buff *sb)
  2073. {
  2074. ns_dev *card;
  2075. u32 stat;
  2076. card = (ns_dev *) ATM_SKB(sb)->vcc->dev->dev_data;
  2077. stat = readl(card->membase + STAT);
  2078. card->sbfqc = ns_stat_sfbqc_get(stat);
  2079. card->lbfqc = ns_stat_lfbqc_get(stat);
  2080. do {
  2081. sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
  2082. if (sb == NULL)
  2083. break;
  2084. NS_PRV_BUFTYPE(sb) = BUF_SM;
  2085. skb_queue_tail(&card->sbpool.queue, sb);
  2086. skb_reserve(sb, NS_AAL0_HEADER);
  2087. push_rxbufs(card, sb);
  2088. } while (card->sbfqc < card->sbnr.min);
  2089. }
  2090. static void ns_lb_destructor(struct sk_buff *lb)
  2091. {
  2092. ns_dev *card;
  2093. u32 stat;
  2094. card = (ns_dev *) ATM_SKB(lb)->vcc->dev->dev_data;
  2095. stat = readl(card->membase + STAT);
  2096. card->sbfqc = ns_stat_sfbqc_get(stat);
  2097. card->lbfqc = ns_stat_lfbqc_get(stat);
  2098. do {
  2099. lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
  2100. if (lb == NULL)
  2101. break;
  2102. NS_PRV_BUFTYPE(lb) = BUF_LG;
  2103. skb_queue_tail(&card->lbpool.queue, lb);
  2104. skb_reserve(lb, NS_SMBUFSIZE);
  2105. push_rxbufs(card, lb);
  2106. } while (card->lbfqc < card->lbnr.min);
  2107. }
  2108. static void ns_hb_destructor(struct sk_buff *hb)
  2109. {
  2110. ns_dev *card;
  2111. card = (ns_dev *) ATM_SKB(hb)->vcc->dev->dev_data;
  2112. while (card->hbpool.count < card->hbnr.init) {
  2113. hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
  2114. if (hb == NULL)
  2115. break;
  2116. NS_PRV_BUFTYPE(hb) = BUF_NONE;
  2117. skb_queue_tail(&card->hbpool.queue, hb);
  2118. card->hbpool.count++;
  2119. }
  2120. }
  2121. #endif /* NS_USE_DESTRUCTORS */
  2122. static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb)
  2123. {
  2124. if (unlikely(NS_PRV_BUFTYPE(skb) == BUF_NONE)) {
  2125. printk("nicstar%d: What kind of rx buffer is this?\n",
  2126. card->index);
  2127. dev_kfree_skb_any(skb);
  2128. } else
  2129. push_rxbufs(card, skb);
  2130. }
  2131. static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count)
  2132. {
  2133. while (count-- > 0)
  2134. recycle_rx_buf(card, (struct sk_buff *)(iov++)->iov_base);
  2135. }
  2136. static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb)
  2137. {
  2138. if (card->iovpool.count < card->iovnr.max) {
  2139. skb_queue_tail(&card->iovpool.queue, iovb);
  2140. card->iovpool.count++;
  2141. } else
  2142. dev_kfree_skb_any(iovb);
  2143. }
  2144. static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb)
  2145. {
  2146. skb_unlink(sb, &card->sbpool.queue);
  2147. #ifdef NS_USE_DESTRUCTORS
  2148. if (card->sbfqc < card->sbnr.min)
  2149. #else
  2150. if (card->sbfqc < card->sbnr.init) {
  2151. struct sk_buff *new_sb;
  2152. if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) {
  2153. NS_PRV_BUFTYPE(new_sb) = BUF_SM;
  2154. skb_queue_tail(&card->sbpool.queue, new_sb);
  2155. skb_reserve(new_sb, NS_AAL0_HEADER);
  2156. push_rxbufs(card, new_sb);
  2157. }
  2158. }
  2159. if (card->sbfqc < card->sbnr.init)
  2160. #endif /* NS_USE_DESTRUCTORS */
  2161. {
  2162. struct sk_buff *new_sb;
  2163. if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) {
  2164. NS_PRV_BUFTYPE(new_sb) = BUF_SM;
  2165. skb_queue_tail(&card->sbpool.queue, new_sb);
  2166. skb_reserve(new_sb, NS_AAL0_HEADER);
  2167. push_rxbufs(card, new_sb);
  2168. }
  2169. }
  2170. }
  2171. static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb)
  2172. {
  2173. skb_unlink(lb, &card->lbpool.queue);
  2174. #ifdef NS_USE_DESTRUCTORS
  2175. if (card->lbfqc < card->lbnr.min)
  2176. #else
  2177. if (card->lbfqc < card->lbnr.init) {
  2178. struct sk_buff *new_lb;
  2179. if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) {
  2180. NS_PRV_BUFTYPE(new_lb) = BUF_LG;
  2181. skb_queue_tail(&card->lbpool.queue, new_lb);
  2182. skb_reserve(new_lb, NS_SMBUFSIZE);
  2183. push_rxbufs(card, new_lb);
  2184. }
  2185. }
  2186. if (card->lbfqc < card->lbnr.init)
  2187. #endif /* NS_USE_DESTRUCTORS */
  2188. {
  2189. struct sk_buff *new_lb;
  2190. if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) {
  2191. NS_PRV_BUFTYPE(new_lb) = BUF_LG;
  2192. skb_queue_tail(&card->lbpool.queue, new_lb);
  2193. skb_reserve(new_lb, NS_SMBUFSIZE);
  2194. push_rxbufs(card, new_lb);
  2195. }
  2196. }
  2197. }
  2198. static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page)
  2199. {
  2200. u32 stat;
  2201. ns_dev *card;
  2202. int left;
  2203. left = (int)*pos;
  2204. card = (ns_dev *) dev->dev_data;
  2205. stat = readl(card->membase + STAT);
  2206. if (!left--)
  2207. return sprintf(page, "Pool count min init max \n");
  2208. if (!left--)
  2209. return sprintf(page, "Small %5d %5d %5d %5d \n",
  2210. ns_stat_sfbqc_get(stat), card->sbnr.min,
  2211. card->sbnr.init, card->sbnr.max);
  2212. if (!left--)
  2213. return sprintf(page, "Large %5d %5d %5d %5d \n",
  2214. ns_stat_lfbqc_get(stat), card->lbnr.min,
  2215. card->lbnr.init, card->lbnr.max);
  2216. if (!left--)
  2217. return sprintf(page, "Huge %5d %5d %5d %5d \n",
  2218. card->hbpool.count, card->hbnr.min,
  2219. card->hbnr.init, card->hbnr.max);
  2220. if (!left--)
  2221. return sprintf(page, "Iovec %5d %5d %5d %5d \n",
  2222. card->iovpool.count, card->iovnr.min,
  2223. card->iovnr.init, card->iovnr.max);
  2224. if (!left--) {
  2225. int retval;
  2226. retval =
  2227. sprintf(page, "Interrupt counter: %u \n", card->intcnt);
  2228. card->intcnt = 0;
  2229. return retval;
  2230. }
  2231. #if 0
  2232. /* Dump 25.6 Mbps PHY registers */
  2233. /* Now there's a 25.6 Mbps PHY driver this code isn't needed. I left it
  2234. here just in case it's needed for debugging. */
  2235. if (card->max_pcr == ATM_25_PCR && !left--) {
  2236. u32 phy_regs[4];
  2237. u32 i;
  2238. for (i = 0; i < 4; i++) {
  2239. while (CMD_BUSY(card)) ;
  2240. writel(NS_CMD_READ_UTILITY | 0x00000200 | i,
  2241. card->membase + CMD);
  2242. while (CMD_BUSY(card)) ;
  2243. phy_regs[i] = readl(card->membase + DR0) & 0x000000FF;
  2244. }
  2245. return sprintf(page, "PHY regs: 0x%02X 0x%02X 0x%02X 0x%02X \n",
  2246. phy_regs[0], phy_regs[1], phy_regs[2],
  2247. phy_regs[3]);
  2248. }
  2249. #endif /* 0 - Dump 25.6 Mbps PHY registers */
  2250. #if 0
  2251. /* Dump TST */
  2252. if (left-- < NS_TST_NUM_ENTRIES) {
  2253. if (card->tste2vc[left + 1] == NULL)
  2254. return sprintf(page, "%5d - VBR/UBR \n", left + 1);
  2255. else
  2256. return sprintf(page, "%5d - %d %d \n", left + 1,
  2257. card->tste2vc[left + 1]->tx_vcc->vpi,
  2258. card->tste2vc[left + 1]->tx_vcc->vci);
  2259. }
  2260. #endif /* 0 */
  2261. return 0;
  2262. }
  2263. static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg)
  2264. {
  2265. ns_dev *card;
  2266. pool_levels pl;
  2267. long btype;
  2268. unsigned long flags;
  2269. card = dev->dev_data;
  2270. switch (cmd) {
  2271. case NS_GETPSTAT:
  2272. if (get_user
  2273. (pl.buftype, &((pool_levels __user *) arg)->buftype))
  2274. return -EFAULT;
  2275. switch (pl.buftype) {
  2276. case NS_BUFTYPE_SMALL:
  2277. pl.count =
  2278. ns_stat_sfbqc_get(readl(card->membase + STAT));
  2279. pl.level.min = card->sbnr.min;
  2280. pl.level.init = card->sbnr.init;
  2281. pl.level.max = card->sbnr.max;
  2282. break;
  2283. case NS_BUFTYPE_LARGE:
  2284. pl.count =
  2285. ns_stat_lfbqc_get(readl(card->membase + STAT));
  2286. pl.level.min = card->lbnr.min;
  2287. pl.level.init = card->lbnr.init;
  2288. pl.level.max = card->lbnr.max;
  2289. break;
  2290. case NS_BUFTYPE_HUGE:
  2291. pl.count = card->hbpool.count;
  2292. pl.level.min = card->hbnr.min;
  2293. pl.level.init = card->hbnr.init;
  2294. pl.level.max = card->hbnr.max;
  2295. break;
  2296. case NS_BUFTYPE_IOVEC:
  2297. pl.count = card->iovpool.count;
  2298. pl.level.min = card->iovnr.min;
  2299. pl.level.init = card->iovnr.init;
  2300. pl.level.max = card->iovnr.max;
  2301. break;
  2302. default:
  2303. return -ENOIOCTLCMD;
  2304. }
  2305. if (!copy_to_user((pool_levels __user *) arg, &pl, sizeof(pl)))
  2306. return (sizeof(pl));
  2307. else
  2308. return -EFAULT;
  2309. case NS_SETBUFLEV:
  2310. if (!capable(CAP_NET_ADMIN))
  2311. return -EPERM;
  2312. if (copy_from_user(&pl, (pool_levels __user *) arg, sizeof(pl)))
  2313. return -EFAULT;
  2314. if (pl.level.min >= pl.level.init
  2315. || pl.level.init >= pl.level.max)
  2316. return -EINVAL;
  2317. if (pl.level.min == 0)
  2318. return -EINVAL;
  2319. switch (pl.buftype) {
  2320. case NS_BUFTYPE_SMALL:
  2321. if (pl.level.max > TOP_SB)
  2322. return -EINVAL;
  2323. card->sbnr.min = pl.level.min;
  2324. card->sbnr.init = pl.level.init;
  2325. card->sbnr.max = pl.level.max;
  2326. break;
  2327. case NS_BUFTYPE_LARGE:
  2328. if (pl.level.max > TOP_LB)
  2329. return -EINVAL;
  2330. card->lbnr.min = pl.level.min;
  2331. card->lbnr.init = pl.level.init;
  2332. card->lbnr.max = pl.level.max;
  2333. break;
  2334. case NS_BUFTYPE_HUGE:
  2335. if (pl.level.max > TOP_HB)
  2336. return -EINVAL;
  2337. card->hbnr.min = pl.level.min;
  2338. card->hbnr.init = pl.level.init;
  2339. card->hbnr.max = pl.level.max;
  2340. break;
  2341. case NS_BUFTYPE_IOVEC:
  2342. if (pl.level.max > TOP_IOVB)
  2343. return -EINVAL;
  2344. card->iovnr.min = pl.level.min;
  2345. card->iovnr.init = pl.level.init;
  2346. card->iovnr.max = pl.level.max;
  2347. break;
  2348. default:
  2349. return -EINVAL;
  2350. }
  2351. return 0;
  2352. case NS_ADJBUFLEV:
  2353. if (!capable(CAP_NET_ADMIN))
  2354. return -EPERM;
  2355. btype = (long)arg; /* a long is the same size as a pointer or bigger */
  2356. switch (btype) {
  2357. case NS_BUFTYPE_SMALL:
  2358. while (card->sbfqc < card->sbnr.init) {
  2359. struct sk_buff *sb;
  2360. sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
  2361. if (sb == NULL)
  2362. return -ENOMEM;
  2363. NS_PRV_BUFTYPE(sb) = BUF_SM;
  2364. skb_queue_tail(&card->sbpool.queue, sb);
  2365. skb_reserve(sb, NS_AAL0_HEADER);
  2366. push_rxbufs(card, sb);
  2367. }
  2368. break;
  2369. case NS_BUFTYPE_LARGE:
  2370. while (card->lbfqc < card->lbnr.init) {
  2371. struct sk_buff *lb;
  2372. lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
  2373. if (lb == NULL)
  2374. return -ENOMEM;
  2375. NS_PRV_BUFTYPE(lb) = BUF_LG;
  2376. skb_queue_tail(&card->lbpool.queue, lb);
  2377. skb_reserve(lb, NS_SMBUFSIZE);
  2378. push_rxbufs(card, lb);
  2379. }
  2380. break;
  2381. case NS_BUFTYPE_HUGE:
  2382. while (card->hbpool.count > card->hbnr.init) {
  2383. struct sk_buff *hb;
  2384. spin_lock_irqsave(&card->int_lock, flags);
  2385. hb = skb_dequeue(&card->hbpool.queue);
  2386. card->hbpool.count--;
  2387. spin_unlock_irqrestore(&card->int_lock, flags);
  2388. if (hb == NULL)
  2389. printk
  2390. ("nicstar%d: huge buffer count inconsistent.\n",
  2391. card->index);
  2392. else
  2393. dev_kfree_skb_any(hb);
  2394. }
  2395. while (card->hbpool.count < card->hbnr.init) {
  2396. struct sk_buff *hb;
  2397. hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
  2398. if (hb == NULL)
  2399. return -ENOMEM;
  2400. NS_PRV_BUFTYPE(hb) = BUF_NONE;
  2401. spin_lock_irqsave(&card->int_lock, flags);
  2402. skb_queue_tail(&card->hbpool.queue, hb);
  2403. card->hbpool.count++;
  2404. spin_unlock_irqrestore(&card->int_lock, flags);
  2405. }
  2406. break;
  2407. case NS_BUFTYPE_IOVEC:
  2408. while (card->iovpool.count > card->iovnr.init) {
  2409. struct sk_buff *iovb;
  2410. spin_lock_irqsave(&card->int_lock, flags);
  2411. iovb = skb_dequeue(&card->iovpool.queue);
  2412. card->iovpool.count--;
  2413. spin_unlock_irqrestore(&card->int_lock, flags);
  2414. if (iovb == NULL)
  2415. printk
  2416. ("nicstar%d: iovec buffer count inconsistent.\n",
  2417. card->index);
  2418. else
  2419. dev_kfree_skb_any(iovb);
  2420. }
  2421. while (card->iovpool.count < card->iovnr.init) {
  2422. struct sk_buff *iovb;
  2423. iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL);
  2424. if (iovb == NULL)
  2425. return -ENOMEM;
  2426. NS_PRV_BUFTYPE(iovb) = BUF_NONE;
  2427. spin_lock_irqsave(&card->int_lock, flags);
  2428. skb_queue_tail(&card->iovpool.queue, iovb);
  2429. card->iovpool.count++;
  2430. spin_unlock_irqrestore(&card->int_lock, flags);
  2431. }
  2432. break;
  2433. default:
  2434. return -EINVAL;
  2435. }
  2436. return 0;
  2437. default:
  2438. if (dev->phy && dev->phy->ioctl) {
  2439. return dev->phy->ioctl(dev, cmd, arg);
  2440. } else {
  2441. printk("nicstar%d: %s == NULL \n", card->index,
  2442. dev->phy ? "dev->phy->ioctl" : "dev->phy");
  2443. return -ENOIOCTLCMD;
  2444. }
  2445. }
  2446. }
  2447. #ifdef EXTRA_DEBUG
  2448. static void which_list(ns_dev * card, struct sk_buff *skb)
  2449. {
  2450. printk("skb buf_type: 0x%08x\n", NS_PRV_BUFTYPE(skb));
  2451. }
  2452. #endif /* EXTRA_DEBUG */
  2453. static void ns_poll(unsigned long arg)
  2454. {
  2455. int i;
  2456. ns_dev *card;
  2457. unsigned long flags;
  2458. u32 stat_r, stat_w;
  2459. PRINTK("nicstar: Entering ns_poll().\n");
  2460. for (i = 0; i < num_cards; i++) {
  2461. card = cards[i];
  2462. if (spin_is_locked(&card->int_lock)) {
  2463. /* Probably it isn't worth spinning */
  2464. continue;
  2465. }
  2466. spin_lock_irqsave(&card->int_lock, flags);
  2467. stat_w = 0;
  2468. stat_r = readl(card->membase + STAT);
  2469. if (stat_r & NS_STAT_TSIF)
  2470. stat_w |= NS_STAT_TSIF;
  2471. if (stat_r & NS_STAT_EOPDU)
  2472. stat_w |= NS_STAT_EOPDU;
  2473. process_tsq(card);
  2474. process_rsq(card);
  2475. writel(stat_w, card->membase + STAT);
  2476. spin_unlock_irqrestore(&card->int_lock, flags);
  2477. }
  2478. mod_timer(&ns_timer, jiffies + NS_POLL_PERIOD);
  2479. PRINTK("nicstar: Leaving ns_poll().\n");
  2480. }
  2481. static int ns_parse_mac(char *mac, unsigned char *esi)
  2482. {
  2483. int i, j;
  2484. short byte1, byte0;
  2485. if (mac == NULL || esi == NULL)
  2486. return -1;
  2487. j = 0;
  2488. for (i = 0; i < 6; i++) {
  2489. if ((byte1 = hex_to_bin(mac[j++])) < 0)
  2490. return -1;
  2491. if ((byte0 = hex_to_bin(mac[j++])) < 0)
  2492. return -1;
  2493. esi[i] = (unsigned char)(byte1 * 16 + byte0);
  2494. if (i < 5) {
  2495. if (mac[j++] != ':')
  2496. return -1;
  2497. }
  2498. }
  2499. return 0;
  2500. }
  2501. static void ns_phy_put(struct atm_dev *dev, unsigned char value,
  2502. unsigned long addr)
  2503. {
  2504. ns_dev *card;
  2505. unsigned long flags;
  2506. card = dev->dev_data;
  2507. spin_lock_irqsave(&card->res_lock, flags);
  2508. while (CMD_BUSY(card)) ;
  2509. writel((u32) value, card->membase + DR0);
  2510. writel(NS_CMD_WRITE_UTILITY | 0x00000200 | (addr & 0x000000FF),
  2511. card->membase + CMD);
  2512. spin_unlock_irqrestore(&card->res_lock, flags);
  2513. }
  2514. static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr)
  2515. {
  2516. ns_dev *card;
  2517. unsigned long flags;
  2518. u32 data;
  2519. card = dev->dev_data;
  2520. spin_lock_irqsave(&card->res_lock, flags);
  2521. while (CMD_BUSY(card)) ;
  2522. writel(NS_CMD_READ_UTILITY | 0x00000200 | (addr & 0x000000FF),
  2523. card->membase + CMD);
  2524. while (CMD_BUSY(card)) ;
  2525. data = readl(card->membase + DR0) & 0x000000FF;
  2526. spin_unlock_irqrestore(&card->res_lock, flags);
  2527. return (unsigned char)data;
  2528. }
  2529. module_init(nicstar_init);
  2530. module_exit(nicstar_cleanup);